

RADIO TEST REPORT FCC ID: 2AKCT-SPCP2S

Product: Geek PC

Trade Mark: STATIONPC Model No.: Station P2S Family Model: N/A Report No.: S23020600204002 Issue Date: Mar 24, 2023

Prepared for

T-CHIP INTELLIGENT TECHNOLOGY CO.,LTD. Room 2101,NO.1 Hongyu Building #57 Zhongshan 4Rd, East District, Zhongshan, Guangdong, China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

TABLE OF CONTENTS

2 SUMMARY OF TEST RESULTS	1	TEST RESULT CERTIFICATION	4
3.1 FACILITIES 6 3.2 LABORATORY ACCREDITATIONS AND LISTINGS 6 3.3 MEASUREMENT UNCERTAINTY 6 4 GENERAL DESCRIPTION OF EUT 7 5 DESCRIPTION OF TEST MODES 9 6 SETUP OF EQUIPMENT UNDER TEST 10 6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM 10 6.2 SUPPORT FQUIPMENT. 11 6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS 12 7 TEST REQUIREMENTS 14 7.1.1 CONDUCTED EMISSIONS TEST 14 7.1.2 Conformance Limit 14 7.1.4 Test Configuration 14 7.1.5 Test Require Eusistion 14 7.1.4 Test Configuration 14 7.1.5 Test Configuration 14 7.1.6 Test Results 17 7.2 RADIATED SPURIOUS EMISSION 17 7.2.1 Applicable Standard 17 7.2.2 Conformance Limit 17 7.2.3 Measuring Instruments 18 7.2.4 T	2	SUMMARY OF TEST RESULTS	5
3.2 LABORATORY ACCREDITATIONS AND LISTINGS 6 3.3 MEASUREMENT UNCERTAINTY 6 4 GENERAL DESCRIPTION OF EUT 7 5 DESCRIPTION OF TEST MODES 9 6 SETUP OF EQUIPMENT UNDER TEST 10 6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM 10 6.2 SUPPORT EQUIPMENT 11 6.3 EQUIPMENTS LIST FOR ALL TEST TITEMS 12 7 TEST REQUIREMENTS 14 7.1 CONDUCTED EMISSIONS TEST 14 7.1.1 Applicable Standard 14 7.1.2 Conformance Limit 14 7.1.4 Test Configuration 14 7.1.5 Test Procedure 14 7.1.6 Test Configuration 14 7.1.7.1 Applicable Standard 17 7.2.1 Applicable Standard 17 7.2.2 Conformance Limit 17 7.2.3 Measuring Instruments 18 7.2.4 Test Configuration 18 7.2.5 Test Procedure 20 7.3 GO	3	FACILITIES AND ACCREDITATIONS	6
3.3 MEASUREMENT UNCERTAINTY	3		
4 GENERAL DESCRIPTION OF EUT 7 5 DESCRIPTION OF TEST MODES 9 6 SETUP OF EQUIPMENT UNDER TEST 10 6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM. 10 6.2 SUPPORT EQUIPMENT. 11 6.3 EQUIPMENT LIST FOR ALL TEST TITEMS. 12 7 TEST REQUIREMENTS 14 7.1. CONDUCTED EMISSIONS TEST. 14 7.1.1 Applicable Standard 14 7.1.2 Conformance Limit 14 7.1.3 Measuring Instruments 14 7.1.4 Test Configuration 14 7.1.5 Test Ornorsonce Limit 17 7.2 Conformance Limit 17 7.2.1 Applicable Standard 17 7.2.2 Conforguration 17 7.2.3 Measuring Instruments 18 7.2.4 Test Procedure 19 7.3 OB BANDWIDTH 26 7.3 Measuring Instruments 26 7.3.4 Test Procedure 26 7.3.5 Test Results <			
5 DESCRIPTION OF TEST MODES 9 6 SETUP OF EQUIPMENT UNDER TEST 10 6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM 10 6.2 SUPPORT EQUIPMENT 11 6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS 12 7 TEST REQUIREMENTS 14 7.1.1 Applicable Standard 14 7.1.2 CONDUCTED EMISSIONS TEST 14 7.1.3 Measuring Instruments 14 7.1.4 Test Procedure 14 7.1.5 Test Procedure 14 7.1.6 Test Procedure 14 7.1.7 Paplicable Standard 17 7.2.1 Applicable Standard 17 7.2.2 Conformance Limit 17 7.2.3 Measuring Instruments 18 7.2.4 Test Configuration 18 7.2.5 Test Results 20 7.3 GDB BANDWIDTH 26 7.3.4 Destandard 26 7.3.5 Test Results	3		
6 SETUP OF EQUIPMENT UNDER TEST 10 6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM. 10 6.2 SUPPORT EQUIPMENT. 11 6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS. 12 7 TEST REQUIREMENTS. 14 7.1 CONDUCTED EMISSIONS TEST. 14 7.1.1 Applicable Standard. 14 7.1.2 Conformance Limit 14 7.1.3 Measuring Instruments. 14 7.1.4 Test Procedure 14 7.1.5 Test Results. 15 7.2 RADIATED SPURIOUS EMISSION 17 7.2.1 Applicable Standard. 17 7.2.2 Conformance Limit 17 7.2.3 Measuring Instruments. 18 7.2.4 Test Configuration 18 7.2.5 Test Results. 20 7.3 GDB BANDWIDTH. 26 7.3.4 Descring Instruments. 26 7.3.5 Test Results 26 7.4.4 Test Configuration 26 7.4.5 Test Results <	4		
6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM 10 6.2 SUPPORT EQUIPMENT 11 6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS 12 7 TEST REQUIREMENTS 14 7.1 CONDUCTED EMISSIONS TEST 14 7.1.1 Applicable Standard 14 7.1.2 Conformance Limit 14 7.1.3 Measuring Instruments 14 7.1.4 Test Configuration 14 7.1.5 Test Procedure 14 7.1.6 Test Results 15 7.2 RADIATED SPURIOUS EMISSION 17 7.2.1 Applicable Standard 17 7.2.3 Measuring Instruments 18 7.2.4 Test Configuration 18 7.2.5 Test Procedure 19 7.2.6 Test Results 20 7.3 GDB BANDWIDTH 26 7.3.1 Applicable Standard 27 7.3.3 Measuring Instruments 26 7.3.4 Test Setup 26 7.3.5 Test Procedure 26	5	DESCRIPTION OF TEST MODES	9
6.2 SUPPORT EQUIPMENT. 11 6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS. 12 7 TEST REQUIREMENTS. 14 7.1 CONDUCTED EMISSIONS TEST. 14 7.1.1 Applicable Standard 14 7.1.2 Conformance Limit. 14 7.1.3 Measuring Instruments. 14 7.1.4 Test Configuration 14 7.1.5 Test Procedure 14 7.1.6 Test Results 15 7.2 RADIATED SPURIOUS EMISSION 17 7.2.1 Applicable Standard 17 7.2.2 Conformance Limit 17 7.2.3 Measuring Instruments 18 7.2.4 Test Configuration 18 7.2.5 Test Procedure 19 7.2.6 Test Results 20 7.3 GB BANDWIDTH 26 7.3.4 Test Standard 26 7.3.5 Test Results 26 7.3.4 Test Standard 26 7.3.4 Test Standard 27 7.3.5	6	SETUP OF EQUIPMENT UNDER TEST	
6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS. 12 7 TEST REQUIREMENTS. 14 7.1 CONDUCTED EMISSIONS TEST. 14 7.1.1 Applicable Standard 14 7.1.2 Conformance Limit. 14 7.1.3 Measuring Instruments. 14 7.1.4 Test Configuration 14 7.1.5 Test Procedure 14 7.1.6 Test Results 15 7.2 RADIATED SPURIOUS EMISSION 17 7.2.1 Applicable Standard 17 7.2.2 Conformance Limit 17 7.2.3 Measuring Instruments 18 7.2.4 Test Configuration 18 7.2.5 Test Procedure 19 7.2.6 Test Results 20 7.3 Applicable Standard 26 7.3.1 Applicable Standard 26 7.3.1 Applicable Standard 26 7.3.3 Measuring Instruments 26 7.3.4 Applicable Standard 27 7.4.4 Test Setup 26	6	.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	
7 TEST REQUIREMENTS. 14 7.1 CONDUCTED EMISSIONS TEST. 14 7.1.1 Applicable Standard. 14 7.1.2 Conformance Limit. 14 7.1.3 Measuring Instruments. 14 7.1.4 Test Configuration 14 7.1.5 Test Procedure 14 7.1.6 Test Procedure 14 7.1.7 Test Results 15 7.2 RADIATED SPURIOUS EMISSION 17 7.2.1 Applicable Standard 17 7.2.2 Conformance Limit. 17 7.2.3 Measuring Instruments. 18 7.2.4 Test Configuration 18 7.2.5 Test Procedure 19 7.2.6 Test Results 20 7.3 GDB BANDWIDTH 26 7.3.4 Applicable Standard 26 7.3.4 Test Procedure 26 7.3.4 Test Standard 26 7.3.5 Test Procedure 26 7.3.6 Test Results 26 7.3.7 T		.2 SUPPORT EQUIPMENT	11
7.1 CONDUCTED EMISSIONS TEST. 14 7.1.1 Applicable Standard 14 7.1.2 Conformance Limit 14 7.1.3 Measuring Instruments. 14 7.1.4 Test Configuration 14 7.1.5 Test Procedure 14 7.1.6 Test Results 15 7.2 RADIATED SPURIOUS EMISSION 17 7.2.1 Applicable Standard 17 7.2.2 Conformance Limit 17 7.2.3 Measuring Instruments 18 7.2.4 Test Configuration 18 7.2.5 Test Procedure 19 7.2.6 Test Results 20 7.3 GDB BANDWIDTH 26 7.3.4 Test Setup 26 7.3.4 Test Setup 26 7.3.5 Test Results 26 7.3.4 Test Setup 26 7.3.4 Test Setup 26 7.3.5 Test Results 26 7.3.6 Test Results 26 7.3.7 Test Setup 27<	6		
7.1.1 Applicable Standard 14 7.1.2 Conformance Limit 14 7.1.3 Measuring Instruments 14 7.1.4 Test Configuration 14 7.1.5 Test Procedure 14 7.1.6 Test Results 15 7.2 RADIATED SPURIOUS EMISSION 17 7.1.1 Applicable Standard 17 7.2.2 Conformance Limit 17 7.2.3 Measuring Instruments 18 7.2.4 Test Configuration 18 7.2.5 Test Procedure 19 7.2.6 Test Results 20 7.3 GDB BANDWIDTH 26 7.3.1 Applicable Standard 26 7.3.2 Conformance Limit 26 7.3.4 Test Setup 26 7.3.5 Test Procedure 26 7.3.4 Test Setup 26 7.3.5 Test Procedure 26 7.3.6 Test Results 26 7.3.7 Test Setup 26 7.3.6 Test Results	7	TEST REQUIREMENTS	14
7.1.2 Conformance Limit	7	.1 CONDUCTED EMISSIONS TEST	14
7.1.3 Measuring Instruments			
7.1.4 Test Configuration 14 7.15 Test Procedure 14 7.16 Test Results 15 7.2 RADIATED SPURIOUS EMISSION 17 7.2.1 Applicable Standard 17 7.2.2 Conformance Limit 17 7.2.3 Measuring Instruments 18 7.2.4 Test Configuration 18 7.2.5 Test Configuration 18 7.2.6 Test Results 20 7.3 GDB BANDWIDTH 26 7.3.1 Applicable Standard 26 7.3.2 Conformance Limit 26 7.3.4 Measuring Instruments 26 7.3.5 Test Procedure 26 7.3.4 Test Setup 26 7.3.5 Test Procedure 26 7.3.6 Test Results 26 7.3.6 Test Results 26 7.3.5 Test Results 26 7.4.4 Test Results 27 7.4.3 Measuring Instruments 27 7.4.4 Test Setup			
7.1.5 Test Procedure 14 7.1.6 Test Results 15 7.2 RADIATED SPURIOUS EMISSION 17 7.2.1 Applicable Standard 17 7.2.2 Conformance Limit 17 7.2.3 Measuring Instruments 18 7.2.4 Test Configuration 18 7.2.5 Test Procedure 19 7.2.6 Test Results 20 7.3 GDB BANDWIDTH 26 7.3.1 Applicable Standard 26 7.3.4 Applicable Standard 26 7.3.4 Applicable Standard 26 7.3.5 Test Procedure 26 7.3.4 Test Setup 26 7.3.5 Test Procedure 26 7.3.6 Test Setup 26 7.3.6 Test Results 26 7.3.5 Test Procedure 26 7.3.6 Test Results 26 7.3.6 Test Results 26 7.3.7 Test Setup 26 7.4.1 Applicable Standard 27 </td <td></td> <td></td> <td></td>			
7.1.6 Test Results 15 7.2 RADIATED SPURIOUS EMISSION 17 7.2.1 Applicable Standard 17 7.2.2 Conformance Limit 17 7.2.3 Measuring Instruments 18 7.2.4 Test Configuration 18 7.2.5 Test Procedure 19 7.2.6 Test Results 20 7.3 6DB BANDWIDTH 26 7.3.1 Applicable Standard 26 7.3.3 Measuring Instruments 26 7.3.4 Test Setup 26 7.3.5 Test Results 26 7.3.6 DUTY CYCLE 26 7.3.6 Test Results 26 7.3.6 Test Results 26 7.3.6 Test Results 26 7.3.7 Test Results 26 7.3.6 Test Results 26 7.3.7 Test Results 26 7.3.6 Test Results 26 7.3.7 Test Results 26 7.3.6 Test Results 26			
7.2 RADIATED SPURIOUS EMISSION 17 7.2.1 Applicable Standard 17 7.2.2 Conformance Limit 17 7.2.3 Measuring Instruments 18 7.2.4 Test Configuration 18 7.2.5 Test Configuration 18 7.2.6 Test Results 20 7.3 6DB BANDWIDTH 26 7.3.1 Applicable Standard 26 7.3.3 Measuring Instruments 26 7.3.4 Test Setup 26 7.3.3 Measuring Instruments 26 7.3.4 Test Setup 26 7.3.5 Test Procedure 26 7.3.6 Test Setup 26 7.3.5 Test Procedure 26 7.3.6 Test Netup 26 7.3.5 Test Setup 26 7.3.6 Test Netup 26 7.3.7 Test Setup 26 7.3.6 Test Netup 26 7.4 Test Setup 26 7.4 Test Setup 27 <tr< td=""><td></td><td></td><td></td></tr<>			
7.2.1 Applicable Standard 17 7.2.2 Conformance Limit 17 7.2.3 Measuring Instruments 18 7.2.4 Test Configuration 18 7.2.5 Test Procedure 19 7.2.6 Test Procedure 20 7.3 6DB BANDWIDTH 26 7.3.1 Applicable Standard 26 7.3.2 Conformance Limit 26 7.3.3 Measuring Instruments 26 7.3.3 Measuring Instruments 26 7.3.4 Test Setup 26 7.3.5 Test Procedure 26 7.3.6 Test Setup 26 7.3.6 Test Setup 26 7.3.7 Test Setup 26 7.3.6 Test Procedure 26 7.3.6 Test Procedure 26 7.3.6 Test Setup 26 7.3.7 Test Setup 26 7.3.6 Test Procedure 27 7.4.1 Applicable Standard 27 7.4.2 Conformance Limit 27 <td>7</td> <td></td> <td></td>	7		
7.2.2 Conformance Limit 17 7.2.3 Measuring Instruments 18 7.2.4 Test Configuration 18 7.2.5 Test Procedure 19 7.2.6 Test Results 20 7.3 6DB BANDWIDTH 26 7.3.1 Applicable Standard 26 7.3.2 Conformance Limit 26 7.3.3 Measuring Instruments 26 7.3.4 Test Setup 26 7.3.3 Measuring Instruments 26 7.3.4 Test Setup 26 7.3.5 Test Procedure 26 7.3.6 Test Results 26 7.3.4 Test Setup 26 7.4.1 Applicable Standard 27 7.4.2 Conformance Limit 27 7.4.3 Measuring Instruments 27 7.4.4 Test Setup 27 7.4.5 Test Results 27 7.4.6 Test Results 28 7.5 PEAK OUTPUT POWER 29 7.5.1 Applicable Standard <t< td=""><td>1</td><td></td><td></td></t<>	1		
7.2.3 Measuring Instruments. 18 7.2.4 Test Configuration 18 7.2.5 Test Procedure 19 7.2.6 Test Results 20 7.3 6DB BANDWIDTH 26 7.3.1 Applicable Standard 26 7.3.2 Conformance Limit 26 7.3.3 Measuring Instruments. 26 7.3.4 Test Setup 26 7.3.5 Test Procedure 26 7.3.4 Test Setup 26 7.3.5 Test Procedure 26 7.3.6 Test Results 26 7.3.6 Test Results 26 7.3.4 Test Setup 26 7.3.5 Test Procedure 26 7.3.6 Test Results 26 7.3.6 Test Results 26 7.4 DUTY CYCLE 27 7.4.1 Applicable Standard 27 7.4.2 Conformance Limit 27 7.4.3 Measuring Instruments 27 7.4.4 Test Setup 27			
7.2.4 Test Configuration 18 7.2.5 Test Procedure 19 7.2.6 Test Results 20 7.3 GD BANDWIDTH 26 7.3.1 Applicable Standard 26 7.3.2 Conformance Limit 26 7.3.3 Measuring Instruments 26 7.3.4 Test Setup 26 7.3.5 Test Procedure 26 7.3.6 Test Nesults 26 7.3.7 Test Setup 26 7.3.4 Test Setup 26 7.3.5 Test Procedure 26 7.3.6 Test Results 26 7.3.6 Test Results 26 7.3.6 Test Results 26 7.3.6 Test Results 26 7.3.7 Test Setup 27 7.4.1 Applicable Standard 27 7.4.2 Conformance Limit 27 7.4.3 Measuring Instruments 27 7.4.4 Test Results 28 7.5 PEAK OUTPUT POWER 29		J	
7.2.6 Test Results 20 7.3 6DB BANDWIDTH 26 7.3.1 Applicable Standard 26 7.3.2 Conformance Limit 26 7.3.3 Measuring Instruments 26 7.3.4 Test Setup 26 7.3.5 Test Procedure 26 7.3.6 Test Results 26 7.3.6 Test Results 26 7.3.6 Test Results 26 7.3.6 Test Results 26 7.4 DUTY CYCLE 27 7.4.1 Applicable Standard 27 7.4.2 Conformance Limit 27 7.4.3 Measuring Instruments 27 7.4.4 Test Setup 27 7.4.5 Test Procedure 27 7.4.6 Test Results 27 7.4.6 Test Results 28 7.5 PEAK OUTPUT POWER 29 7.5.1 Applicable Standard 29 7.5.2 Conformance Limit 29 7.5.3 Measuring Instruments 29 <			
7.3 6DB BANDWIDTH		7.2.5 Test Procedure	19
7.3.1 Applicable Standard 26 7.3.2 Conformance Limit 26 7.3.3 Measuring Instruments 26 7.3.4 Test Setup 26 7.3.5 Test Procedure 26 7.3.6 Test Results 26 7.3.6 Test Results 26 7.3.6 Test Results 26 7.4 DUTY CYCLE 26 7.4.1 Applicable Standard 27 7.4.2 Conformance Limit 27 7.4.3 Measuring Instruments 27 7.4.4 Test Setup 27 7.4.5 Test Procedure 27 7.4.6 Test Results 28 7.5 PEAK OUTPUT POWER 29 7.5.1 Applicable Standard 29 7.5.3 Measuring Instruments 29 7.5.4 Test Setup 29 7.5.5 Test Procedure 29 7.5.6 Test Results 29			
7.3.2 Conformance Limit 26 7.3.3 Measuring Instruments 26 7.3.4 Test Setup 26 7.3.5 Test Procedure 26 7.3.6 Test Results 26 7.3.6 Test Results 26 7.4 DUTY CYCLE 27 7.4.1 Applicable Standard 27 7.4.2 Conformance Limit 27 7.4.3 Measuring Instruments 27 7.4.4 Test Setup 27 7.4.5 Test Necedure 27 7.4.6 Test Results 28 7.5 PEAK OUTPUT POWER 29 7.5.1 Applicable Standard 29 7.5.3 Measuring Instruments 29 7.5.4 Test Setup 29 7.5.5 Test Procedure 29 7.5.4 Test Setup 29 7.5.5 Test Results 29 7.5.6 Test Results 29	7		
7.3.3 Measuring Instruments. 26 7.3.4 Test Setup 26 7.3.5 Test Procedure 26 7.3.6 Test Results 26 7.3.6 Test Results 26 7.3.6 Test Results 26 7.4 DUTY CYCLE. 27 7.4.1 Applicable Standard 27 7.4.2 Conformance Limit 27 7.4.3 Measuring Instruments. 27 7.4.4 Test Setup 27 7.4.5 Test Procedure 27 7.4.6 Test Results 28 7.5 PEAK OUTPUT POWER 29 7.5.1 Applicable Standard 29 7.5.3 Measuring Instruments 29 7.5.4 Test Setup 29 7.5.5 Test Procedure 29 7.5.4 Test Setup 29 7.5.5 Test Results 29 7.5.6 Test Results 29			
7.3.4 Test Setup 26 7.3.5 Test Procedure 26 7.3.6 Test Results 26 7.4 DUTY CYCLE 27 7.4 DUTY CYCLE 27 7.4.1 Applicable Standard 27 7.4.2 Conformance Limit 27 7.4.3 Measuring Instruments 27 7.4.4 Test Setup 27 7.4.5 Test Procedure 27 7.4.6 Test Results 27 7.4.6 Test Results 28 7.5 PEAK OUTPUT POWER 29 7.5.1 Applicable Standard 29 7.5.2 Conformance Limit 29 7.5.3 Measuring Instruments 29 7.5.4 Test Setup 29 7.5.4 Test Setup 29 7.5.5 Test Procedure 29 7.5.6 Test Results 29		J	
7.3.5 Test Procedure 26 7.3.6 Test Results 26 7.4 DUTY CYCLE 27 7.4.1 Applicable Standard 27 7.4.2 Conformance Limit 27 7.4.3 Measuring Instruments 27 7.4.4 Test Setup 27 7.4.5 Test Procedure 27 7.4.6 Test Results 27 7.4.6 Test Results 28 7.5 PEAK OUTPUT POWER 29 7.5.1 Applicable Standard 29 7.5.2 Conformance Limit 29 7.5.3 Measuring Instruments 29 7.5.4 Test Setup 29 7.5.5 Test Procedure 29 7.5.5 Test Procedure 29 7.5.6 Test Results 29			
7.3.6 Test Results 26 7.4 DUTY CYCLE 27 7.4.1 Applicable Standard 27 7.4.2 Conformance Limit 27 7.4.3 Measuring Instruments 27 7.4.4 Test Setup 27 7.4.5 Test Procedure 27 7.4.6 Test Results 28 7.5 PEAK OUTPUT POWER 29 7.5.1 Applicable Standard 29 7.5.2 Conformance Limit 29 7.5.3 Measuring Instruments 29 7.5.4 Test Setup 29 7.5.4 Test Setup 29 7.5.5 Test Procedure 29 7.5.6 Test Results 29			
7.4 DUTY CYCLE. 27 7.4.1 Applicable Standard. 27 7.4.2 Conformance Limit. 27 7.4.3 Measuring Instruments. 27 7.4.4 Test Setup 27 7.4.5 Test Procedure 27 7.4.6 Test Results. 28 7.5 PEAK OUTPUT POWER 29 7.5.1 Applicable Standard. 29 7.5.2 Conformance Limit. 29 7.5.3 Measuring Instruments. 29 7.5.4 Test Setup 29 7.5.5 Test Procedure 29 7.5.6 Test Results. 29			
7.4.1 Applicable Standard 27 7.4.2 Conformance Limit 27 7.4.3 Measuring Instruments 27 7.4.4 Test Setup 27 7.4.5 Test Procedure 27 7.4.6 Test Results 28 7.5 PEAK OUTPUT POWER 29 7.5.1 Applicable Standard 29 7.5.2 Conformance Limit 29 7.5.3 Measuring Instruments 29 7.5.4 Test Setup 29 7.5.5 Test Negults 29 7.5.6 Test Results 29	7		
7.4.2 Conformance Limit. 27 7.4.3 Measuring Instruments. 27 7.4.4 Test Setup 27 7.4.5 Test Procedure 27 7.4.6 Test Results 28 7.5 PEAK OUTPUT POWER 29 7.5.1 Applicable Standard 29 7.5.2 Conformance Limit 29 7.5.3 Measuring Instruments 29 7.5.4 Test Setup 29 7.5.5 Test Procedure 29 7.5.6 Test Results 29			
7.4.4 Test Setup 27 7.4.5 Test Procedure 27 7.4.6 Test Results 28 7.5 PEAK OUTPUT POWER 29 7.5.1 Applicable Standard 29 7.5.2 Conformance Limit 29 7.5.3 Measuring Instruments 29 7.5.4 Test Setup 29 7.5.5 Test Procedure 29 7.5.6 Test Results 29			
7.4.5 Test Procedure 27 7.4.6 Test Results 28 7.5 PEAK OUTPUT POWER 29 7.5.1 Applicable Standard 29 7.5.2 Conformance Limit 29 7.5.3 Measuring Instruments 29 7.5.4 Test Setup 29 7.5.5 Test Procedure 29 7.5.6 Test Results 29		7.4.3 Measuring Instruments	
7.4.6 Test Results 28 7.5 PEAK OUTPUT POWER 29 7.5.1 Applicable Standard 29 7.5.2 Conformance Limit 29 7.5.3 Measuring Instruments 29 7.5.4 Test Setup 29 7.5.5 Test Procedure 29 7.5.6 Test Results 29		1	
7.5 PEAK OUTPUT POWER			
7.5.1 Applicable Standard 29 7.5.2 Conformance Limit 29 7.5.3 Measuring Instruments 29 7.5.4 Test Setup 29 7.5.5 Test Procedure 29 7.5.6 Test Results 29	-		
7.5.2 Conformance Limit. 29 7.5.3 Measuring Instruments. 29 7.5.4 Test Setup 29 7.5.5 Test Procedure 29 7.5.6 Test Results 29	7		
7.5.3 Measuring Instruments			
7.5.4 Test Setup 29 7.5.5 Test Procedure 29 7.5.6 Test Results 29		5	
7.5.5 Test Procedure 29 7.5.6 Test Results 29		8	
7.5.6 Test Results		1	
	7		

