

TEST REPORT

Test Report No. : UL-RPT-RP12888381-716A

Customer	:	Accesso Technology Group Plc
Model No. / HVIN	:	57136-1, 57136-2 and 57136-3
PMN	:	Prism V2
FCC ID	:	2AKCM-57136
ISED Certification No.	:	21963-57136
Technology	:	Bluetooth – Low Energy
Test Standard(s)	:	FCC Parts 15.247(a)(2), 15.247(b)(3) & 15.35(c), Innovation, Science and Economic Development Canada RSS-247 Issue 2 Section 5.2(a), 5.4(d) RSS-Gen 6.7, 6.12 & 8.2
Test Laboratory	:	UL International (UK) Ltd, Basingstoke, Hampshire, RG24 8AH, United Kingdom

- 1. This test report shall not be reproduced except in full, without the written approval of UL International (UK) Ltd.
- 2. The results in this report apply only to the sample(s) tested.
- 3. The sample tested is in compliance with the above standard(s).
- 4. The test results in this report are traceable to the national or international standards.
- 5. Version 3.0 supersedes all previous versions.

Date of Issue:

2 August 2021

Checked by:

Ben Mercer Lead Project Engineer, Radio Laboratory

Company Signatory:

WElders

Sarah Williams **Operations Leader, Radio Laboratory**

The *Bluetooth*[®] word mark and logos are owned by the *Bluetooth* SIG, Inc. and any use of such marks by UL International (UK) Ltd is under licence. Other trademarks and trade names are those of their respective owners.

UL International (UK) Ltd

Customer Information

Company Name:	Accesso Technology Group Plc
Address:	Unit 5 The Pavilions Twyford Berkshire RG10 9NN United Kingdom

Report Revision History

Version Number	Issue Date	Revision Details	Revised By
1.0	16/06/2021	Initial Version	Ben Mercer
2.0	27/07/2021	Implemented changes requested by TCB	Ben Mercer
3.0	02/08/2021	Implemented changes requested by TCB	Ben Mercer

Table of Contents

Customer Information	2
Report Revision History	2
Table of Contents	3
 1 Attestation of Test Results	4 4 5 5
 2 Summary of Testing. 2.1 Facilities and Accreditation 2.2 Methods and Procedures 2.3 Calibration and Uncertainty 2.4 Test and Measurement Equipment 	6 6 6 7 8
 3 Equipment Under Test (EUT) 3.1 Identification of Equipment Under Test (EUT) 3.2 Untested Variants 3.3 Modifications Incorporated in the EUT 3.4 Additional Information Related to Testing 3.5 Description of Available Antennas 3.6 Description of Test Setup 	10 10 10 10 11 11 12
4 Antenna Port Test Results 4.1 Transmitter Minimum 6 dB Bandwidth 4.2 Transmitter 99% Occupied Bandwidth 4.3 Transmitter Duty Cycle 4.4 Transmitter Maximum Peak Output Power	14 14 16 18 19
5 Radiated Test Results 5.1 Transmitter Radiated Emissions <1 GHz 5.2 Transmitter Radiated Emissions >1 GHz 5.3 Transmitter Band Edge Radiated Emissions	22 22 24 27

<u>1 Attestation of Test Results</u>

1.1 Description of EUT

The equipment under test was a wrist worn wireless booking device. It contains a *Bluetooth* LE transceiver and a 915 MHz LoRaWAN transceiver.

1.2 General Information

Specification Reference:	47CFR15.247		
Specification Title:	Code of Federal Regulations Volume 47 (Telecommunications): Part 15 Subpart C (Intentional Radiators) – Section 15.247		
Specification Reference:	47CFR15.209		
Specification Title:	Code of Federal Regulations Volume 47 (Telecommunications): Part 15 Subpart C (Intentional Radiators) – Section 15.209		
Specification Reference:	RSS-Gen Issue 5 February 2021		
Specification Title:	General Requirements for Compliance of Radio Apparatus		
Specification Reference:	RSS-247 Issue 2 February 2017		
Specification Title:	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices		
FCC Site Registration:	685609		
ISEDC Site Registration:	20903		
FCC Lab. Designation No.:	UK2011		
ISEDC CABID:	UK0001		
Location of Testing:	Unit 3 Horizon, Wade Road, Kingsland Business Park, Basingstoke, Hampshire, RG24 8AH, United Kingdom		
Test Dates:	04 February 2021 to 31 March 2021		

FCC Reference (47CFR)	ISED Canada Reference	Measurement	Result			
Part 15.247(a)(2)	RSS-Gen 6.7 / RSS-247 5.2(a)	Transmitter Minimum 6 dB Bandwidth	0			
N/A	RSS-Gen 6.7	Transmitter 99% Occupied Bandwidth	Ø			
Part 15.35(c)	RSS-Gen 8.2	Transmitter Duty Cycle	Note 1			
Part 15.247(b)(3)	RSS-Gen 6.12 / RSS- 247 5.4(d)	Transmitter Maximum Peak Output Power	0			
Part 15.247(d) / 15.209(a)	RSS-Gen 6.13 & 8.9 / RSS-247 5.5	Transmitter Radiated Emissions	0			
Part 15.247(d) / 15.209(a)	RSS-Gen 6.13, 8.9 & 8.10 / RSS-247 5.5	Transmitter Band Edge Radiated Emissions	Ø			
Key to Results						
🐼 = Complied 🛛 🙆 = Did	Complied I = Did not comply					

1.3 Summary of Test Results

Note(s):

- 1. The measurement was performed to assist in the calculation of the level of the emissions. The EUT cannot transmit continuously and sweep triggering/signal gating cannot be implemented.
- 2. In accordance with ANSI C63.10 Section 11.10.1, PSD measurements are not required if the maximum conducted output power is less than the PSD limit of 8 dBm / 3 kHz. The PSD level is therefore deemed be equal to the measured output power.

