

FCC PART 15C & RSS 247 TEST REPORT **No. I18N01923-BLE**

for

DAIMLER AG

CTPDIN

CTP2019DTNA

with

Hardware Version: A66-13933-001

Software Version: 127.011.800

FCC ID: 2AKC8CTP13933001

IC: 22221-CTP13933001

Issued Date: 2018-12-28

Designation Number: CN1210 ISED Assigned Code: 23289

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of SAICT.

Test Laboratory:

Shenzhen Academy of Information and Communications Technology

Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District,

Shenzhen, Guangdong, P. R. China 518026.

Tel: +86(0)755-33322000, Fax: +86(0)755-33322001, Email:yewu@caict.ac.cn.www.cszit.com

©Copyright. All rights reserved by SAICT

REPORT HISTORY

Report Number	Revision	Description	Issue Date
I18N01923-BLE	Rev.0	1st edition	2018-12-28

CONTENTS

CO	NTE	NTS	3
1.	TES	ST LABORATORY	4
1.	.1.	TESTING LOCATION	4
1.	.2.	TESTING ENVIRONMENT	4
1.	.3.	PROJECT DATA	4
1.	.4.	SIGNATURE	4
2.	CLI	IENT INFORMATION	5
2.	.1.	APPLICANT INFORMATION	5
2.	.2.	MANUFACTURER INFORMATION	5
3.	EQ	UIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	6
3.	.1.	About EUT	6
3.	.2.	INTERNAL IDENTIFICATION OF EUT	6
3.	.3.	INTERNAL IDENTIFICATION OF AE	6
3.	.4.	GENERAL DESCRIPTION	6
4.	RE	FERENCE DOCUMENTS	7
4.	.1.	DOCUMENTS SUPPLIED BY APPLICANT	7
4.	.2.	REFERENCE DOCUMENTS FOR TESTING	7
5.	TES	ST RESULTS	8
5.	.1.	SUMMARY OF TEST RESULTS	8
5.	.2.	STATEMENTS	8
5.	.3.	TERMS USED IN THE RESULT TABLE	8
5.	.4.	LABORATORY ENVIRONMENT	9
6.	TES	ST FACILITIES UTILIZED 1	0
7.	ME	ASUREMENT UNCERTAINTY1	1
ANI	NEX	A: DETAILED TEST RESULTS 1	2
		NTENNA REQUIREMENT	
		AXIMUM PEAK OUTPUT POWER	
		DB BANDWIDTH	
		AND EDGES COMPLIANCE	
		AND EDGES COMPLIANCE	
		RANSMITTER SPURIOUS EMISSION - CONDUCTED	
		CCUPIED BANDWIDTH	

1. Test Laboratory

1.1. Testing Location

Location:	Shenzhen Academy of Information and Communications Technology			
Address:	Building G, Shenzhen International Innovation Center, No.1006			
	Shennan Road, Futian District, Shenzhen, Guangdong Province , China			
Postal Code:	518026			
Telephone:	+86(0)755-33322000			
Fax:	+86(0)755-33322001			

1.2. Testing Environment

Normal Temperature:	15-30 ℃
Relative Humidity:	35-60%

1.3. Project data

Testing Start Date:	2018-09-29
Testing End Date:	2018-10-26

1.4. Signature

An Ran (Prepared this test report)

Tang Weisheng (Reviewed this test report)

18

Zhang Bojun (Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name:	DAIMLER AG
Address:	Mercedesstraße 137, 70327 Stuttgart, Germany
Contact Person	Jan Waldmann
E-Mail	Jan.waldmann@daimler.com
Telephone:	+49-711-17-40099
Fax:	+49-711-3052-148458

2.2. Manufacturer Information

Company Name:	BOSCH CAR MULTIMEDIA PORTUGAL, S.A.	
Address:	Rua Max Grundig, 35 – Lomar, 4705-820 Braga, Portugal	
Contact Person	Eliseu Vieira	
E-Mail	Eliseu.Vieira@pt.bosch.com	
Telephone:	+351(253)30-6307	
Fax:	/	

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. <u>About EUT</u>	
Description	CTPDIN
Model Name	CTP2019DTNA
Market Name	/
Frequency Range	2400MHz~2483.5MHz
Type of Modulation	GFSK
Number of Channels	40
Antenna Type	Integrated
Antenna Gain	0 dBi
Power Supply	12V DC
FCC ID	2AKC8CTP13933001
IC number	22221-CTP13933001
Condition of EUT as received	No abnormality in appearance

Note: Components list, please refer to documents of the manufacturer.