			20
	7.6.1	Applicable Standard	
	7.6.2 7.6.3	Conformance Limit Measuring Instruments	
		0	
	7.6.4 7.6.5	Test Setup Test Procedure	
	7.6.5 7.6.6	Test Results	
		ONDUCTED BAND EDGE MEASUREMENT	
	7.7.1	Applicable Standard	
	7.7.2	Conformance Limit	
	7.7.2	Measuring Instruments	
	7.7.4	Test Setup	
	7.7.5	Test Procedure	
	7.7.6	Test Results	
		PURIOUS RF CONDUCTED EMISSIONS	
	7.8.1	Conformance Limit	
	7.8.2	Measuring Instruments	
	7.8.3	Test Setup	
	7.8.4	Test Procedure	
	7.8.5	Test Results	
	7.9 A	NTENNA APPLICATION	
	7.9.1	Antenna Requirement	
	7.9.2	Result	
8	TEST		
		RESULTS	35
		RESULTS	
		М	35
	8.1.1	M Maximum Conducted Output Power	35 <i>35</i>
	8.1.1 8.1.2	M Maximum Conducted Output Power -6dB Bandwidth	35 <i>35</i> <i>3</i> 8
	8.1.1 8.1.2 8.1.3	M Maximum Conducted Output Power -6dB Bandwidth Occupied Channel Bandwidth	35 35 38 41
	8.1.1 8.1.2 8.1.3 8.1.4	M Maximum Conducted Output Power -6dB Bandwidth Occupied Channel Bandwidth Maximum Power Spectral Density Level	35 35 38 41 44
	8.1.1 8.1.2 8.1.3 8.1.4 8.1.5	M Maximum Conducted Output Power -6dB Bandwidth Occupied Channel Bandwidth Maximum Power Spectral Density Level Band Edge	35 35 38 41 44 47
	8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6	M Maximum Conducted Output Power -6dB Bandwidth Occupied Channel Bandwidth Maximum Power Spectral Density Level Band Edge Conducted RF Spurious Emission	35 35 41 44 47 50
	8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.2 2	M Maximum Conducted Output Power -6dB Bandwidth Occupied Channel Bandwidth Maximum Power Spectral Density Level Band Edge Conducted RF Spurious Emission	35 35 41 44 47 50 54
	8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.2 8.2.1	M Maximum Conducted Output Power -6dB Bandwidth Occupied Channel Bandwidth Maximum Power Spectral Density Level Band Edge Conducted RF Spurious Emission M. Maximum Conducted Output Power	35 35 38 41 44 47 50 54
	8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.2 2 8.2.1 8.2.2	M Maximum Conducted Output Power -6dB Bandwidth Occupied Channel Bandwidth Maximum Power Spectral Density Level Band Edge Conducted RF Spurious Emission M. Maximum Conducted Output Power -6dB Bandwidth	35 35 41 44 47 50 54 54 57
	8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.2 8.2.1 8.2.2 8.2.3	M Maximum Conducted Output Power -6dB Bandwidth Occupied Channel Bandwidth Maximum Power Spectral Density Level Band Edge Conducted RF Spurious Emission M Maximum Conducted Output Power -6dB Bandwidth Occupied Channel Bandwidth	35 35 38 41 44 47 50 54 54 57 60
	8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.2 2 8.2.1 8.2.2	M Maximum Conducted Output Power -6dB Bandwidth Occupied Channel Bandwidth Maximum Power Spectral Density Level Band Edge Conducted RF Spurious Emission M Maximum Conducted Output Power -6dB Bandwidth Occupied Channel Bandwidth Maximum Power Spectral Density Level	35 35 38 41 44 47 50 54 54 57 60 63
	8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.2 2 8.2.1 8.2.2 8.2.3 8.2.4	M Maximum Conducted Output Power -6dB Bandwidth Occupied Channel Bandwidth Maximum Power Spectral Density Level Band Edge Conducted RF Spurious Emission M Maximum Conducted Output Power -6dB Bandwidth Occupied Channel Bandwidth	35 38 41 44 47 50 54 54 57 60 63 66

1 TEST RESULT CERTIFICATION

Applicant's name:	T-CHIP INTELLIGENT TECHNO	LOGY CO.,LTD.			
Address Room 2101,NO.1 Hongyu Building #57 Zhongshan 4Rd, East District, Zhongshan, Guangdong, China					
Manufacturer's Name:	T-CHIP INTELLIGENT TECHNO	LOGY CO.,LTD.			
Address:	Room 2101,NO.1 Hongyu Building #57 Zhongshan 4Rd, East District, Zhongshan, Guangdong, China				
Product description					
Product name:	Geek PC				
Trade Mark STATIONPC					
Model and/or type reference:	: Station P2S				
Family Model:	.: N/A				
Test Sample Number S230206002004					
Measurement Procedure Used:					
APPLICABLE STANDARDS					
APPLICABLE STANDARD/ TEST PROCEDURE TEST RESULT					
FCC 47 CFR Pa					
FCC 47 CFR Pai	Complied				
ANSI C63.10-2013					

KDB 558074 D01 15.247 Meas Guidance v05r02

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	: Feb 06, 2023 ~ Mar 24, 2023
Testing Engineer	Multri Lee
	(Mukzi Lee)
Authorized Signatory	Alex
	(Alex Li)

2 SUMMARY OF TEST RESULTS

FCC Part15 (15.247), Subpart C							
Standard Section Test Item Verdict Remark							
15.207 Conducted Emission PASS							
15.247 (a)(2)	6dB Bandwidth	PASS					
15.247 (b) Peak Output Power PASS		PASS					
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS					
15.247 (e)	Power Spectral Density	PASS					
15.247 (d)	Band Edge Emission	PASS					
15.247 (d)	Spurious RF Conducted Emission	PASS					
15.203	Antenna Requirement	PASS					

Remark:

1. "N/A" denotes test is not applicable in this Test Report.