1.4 Deviations from the Test Specification

For the measurements contained within this test report, there were no deviations from, additions to, or exclusions from the test specification identified above.

2 Summary of Testing

2.1 Facilities and Accreditation

The test site and measurement facilities used to collect data are located at Unit 3 Horizon, Wade Road, Kingsland Business Park, Basingstoke, Hampshire, RG24 8AH, United Kingdom. The following table identifies which facilities were utilised for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

Site 1	х
Site 2	
Site 17	х

UL International (UK) Ltd is accredited by UKAS. The tests reported herein have been performed in accordance with its terms of accreditation.

2.2 Methods and Procedures

Reference:	ANSI C63.10-2013	
Title:	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices	
Reference:	KDB 558074 D01 15.247 Meas Guidance v05r02, April 2, 2019	
Title:	Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating Under Section 15.247 of the FCC Rules	

2.3 Calibration and Uncertainty

Measuring Instrument Calibration

In accordance with UKAS requirements all the measurement equipment is on a calibration schedule. All equipment was within the calibration period on the date of testing.

Measurement Uncertainty & Decision Rule

Overview

No measurement or test can ever be perfect and the imperfections give rise to error of measurement in the results. Consequently the result of a measurement is only an approximation to the value of the measurand (the specific quantity subject to measurement) and is only complete when accompanied by a statement of the uncertainty of the approximation.

The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

Decision Rule

The decision rule applied is based upon the accuracy method criteria. The measurement uncertainty is met and the result is considered in conformance with the requirement criteria if the observed value is within the prescribed limit.

Measurement Uncertainty

The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor such that a confidence level of approximately 95% is maintained. For the purposes of this document "approximately" is interpreted as meaning "effectively" or "for most practical purposes".

Measurement Type	Range	Confidence Level (%)	Calculated Uncertainty
Duty Cycle	2.4 GHz to 2.4835 GHz	95%	±1.14 %
Minimum 6 dB Bandwidth	2.4 GHz to 2.4835 GHz	95%	±4.59 %
99% Occupied Bandwidth	2.4 GHz to 2.4835 GHz	95%	±3.92 %
Conducted Maximum Peak Output Power	2.4 GHz to 2.4835 GHz	95%	±1.13 dB
Radiated Spurious Emissions	30 MHz to 1 GHz	95%	±3.30 dB
Radiated Spurious Emissions	1 GHz to 25 GHz	95%	±2.94 dB

The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty the published guidance of the appropriate accreditation body is followed.

2.4 Test and Measurement Equipment

Test Equipment Used for Conducted Tests

Asset No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M2002	Thermohygrometer	Testo	608-H1	45041825	10 Dec 2021	12
A3118	Attenuator	AtlanTecRF	AN18-10	237378#2	Calibrated before use	-
M1883	Signal Analyser	Rohde & Schwarz	FSV30	103084	19 Mar 2021	12
G0614	Signal Generator	Rohde & Schwarz	SMB100A	177687	19 May 2023	36

Note: All equipment was within calibration at the time of test

Test Equipment Used for Transmitter Radiated Emissions Tests

Asset No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
K0001	5m RSE Chamber	Rainford	N/A	N/A	14 Oct 2021	12
M2044	Test Receiver	Rohde & Schwarz	ESU26	100122	03 Sep 2021	12
M2040	Thermohygrometer	Testo	608-H1	45124934	10 Dec 2021	12
A3179	Pre Amplifier	Agilent	8449B	3008A00934	29 Sep 2021	12
A3155	Pre Amplifier	Com-Power	PAM-118A	18040037	29 Sep 2021	12
A2131	Low Pass Filter	AtlanTecRF	AFL-02000	JFB1004-002	18 Nov 2021	12
A3093	High Pass Filter	AtlanTecRF	AFH-0300	18051800077	03 Feb 2022	12
A2523	Attenuator	AtlanTecRF	AN18W5-10	832827#1	03 Feb 2022	12
A3095	High Pass Filter	AtlanTecRF	AFH-07000	18051600012	03 Feb 2022	12
A3139	Antenna	Schwarzbeck	HWRD750	00027	06 Oct 2021	12
A3138	Antenna	Schwarzbeck	BBHA 9120 B	00702	06 Oct 2021	12
A2553	Antenna	Chase	CBL6111A	1593	14 Oct 2020	12
K0017	3m RSE Chamber	Rainford	N/A	N/A	21 Oct 2021	12
M1995	Test Receiver	Rohde & Schwarz	ESU40	100428	07 Dec 2021	12
M2003	Thermohygrometer	Testo	608-H1	45046641	10 Dec 2021	12
A2889	Antenna	Schwarzbeck	BBHA 9120 B	BBHA 9120B653	23 Oct 2021	12
A2916	Attenuator	AtlanTecRF	AN18W5-10	832827#1	01 Feb 2022	12
A2890	Antenna	Schwarzbeck	HWRD 750	014	26 Oct 2021	12
A2947	High Pass Filter	AtlanTecRF	AFH-07000	1601900001	01 Feb 2022	12
A2863	Pre Amplifier	Agilent	8449B	3008A02100	21 Oct 2021	12
A3142	Pre Amplifier	Schwarzbeck	BBV 9718 B	00020	21 Oct 2021	12