3.2. Internal Identification of EUT

EUT ID*	IMEI	HW Version	SW Version	Receive Date
EUT1	/	A66-13933-001	127.011.800	2018-09-05

*EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE

AE ID*	Description	Mode	Manufacturer
AE1	/	/	/

*AE ID: is used to identify the test sample in the lab internally.

3.4. General Description

The Equipment Under Test (EUT) is a model of Vehicle Equipment with integrated antenna. It consists of normal options: travel charger, USB cable.

Manual and specifications of the EUT were provided to fulfil the test.

Samples undergoing test were selected by the client.

4. <u>Reference Documents</u>

4.1. Documents supplied by applicant

EUT feature information is supplied by the applicant or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version	
FCC Part15	FCC CFR 47, Part 15, Subpart C:		
	15.205 Restricted bands of operation;		
	15.209 Radiated emission limits, general requirements;	2017	
	15.247 Operation within the bands 902–928MHz,		
	2400–2483.5 MHz, and 5725–5850 MHz		
ANSI C63.10	American National Standard of Procedures for Compliance	2013	
	Testing of Unlicensed Wireless Devices		
RSS-247	Spectrum Management and Telecommunications Radio	Issue 2	
	Standards Specification	February,	
	Digital Transmission Systems (DTSs), Frequency Hopping		
	Systems (FHSs) and License-Exempt Local Area Network		
	(LE-LAN) Devices		
RSS-Gen	Spectrum Management and Telecommunications Radio	Issue 5	
	Standards Specification	April,	
	General Requirements for Compliance of Radio Apparatus	2018	

5. Test Results

5.1. Summary of Test Results

No	Test cases	Sub-clause of Part 15C	Sub-clause of IC	Verdict
0	Antenna Requirement	15.203	/	Р
1	Maximum Peak Output Power	15.247 (b)	RSS-247 section 5.4	Р
2	Peak Power Spectral Density	15.247 (e)	RSS-247 section 5.2	Р
3	Occupied 6dB Bandwidth	15.247 (a)	RSS-247 section 5.2	Р
4	Band Edges Compliance	15.247 (d)	RSS-247 section 5.5	Р
5	Transmitter Spurious Emission - Conducted	15.247 (d)	RSS-247 section 5.5/ RSS-Gen section 6.13	Р
6	Transmitter Spurious Emission	15.247, 15.205,	RSS-247 section 5.5/	Р
	- Radiated	15.209	RSS-Gen section 6.13	
7	Occupied Bandwidth	/	RSS-Gen section 6.7	Р

See **ANNEX A** for details. And data corresponding to the frequency of each test item as the following form.

5.2. Statements

SAICT has evaluated the test cases requested by the applicant/manufacturer as listed in section 5.1 of this report, for the EUT specified in section 3, according to the standards or reference documents listed in section 4.2.

5.3. Terms used in the result table

Terms used in Verdict column

Р	Pass
NA	Not Available
F	Fail

Abbreviations

7.0010110113		
AC	Alternating Current	
AFH	Adaptive Frequency Hopping	
BW	Band Width	
E.I.R.P.	equivalent isotropic radiated power	
ISM	Industrial, Scientific and Medical	
R&TTE	Radio and Telecommunications Terminal Equipment	
RF	Radio Frequency	
Тх	Transmitter	

5.4. Laboratory Environment

Semi-anechoic chamber	did not exceed following limits along the EMC testing
	and hot oxeded following infine along the Eme tooling

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 15 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz> 60 dB; 1MHz-18000MHz>90 dB
Electrical insulation	> 2MΩ
Ground system resistance	<4 Ω
Normalised site attenuation (NSA)	< \pm 4 dB, 3 m distance, from 30 to 1000 MHz

Fully-anechoic chamber did not exceed following limits along the EMC testing

Temperature	Min. = 15 °C, Max. = 35 °C	
Relative humidity	Min. = 15 %, Max. = 75 %	
Shielding effectiveness	0.014MHz-1MHz> 60 dB; 1MHz-18000MHz>90 dB	
Electrical insulation	> 2MΩ	
Ground system resistance	<4 Ω	
Voltage Standing Wave Ratio (VSWR)	\leq 6 dB, from 1 to 18 GHz, 3 m distance	
Uniformity of field strength	Between 0 and 6 dB, from 80 to 6000 MHz	