 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

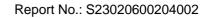
3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	: The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB


4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification				
Equipment	Geek PC			
Trade Mark	STATIONPC			
FCC ID	2AKCT-SPCP2S			
Model No.	Station P2S			
Family Model	N/A			
Model Difference	This model contains 3 different combinations for DDR and EMMC, which are 2GB+32GB, 4GB+32GB, 8GB+64GB, and have the same running rate.			
Operating Frequency	2402MHz~2480MHz			
Modulation	GFSK			
Number of Channels	40 Channels			
Antenna Type	External Antenna			
Antenna Gain	4.26 dBi			
Power Rating	DC 12V from adapter			
Adapter	Model: SK03T1-1200200Z Input: AC 100-240V~50/60Hz 0.6A Output: DC 12V2A 24W			
HW Version	ROC-RK3568-PC SE			
SW Version	ROC-RK3568-PC-SE_Android11_HDMI_20230130			

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: All configurations are tested, only showing the worst data 8GB+64GB

Certificate #4298.01

Revision History

Report No.	Version	Description	Issued Date
S23020600204002	Rev.01	Initial issue of report	Mar 24, 2023
			-
<u> </u>			
			-

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps/ 2Mbps for GFSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2404
19	2440
20	2442
38	2478
39	2480

Note: fc=2402MHz+k×2MHz k=0 to 39

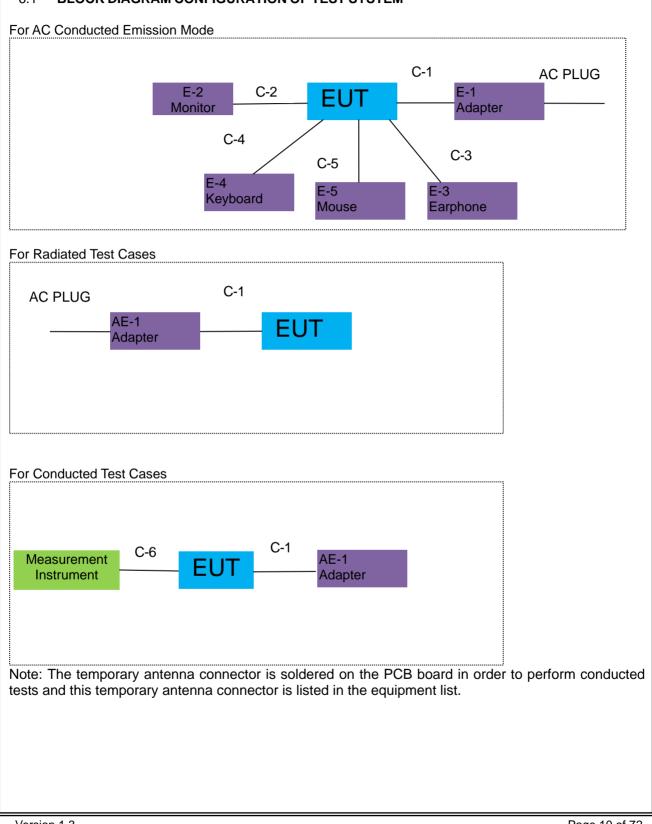
The following summary table is showing all test modes to demonstrate in compliance with the standard.

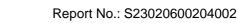
Test Cases			
Test Item	Data Rate/ Modulation		
AC Conducted Emission	Mode 1: normal link mode		
	Mode 1: normal link mode		
Radiated Test	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps/2Mbps		
Cases	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps/2Mbps		
	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps/2Mbps		
Conducted Test	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps/2Mbps		
Conducted Test	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps/2Mbps		
Cases	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps/2Mbps		

Note:

1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode(duty cycle =100% during the test)

2. AC power line Conducted Emission was tested under maximum output power.


3. For radiated test cases, the worst mode data rate 2Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.



6 SETUP OF EQUIPMENT UNDER TEST

6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Certificate #4298.01

Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Adapter	SK03T1-1200200Z	N/A	Peripherals
AE-2	Monitor	N/A	N/A	Peripherals
AE-3	Earphone	N/A	N/A	Peripherals
AE-4	Keyboard	N/A	N/A	Peripherals
AE-5	Mouse	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	Power Cable	NO	NO	1.0m
C-2	HDMI Cable	YES	YES	1.5m
C-3	Earphone Cable	NO	NO	1.2m
C-4	Keyboard Cable	NO	NO	1.2m
C-5	Mouse Cable	NO	NO	1.2m
C-6	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

	Sind Conducted	loot oquipiniont					
	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2022.04.01	2023.03.31	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2022.04.01	2023.03.31	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2022.06.16	2023.06.15	1 year
4	Test Receiver	R&S	ESPI7	101318	2022.04.06	2023.04.05	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2022.03.30	2023.03.29	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2022.03.31	2023.03.30	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2022.11.07	2023.11.06	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2022.06.17	2023.06.16	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2022.11.04	2023.11.03	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2022.06.16	2023.06.15	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2022.06.17	2025.06.16	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2022.06.17	2025.06.16	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2020.04.07	2023.04.06	3 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	onduction Test	equipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2022.04.06	2023.04.05	1 year
2	LISN	R&S	ENV216	101313	2022.04.06	2023.04.05	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2022.04.06	2023.04.05	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year
7	Test Ćable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2023.05.10	3 year

ACCREDITED Certificate #4298.01

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

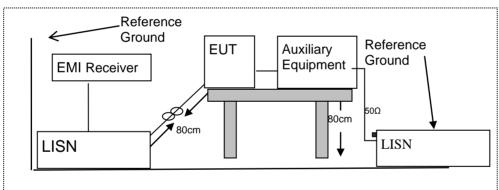
7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit

Frequency (MHz)	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency


2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.1.4 Test Configuration

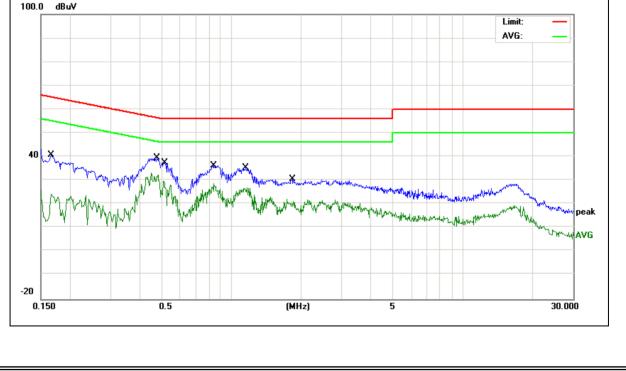
7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.1.6 Test Results

EUT:	Geek PC	Model Name :	Station P2S
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	L
	DC 12V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

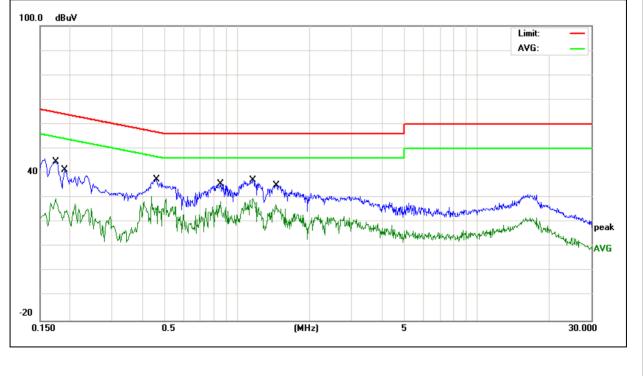

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Demeril
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1660	31.29	9.53	40.82	65.15	-24.33	QP
0.1660	14.81	9.53	24.34	55.15	-30.81	AVG
0.4778	29.77	9.73	39.50	56.38	-16.88	QP
0.4778	22.06	9.73	31.79	46.38	-14.59	AVG
0.5180	27.84	9.75	37.59	56.00	-18.41	QP
0.5180	17.09	9.75	26.84	46.00	-19.16	AVG
0.8417	26.49	9.81	36.30	56.00	-19.70	QP
0.8417	18.80	9.81	28.61	46.00	-17.39	AVG
1.1576	25.37	9.86	35.23	56.00	-20.77	QP
1.1576	15.86	9.86	25.72	46.00	-20.28	AVG
1.8300	20.63	9.86	30.49	56.00	-25.51	QP
1.8300	9.17	9.86	19.03	46.00	-26.97	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

Version.1.3


EUT:	Geek PC	Geek PC		Model Name :		
Temperature: 22°C		Relative H	Relative Humidity:			
Pressure: 1010hPa		Phase :	Phase :		N	
Test Voltage :	DC 12V f AC 120V	rom Adapter /60Hz	Test Mod	Test Mode:		
Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	
						 Remark

(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1737	35.04	9.53	44.57	64.78	-20.21	QP
0.1737	19.28	9.53	28.81	54.78	-25.97	AVG
0.1901	31.89	9.53	41.42	64.03	-22.61	QP
0.1901	14.87	9.53	24.40	54.03	-29.63	AVG
0.4586	27.80	9.72	37.52	56.72	-19.20	QP
0.4586	16.14	9.72	25.86	46.72	-20.86	AVG
0.8497	25.86	9.81	35.67	56.00	-20.33	QP
0.8497	18.67	9.81	28.48	46.00	-17.52	AVG
1.1616	27.42	9.86	37.28	56.00	-18.72	QP
1.1616	19.91	9.86	29.77	46.00	-16.23	AVG
1.4496	25.29	9.86	35.15	56.00	-20.85	QP
1.4496	15.67	9.86	25.53	46.00	-20.47	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

Version.1.3

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

MHz	MHz	GHz	
16.42-16.423	399.9-410	4.5-5.15	
16.69475-16.69525	608-614	5.35-5.46	
16.80425-16.80475	960-1240	7.25-7.75	
25.5-25.67	1300-1427	8.025-8.5	
37.5-38.25	1435-1626.5	9.0-9.2	
73-74.6	1645.5-1646.5	9.3-9.5	
74.8-75.2	1660-1710	10.6-12.7	
123-138	2200-2300	14.47-14.5	
149.9-150.05	2310-2390	15.35-16.2	
156.52475-156.52525	2483.5-2500	17.7-21.4	
156.7-156.9	2690-2900	22.01-23.12	
162.0125-167.17	3260-3267	23.6-24.0	
167.72-173.2	3332-3339	31.2-31.8	
240-285	3345.8-3358	36.43-36.5	
322-335.4	3600-4400	(2)	
	MHz 16.42-16.423 16.69475-16.69525 16.80425-16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2 123-138 149.9-150.05 156.52475-156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285	MHzMHz16.42-16.423399.9-41016.69475-16.69525608-61416.80425-16.80475960-124025.5-25.671300-142737.5-38.251435-1626.573-74.61645.5-1646.574.8-75.21660-1710123-1382200-2300149.9-150.052310-2390156.52475-156.525252483.5-2500156.7-156.92690-2900162.0125-167.173260-3267167.72-173.23332-3339240-2853345.8-3358	

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

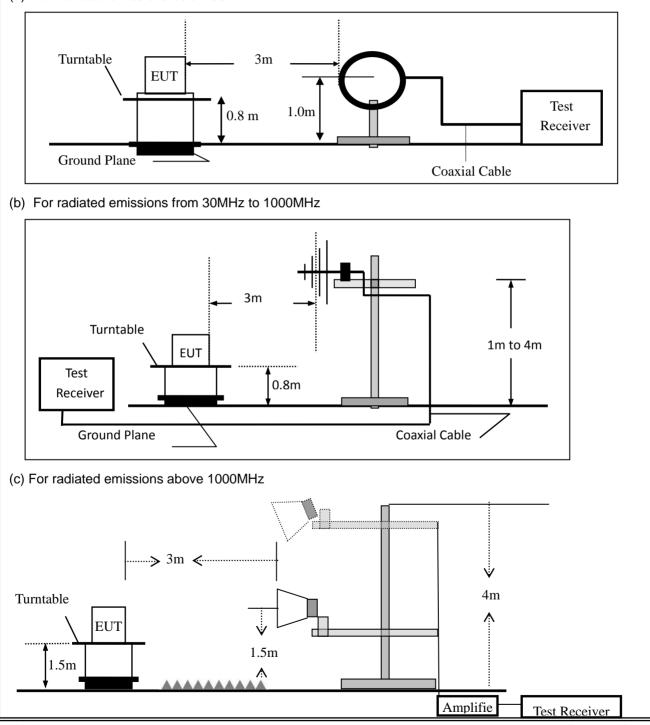
	Frequency(MHz)	Class B (dBuV/m) (at 3M)		
		PEAK	AVERAGE	
	Above 1000	74	54	

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz: Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz: Distance extrapolation factor =20log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1MHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.

- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Ab ave 4000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	1 MHz

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

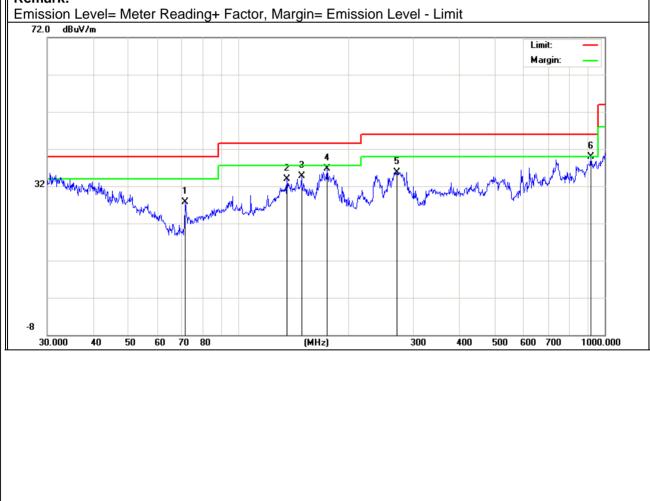
7.2.6 Test Results

■ Spurious Emission below 30MHz (9KHz to 30MHz)

EUT:	Geek PC	Model No.:	Station P2S
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode1/Mode2/Mode3/ Mode4	Test By:	Mukzi Lee

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over	r(dB)
(MHz)	H/V	PK	AV	PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.