VERSION 3.0

Test and Measurement Equipment (continued)

Test Equipment Used for Transmitter Band Edge Radiated Emissions Tests

Asset No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
K0017	3m RSE Chamber	Rainford	N/A	N/A	21 Oct 2021	12
M1995	Test Receiver	Rohde & Schwarz	ESU40	100428	07 Dec 2021	12
M2003	Thermohygrometer	Testo	608-H1	45046641	10 Dec 2021	12
A2863	Pre Amplifier	Agilent	8449B	3008A02100	21 Oct 2021	12
A2889	Antenna	Schwarzbeck	BBHA 9120 B	BBHA 9120B653	23 Oct 2021	12
A2916	Attenuator	AtlanTecRF	AN18W5-10	832827#1	01 Feb 2022	12
K0001	5m RSE Chamber	Rainford	N/A	N/A	14 Oct 2021	12
M2044	Test Receiver	Rohde & Schwarz	ESU26	100122	03 Sep 2021	12
A2863	Pre Amplifier	Agilent	8449B	3008A02100	21 Oct 2021	12
A3138	Antenna	Schwarzbeck	BBHA 9120 B	00702	06 Oct 2021	12
M2040	Thermohygrometer	Testo	608-H1	45124934	10 Dec 2021	12
A2523	Attenuator	AtlanTecRF	AN18W5-10	832827#1	03 Feb 2022	12

<u>3 Equipment Under Test (EUT)</u>

3.1 Identification of Equipment Under Test (EUT)

Brand Name / PMN:	Prism V2
Model Number / HVIN:	57136-2
Test Sample Serial Number:	200033 (Conducted sample #1)
Hardware Version:	57136-3002 REV-E3
Firmtware Version:	Prism 2.1 Factory Test V3.62
FCC ID:	2AKCM-57136
ISED Certification Number:	21963-57136

Brand Name / PMN:	Prism V2
Model Number / HVIN:	57136-2
Test Sample Serial Number:	200066 (Radiated sample #1)
Hardware Version:	57136-3002 REV-E3
Firmtware Version:	Prism 2.1 Factory Test V3.62
FCC ID:	2AKCM-57136
ISED Certification Number:	21963-57136

Brand Name / PMN:	Prism V2
Model Number / HVIN:	57136-2
Test Sample Serial Number:	200049 (Radiated sample #2)
Hardware Version:	57136-3002 REV-E3
Firmtware Version:	Prism 2.1 Factory Test V3.62
FCC ID:	2AKCM-57136
ISED Certification Number:	21963-57136

3.2 Untested Variants

The customer declared that model numbers 57136-1 and 57136-3 are electrically and functionally identical to 57136-2, with only the bezel colour and laser printing differing between models.

3.3 Modifications Incorporated in the EUT

No modifications were applied to the EUT during testing.

3.4 Additional Information Related to Testing

Technology Tested:	Bluetooth Low Energy (Digital Transmission System)			
Type of Unit:	Transceiver			
Channel Spacing:	2 MHz	2 MHz		
Modulation:	GFSK	GFSK		
Data Rate:	1 Mbps			
Power Supply Requirement(s):	Nominal 3.0 VDC			
Maximum Conducted Output Power:	0.8 dBm			
Transmit Frequency Range:	2402 MHz to 2480 MHz			
Transmit Channels Tested:	Channel ID Channel Number Channel (MHz)			
	Bottom 37 2402			
	Middle 38 2426			
	Тор	Top 39 2480		

3.5 Description of Available Antennas

The EUT utilizes an integrated antenna, with the following maximum gain:

Туре	Model	Frequency Range (MHz)	Antenna Gain (dBi)
Chip	2450AT07A0100	2400-2480	-1.5

3.6 Description of Test Setup

Support Equipment

The following support equipment was used to exercise the EUT during testing:

Description:	Laptop
Brand Name:	НР
Model Name or Number:	ProBook 6550b
Serial Number:	CNU1010CP1

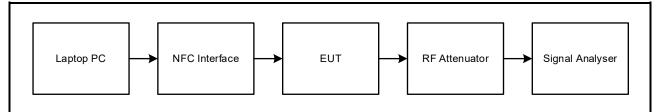
Description:	NFC Reader
Brand Name:	Feig Electronic
Model Name or Number:	CPR44-02-4SCUSB
Serial Number:	5706423

Operating Modes

The EUT was tested in the following operating mode(s):