6. <u>Test Facilities Utilized</u>

Conducted test system

No.	Equipment	Model	Serial Number	Manufacturer	Calibration Due date	Calibration Period
1	Vector Signal Analyzer	FSV40	100903	Rohde & Schwarz	2019-01-17	1 year

Radiated emission test system

NO.	Equipment	Model	Serial Number	Manufacturer	Calibration Due date	Calibration Period
1	Loop Antenna	HLA6120	35779	TESEQ	2019-05-02	3 years
2	BiLog Antenna	3142E	00224831	ETS-Lindgren	2021-05-17	3 years
3	Horn Antenna	3117	00066577	ETS-Lindgren	2019-04-05	3 years
4	Test Receiver	ESR7	101676	Rohde & Schwarz	2018-11-29	1 year
5	Spectrum Analyser	FSV40	101192	Rohde & Schwarz	2019-05-21	1 year
6	Chamber	FACT3-2.0	1285	ETS-Lindgren	2020-07-20	3 years
7	Antenna	QSH-SL-18- 26-S-20	17013	Q-par	2020-01-15	3 years
8	Antenna	QSH-SL-26- 40-K-20	17014	Q-par	2020-01-11	3 years

Test software

No.	Equipment	Manufacturer	Version
1	TechMgr Software	CAICT	2.1.1
2	EMC32	Rohde & Schwarz	8.53.0
3	EMC32	Rohde & Schwarz	10.01.00

EUT is engineering software provided by the customer to control the transmitting signal. The EUT was programmed to be in continuously transmitting mode.

Anechoic chamber

Fully anechoic chamber by ETS-Lindgren

7. Measurement Uncertainty

Test Name	Uncert	ainty	
1. RF Output Power - Conducted	±1.32dB		
2.Power Spectral Density - Conducted	±2.32dB		
3. Occupied channel bandwidth - Conducted	±66	Hz	
	30MHz≪f≪1GHz	±1.41dB	
4 Transmitter Spurious Emission Conducted	1GHz≪f≪7GHz	±1.92dB	
4 Transmitter Spurious Emission - Conducted	7GHz≤f≤13GHz	±2.31dB	
	13GHz≪f≪26GHz	±2.61dB	
	9kHz≪f≪30MHz	±1.84dB	
5 Transmitter Courious Emission Dedicted	30MHz≪f≪1GHz	±4.90dB	
5. Transmitter Spurious Emission - Radiated	1GHz≪f≪18GHz	±5.12dB	
	18GHz≪f≪40GHz	±4.66dB	

ANNEX A: Detailed Test Results

A.0 Antenna requirement

Measurement Limit:

Standard	Requirement
Standard FCC CRF Part 15.203	Requirement An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is
	employed so that the limits in this part are not exceeded.

Conclusion: The Directional gains of antenna used for transmitting is 0 dBi.

The RF transmitter uses an external antenna with connector.

A.1 Maximum Peak Output Power

Method of Measurement: See ANSI C63.10-clause 11.9.1.1

Use the following spectrum analyzer settings:

- a) Set the RBW = 1 MHz.
- b) Set VBW = 3 MHz.
- c) Set span = 3 MHz.
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

Measurement Limit:

Standard	Limit (dBm)
FCC 47 CRF Part 15.247(b) &	- 20
RSS-247 section 5.4	< 30

Measurement Results:

Mode	Frequency (MHz)	Peak Conducted Output Power(dBm)	Conclusion
	2402(CH0)	-2.11	Р
GFSK	2440(CH19)	-1.96	Р
	2480(CH39)	-2.24	Р

Conclusion: Pass

A.2 Peak Power Spectral Density

Method of Measurement: See ANSI C63.10-clause 11.10.2

Measurement Limit:

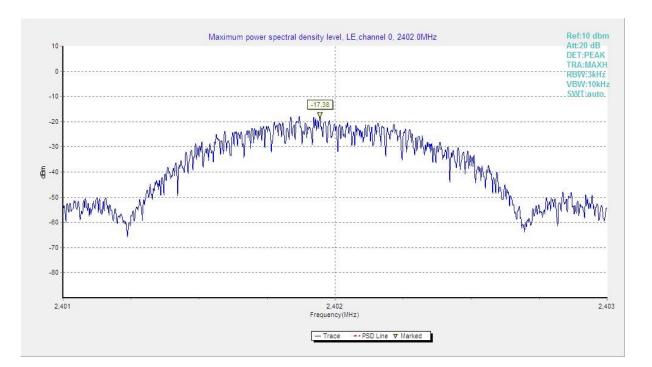
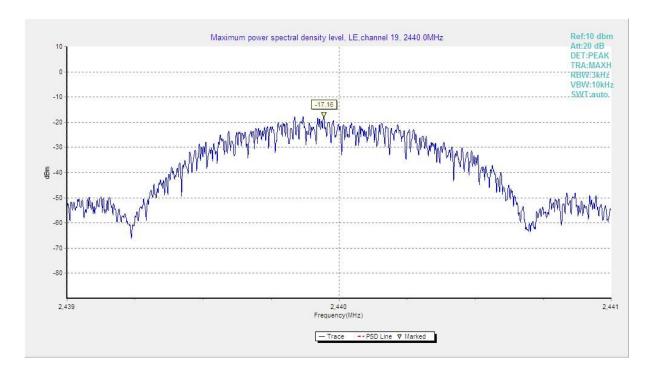
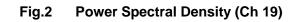
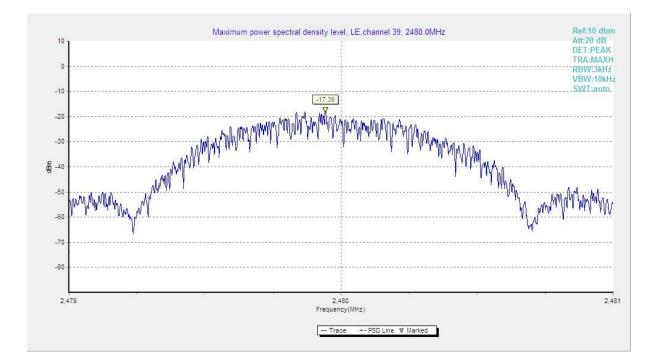
Standard	Limit
FCC 47 CRF Part 15.247(e) &	< 8 dBm/3 kHz
RSS-247 section 5.2	

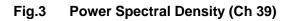
Measurement Results:

Mode	Frequency (MHz)	Peak Power Spectral Density (dBm)		Conclusion
	2402(CH0)	Fig.1	-17.38	Р
GFSK	2440(CH19)	Fig.2	-17.16	Р
	2480(CH39)	Fig.3	-17.36	Р

See below for test graphs.

Conclusion: PASS


Fig.1 Power Spectral Density (Ch 0)

A.3 6dB Bandwidth

Measurement Limit:

Standard	Limit (kHz)
FCC 47 CFR Part 15.247 (a) &	> 500
RSS-247 section 5.2	≥ 500

Measurement Result:

Mode	Frequency (MHz)	Test Results (kHz)		Conclusion
	2402(CH0)	Fig.4	703.50	Р
GFSK	2440(CH19)	Fig.5	701.00	Р
	2480(CH39)	Fig.6	697.00	Р

See below for test graphs.

Conclusion: PASS

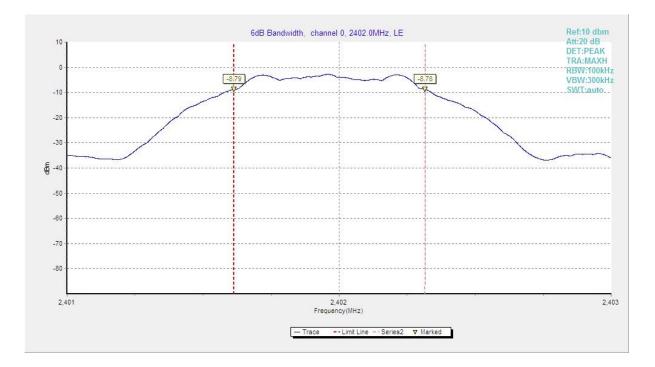
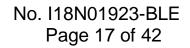



Fig.4 6dB Bandwidth (Ch 0)