Spurious Emission below 1GHz (30MHz to 1GHz)
 All the modulation modes have been tested, and the worst result was report as below:

EUT:	Geek PC	Model Name :	Station P2S
Temperature:	25 ℃	Relative Humidity:	55%
Pressure:	1010hPa	Test Mode:	Mode 4
Test Voltage :	DC 12V		

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	71.3298	13.94	13.86	27.80	40.00	-12.20	QP
V	135.5062	15.01	18.89	33.90	43.50	-9.60	QP
V	148.4410	16.13	18.51	34.64	43.50	-8.86	QP
V	174.4241	19.47	17.31	36.78	43.50	-6.72	QP
V	270.3747	16.39	19.38	35.77	46.00	-10.23	QP QP QP QP QP QP
V	916.0687	9.23	30.69	39.92	46.00	-6.08	QP

Remark:

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remarl
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Reman
Н	107.8876	10.36	18.31	28.67	43.50	-14.83	QP
Н	119.8555	13.54	18.83	32.37	43.50	-11.13	QP
Н	144.8418	16.64	18.56	35.20	43.50	-8.30	QP
Н	238.3102	15.35	18.17	33.52	46.00	-12.48	QP
H H	355.4273	14.85	21.99	36.84	46.00	-9.16	QP
Remark Emissior	597.2232 : n Level= Meter F BuV/m	10.48 Reading+ Fac	26.12 tor, Margin	36.60 = Emission Lev	46.00 vel - Limit	-9.40	QP
						Limit: Margin:	
			3		5 X	8	UCHANNER WAY
32			1 X 1		1 Mar Alexander	warment when when	
m frager	an and man and integrations we		Anna And Carlos And	Annon Walk have have a	white		
	The work the second	and any state of the second					
	and all M	www.					
-8							
	40 50 60	70 80	(MI	lz)	300 400	500 600 700	1000.000
30.000							
30.000							
30.000							
30.000							
30.000							
30.000							
30.000							

L

Spurious	s Emiss	ion Above	1GHz (1G	Hz to 250	GHz)						
EUT:	(Geek PC		Mo	del No.:		Stati	on P2S			
Temperature	e: 2	20 °C		Rel	ative Humidi	ity:	48%				
Test Mode:	I	Mode2/Mod	1ode2/Mode3/Mode4 Test By: Mukzi Lee					Test By: Mukzi Lee			
Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Lim	its	Margin	Rema	ark	Comment
(MHz)	(dBµV) (dB)	dB/m	(dB)	(dBµV/m)	(dBµ∖	√/m)	(dB)			
			Low Cha	annel (240	2 MHz)(GFSk	()Abo	ve 1G		_	-	
4804	68.77	5.21	35.59	44.30	65.27	74.0	00	-8.73	Pk		Vertical
4804	45.85	5.21	35.59	44.30	42.35	54.0	00	-11.65	AV		Vertical
7206	70.24	6.48	36.27	44.60	68.39	74.0	00	-5.61	Pk		Vertical
7206	48.41	6.48	36.27	44.60	46.56	54.0	00	-7.44	AV		Vertical
4804	70.66	5.21	35.55	44.30	67.12	74.0	00	-6.88	Pk	F	lorizontal
4804	46.02	5.21	35.55	44.30	42.48	54.0	00	-11.52	AV	F	lorizontal
7206	70.81	6.48	36.27	44.52	69.04	74.00		-4.96	Pk	F	lorizontal
7206	45.72	6.48	36.27	44.52	43.95	54.0	00	-10.05	AV	F	lorizontal
	Mid Channel (2440 MHz)(GFSK)Above 1G										
4880	68.45	5.21	35.66	44.20	65.12	74.0	00	-8.88	Pk		Vertical
4880	48.7	5.21	35.66	44.20	45.37	54.0	00	-8.63	AV		Vertical
7320	68.49	7.10	36.50	44.43	67.66	74.0	00	-6.34	Pk		Vertical
7320	48.48	7.10	36.50	44.43	47.65	54.0	00	-6.35	AV		Vertical
4880	69.03	5.21	35.66	44.20	65.70	74.0	00	-8.30	Pk	F	lorizontal
4880	47.77	5.21	35.66	44.20	44.44	54.0	00	-9.56	AV	F	lorizontal
7320	70.62	7.10	36.50	44.43	69.79	74.0	00	-4.21	Pk	F	lorizontal
7320	48.21	7.10	36.50	44.43	47.38	54.0	00	-6.62	AV	ŀ	lorizontal
			High Cha	annel (248	0 MHz)(GFSk	K) Abc	ove 10	3			
4960	70.78	5.21	35.52	44.21	67.30	74.0	00	-6.70	Pk		Vertical
4960	45.47	5.21	35.52	44.21	41.99	54.0	00	-12.01	AV		Vertical
7440	70.93	7.10	36.53	44.60	69.96	74.0	00	-4.04	Pk		Vertical
7440	46.89	7.10	36.53	44.60	45.92	54.0	00	-8.08	AV		Vertical
4960	70.07	5.21	35.52	44.21	66.59	74.0	00	-7.41	Pk	H	lorizontal
4960	47.68	5.21	35.52	44.21	44.20	54.0	00	-9.80	AV	H	lorizontal
7440	69.42	7.10	36.53	44.60	68.45	74.0	00	-5.55	Pk	ŀ	lorizontal
7440	45.7	7.10	36.53	44.60	44.73	54.0	00	-9.27	AV	H	lorizontal

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor

(2)All other emissions more than 20dB below the limit.

(3)Only the worst data is recorded in the report, the data rates (2Mbps for GFSK modulation) test result is the worst

2390.00

2390.00

2390.00

2390.00

2483.50

2483.50

2483.50

2483.50

68.84

46.52

70.89

45.78

69.75

48.51

70.26

50.23

3.14

3.14

3.14

3.14

3.58

3.58

3.58

3.58

27.21

27.21

27.21

27.21

27.70

27.70

27.70

27.70

43.80

43.80

43.80

43.80

44.00

44.00

44.00

44.00

Pk

AV

Ρk

AV

Pk

AV

Pk

AV

Vertical

Vertical

Horizontal

Horizontal

Vertical

Vertical

Horizontal

Horizontal

-18.61

-20.93

-16.56

-21.67

-16.97

-18.21

-16.46

-16.49

EUT:	Geek PC			Mo	Model No.: Static			on P2S			
Temperature	: 20 ℃			Re	Relative Humidity: 48%			48%	3%		
Test Mode:	Mode2/	Mode4		Те	est By: Mukzi Lee						
Frequency	Meter Reading	Cable Loss	Antenna Factor	Pream Facto		Emission Level	Lim	its	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)		(dBµV/m)	(dBµ\	//m)	(dB)	Туре	
				21	Mbp	s(GFSK)					
2310.00	70.02	2.97	27.80	43.80)	56.99	74	1	-17.01	Pk	Horizontal
_0.000			27.80	43.80)	34.59	54	1	-19.41	AV	Horizontal
2310.00	47.62	2.97	27.00	10.00	-		-				
	47.62 68.19	2.97 2.97	27.80	43.80	-	55.16	74	1	-18.84	Pk	Vertical

55.39

33.07

57.44

32.33

57.03

35.79

57.54

37.51

74

54

74

54

74

54

74

54

Note: (1) All other emissions more than 20dB below the limit.

(2)Only the worst data is recorded in the report, the data rates (2Mbps for GFSK modulation) test result is the worst

UT:	Geek F	РС		Mod	Model No.:			Station P2S		
emperature:	20 ℃			Rela	Relative Humidity: 48			8%		
est Mode:	Mode2	/lode2/ Mode4			Test By: Mukzi Lee					
Frequency	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Lin	nits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ	V/m)	(dB)	Туре	
3260	68.99	4.04	29.57	44.70	57.90	7	4	-16.10	Pk	Vertical
3260	50.44	4.04	29.57	44.70	39.35	5	4	-14.65	AV	Vertical
3260	70.03	4.04	29.57	44.70	58.94	7	4	-15.06	Pk	Horizontal
3260	45.61	4.04	29.57	44.70	34.52	5	4	-19.48	AV	Horizontal
3332	69.63	4.26	29.87	44.40	59.36	7	4	-14.64	Pk	Vertical
3332	49.14	4.26	29.87	44.40	38.87	5	4	-15.13	AV	Vertical
3332	70.13	4.26	29.87	44.40	59.86	7	4	-14.14	Pk	Horizontal
3332	47.47	4.26	29.87	44.40	37.20	5	4	-16.80	AV	Horizontal
17797	58.34	10.99	43.95	43.50	69.78	7	4	-4.22	Pk	Vertical
17797	40.16	10.99	43.95	43.50	51.60	5	4	-2.40	AV	Vertical
17788	52.19	11.81	43.69	44.60	63.09	7	4	-10.91	Pk	Horizontal
17788	40.35	11.81	43.69	44.60	51.25	5	4	-2.75	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

(2)Only the worst data is recorded in the report, the data rates (2Mbps for GFSK modulation) test result is the worst

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.2.

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows Subclause 11.8 of ANSI C63.10

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \geq 3*RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3.6 Test Results

EUT:	Geek PC	Model No.:	Station P2S
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mukzi Lee

7.4 DUTY CYCLE

7.4.1 Applicable Standard

According to KDB 558074 D01 15.247 Meas Guidance v05r02s Section 6.

7.4.2 Conformance Limit

No limit requirement.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

The transmitter output is connected to the Spectrum Analyzer. We tested accroding to the zero-span measurement method, 6.0)b) in KDB 558074

The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if $T \le 6.25$ microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Zero Span RBW = 8MHz(the largest available value) VBW = 8MHz (\geq RBW) Number of points in Sweep >100 Detector function = peak Trace = Clear write Measure T_{total} and T_{on} Calculate Duty Cycle = T_{on} / T_{total}

7.4.6 Test Results

EUT:	Geek PC	Model No.:	Station P2S
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	N/A	Test By:	N/A

Note: Not Applicable

7.5 **PEAK OUTPUT POWER**

7.5.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.3.1.

7.5.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows Subclause 11.9.1.1 of ANSI C63.10 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Set the RBW \geq DTS bandwidth. Set VBW =3*RBW. Set the span \geq 3*RBW Set Sweep time = auto couple. Set Detector = peak. Set Trace mode = max hold. Allow trace to fully stabilize. Use peak marker function to determine the peak amplitude level.

7.5.6 Test Results

EUT:	Geek PC	Model No.:	Station P2S
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mukzi Lee

7.6 **POWER SPECTRAL DENSITY**

7.6.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.4.

7.6.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows Measurement Procedure Subclause 11.10.2 of ANSI C63.10 This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

a) Set analyzer center frequency to DTS channel center frequency.

b) Set the span to 1.5*DTS bandwidth.

c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.

- d) Set the VBW \geq 3 RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.6.6 Test Results

EUT:	Geek PC	Model No.:	Station P2S
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mukzi Lee

7.7 CONDUCTED BAND EDGE MEASUREMENT

7.7.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

7.7.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.7.6 Test Results

EUT:	Geek PC	Model No.:	Station P2S
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode4	Test By:	Mukzi Lee

7.8 SPURIOUS RF CONDUCTED EMISSIONS

7.8.1 Conformance Limit

1. Below -20dB of the highest emission level in operating band.

2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

7.8.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.3 Test Setup

Please refer to Section 6.1 of this test report.

7.8.4 Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and measure frequency range from 30MHz to 25GHz.

7.8.5 Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.9 ANTENNA APPLICATION

7.9.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.9.2 Result

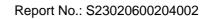
The EUT antenna is Unique Reverse SMA Antenna (Gain: 4.26 dBi). It comply with the standard equirement.

8 TEST RESULTS

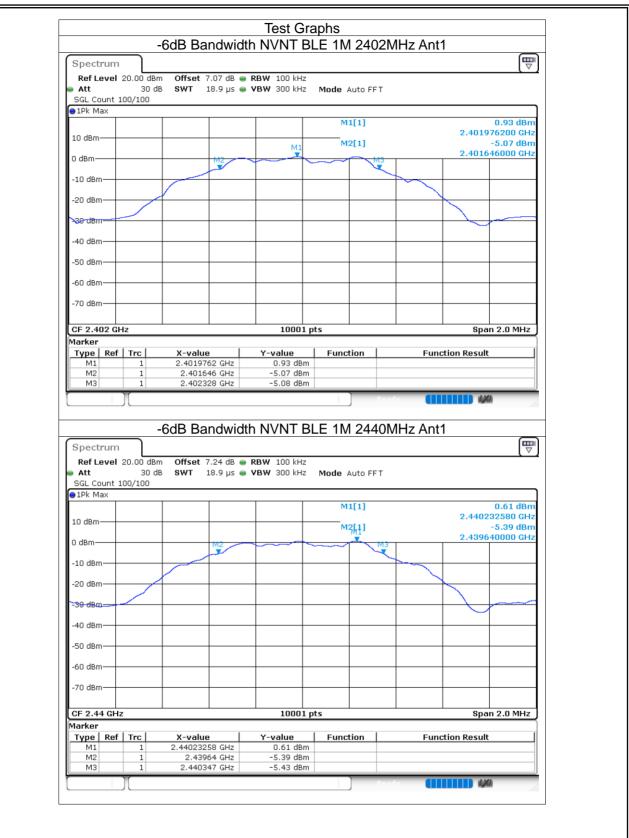
8.1 **1M**

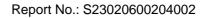
8.1.1 Maximum Conducted Output Power

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	4.04	30	Pass
NVNT	BLE 1M	2440	Ant1	3.95	30	Pass
NVNT	BLE 1M	2480	Ant1	3.39	30	Pass


Cooterre		wer NVN	IT BLE	Braphs 1M 240	2MHz /	Ant1		
Spectrum Ref Level 20.0 Att SGL Count 100/1 1Pk Max	30 dB SWT 3	7.07 dB 👄 R 10.1 ms 👄 V			uto Sweep.			
				M	1[1]		2.4020	4.04 dBm 062000 GHz
.0 dBm				11	. <u> </u>	+		
) dBm								
10 dBm	4							
-20 d8m							`	
-30 dBm								
-40 dBm								
-50 dBm								
-60 dBm								
-70 dBm							<u> </u>	
CF 2.402 GHz			1000	1 pts			Span	10.0 MHz
Spectrum		wer NVN						
SGL Count 100/1	30 dB SWT 3	7.24 dB 👄 R 10.1 ms 👄 V			uto Sweep.			
Att SGL Count 100/1	30 dB SWT 3			z Mode A	uto Sweep		2.4402	3.95 dBm 246000 GHz
Att SGL Count 100/1 1Pk Max	30 dB SWT 3			z Mode A			2.4402	3.95 dBm
Att SGL Count 100/1 1Pk Max 10 dBm	30 dB SWT 3			Z Mode A			2.4402	3.95 dBm
Att SGL Count 100/1 1Pk Max 10 dBm 0 dBm	30 dB SWT 3			Z Mode A			2.4402	3.95 dBm
Att SGL Count 100/1 1Pk Max 10 dBm 0 dBm -10 dBm	30 dB SWT 3			Z Mode A			2.4402	3.95 dBm
Att SGL Count 100/1 1Pk Max 10 dBm 0 dBm -10 dBm	30 dB SWT 3			Z Mode A			2.4402	3.95 dBm
Att SGL Count 100/1 JPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	30 dB SWT 3			Z Mode A			2.4402	3.95 dBm
Att 🛛	30 dB SWT 3			Z Mode A			2.4402	3.95 dBm
Att SGL Count 100/1 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	30 dB SWT 3			Z Mode A			2.4402	3.95 dBm
Att SGL Count 100/1 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm	30 dB SWT 3			Z Mode A			2.4402	3.95 dBm
Att SGL Count 100/1 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	30 dB SWT 3		' BW 10 MH	M1				3.95 dBm 246000 GHz
Att SGL Count 100/1 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	30 dB SWT 3			M1				3.95 dBm 246000 GHz
Att SGL Count 100/1 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	30 dB SWT 3		' BW 10 MH	M1			Span	3.95 dBm 246000 GHz

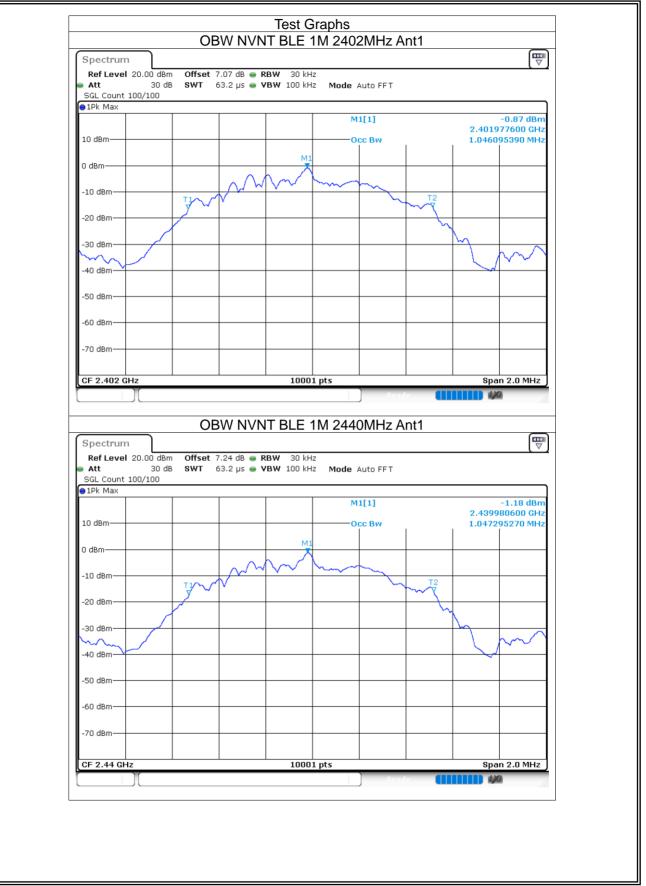
					ι	pectrum
	Auto Sweep	₩ 3 MHz ₩ 10 MHz			20.00 dBm 30 dB 100/100	Ref Level Att GGL Count :
3.39 dBm	41[1]					1Pk Max
2.479689000 GHz		 M1	+	 		0 dBm
				 		dBm
						10 dBm
						20 dem
						30 dBm
			+			40 dBm
		 	+	 		50 dBm
		 	-	 		50 dBm
				 		70 dBm
Span 10.0 MHz		 10001				F 2.48 GH