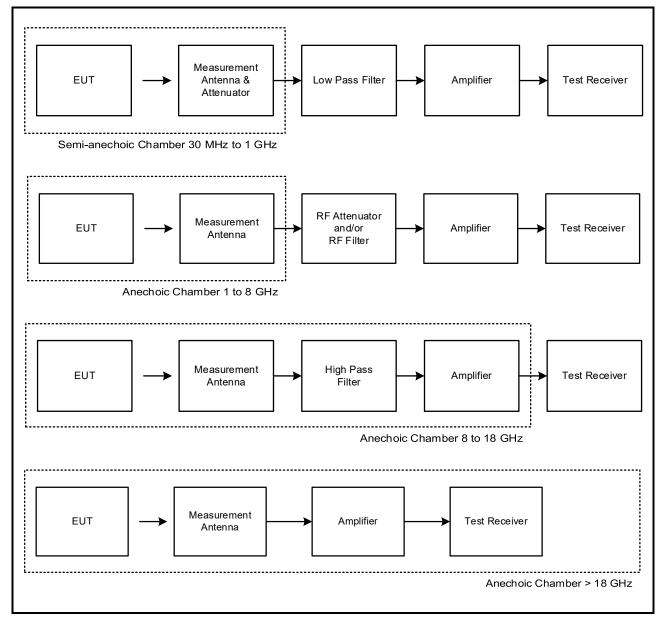
• Transmitting at maximum power in *Bluetooth* LE mode with modulation, an interval of 500ms and in continuous Random Data mode.

Configuration and Peripherals


The EUT was tested in the following configuration(s):

- A test laptop with the customer's test application was used to place the EUT into *Bluetooth* LE test mode via a NFC interface and cable. The application was used to enable continuous transmission and to select the test channels & packet types as required. The customer supplied instructions to configure the EUT into test mode "FCC Script Instructions.pdf".
- The EUT was configured to transmit 500 packets of continuous random data, with an interval of 500ms.
- The EUT incorporates a chip antenna. A modified sample was supplied with an external antenna connector to facilitate conducted measurements.
- During conducted tests, the EUT was powered by an external battery pack connected to the EUT by soldered cable.
- During radiated tests, the EUT was powered from an internal 3.0 V battery.
- Transmitter radiated spurious emissions tests were performed with the EUT in the worst case orientation/position with respect to emissions. There were no ports to terminate.

Test Setup Diagrams


Conducted Tests:

<u>Test Setup for Transmitter Minimum 6 dB Bandwidth, Duty Cycle, Power Spectral Density &</u> <u>Maximum Peak Output Power</u>

Radiated Tests:

Test Setup for Transmitter Radiated Emissions

4 Antenna Port Test Results

4.1 Transmitter Minimum 6 dB Bandwidth

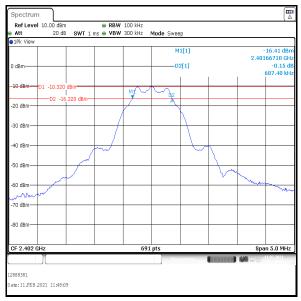
Test Summary:

Test Engineer:	Chanthu Thevarajah	Test Date:	11 February 2021
Test Sample Serial Number:	200033		

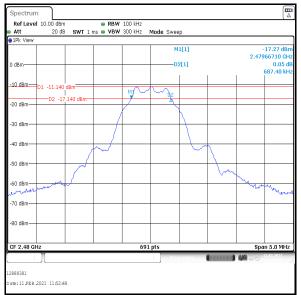
FCC Reference:	Part 15.247(a)(2)
ISED Canada Reference:	RSS-Gen 6.7 / RSS-247 5.2(a)
Test Method Used:	FCC KDB 558074 Section 8.2 referencing ANSI C63.10 Section 11.8.1

Environmental Conditions:

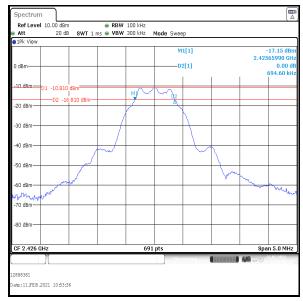
Temperature (°C):	23
Relative Humidity (%):	25


Note(s):

- 1. 6 dB DTS bandwidth tests were performed using a signal analyser in accordance with ANSI C63.10 Section 11.8.1 Option 1 measurement procedure. The signal analyser resolution bandwidth was set to 100 kHz and video bandwidth 300 kHz. A peak detector was used, sweep time was set to auto and the trace mode was Max Hold. The DTS bandwidth was measured at 6 dB down from the peak of the signal.
- 2. The signal analyser was connected to the RF port on the EUT using suitable attenuation and coax cable.


Transmitter Minimum 6 dB Bandwidth (continued)

Results:


Channel	6 dB Bandwidth (kHz)	Limit (kHz)	Margin (kHz)	Result
Bottom	687.400	≥500	187.400	Complied
Middle	694.600	≥500	194.600	Complied
Тор	687.400	≥500	187.400	Complied

Bottom Channel

Top Channel

Middle Channel

ISSUE DATE: 2 AUGUST 2021

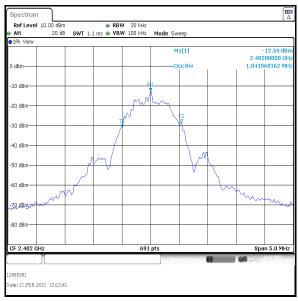
Test Summary:

Test Engineer:	Chanthu Thevarajah	Test Date:	11 February 2021
Test Sample Serial Number:	200033		