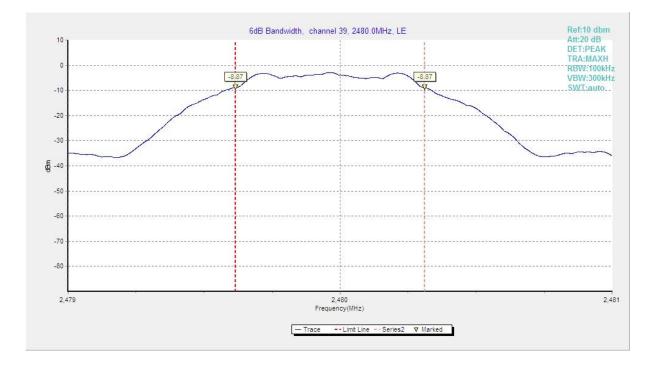


Fig.6 6dB Bandwidth (Ch 39)

A.4 Band Edges Compliance

Measurement Limit:

Standard	Limit (dBc)
FCC 47 CFR Part 15.247 (d) &	× 20
RSS-247 section 5.5	> 20

Measurement Result:

Mode	Frequency (MHz)	Test Results		Conclusion
CESK	2402(CH0)	Fig.7	-51.11	Р
GFSK	2480(CH39)	Fig.8	-55.28	Р

See below for test graphs.

Conclusion: Pass

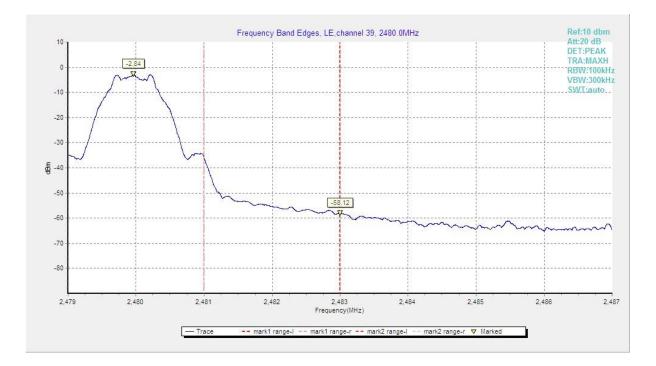


Fig.8 Band Edges (Ch 39)

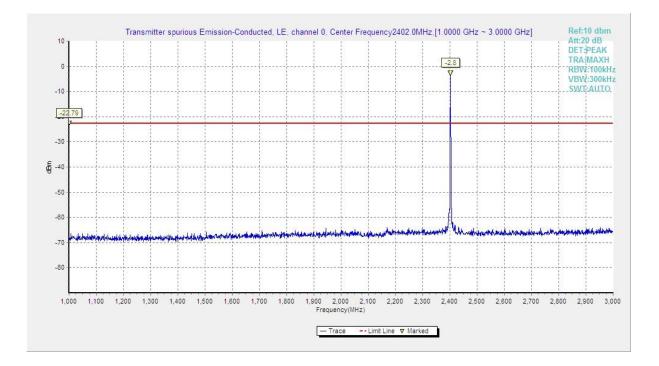
A.5 Transmitter Spurious Emission - Conducted

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247 (d) &	20dB below peak output power in 100 kHz
RSS-247 5.5/RSS-Gen section 6.13	bandwidth

Measurement Results:

Mode	Channel	Frequency Range	Test Results	Conclusion
		2.402 GHz	Fig.9	Р
	0	1GHz -3GHz	Fig.10	Р
		3GHz-10GHz	Fig.11	Р
		2.440 GHz	Fig.12	Р
	19 39	1GHz -3GHz	Fig.13	Р
GFSK		3GHz-10GHz	Fig.14	Р
		2.480 GHz	Fig.15	Р
		1GHz -3GHz	Fig.16	Р
		3GHz-10GHz	Fig.17	Р
	All channels	30MHz-1GHz	Fig.18	Р
	All charmers	10GHz-26GHz	Fig.19	Р


See below for test graphs.