8.1.2 -6dB Bandwidth


Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE 1M	2402	Ant1	0.682	0.5	Pass
NVNT	BLE 1M	2440	Ant1	0.707	0.5	Pass
NVNT	BLE 1M	2480	Ant1	0.698	0.5	Pass

ACCREDITED Certificate #4298.01

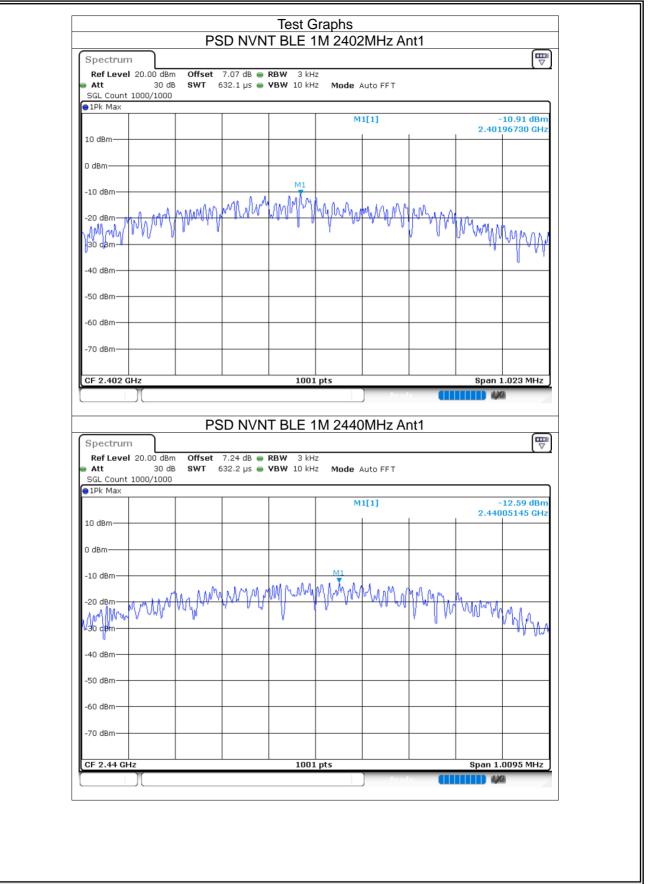
Spectrum			width NVNT E			
Ref Level	20.00 dBr	m Offset 7.07	dB 👄 RBW 100 kHz			
Att	30 d		µs 🖷 VBW 300 kHz			
SGL Count 1				noue nateri		
1Pk Max						
				M1[1]		1.13 dBm
						2.479987000 GHz
10 dBm				M2[1]		-4.89 dBm
			Mi			2.479624000 GHz
D dBm		M2				
10.10						
-10 dBm						
-20 dBm						
-30 dBm -						
-30°08m -						
-40 dBm						
-40 UBIII						
-50 dBm						
-30 ubiii						
-60 dBm						
-oo ubiii						
-70 dBm						
-/ U UBIII						
CF 2.48 GHz	2		10001	pts		Span 2.0 MHz
Marker						
Type Ref	Trc	X-value	Y-value	Function	Funct	tion Result
M1	1	2.479987 G	Hz 1.13 dBn	n		
M2	1	2.479624 G				
M3	1	2.480322 G	Hz -4.91 dBn	n		



8.1.3 Occupied Channel Bandwidth

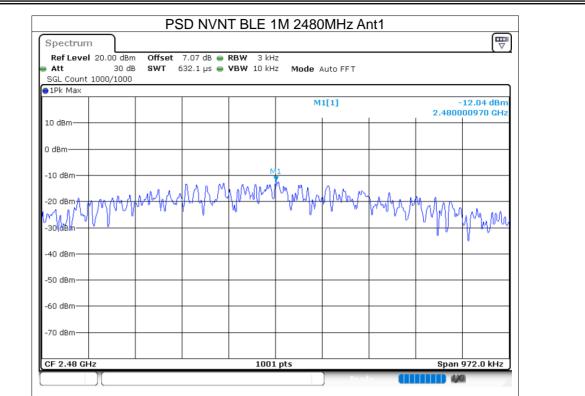
Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE 1M	2402	Ant1	1.046
NVNT	BLE 1M	2440	Ant1	1.047
NVNT	BLE 1M	2480	Ant1	1.045





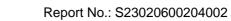
8.1.4 Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	-10.91	8	Pass
NVNT	BLE 1M	2440	Ant1	-12.59	8	Pass
NVNT	BLE 1M	2480	Ant1	-12.04	8	Pass



8.1.5 Band Edge

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-39.93	-20	Pass
NVNT	BLE 1M	2480	Ant1	-40.49	-20	Pass


Spectrum)							
SGL Count 100/1	45 dB SWT		(BW 100 kHz /BW 300 kHz	Mode A	uto FFT			
●1Pk Max				M	1[1]			0.03 dBm
20 dBm							2.401	98400 GHz
10 dBm								
0 dBm			MI					
-10 dBm								
-20 dBm								
-30 dBm								
-40 dBm		\int	¥		γ			
moun	\sim	m			~~~	~~~~~	$\sim \sim \sim$	\sim
-50 dBm								
-60 dBm								
CF 2.402 GHz	Band Edd	le NVNT	1001 BLE 1M) 1Hz Ant	1 Emiss		n 8.0 MHz)
Spectrum Ref Level 30.00 Att	45 dB SWT	3.54 dB 👄	BLE 1M	2402M		1 Emiss		n 8.0 MHz)
Spectrum Ref Level 30.00	dBm Offset 45 dB SWT	3.54 dB 👄	BLE 1M	2402M		1 Emiss		
Spectrum Ref Level 30.00 Att SGL Count 100/1 ●1Pk Max	dBm Offset 45 dB SWT	3.54 dB 👄	BLE 1M	2402M		1 Emiss	sion	
Spectrum Ref Level 30.00 Att	dBm Offset 45 dB SWT	3.54 dB 👄	BLE 1M	2402N Mode /	Auto FFT	1 Emiss	sion 2.401	0.00 dBm 95000 GHz 43.12 dBm
Spectrum Ref Level 30.00 Att SGL Count 100/1 PIPk Max 20 dBm 10 dBm	dBm Offset 45 dB SWT	3.54 dB 👄	BLE 1M	2402N Mode /	Auto FFT 1[1]	1 Emiss	sion 2.401	0.00 dBm 95000 GHz
Spectrum Ref Level 30.00 Att	dBm Offset 45 dB SWT	3.54 dB 👄	BLE 1M	2402N Mode /	Auto FFT 1[1]	1 Emiss	sion 2.401	0.00 dBm 95000 GHz 43.12 dBm 00000 GHz
Spectrum Ref Level 30.00 Att SGL Count 100/1 PIPk Max 20 dBm 10 dBm	dBm Offset 45 dB SWT	3.54 dB 👄	BLE 1M	2402N Mode /	Auto FFT 1[1]	1 Emiss	sion 2.401	0.00 dBm 95000 GHz 43.12 dBm 00000 GHz
Spectrum Ref Level 30.00 Att SGL Count 100/1 IPk Max 20 dBm 10 dBm 0 dBm	0 dBm Offset 45 dB SWT 100	3.54 dB 👄	BLE 1M	2402N Mode /	Auto FFT 1[1]	1 Emiss	sion 2.401	0.00 dBm 95000 GHz 43.12 dBm 00000 GHz
Spectrum Ref Level 30.00 Att	0 dBm Offset 45 dB SWT 100	3.54 dB ● 227.5 µs ●	BLE 1M	2402N Mode /	Auto FFT 1[1]	1 Emiss	sion 2.401	0.00 dBm 95000 GHz 43.12 dBm 00000 GHz
Spectrum Ref Level 30.00 Att	0 dBm Offset 45 dB SWT 100	3.54 dB ● 227.5 µs ●	BLE 1M	2402N Mode 4 M	Auto FFT 1[1] 2[1]		2.401 2.400	0.00 dBm 95000 GHz 43.12 dBm 00000 GHz M1
Spectrum Ref Level 30.00 Att SGL Count 100/1 PIPk Max 20 dBm 10 dBm -10 dBm -20 dBm -10 dBm -10 dBm -40 dBm -40 dBm	0 dBm Offset 45 dB SWT 100	3.54 dB ● 227.5 µs ●	BLE 1M	2402N Mode 4 M	Auto FFT 1[1] 2[1]	1 Emiss	2.401 2.400	0.00 dBm 95000 GHz 43.12 dBm 00000 GHz M1
Spectrum Ref Level 30.00 Att	0 dBm Offset 45 dB SWT 100	3.54 dB ● 227.5 µs ●	BLE 1M	2402N Mode 4 M	Auto FFT 1[1] 2[1]		2.401 2.400	0.00 dBm 95000 GHz 43.12 dBm 00000 GHz M1
Spectrum Ref Level 30.00 Att	0 dBm Offset 45 dB SWT 100 	3.54 dB ● 227.5 µs ●	BLE 1M	2402M	Auto FFT 1[1] 2[1]		2.401 2.400	0.00 dBm 95000 GHz 43.12 dBm 00000 GHz M1
Spectrum Ref Level 30.00 Att SGL Count 100/1 PIPk Max 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm -10 dBm -20 dBm -50 dBm -60 dBm -60 dBm -60 dBm -60 dBm	0 dBm Offset 45 dB SWT 100 	3.54 dB • 227.5 μs •	BLE 1M	2402N Mode 4 M: M: M: M: M: pts	Auto FF T 1[1] 2[1] ا	alata fa la caracteria de la caracteria	2.401 2.400	0.00 dBm 95000 GHz 43.12 dBm 00000 GHz M1 M2 M1 M2 M2 M2 M2 M2 M3
Spectrum Ref Level 30.00 Att SGL Count 100/1 ID dBm 10 dBm 0 dBm -10 dBm -10 dBm -30 dBm -40 dBm -60 dBm -50 dBm -60 dBm Start 2.306 GHz Marker Type Ref	Offset 45 dB SwT 100 	3.54 dB • 227.5 μs •	BLE 1M	2402N Mode 4 M M M M	Auto FF T 1[1] 2[1] ا	alata fa la caracteria de la caracteria	2.401 2.400	0.00 dBm 95000 GHz 43.12 dBm 00000 GHz M1 M2 M1 M2 M2 M2 M2 M2 M3
Spectrum Ref Level 30.00 Att SGL Count 100/1 ● 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -30 dBm -30 dBm -50 dBm -50 dBm -60 dBm Start 2.306 GHz Marker Type Ref M2	C X-val 1 2.46	3.54 dB • 227.5 µs • 227.5 µs • 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	BLE 1M	2402N Mode 4 M M M M M M	Auto FF T 1[1] 2[1] ا	alata fa la caracteria de la caracteria	2.401 2.400	0.00 dBm 95000 GHz 43.12 dBm 00000 GHz M1 M2 M1 M2 M2 M2 M2 M2 M3
Spectrum Ref Level 30.00 Att SGL Count 100/1 ID dBm 10 dBm 0 dBm -10 dBm -10 dBm -20 dBm -10 dBm -30 dBm -50 dBm -60 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -60 dBm -60 dBm -70 dBm	dBm Offset 45 dB SWT 100 10	3.54 dB • 227.5 µs •	BLE 1M	2402N Mode 4 M M M M M M	Auto FF T 1[1] 2[1] ا	alata fa la caracteria de la caracteria	2.401 2.400	0.00 dBm 95000 GHz 43.12 dBm 00000 GHz M1 M2 M1 M2 M2 M2 M2 M2 M3