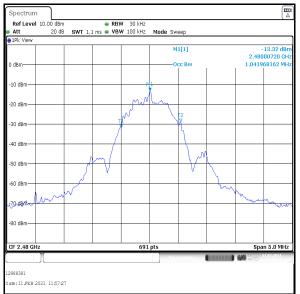
FCC Reference:	N/A
ISED Canada Reference:	RSS-Gen 6.7
Test Method Used:	RSS-Gen 6.7 and Notes below

Environmental Conditions:

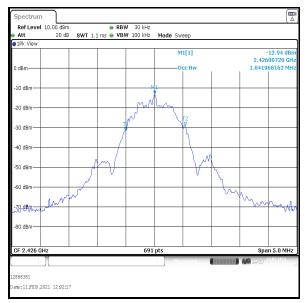
Temperature (°C):	23
Relative Humidity (%):	25


Note(s):

- 1. The 99% emission bandwidth was measured using the signal analyser occupied bandwidth function. The resolution bandwidth was set in the range of 1% to 5% of the occupied bandwidth and the video bandwidth set to 3 times the resolution bandwidth. The span was set to capture all products of the modulation process including emission skirts.
- 2. The signal analyser resolution bandwidth was set to 30 kHz and video bandwidth 100 kHz. A peak detector was used, sweep time was set to auto and the trace mode was Max Hold. The span was set to 5 MHz. The signal analyser function set the measurements to be made at 99% of the emission bandwidth. The results are given in the tables below.
- 3. The signal analyser was connected to the RF port on the EUT using suitable attenuation and coax cable.


Transmitter 99% Occupied Bandwidth (continued)

Results:


Channel	99% Occupied Bandwidth (kHz)
Bottom	1041.968
Middle	1041.968
Тор	1041.968

Bottom Channel

Top Channel

Middle Channel

4.3 Transmitter Duty Cycle

Test Summary:

Test Engineer:	Chanthu Thevarajah	Test Date:	05 February 2021
Test Sample Serial Number:	est Sample Serial Number: 200033		

FCC Reference:	Part 15.35(c)
ISED Canada Reference:	RSS-Gen 8.2
Test Method Used:	FCC KDB 558074 Section 6 referencing ANSI C63.10 Section 11.6

Environmental Conditions:

Temperature (°C):	24
Relative Humidity (%):	36

Note(s):

1. In order to assist with the determination of the average level of spurious emissions field strength in LE mode, measurements were made of duty cycle to determine the transmission duration and the silent period time of the transmitter. The transmitter duty cycle was measured using a spectrum/signal analyser in the time domain and calculated by using the following calculation:

10 log (1 / (On Time / [Period or 100 ms whichever is the lesser])).

Duty cycle: 10 log (1 / (220.290 µs / 626.090 µs)) = 4.5 dB

Results:

Pulse Duration	Period	Duty Cycle	
(µs)	(µs)	(dB)	
220.290	626.090	4.5	

CF 2.48 GHz 691 pts 200.0 μs/	Spectrun	n					
N1 D2 M1(1) -10.40 dbm 10 dbm 10 dbm 681.16 µs 681.16 µs -20 dbm 1 20.01 µs 681.16 µs -30 dbm 02(1) 20.21 µs -14.92 dbm -30 dbm 02(1) 220.22 µs -14.92 dbm -40 dbm 02(1) 220.22 µs -14.92 dbm -50 dbm 0 0 0 0 -50 dbm 0 0 0 0 0 -60 dbm 0 0 0 0 0 0 -60 dbm 0 0 0 0 0 0 0 -90 dbm 0 0 0 0 0 0 0 0 -90 dbm 0<	Att SGL						
-10 dBm	●1Rm Cirw						
-20 dBm			M1	D2			
22 0 dm	-10-08m			-	Power 4		r-
30 dBm D2[1] 0.10 dB 40 dBm 220.29 µs 40 dBm 220.29 µs 50 dBm 40 dBm 50 dBm 40 dBm 60 dBm 41 µs 40 dBm 41 µs 41 µs 41 µs 41 µs </td <td>00 dBm</td> <td></td> <td></td> <td></td> <td>Rms</td> <td>-14.92</td> <td>dBm</td>	00 dBm				Rms	-14.92	dBm
	-20 ubiii				D2[1]		
SD dBm	-30 dBm				— I	220.3	29 µs
Sp dBm Image for the provided of the second of	-40 dBm						+
Op dsm Image for the provide state of the provide sta	-50 dBm						-
Geo dam United products of the product of	-60 dBm—						-
-90 d8m CF 2.48 GHz 691 pts 200.0 µs/ Varker Type Ref Trc X-value Y-value Function Result M1 1 661.16 µs -10.40 d8m Function Result D2 M1 1 202.02 µs 0.10 d8 D3 M1 1 626.09 µs 0.04 d8 288931	dBm—	http://	Hours water water water	handling	hipping and the second s	What was a second secon	
CF 2.48 GHz 691 pts 200.0 µs/ warker Type Ref Trc X-value Y-value Function Function Result M1 1 661.16 µs -0.04 dB D2 M1 2020 µs 0.010 dB D3 M1 1 626.09 µs 0.04 dB 2889301	-80 dBm						
Marker Yvelue Function Function Result M1 1 691.16 µs -10.40 dbm Function D2 M1 1 220.29 µs 0.10 db Function D3 M1 1 626.09 µs 0.04 db Function	-90 dBm						
Type Ref Trc X-value Y-value Function Function M1 1 661.16 µs -10.40 d8m -	CF 2.48 G	Hz		691 pts		200.0	µs/
M1 1 661.16 µs -10.40 dBm D2 M1 1 202 µs 0.10 dB D3 M1 1 626.09 µs 0.04 dB See301	Marker						
M1 1 661.16 µs -10.40 dBm D2 M1 1 202 µs 0.10 dB D3 M1 1 626.09 µs 0.04 dB See301	Type Re	f Trc	X-value	Y-value	Function	Function Result	1
D3 M1 1 626.09 µs 0.04 d8 6400 (1111) (1111) (1111) (1111) (1111) (1111) (1111)	M1		681.16 µs				
2888381							
	D3 N	11 1	626.09 µs	0.04 dB			
					Ready	15.02.202	1
	12888381						
ate: 5.FEB 2021 10:32:21							
	ate: 5.FEB.2	021 10:32:2	1				