Conclusion: Pass

Fig.9 Conducted Spurious Emission (Ch0, Center Frequency)

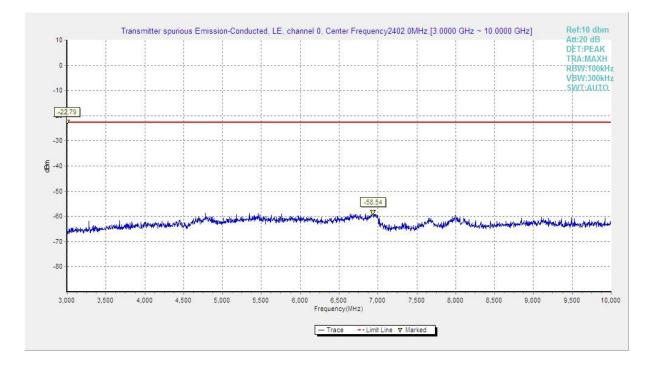


Fig.11 Conducted Spurious Emission (Ch0, 3 GHz-10 GHz)

No. I18N01923-BLE Page 22 of 42

Fig.12 Conducted Spurious Emission (Ch19, Center Frequency)

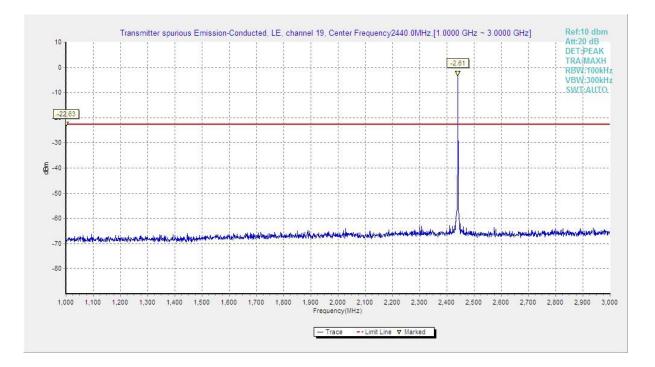
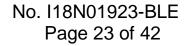



Fig.13 Conducted Spurious Emission (Ch19, 1 GHz-3 GHz)

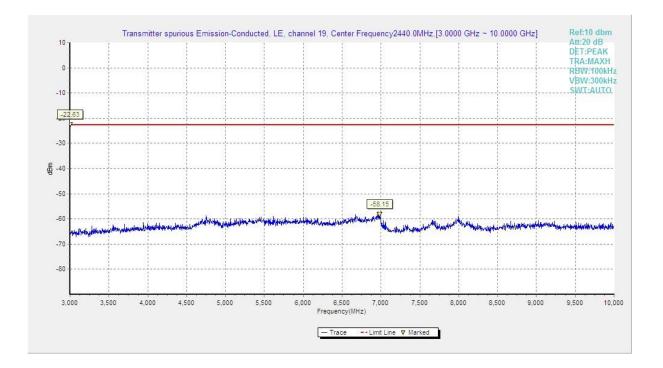
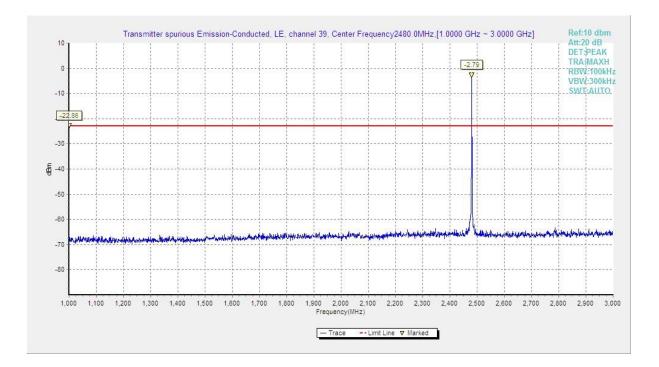



Fig.15 Conducted Spurious Emission (Ch39, Center Frequency)

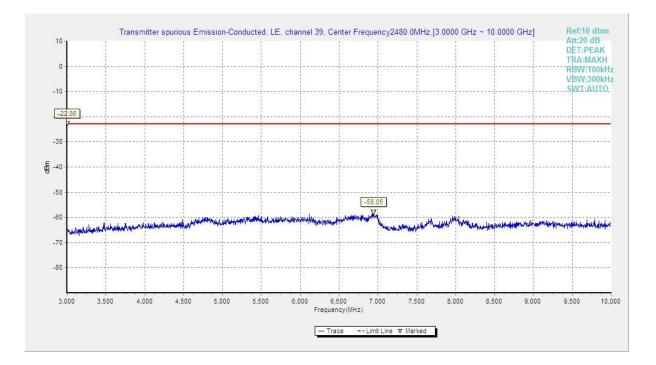


Fig.17 Conducted Spurious Emission (Ch39, 3 GHz-10 GHz)