ilac-M

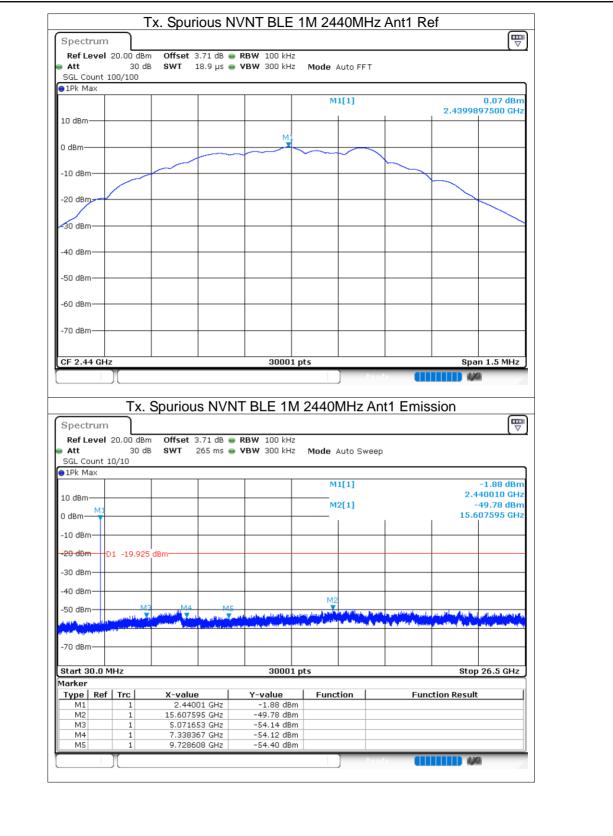
ACC

TED Certificate #4298.01

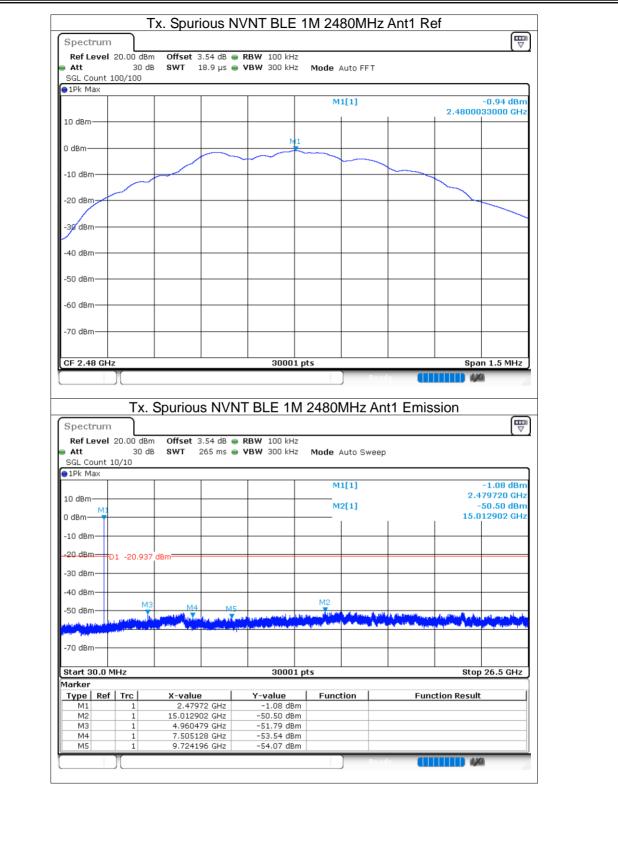
Spectrum		0.00							
Ref Level 3 Att	45 dB			BW 100 kHz BW 300 kHz		uto FFT			
SGL Count 1 91Pk Max	.ou/ 100								
					М	1[1]		0.470	-0.54 dBm
20 dBm								2.479	99200 GHz
10 dBm									
0 dBm				M	1				
					\mathcal{I}				
-10 dBm									
-20 dBm									
-30 dBm			$\overline{\wedge}$			m			
-40 dBm									
\dots	m	m	\sim			ww/	m	\sim	$\sim\sim\sim$
-50 dBm									
-60 dBm									
		I		1001	pts			Spa	n 8.0 MHz
CF 2.48 GHz Spectrum)[nd Edge	NVNT	BLE 1M	1 2480N) /Hz Ant	1 Emiss	sion	
Ref Level 3 Att	Bar Bar 0.00 dBm 45 dB	Offset 3	.54 dB 👄 R	BLE 1M	z		1 Emiss		
Spectrum Ref Level 3	Bar Bar 0.00 dBm 45 dB	Offset 3	.54 dB 👄 R	RBW 100 kHz	z		1 Emiss		
Spectrum Ref Level 3 Att SGL Count 1 @1Pk Max	Bar Bar 0.00 dBm 45 dB	Offset 3	.54 dB 👄 R	RBW 100 kHz	z z Mode /		1 Emiss	sion	-0.55 dBm
Spectrum Ref Level 3 Att SGL Count 1	Bar Bar 0.00 dBm 45 dB	Offset 3	.54 dB 👄 R	RBW 100 kHz	z Mode / Mode /	Auto FFT	1 Emiss	2.479	-0.55 dBm 95000 GHz 44.59 dBm
Spectrum Ref Level 3 Att SGL Count 1 ● 1Pk Max 20 dBm 10 dBm	Bar Bar 0.00 dBm 45 dB	Offset 3	.54 dB 👄 R	RBW 100 kHz	z Mode / Mode /	Auto FFT 1[1]	1 Emiss	2.479	-0.55 dBm 95000 GHz
Spectrum Ref Level 3 Att SGL Count 1 @1Pk Max 20 dBm	Bar Bar 0.00 dBm 45 dB	Offset 3	.54 dB 👄 R	RBW 100 kHz	z Mode / Mode /	Auto FFT 1[1]	1 Emiss	2.479	-0.55 dBm 95000 GHz 44.59 dBm
Spectrum Ref Level 3 Att SGL Count 1 @1Pk Max 20 dBm 10 dBm M1	Bar Bar 0.00 dBm 45 dB	Offset 3	.54 dB 👄 R	RBW 100 kHz	z Mode / Mode /	Auto FFT 1[1]	1 Emiss	2.479	-0.55 dBm 95000 GHz 44.59 dBm
Spectrum Ref Level 3 Att SGL Count 1 @1Pk Max 20 dBm 10 dBm M1 0 dBm	Bar 00.00 dBm 45 dB 00/100	Offset 3. SWT 22	.54 dB 👄 R	RBW 100 kHz	z Mode / Mode /	Auto FFT 1[1]	1 Emiss	2.479	-0.55 dBm 95000 GHz 44.59 dBm
Spectrum Ref Level 3 Att SGL Count 1 9 IPk Max 20 dBm 10 dBm -10 dBm	Bar 00.00 dBm 45 dB 00/100	Offset 3. SWT 22	.54 dB 👄 R	RBW 100 kHz	z Mode / Mode /	Auto FFT 1[1]	1 Emiss	2.479	-0.55 dBm 95000 GHz 44.59 dBm
Spectrum Ref Level 3 Att SGL Count 1 P1Pk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 cBm -30 cBm -40 dBm2	Bar 0.00 dBm 45 dB 00/100 01 -20.538 M4	Offset 3. SWT 22	.54 dB	28 100 kHz 78 300 kHz	z Mode / M M M	Auto FFT 1[1] 2[1]		2.479 2.483	-0.55 dBm 95000 GHz 44.59 dBm 50000 GHz
Spectrum Ref Level 3 Att SGL Count 1 P1Pk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 cBm -30 cBm -40 dBm2	Bar 0.00 dBm 45 dB 00/100 01 -20.538 M4	Offset 3. SWT 22	.54 dB	RBW 100 kHz	z Mode / M M M	Auto FFT 1[1] 2[1]		2.479 2.483	-0.55 dBm 95000 GHz 44.59 dBm 50000 GHz
Spectrum Ref Level 3 Att SGL Count 1 © 1Pk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 cBm -30 cBm -40 dBmip -40 dBmip -40 dBmip -50 dBm	Bar 0.00 dBm 45 dB 00/100 01 -20.538 M4	Offset 3. SWT 22	.54 dB	28 100 kHz 78 300 kHz	z Mode / M M M	Auto FFT 1[1] 2[1]		2.479 2.483	-0.55 dBm 95000 GHz 44.59 dBm 50000 GHz
Spectrum Ref Level 3 Att SGL Count 1 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm -10 dBm -40 dBm -40 dBm -40 dBm	Bar 0.00 dBm 45 dB 00/100 01 -20.538 M4	Offset 3. SWT 22	.54 dB	28 100 kHz 78 300 kHz	z Mode / M M M	Auto FFT 1[1] 2[1]		2.479 2.483	-0.55 dBm 95000 GHz 44.59 dBm 50000 GHz
Spectrum Ref Level 3 Att SGL Count 1 9 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm Start 2.476	Bar 10.00 dBm 45 dB 00/100 11 -20.538 M4 M4	Offset 3. SWT 22	.54 dB	28 100 kHz 78 300 kHz	2 Mode / M M M M M M M M M M M M M M M M M M M	Auto FFT 1[1] 2[1]		2.479 2.483	-0.55 dBm 95000 GHz 44.59 dBm 50000 GHz
Spectrum Ref Level 3 Att SGL Count 1 9 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm Start 2.476	Bar .0.00 dBm 45 dB .00/100 .1 -20.538 M4 M4 GHz	Offset 3. SWT 22	.54 dB () R 7.5 μs () V	28 100 kHz 28 300 kHz	2 Mode / M M M M M M M M M M M M M M M M M M M	Auto FFT 1[1] 2[1]	hand the second	2.479 2.483	-0.55 dBm 95000 GHz 44.59 dBm 50000 GHz
Spectrum Ref Level 3 Att SGL Count 1 9 1Pk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 cBm -30 cBm -30 cBm -40 dBm -40 dBm -40 dBm -50 dBm -50 dBm -60 dBm -50 dBm -50 dBm -50 dBm -50 dBm -60 dBm -50 dBm	Bar 10.00 dBm 45 dB 00/100 11 -20.538 M4 M4 GHz GHz 1	Offset 3 SWT 22 dBm M3 Mg/m/wm/wm Mg/m//wm/wm Mg/200/ 2.4799	.54 dB Θ R 7.5 μs Θ V	RBW 100 kHz //BW 300 kHz //BW 300 kHz //INDEX 100 //INDEX 1001 Y-value -0.55 dBi	2 2 Mode / M M m m pts Func m	Auto FFT 1[1] 2[1]	hand the second	2.479 2.483 2.483	-0.55 dBm 95000 GHz 44.59 dBm 50000 GHz
Spectrum Ref Level 3 Att SGL Count 1 ● 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm -40 dBm -40 dBm -40 dBm -50 dBm -60 dBm -60 dBm -50 dBm -60 dBm -60 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -30 cBm -30 cBm -40 dBm -40 dBm -40 dBm -40 dBm -40 dBm -50 dBm -60 dBm -60 dBm -60 dBm -10 dBm -30 cBm -40 dBm -10 dB	Bar 0.00 dBm 45 dB 00/100 1 -20.538 M4 M4 GHz GHz 1 1 1	Offset 3. SWT 22 dBm M3 vijrlvitvurvurvurvurvurvurvurvurvurvurvurvurvurv	.54 dB	2BW 100 kHz /BW 300 kHz /BW 3	z Mode / M M M M M M M M M M M M M M M M M M M	Auto FFT 1[1] 2[1]	hand the second	2.479 2.483 2.483	-0.55 dBm 95000 GHz 44.59 dBm 50000 GHz
Spectrum Ref Level 3 Att SGL Count 1 1Pk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 cBm -30 cBm -30 cBm -40 dBm -30 cBm -40 dBm -50 dBm -50 dBm -50 dBm -50 dBm -60 dBm -50 dBm -50 dBm -60 dBm -50 dBm -	Bar 0.00 dBm 45 dB 00/100 1 -20.538 M4 M4 GHz GHz 1 1	Offset 3. SWT 22 dBm M3 vijrlvitvurvurvurvurvurvurvurvurvurvurvurvurvurv	.54 dB • R 7.5 μs • V • <i>ν</i> <i>ν</i> <i>ν</i> <i>ν</i> <i>ν</i> <i>ν</i> <i>ν</i> <i>ν</i> <i>ν</i> <i>ν</i>	289W 100 kH; 78W 300 kH; 78W	z Mode / M M M M M M M M M M M M M M M M M M M	Auto FFT 1[1] 2[1]	Func	2.479 2.483 2.483	-0.55 dBm 95000 GHz 44.59 dBm 50000 GHz

8.1.6 Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-50.54	-20	Pass
NVNT	BLE 1M	2440	Ant1	-49.85	-20	Pass
NVNT	BLE 1M	2480	Ant1	-49.55	-20	Pass



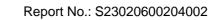
SGL Count 100/100	0 dB SWT 1	.54 dB — RBW 100 8.9 µs — VBW 300	kHz kHz Mode Auto F	FT		
●1Pk Max			M1[1]			0.15 dBm
10 dBm					2.40198	29010 GHz
0 dBm			M1			
-10 dBm						
-20 dBm					+	
-30 dBm						
-40 dBm						
-50 dBm						
-50 aBm						
-60 dBm						
-70 dBm						
CF 2.402 GHz			001 pts			n 1.5 MHz
			borpes	Deadu	opu	n 1.5 Mil 2
Spectrum			1M 2402MHz	z Ant1 Em	ission	
Spectrum Ref Level 20.00 Att 30 SGL Count 10/10	dBm Offset 3	S NVNT BLE	kHz		ission	
Spectrum Ref Level 20.00	dBm Offset 3	.54 dB 👄 RBW 100	kHz			-0.81 dBm
Spectrum Ref Level 20.00 Att 30 SGL Count 10/10 PIPk Max 10 dBm M1	dBm Offset 3	.54 dB 👄 RBW 100	kHz kHz Mode Auto S		2.4	-0.81 dBm 02070 GHz 50.40 dBm
Spectrum Ref Level 20.00 Att 30 SGL Count 10/10 PIPK Max 10 dBm M1 0 dBm	dBm Offset 3	.54 dB 👄 RBW 100	kHz kHz Mode Auto S M1[1]		2.4	-0.81 dBm 02070 GHz
Spectrum Ref Level 20.00 Att 31 SGL Count 10/10 INK Max 10 dBm -10 dBm	dBm Offset 3. 0 dB SWT 2	.54 dB 👄 RBW 100	kHz kHz Mode Auto S M1[1]		2.4	-0.81 dBm 02070 GHz 50.40 dBm
Spectrum Ref Level 20.00 Att 31 SGL Count 10/10 INK Max 10 dBm -10 dBm	dBm Offset 3	.54 dB 👄 RBW 100	kHz kHz Mode Auto S M1[1]		2.4	-0.81 dBm 02070 GHz 50.40 dBm
Spectrum Ref Level 20.00 Att 30 SGL Count 10/10 IPk Max 10 dBm -10 dBm -20 dBm D1 -19.	dBm Offset 3. 0 dB SWT 2	.54 dB 👄 RBW 100	kHz kHz Mode Auto S M1[1]		2.4	-0.81 dBm 02070 GHz 50.40 dBm
Spectrum Ref Level 20.00 Att 31 SGL Count 10/10 ID dBm 10 dBm -10 dBm -10 dBm -30 dBm -40 dBm	dBm Offset 3. 0 dB SWT 2	.54 dB 👄 RBW 100	kHz kHz Mode Auto S 	Sweep	2.4 22.7	-0.81 dBm 02070 GHz 50.40 dBm
Spectrum Ref Level 20.00 Att 31 SGL Count 10/10 IPk Max 10 dBm 10 -10 dBm 11 -20 dBm D1 -19. -30 dBm -40 dBm -50 dBm -50 dBm	dBm Offset 3 0 dB SWT 2 848 dBm M3 M4	.54 dB • RBW 100 :65 ms • VBW 300	kHz kHz Mode Auto S 	Sweep	2.4 22.7	-0.81 dBm 02070 GHz 50.40 dBm
Spectrum Ref Level 20.00 Att 30 SGL Count 10/10 INK Max 10 dBm -10 dBm -10 dBm -20 dBm -40 dBm	dBm Offset 3 0 dB SWT 2 848 dBm M3 M4	.54 dB • RBW 100 :65 ms • VBW 300	kHz kHz Mode Auto S 	Sweep	2.4 22.7	-0.81 dBm 02070 GHz 50.40 dBm
Spectrum Ref Level 20.00 Att 30 SGL Count 10/10 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm Start 30.0 MHz	dBm Offset 3 0 dB SWT 2 848 dBm M3 M4	.54 dB • RBW 100 165 ms • VBW 300 	kHz kHz Mode Auto S 	Sweep	2.4 22.7	-0.81 dBm 02070 GHz 50.40 dBm
Spectrum Ref Level 20.00 Att 30 SGL Count 10/10 IPk Max 10 dBm -10 dBm -10 dBm -30 dBm -50 dBm -50 dBm	dBm Offset 3 0 dB SWT 2 848 dBm M3 M4	.54 dB ● RBW 100 165 ms ● VBW 300 165 ms ● VBW 300 100 100 100 100 100 100 100	kHz Mode Auto S M1[1] M2[1] M2[1] M2[1] M3[1] M3[1] M3[1] M3[1] <t< td=""><td>Sweep</td><td>2.4 22.7</td><td>-0.81 dBm 02070 GHz 50.40 dBm 225378 GHz</td></t<>	Sweep	2.4 22.7	-0.81 dBm 02070 GHz 50.40 dBm 225378 GHz



8.2 **2M**

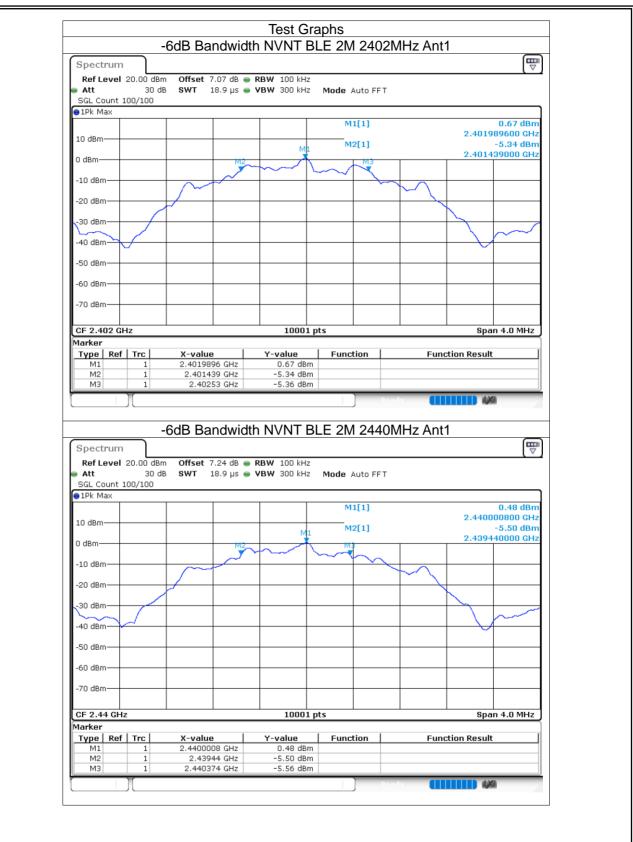
8.2.1 Maximum Conducted Output Power

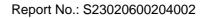
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 2M	2402	Ant1	4.05	30	Pass
NVNT	BLE 2M	2440	Ant1	3.96	30	Pass
NVNT	BLE 2M	2480	Ant1	3.34	30	Pass