ISSUE DATE: 2 AUGUST 2021

4.4 Transmitter Maximum Peak Output Power

Test Summary:

Test Engineer:	Chanthu Thevarajah	Test Date:	11 February 2021
Test Sample Serial Number:	200033		

FCC Reference:Part 15.247(b)(3)		
ISED Canada Reference: RSS-Gen 6.12 / RSS-247 5.4(d)		
Test Method Used:	FCC KDB 558074 Section 8.3.1.1 referencing ANSI C63.10 Section 11.9.1.1 and Notes below	

Environmental Conditions:

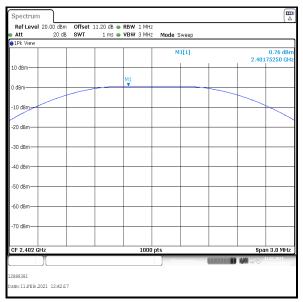
Temperature (°C):	23
Relative Humidity (%):	25

Note(s):

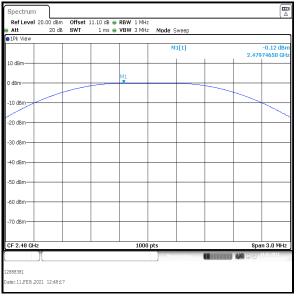
- 1. Conducted power tests were performed using a signal analyser in accordance with ANSI C63.10 Section 11.9.1.1 with the RBW ≥ DTS bandwidth procedure.
- The signal analyser resolution bandwidth was set to 1 MHz and video bandwidth of 3 MHz. A peak
 detector was used, sweep time was set to auto and trace mode was Max Hold. The span was set to 3
 MHz. A marker was placed at the peak of the signal and the results recorded in the tables below.
- 3. The signal analyser was connected to the RF port on the EUT using suitable attenuation and coax cable. An RF level offset was entered on the signal analyser to compensate for the loss of the attenuator and cable.
- 4. The conducted power was added to the declared antenna gain to obtain the EIRP.

Transmitter Maximum Peak Output Power (continued)

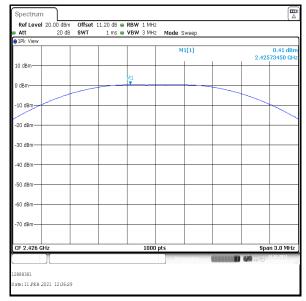
Results:


Channel	Conducted Peak Power (dBm)	Conducted Peak Power Limit (dBm)	Margin (dB)	Result
Bottom	0.8	30.0	29.2	Complied
Middle	0.4	30.0	29.6	Complied
Тор	-0.1	30.0	30.1	Complied

Channel	Conducted Peak Power (dBm)	Declared Antenna Gain (dBi)	EIRP (dBm)	De Facto EIRP Limit (dBm)	Margin (dB)	Result
Bottom	0.8	-1.5	-0.7	36.0	36.7	Complied
Middle	0.4	-1.5	-1.1	36.0	37.1	Complied
Тор	-0.1	-1.5	-1.6	36.0	37.6	Complied


VERSION 3.0

Transmitter Maximum Peak Output Power (continued)


Results:

Bottom Channel

Top Channel

Middle Channel

5 Radiated Test Results

5.1 Transmitter Radiated Emissions <1 GHz

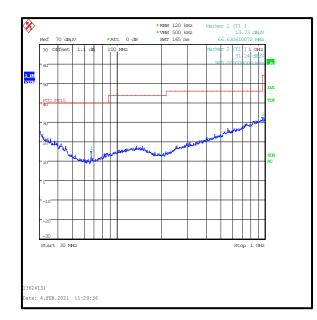
Test Summary:

Test Engineer:	John Ferdinand	Test Date:	04 February 2021
Test Sample Serial Number:	200066		

FCC Reference:	Parts 15.247(d) & 15.209(a)
ISED Canada Reference:	RSS-Gen 6.13 & 8.9 / RSS-247 5.5
Test Method Used:	ANSI C63.10 Sections 6.3 and 6.5
Frequency Range	30 MHz to 1000 MHz

Environmental Conditions:

Temperature (°C):	22
Relative Humidity (%):	39


Note(s):