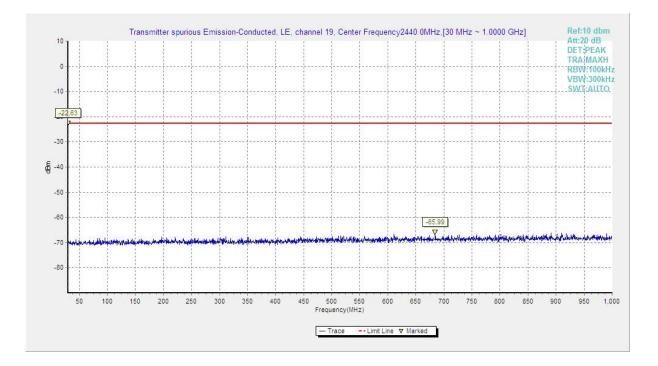


Fig.18 Conducted Spurious Emission (All channels, 30 MHz-1 GHz)

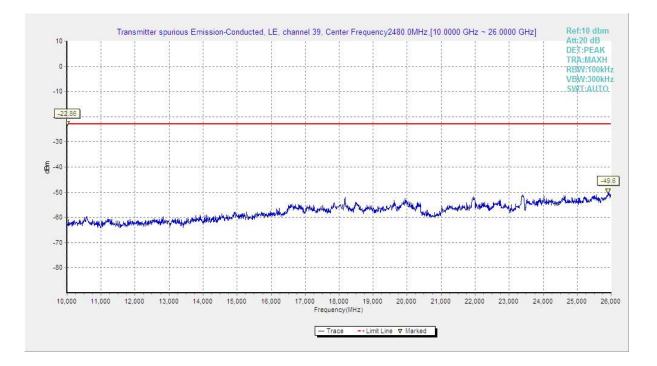


Fig.19 Conducted Spurious Emission (All channels, 10 GHz-26 GHz)

A.6 Transmitter Spurious Emission - Radiated

Measurement Limit:

Standard	Limit	
FCC 47 CFR Part 15.247, 15.205, 15.209 &	20dD below peok output newer	
RSS-247 section 5.5/RSS-Gen section 6.13	20dB below peak output power	

In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Limit in restricted band:

Frequency of emission	Field strength(µV/m)	Measurement
(MHz)	Fleid Strength(µV/III)	distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Test Condition:

The EUT was placed on a non-conductive table. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

Frequency of emission	RBW/VBW	Sweep Time(s)
(MHz)		
30-1000	120kHz/300kHz	5
1000-4000	1MHz/3MHz	15
4000-18000	1MHz/3MHz	40
18000-26500	1MHz/3MHz	20

Note: According to the performance evaluation, the radiated emission margin of EUT is over 20dB in the band from 9kHz to 30MHz.Therefore, the measurement starts from 30MHz to tenth harmonic.

The measurement results include two states of EUT: horizontal polarization and vertical polarization measurements.

ALL Channels: The data presented in report is the worst case.

Measurement Results:

Mode	Direction	Channel	Frequency Range	Test Results	Conclusion
		0	1 GHz ~3 GHz	Fig.20	Р
			3 GHz ~18 GHz	Fig.21	Р
		19	1 GHz ~3 GHz	Fig.22	Р
	Horizontal	19	3 GHz ~18 GHz	Fig.23	Р
	nonzoniai	39	1 GHz ~3GHz	Fig.24	Р
		39	3 GHz ~18 GHz	Fig.25	Р
		Restricted Band(CH0)	2.38 GHz ~ 2.45 GHz	Fig.26	Р
		Restricted Band(CH39)	2.45 GHz ~ 2.5 GHz	Fig.27	Р
		0	1 GHz ~3 GHz	Fig.28	Р
GFSK			3 GHz ~18 GHz	Fig.29	Р
	Vertical -	19	1 GHz ~3 GHz	Fig.30	Р
			3 GHz ~18 GHz	Fig.31	Р
		vertical		1 GHz ~3GHz	Fig.32
		39	3 GHz ~18 GHz	Fig.33	Р
		Restricted Band(CH0)	2.38 GHz ~ 2.45 GHz	Fig.34	Р
		Restricted Band(CH39)	2.45 GHz ~ 2.5 GHz	Fig.35	Р
			9 kHz ~30 MHz	Fig.36	Р
	/	All channels	30 MHz ~1 GHz	Fig.37	Р
		18 GHz ~26.5 GHz	Fig.38	Р	