IPk Max M1[1] 4.05 2.401896000 0 dBm 0 dBm -10 dBm	dBm) GHz
10 dBm M1) GHz
0 dBm	
-10 dBm	
20 dBm	
-30 dBm	
-40 dBm-	
-50 dBm	
-60 dBm	
-70 dBm	
CF 2.402 GHz 10001 pts Span 10.0	MHz
Ready (
Spectrum Ref Level 20.00 dBm Offset 7.24 dB RBW 3 MHz Att 30 dB SWT 10.1 ms YBW 10 MHz Mode Auto Sweep SGL Count 100/100 1Pk Max	
	dBm
10 dBm 2.43951900	
10 dBm M1 Z.439519001	
10 dBm M1 0 dBm 0 dBm0 dBm0 dBm0 dBm0 dBm	
10 dBm M1 0 dBm 0 dBm0 dBm0 dBm0 dBm0 dBm	
10 dBm M1 0 dBm 10 dBm	
10 dBm 2.43951900	
10 dBm M1 0 dBm	
10 dBm M1 0 dBm	
10 dBm M1 0 dBm	
10 dBm M1 0 dBm	
10 dBm M1 2.439519001 0 dBm M1 0 -10 dBm 0 0 -20 dBm 0 0 -30 dBm 0 0 -50 dBm 0 0	
10 dBm M1 2.439519001 0 dBm M1 0 -10 dBm 0 0 -20 dBm 0 0 -30 dBm 0 0 -50 dBm 0 0 -60 dBm 0 0	
10 dBm M1 2.439519001 0 dBm M1 0 -10 dBm 0 0 -20 dBm 0 0 -30 dBm 0 0 -50 dBm 0 0 -60 dBm 0 0	

Ref Level 20.00 dBr Att 30 d		RBW 3 MH2 VBW 10 MH2		ween		
SGL Count 100/100	 10.1 110 -		- Mode Addo	теер		
1Pk Max			M1[1]		2.4794	3.34 dBm 43100 GHz
LO dBm		M1				
) dBm						
10 dBm						
28 dBm						
30 dBm						
40 dBm						
50 dBm					_	
60 dBm						
70 dBm						

8.2.2 -6dB Bandwidth

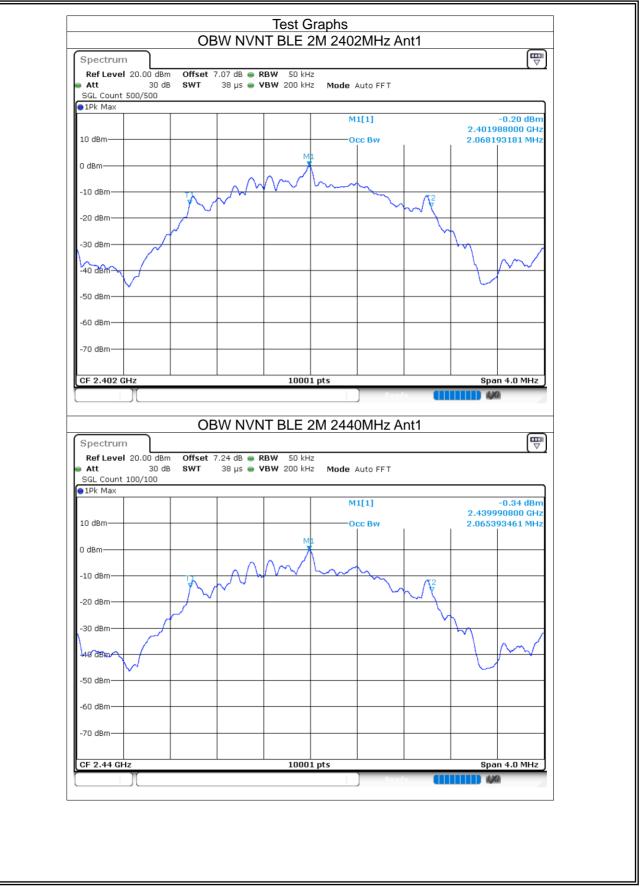

Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE 2M	2402	Ant1	1.091	0.5	Pass
NVNT	BLE 2M	2440	Ant1	0.934	0.5	Pass
NVNT	BLE 2M	2480	Ant1	0.894	0.5	Pass


TED Certificate #4298.01

ACCE

						pectrum
			• RBW 100 kHz	n Offset 7.07 dB 🧉	:0.00 di	ef Level 2
		Mode Auto FFT	• VBW 300 kHz	В SWT 18.9 µs 🖷	30	tt
					0/100	GL Count 10
						Pk Max
0.95 dBm		M1[1]				
2.479990800 GHz						dBm
-5.04 dBm		M2[1]	Mt			abiii
2.479453000 GHz		M31		1/12		IBm
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
		-m				) dBm
$\mathbf{X}$	$\sim$					
						) dBm
				T I	1	
	_				-/-	) dBm
					_/	~
						) dBm
						) dBm
						) dBm
						) dBm
Span 4.0 MHz			10001 pt			2.48 GHz
30411 4.0 14112		.3	10001 pt			rker
Function Result	E.	Function	Y-value	X-value	Trc	/pe   Ref
r unction result	FL	runction	0.95 dBm	2.4799908 GHz	1	M1 M1
			-5.04 dBm	2.479453 GHz	1	M2
			-5.02 dBm	2.480346 GHz	1	M3






# 8.2.3 Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE 2M	2402	Ant1	2.068
NVNT	BLE 2M	2440	Ant1	2.065
NVNT	BLE 2M	2480	Ant1	2.058





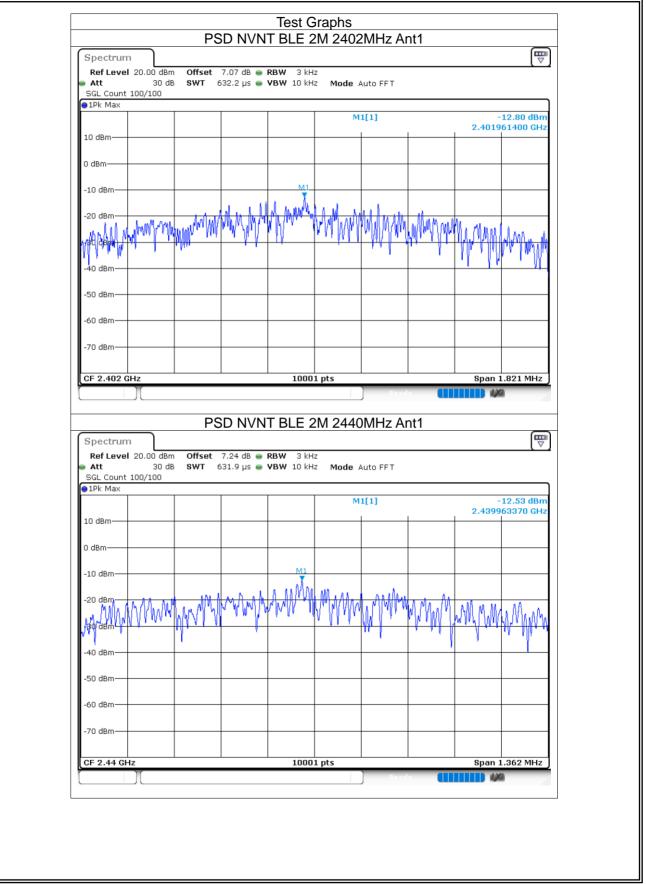






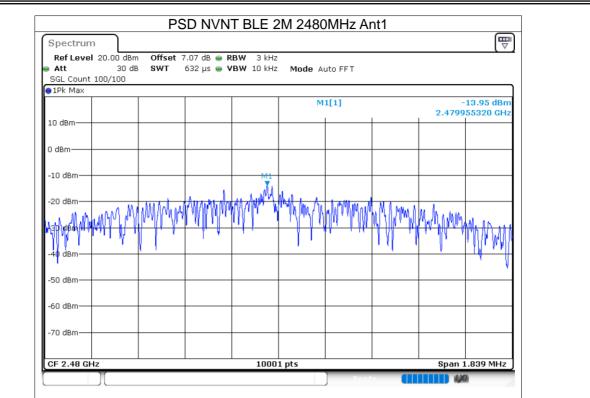





# 8.2.4 Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 2M	2402	Ant1	-12.8	8	Pass
NVNT	BLE 2M	2440	Ant1	-12.53	8	Pass
NVNT	BLE 2M	2480	Ant1	-13.95	8	Pass











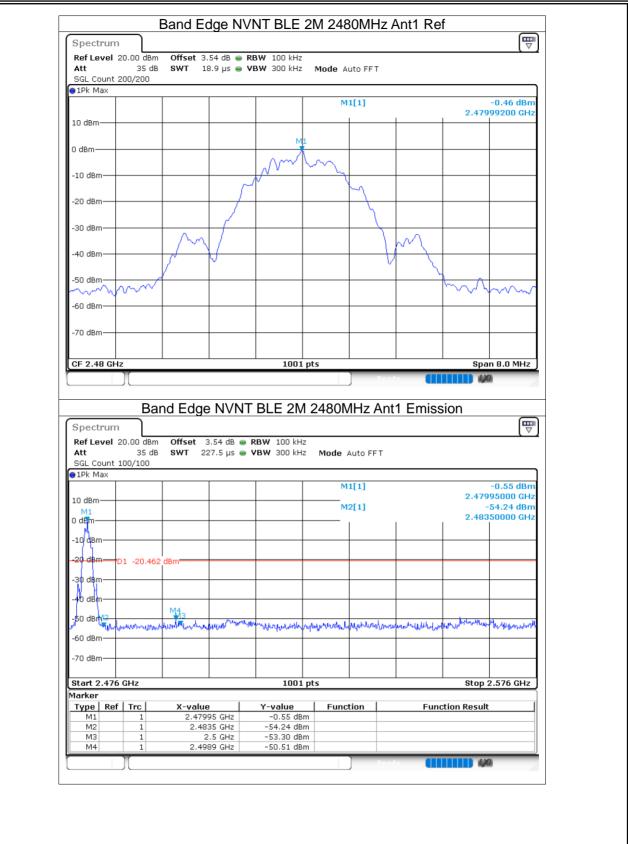







# 8.2.5 Band Edge

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 2M	2402	Ant1	-49.83	-20	Pass
NVNT	BLE 2M	2480	Ant1	-50.05	-20	Pass






Spectrum Ref Level 20.00 dBr	m Offset 3.54 dB 👄	VNT BLE 2				
Att 35 d SGL Count 200/200	B SWT 18.9 µs 🖷		Mode Auto FFT			
●1Pk Max			M1[1]			0.12 dBm
10 dBm					2.4019	8400 GHz
10 0.0		М1				
0 dBm			m			
-10 dBm		-1				
-20 dBm	+		`\			
-30 dBm	M			~1		
-40 dBm	$+/-\vee$			$\bigvee$		
-50 dBm	4					
man					m	$\sim\sim\sim$
-60 dBm						
-70 dBm				_		
CF 2.402 GHz Ba Spectrum	and Edge NVN	1001 pt	Re	nt1 Emissi		8.0 MHz
Ba Spectrum Ref Level 20.00 dBr Att 35 d	and Edge NVN m Offset 3.54 dB B SWT 227.5 µs	T BLE 2M 2	2402MHz Ai	nt1 Emiss		
Ba Spectrum Ref Level 20.00 dBr	n Offset 3.54 dB 👄	T BLE 2M 2	2402MHz An Mode Auto FFT	nt1 Emiss	ion	
Ba Spectrum Ref Level 20.00 dBr Att 35 d SGL Count 100/100 PIPk Max	n Offset 3.54 dB 👄	T BLE 2M 2	2402MHz Ai Mode Auto FFT 	nt1 Emiss	ion	
Ba Spectrum Ref Level 20.00 dBr Att 35 d SGL Count 100/100 P1Pk Max 10 dBm	n Offset 3.54 dB 👄	T BLE 2M 2	2402MHz An Mode Auto FFT	nt1 Emiss	ion 2.4019 -3	0.01 dBm
Ba Spectrum Ref Level 20.00 dBr Att 35 d SGL Count 100/100 1Pk Max 10 dBm- 0 dBm-	n Offset 3.54 dB 👄	T BLE 2M 2	2402MHz Ai Mode Auto FFT 	nt1 Emiss	ion 2.4019 -3	0.01 dBm 5000 GHz 5.73,dBm
Ba Spectrum Ref Level 20.00 dBr Att 35 d SGL Count 100/100 PIPk Max 10 dBm -10 dBm -10 dBm	m Offset 3.54 dB B SWT 227.5 μs 	T BLE 2M 2	2402MHz Ai Mode Auto FFT 	nt1 Emiss	ion 2.4019 -3	0.01 dBm 5000 GHz 5.73,dBm
Ba Spectrum Ref Level 20.00 dBr Att 35 d SGL Count 100/100 ● 1Pk Max 10 dBm -10 dBm -20 dBm D1 -19.87	m Offset 3.54 dB B SWT 227.5 μs 	T BLE 2M 2	2402MHz Ai Mode Auto FFT 	nt1 Emiss	ion 2.4019 -3	0.01 dBm 5000 GHz 5.73,dBm
Ba Spectrum Ref Level 20.00 dBr Att 35 d SGL Count 100/100 PIPk Max 10 dBm -10 dBm -10 dBm -20 dBm D1 -19.87 -30 dBm	m Offset 3.54 dB B SWT 227.5 μs 	T BLE 2M 2	2402MHz Ai Mode Auto FFT 	nt1 Emiss	ion 2.4019 -3	0.01 dBm 5000 GHz 5.73,dBm
Ba Spectrum Ref Level 20.00 dBr Att 35 d SGL Count 100/100 ● 1Pk Max 10 dBm -10 dBm -20 dBm -10 dBm -40 dBm	m Offset 3.54 dB B SWT 227.5 μs 	T BLE 2M 2	2402MHz Ai Mode Auto FFT 	nt1 Emissi	ion 2.4019 -3	0.01 dBm 5000 GHz 5.73 dBm 0000 GHz
Ba Spectrum Ref Level 20.00 dBr Att 35 d SGL Count 100/100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	m Offset 3.54 dB B SWT 227.5 μs /8 dBm	T BLE 2M 2	2402MHz Ai Mode Auto FFT 		2.4019 -3 2.4000	0.01 dBm 5000 GHz 5.73 dBm 0000 GHz
Ba Spectrum Ref Level 20.00 dBr Att 35 d SGL Count 100/100 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	m Offset 3.54 dB B SWT 227.5 μs //8 dBm	T BLE 2M 2	2402MHz Ai Mode Auto FFT 		2.4019 -3 2.4000	0.01 dBm 5000 GHz 5.73 dBm 0000 GHz
Ba Spectrum Ref Level 20.00 dBr Att 35 d SGL Count 100/100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	m Offset 3.54 dB B SWT 227.5 μs //8 dBm	T BLE 2M 2	2402MHz Ai Mode Auto FFT 		2.4019 -3 2.4000	0.01 dBm 5000 GHz 5.73 dBm 0000 GHz
Bac Spectrum Ref Level 20.00 dBr Att 35 d SGL Count 100/100 PIPk Max 10 dBm 0 dBm -10 dBm -20 dBm -40 dBm -50 dBm -50 dBm -60 dBm	m Offset 3.54 dB B SWT 227.5 μs //8 dBm	T BLE 2M 2	2402MHz Ai		2.4019 -3 2.4000	0.01 dBm 5000 GHz 5.73 dBm 0000 GHz
Ba Spectrum Ref Level 20.00 dBr Att 35 d SGL Count 100/100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm	m Offset 3.54 dB B B SWT 227.5 μs C 27.5 μs C 28 dBm 78 dBm M4 M4 M4 M4	T BLE 2M 2	2402MHz Ai	Whith the second	2.4019 -3 2.4009 -3 2.4000	0.01 dBm 5000 GHz 5.73 dBm 0000 GHz
Backson           Ref Level         20.00 dBr           Att         35 d           SGL Count         100/100           ● IPk Max         10 dBm           10 dBm         0 dBm           -10 dBm         -10 dBm           -30 dBm         -30 dBm           -50 dBm         -50 dBm           -70 dBm         -70 dBm           Start 2.306 GHz         Marker           Type         Ref         Trc           M1         1         1	m Offset 3.54 dB B SWT 227.5 μs 78 dBm 78 dBm 78 dBm 79 dBm 79 dBm 79 dBm 79 dBm 70	T BLE 2M 2	2402MHz Ai	Whith the second	2.4019 -3 2.4000	0.01 dBm 5000 GHz 5.73 dBm 0000 GHz
Backson           Spectrum           Ref Level 20.00 dBr           Att 35 d           SGL Count 100/100           ID dBm           10 dBm           -10 dBm           -10 dBm           -30 dBm           -30 dBm           -40 dBm           -50 dBm           -70 dBm           Start 2.306 GHz           Marker           Type         Ref           M1         1           M2         1           M3         1	m Offset 3.54 dB B B SWT 227.5 μs C 27.5 μs C 78 dBm 78 dBm 79 dBm 79 dBm 70 d	T BLE 2M 2	2402MHz Ai	Whith the second	2.4019 -3 2.4009 -3 2.4000	0.01 dBm 5000 GHz 5.73 dBm 0000 GHz
Backson           Spectrum           Ref Level 20.00 dBr           Att 35 d           SGL Count 100/100           9 1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -70 dBm           -70 dBm           Start 2.306 GHz           Marker           Type         Ref           M1         1           M2         1	m Offset 3.54 dB B B SWT 227.5 μs C 8 dBm 78 dBm 79 dBm 79 dBm 70 dBm	T BLE 2M 2	2402MHz Ai	Under the second	2.4019 -3 2.4009 -3 2.4000	0.01 dBm 5000 GHz 5.73 dBm 0000 GHz