- 1. The final measured value, for the given emission, in the table below incorporates the calibrated antenna factor and cable loss.
- 2. All emissions shown on the pre-scans were investigated and found to be ambient, > 20 dB below the appropriate limit or below the noise floor of the measurement system. Therefore the highest peak noise floor reading of the measuring receiver was recorded in the table below.
- 3. The preliminary scans showed similar emission levels below 1 GHz, for each channel of operation. Therefore final radiated emissions measurements were performed with the EUT set to the middle channel only.
- 4. Measurements below 1 GHz were performed in a semi-anechoic chamber (Asset Number K0001) at a distance of 3 metres. The EUT was placed at a height of 80 cm above the reference ground plane in the centre of the chamber turntable. Maximum emission levels were determined by height searching the measurement antenna over the range 1 metre to 4 metres.
- 5. Pre-scans were performed and markers placed on the highest measured levels. The test receiver resolution bandwidth was set to 120 kHz and video bandwidth 500 kHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold.
- 6. The plot in this section displays an incorrect project number.

Transmitter Radiated Emissions (continued)

Results: Peak / Middle Channel

Frequency	Antenna	Level	Limit	Margin	Result
(MHz)	Polarity	(dBµV/m)	(dBµV/m)	(dB)	
960.000	Horizontal	31.2	46.0	14.8	Complied

ISSUE DATE: 2 AUGUST 2021

5.2 Transmitter Radiated Emissions >1 GHz

Test Summary:

Test Engineer:	John Ferdinand	Test Date:	04 February 2021		
Test Sample Serial Numbers:	200066 & 200049				
FCC Reference: Parts 15.247(d) & 15.209(a)					
ISED Canada Reference:	RSS-Gen 6.13 & 8.9 / RSS-247 5.5				

Test Method Used:	FCC KDB 558074 Sections 8.1 c)3), 8.5 & 8.6 referencing ANSI C63.10 Sections 6.3, 6.6, 11.11 & 11.12
Frequency Range	1 GHz to 25 GHz

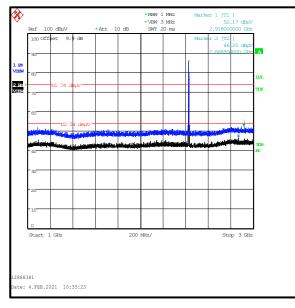
Environmental Conditions:

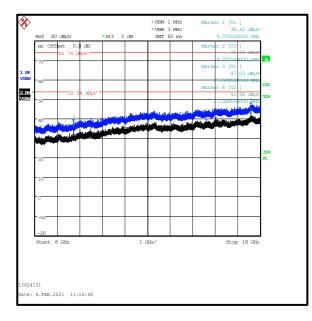
Temperature (°C):	22 to 24
Relative Humidity (%):	38 to 41

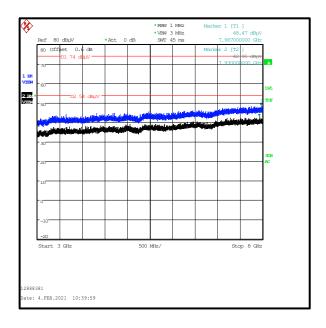
Note(s):

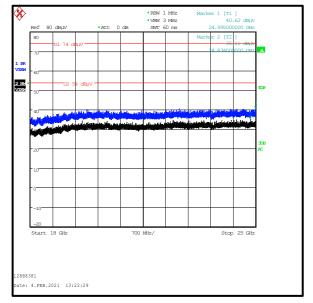
- 1. The final measured value, for the given emission, in the table below incorporates the calibrated antenna factor and cable loss.
- 2. The emission shown on the 1 GHz to 3 GHz plot is the EUT fundamental.
- 3. Pre-scans above 1 GHz were performed in a fully anechoic chamber (Asset Number K0001) at a distance of 3 metres. The EUT was placed at a height of 1.5 metres above the test chamber floor in the centre of the chamber turntable. All measurement antennas were placed at a fixed height of 1.5 metres above the test chamber floor, in line with the EUT. Final measurements were performed in a fully anechoic chamber (Asset Number K0017) at a distance of 3 metres. The EUT was placed at a height of 1.5 m above the reference ground plane in the centre of the chamber turntable. Maximum emission levels were determined by height searching the measurement antenna over the range 1 metre to 4 metres.
- 4. Pre-scans were performed and a marker placed on the highest measured level of the appropriate plot. The test receiver resolution bandwidth was set to 1 MHz and video bandwidth 3 MHz. The sweep time was set to auto. Peak and average measurements were performed with their respective detectors during the pre-scan measurements.
- 5. All other emissions shown on the pre-scans were investigated and found to be ambient, >20 dB below the applicable limit or below the noise floor of the measurement system.
- 6. The 8 GHz to 18 GHz plot in this section displays an incorrect project number.

Transmitter Radiated Emissions (continued)


Results: Peak / Middle Channel


Frequency (MHz)	Antenna Polarity	Peak Level (dBμV/m)	Peak Limit (dBμV/m)	Margin (dB)	Result
9703.000	Horizontal	38.5	67.6	29.1	Complied


Results: Peak / Top Channel


Frequency (MHz)	Antenna Polarity	Peak Level (dBμV/m)	Peak Limit (dBμV/m)	Margin (dB)	Result
9918.973	Horizontal	41.7	64.0	22.3	Complied

Transmitter Radiated Emissions (continued)

5.3 Transmitter Band Edge Radiated Emissions

Test Summary:

Test Engineer:	John Ferdinand	Test Dates:	04 February 2021 & 31 March 2021
Test Sample Serial Number:	34887221 & 34887222		

FCC Reference:	Parts 15.247(d) & 15.209(a)
ISED Canada Reference:	RSS-Gen 6.13, 8.9 & 8.10 / RSS-247 5.5
Test Method Used:	KDB 558074 Section 8.7 referencing ANSI C63.10 Sections 11.11, 11.12 & 11.13

Environmental Conditions:

Temperature (°C):	22 to 25
Relative Humidity (%):	36 to 41

Transmitter Band Edge Radiated Emissions (continued)

Note(s):

- 1. The final measured value, for the given emission, in the table below incorporates the calibrated antenna factor and cable loss.
- The maximum peak conducted output power was previously measured. In accordance with ANSI C63.10 Section 11.11.1(a), the lower band edge measurement was performed with a peak detector and the -20 dBc limit applied.
- 3. As the lower band edge is adjacent to a non-restricted band, only peak measurements are required. In accordance with ANSI C63.10 Section 11.11.1, the test method in Section 11.11.3 was followed: the test receiver resolution bandwidth was set to 100 kHz and video bandwidth 300 kHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold. The test receiver was left to sweep for a sufficient length of time in order to maximise the carrier level and out-of-band emissions. A marker and corresponding reference level line were placed on the peak of the carrier. As the maximum peak conducted output power was measured using a peak detector in accordance with ANSI C63.10 Section 11.9.1.1 an out-of-band limit line was placed 20 dB (ANSI C63.10 Section 11.11.1(a)) below the peak level. A marker was placed on the band edge spot frequencies. Marker frequency and levels were recorded.
- 4. As the upper band edge is adjacent to a restricted band, both peak and average measurements were recorded by placing a marker at the edge of the band. For peak measurements the test receiver resolution bandwidth was set to 1 MHz and the video bandwidth 3 MHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold. For average measurements the test receiver resolution bandwidth was set to 1 MHz and the video bandwidth 3 MHz. An RMS detector was used, sweep time was set to auto and trace mode was trace averaging over 300 sweeps. A marker was placed on the band edge spot frequencies and a second marker placed on the highest emission level in the adjacent restricted band of operation (where a higher level emission was present). Marker frequencies and levels were recorded.
- 5. There is a restricted band 10 MHz below the lower band edge. The test receiver was set up as follows: the RBW set to 1 MHz, the VBW set to 3 MHz, with the sweep time set to auto couple. Peak and average measurements were performed with peak and RMS detectors respectively. Markers were placed on the highest point on each trace.
- 6. * -20 dBc limit.
- 7. For the upper band edge average result, the EUT had a duty cycle <98%. The duty cycle correction factor has been applied and the corrected level is shown below:

Upper band edge average result + duty cycle = Corrected band edge level Corrected band edge level at 2483.5 MHz: $40.9 + 4.5 = 45.4 \text{ dB}\mu\text{V/m}$

VERSION 3.0

Transmitter Band Edge Radiated Emissions (continued)

Results: Peak

Frequency (MHz)	Antenna Polarity	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2393.990	Horizontal	50.0	66.8*	16.8	Complied
2400.000	Horizontal	43.2	66.8*	23.6	Complied
2483.500	Horizontal	53.4	74.0	20.6	Complied
2487.907	Horizontal	55.0	74.0	19.0	Complied

Results: Average

Frequency (MHz)	Antenna Polarity	Level (dBµV/m)	Duty cycle correction (dB)	Corrected Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2483.500	Horizontal	40.9	4.5	45.4	54.0	8.6	Complied
2488.147	Horizontal	42.8	4.5	47.3	54.0	6.7	Complied

Results: 2310 MHz to 2390 MHz Restricted Band / Peak

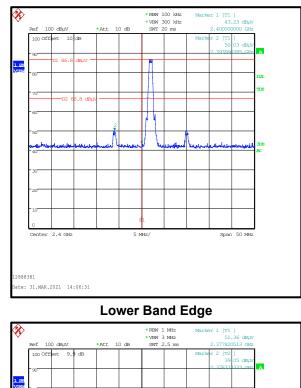
Frequency (MHz)	. ,		Level Limit (dBµV/m) (dBµV/m)		Result
2377.821	Horizontal	51.4	74.0	22.6	Complied

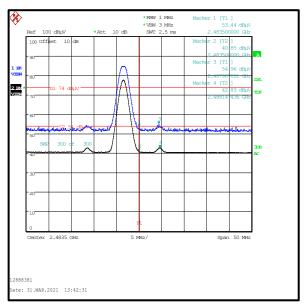
Results: 2310 MHz to 2390 MHz Restricted Band / Average

Frequency (MHz)	Antenna Polarity	Level (dBµV/m)	Duty cycle correction (dB)	Corrected Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2378.333	Horizontal	39.1	4.5	43.6	54.0	10.4	Complied

VERSION 3.0

Transmitter Band Edge Radiated Emissions (continued)


Results:


2 FM VIEW

Start 2.31 GHz

te: 4.FEB.2021 12:42:16

2888381

Upper Band Edge

2310 MHz to 2390 MHz Restricted Band

8 MHz/

-- END OF REPORT ---

.....

Stop 2.39 GHz