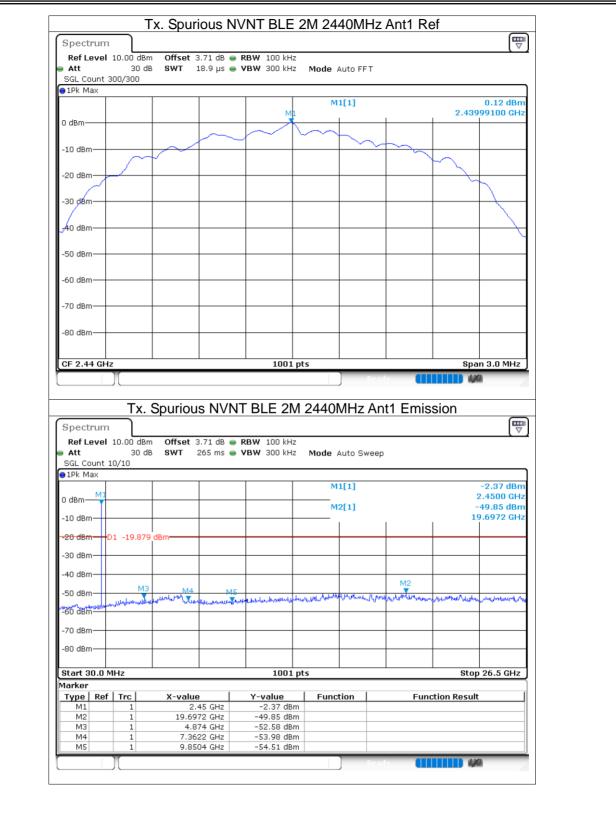
ACCREDITED Certificate #4298.01





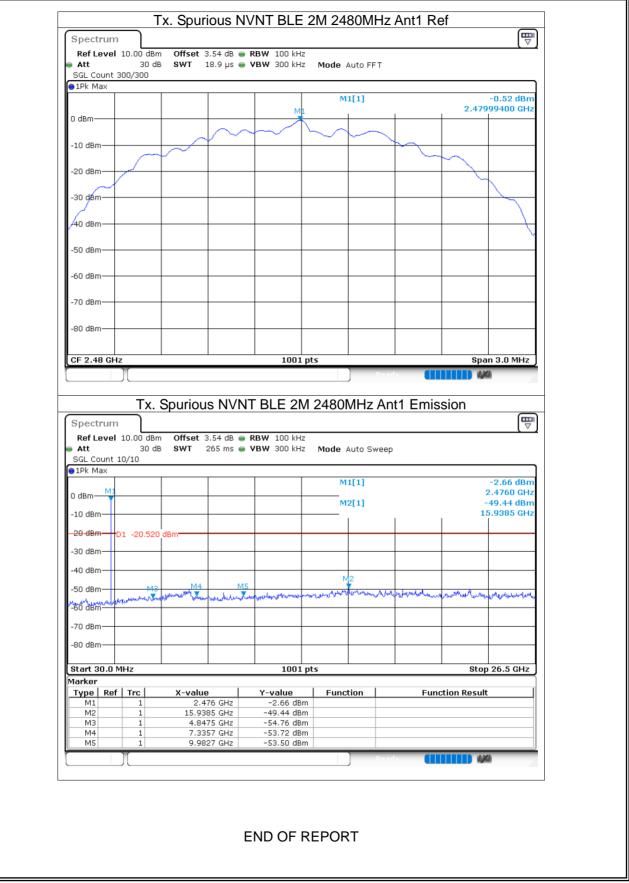
# 8.2.6 Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 2M	2402	Ant1	-50.1	-20	Pass
NVNT	BLE 2M	2440	Ant1	-49.96	-20	Pass
NVNT	BLE 2M	2480	Ant1	-48.91	-20	Pass






Spectrum			/NT BLE				· · · · · · · · · · · · · · · · · · ·	
Ref Level 10.00	)dBm Offset 3	3.54 dB 👄 F	<b>RBW</b> 100 kHz	z				( ∨ )
Att	30 dB <b>SWT</b> :				uto FFT			
SGL Count 300/3 1Pk Max	00							
IFN Max				M	1[1]			0.15 dBm
0.40			M				2.401	98500 GHz
0 dBm					~~~			
-10 dBm					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\sim$		
	$\sim$						$\sim$	
-20 dBm								
								$\mathbf{X}$
-30 dBm								
40 dBm								$\langle \rangle$
-to ubiii								~
-50 dBm		<u> </u>						
-60 dBm			++					
70.40								
-70 dBm								
-80 dBm								
		1	1 1					
	Tx. Spuriou	s NVNT	1001		) Read	t1 Emis		n 3.0 MHz )
Spectrum Ref Level 10.00	) dBm Offset 3	3.54 dB 👄 F		<u>л 24021</u> 2		t1 Emis		n 3.0 MHz )
Spectrum Ref Level 10.00	) dBm Offset 3	3.54 dB 👄 F	FBLE 2N	<u>л 24021</u> 2		t1 Emis		
Spectrum Ref Level 10.00 Att SGL Count 10/10	) dBm Offset 3	3.54 dB 👄 F		// 24021 2 2 Mode 4	auto Sweep	t1 Emis	sion	(
Spectrum Ref Level 10.00 Att SGL Count 10/10 1Pk Max	) dBm Offset 3	3.54 dB 👄 F		// 24021 2 2 Mode 4		t1 Emis	sion	-2.02 dBm
Spectrum Ref Level 10.00 Att SGL Count 10/10 1Pk Max 0 dBm	) dBm Offset 3	3.54 dB 👄 F		// 2402M 2 Mode 4 M3	auto Sweep	t1 Emis	sion	-2.02 dBm 2.3970 GHz 49.95 dBm
Spectrum Ref Level 10.00 Att SGL Count 10/10 1Pk Max 0 dBm	) dBm Offset 3	3.54 dB 👄 F		// 2402M 2 Mode 4 M3	uto Sweep L[1]	t1 Emis	sion	-2.02 dBm 2.3970 GHz
Spectrum Ref Level 10.00 Att SGL Count 10/10 PIPK Max 0 dBm -10 dBm	) dBm Offset 3 30 dB SWT	3.54 dB 👄 F		// 2402M 2 Mode 4 M3	uto Sweep L[1]	t1 Emis	sion	-2.02 dBm 2.3970 GHz 49.95 dBm
Spectrum Ref Level 10.0( Att SGL Count 10/10 1Pk Max 0 dBm -10 dBm -20 dBm D1 -1'	) dBm Offset 3 30 dB SWT	3.54 dB 👄 F		// 2402M 2 Mode 4 M3	uto Sweep L[1]	t1 Emis	sion	-2.02 dBm 2.3970 GHz 49.95 dBm
Spectrum Ref Level 10.00 Att SGL Count 10/10 1Pk Max 0 dBm -10 dBm -20 dBm -30 dBm	) dBm Offset 3 30 dB SWT	3.54 dB 👄 F		// 2402M 2 Mode 4 M3	uto Sweep L[1]	t1 Emis	sion	-2.02 dBm 2.3970 GHz 49.95 dBm
Spectrum Ref Level 10.00 Att SGL Count 10/10 1Pk Max 0 dBm -10 dBm -20 dBm -20 dBm -40 dBm	9.855 dBm	3.54 dB		// 2402M 2 Mode / 	Auto Sweep		sion	-2.02 dBm 2.3970 GHz 49.95 dBm
Spectrum Ref Level 10.00 Att SGL Count 10/10 1Pk Max 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm	9.855 dBm	3.54 dB 👄 F		// 2402M 2 Mode / 	Auto Sweep	t1 Emis:	sion	-2.02 dBm 2.3970 GHz 49.95 dBm
Spectrum Ref Level 10.00 Att SGL Count 10/10 1Pk Max 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm	0 dBm Offset 3 30 dB SWT 9 9.855 dBm	3.54 dB 265 ms		// 2402M 2 Mode / 	Auto Sweep		sion	-2.02 dBm 2.3970 GHz 49.95 dBm 7.6855 GHz
Spectrum Ref Level 10.00 Att SGL Count 10/10 1Pk Max 0 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm	0 dBm Offset 3 30 dB SWT 9 9.855 dBm	3.54 dB 265 ms		// 2402M 2 Mode / 	Auto Sweep		sion	-2.02 dBm 2.3970 GHz 49.95 dBm 7.6855 GHz
Spectrum Ref Level 10.00 Att SGL Count 10/10 IPk Max 0 dBm -10 dBm -20 dBm -40 dBm -50 dBm -70	0 dBm Offset 3 30 dB SWT 9 9.855 dBm	3.54 dB 265 ms		// 2402M 2 Mode / 	Auto Sweep		sion	-2.02 dBm 2.3970 GHz 49.95 dBm 7.6855 GHz
Spectrum Ref Level 10.00 Att SGL Count 10/10 1Pk Max 0 dBm -10 dBm -20 dBm -10 dBm -30 dBm -50 dBm -50 dBm -60 dBm -70 dBm -80	0 dBm Offset 3 30 dB SWT 9 9.855 dBm	3.54 dB 265 ms	BLE 2N	M 2402N	Auto Sweep		sion	-2.02 dBm 2.3970 GHz 49.95 dBm 7.6855 GHz
Spectrum Ref Level 10.00 Att SGL Count 10/10 1Pk Max 0 dBm -10 dBm -10 dBm -20 dBm -10 dBm -40 dBm -50 dBm -70 dBm -80	0 dBm Offset 3 30 dB SWT 9 9.855 dBm	3.54 dB 265 ms		M 2402N	Auto Sweep		sion	-2.02 dBm 2.3970 GHz 49.95 dBm 7.6855 GHz
Spectrum Ref Level 10.00 Att SGL Count 10/10 IPk Max 0 dBm -10 dBm -10 dBm -20 dBm -10 dBm -30 dBm -40 dBm -50 dBm -70 dBm -80	OdBm         Offset 3           30 dB         SWT           9.855 dBm           M3         M4           M3         M4	3.54 dB	BLE 2N	M 2402N	uto Sweep 1[1] 2[1] هوه المحالي المحالي		sion	-2.02 dBm 2.3970 GHz 49.95 dBm 7.6855 GHz
Spectrum           Ref Level 10.00           Att           SGL Count 10/10           IPk Max           0 dBm           -10 dBm           -20 dBm           -40 dBm           -50 dBm           -70 dBm           -80 dBm           -80 dBm           -70 dBm           -70 dBm           -70 dBm           -80 dBm           -80 dBm           -80 dBm           -90 dBm           -10 dBm	OdBm         Offset         3           30 dB         SWT         3           9.855 dBm         3         3           M3         M4         3           M3         2         3           M3         3         3           M4         3         3           M3         3         3           M3         3         3           M3         3         3           M3         3         3           M4         3         3           M4         3         3           M4         3         3	3.54 dB 265 ms X X X X X X X X X X X X X	BLE 2N           RBW 100 kHz           VBW 300 kHz           a, ush, jush, jush           a, ush, jush	M 2402N	uto Sweep 1[1] 2[1] هوه المحالي المحالي		sion 2 17 17 2 17 17 17 17 17 17	-2.02 dBm 2.3970 GHz 49.95 dBm 7.6855 GHz
Spectrum           Ref Level 10.00           Att           SGL Count 10/10           1Pk Max           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -60 dBm           -70 dBm           -80 dBm           -8 dBm           -8 dBm           -9 dBm <td< td=""><td>0 dBm Offset 3 30 dB SWT 9 9.855 dBm M3 M4 M, Julu ut M, My M, M4 M, Julu ut M, My M, M4 M, Julu ut M, My M,</td><td>3.54 dB 265 ms X X X X X X X X X X X X X</td><td>BLE 2N     BW 100 kHz     BW 300 kHz     BW 300 kHz     Compared to the second se</td><td>M 2402N</td><td>uto Sweep 1[1] 2[1] هوه المحالي المحالي</td><td></td><td>sion 2 17 17 2 17 17 17 17 17 17</td><td>-2.02 dBm 2.3970 GHz 49.95 dBm 7.6855 GHz</td></td<>	0 dBm Offset 3 30 dB SWT 9 9.855 dBm M3 M4 M, Julu ut M, My M, M4 M, Julu ut M, My M, M4 M, Julu ut M, My M,	3.54 dB 265 ms X X X X X X X X X X X X X	BLE 2N     BW 100 kHz     BW 300 kHz     BW 300 kHz     Compared to the second se	M 2402N	uto Sweep 1[1] 2[1] هوه المحالي المحالي		sion 2 17 17 2 17 17 17 17 17 17	-2.02 dBm 2.3970 GHz 49.95 dBm 7.6855 GHz
Spectrum           Ref Level         10.00           Att         SGL Count         10/10           IPk Max         M1         .0           0 dBm         M1         .0           -10 dBm         -0         .0           -20 dBm         D1 -1         .0           -30 dBm         -0         .0           -40 dBm         -0         .0           -50 dBm         -0         .0           -60 dBm         -0         .0           -70 dBm         -0         .0           -80 dBm         -0         .0           -9         .0         .0 </td <td>0 dBm     Offset 3       30 dB     SWT       9.855 dBm       M3     M4       10.100 mm       11.100 mm       12.31       17.68       1       17.68       1       17.69       1       17.69       1</td> <td>3.54 dB 265 ms 265 ms</td> <td>TBLE 2N           RBW 100 kHz           yBW 300 kHz</td> <td>M 2402N</td> <td>uto Sweep 1[1] 2[1] هوه المحالي المحالي</td> <td></td> <td>sion 2 17 17 2 17 17 17 17 17 17</td> <td>-2.02 dBm 2.3970 GHz 49.95 dBm 7.6855 GHz</td>	0 dBm     Offset 3       30 dB     SWT       9.855 dBm       M3     M4       10.100 mm       11.100 mm       12.31       17.68       1       17.68       1       17.69       1       17.69       1	3.54 dB 265 ms 265 ms	TBLE 2N           RBW 100 kHz           yBW 300 kHz	M 2402N	uto Sweep 1[1] 2[1] هوه المحالي المحالي		sion 2 17 17 2 17 17 17 17 17 17	-2.02 dBm 2.3970 GHz 49.95 dBm 7.6855 GHz
Spectrum           Ref Level 10.00           Att           SGL Count 10/10           IPk Max           0 dBm           -10 dBm           -20 dBm           -40 dBm           -50 dBm           -60 dBm           -70 dBm           -80 dBm           -70 dBm           -80 dBm           -70 dBm           -70 dBm           -80 dBm           -70 dBm           -70 dBm           -70 dBm           -70 dBm           -70 dBm           -70 dBm	0 dBm     Offset 3       30 dB     SWT       9.855 dBm       M3     M4       10.100 mm       11.100 mm       12.31       17.68       1       17.68       1       17.69       1       17.69       1	3.54 dB ● F 265 ms ● V 265 ms ● V 97 GHz 97 GHz 25 GHz 46 GHz	TBLE 2N	M 2402N	uto Sweep 1[1] 2[1] هوه المحالي المحالي	۲۰۰۰ Func	sion 2 17 17 2 17 17 17 17 17 17	-2.02 dBm 2.3970 GHz 49.95 dBm 7.6855 GHz














ACCREDITED Certificate #4298.01