Horizontal Direction:

GFSK CH0 (1-18GHz)

Frequency	MaxPeak	Average	Limit	Margin	Pol	Corr.
(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	FUI	(dB)
15551.000000	49.85		74.00	24.15	Н	13.9
15972.000000	50.02		74.00	23.98	V	15.2
16027.500000		36.68	54.00	17.32	Н	15.3
16364.500000		37.09	54.00	16.91	Н	15.4
16704.000000		37.84	54.00	16.16	Н	16.3
16715.500000	50.38		74.00	23.62	Н	16.3
17150.500000		37.70	54.00	16.30	Н	16.3
17311.500000	50.05		74.00	23.95	V	16.3
17490.000000		37.79	54.00	16.21	Н	16.6
17566.500000	50.74		74.00	23.26	Н	16.9
17794.500000		38.08	54.00	15.92	Н	17.4
17862.000000	51.77		74.00	22.23	Н	17.6

GFSK CH19 (1-18GHz)

Frequency	MaxPeak	Average	Limit	Margin	Pol	Corr.
(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	FUI	(dB)
14064.000000	46.85		74.00	27.15	Н	11.8
14319.000000	47.16		74.00	26.84	V	12.6
14422.500000		35.61	54.00	18.39	V	12.8
14768.500000		35.18	54.00	18.82	V	12.6
14887.500000	47.87		74.00	26.13	V	12.7
15408.000000		35.65	54.00	18.35	V	13.8
15935.000000	49.34		74.00	24.66	V	14.9
15979.000000		36.87	54.00	17.13	V	15.1
16895.000000	50.00		74.00	24.00	Н	16.2
17043.000000		37.53	54.00	16.47	V	16.2
17592.000000	50.56		74.00	23.44	V	16.7
17969.500000		38.48	54.00	15.52	V	17.3

GFSK CH39 (1-18GHz)

Frequency (MHz)	MaxPeak (dBuV/m)	Average (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pol	Corr. (dB)
14485.000000	47.93		74.00	26.07	н	12.7
15328.000000		35.91	54.00	18.09	V	13.8
15890.500000		36.75	54.00	17.25	Н	14.9
15911.000000	49.62		74.00	24.38	Н	14.9
16691.000000	50.44		74.00	23.56	Н	16.2
16706.000000		37.89	54.00	16.11	Н	16.4
17150.000000		37.80	54.00	16.20	V	16.4
17164.500000	50.31		74.00	23.69	Н	16.1
17526.000000		37.73	54.00	16.27	V	16.5
17556.500000	50.60		74.00	23.40	V	16.8
17851.500000	50.89		74.00	23.11	V	17.6
17889.000000		38.60	54.00	15.40	Н	17.7

Vertical Direction:

GFSK CH0 (1-18GHz)

Frequency	MaxPeak	Average	Limit	Margin	Pol	Corr.
(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)		(dB)
14867.500000	48.53		74.00	25.47	Н	12.5
15301.000000		35.74	54.00	18.26	V	13.6
15865.000000	49.39		74.00	24.61	Н	14.7
15906.000000		36.80	54.00	17.20	Н	14.9
16532.500000		37.21	54.00	16.79	V	15.9
16725.000000	50.53		74.00	23.47	Н	16.1
17153.000000		37.74	54.00	16.26	V	16.4
17282.500000	50.35		74.00	23.65	V	16.4
17539.500000	50.54		74.00	23.46	Н	16.5
17579.500000		38.00	54.00	16.00	Н	16.9
17930.500000	52.01		74.00	21.99	V	17.6
17933.500000		38.81	54.00	15.19	Н	17.6

GFSK CH19 (1-18GHz)

Frequency MaxPeak		Average Limit		Margin	Pol	Corr.
(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	FOI	(dB)
14834.000000	48.03		74.00	25.97	Н	12.5
15885.500000		36.69	54.00	17.31	Н	14.9
15902.000000	50.76		74.00	23.24	Н	14.8
16495.000000	50.20		74.00	23.80	V	15.7
16556.500000		37.45	54.00	16.55	V	16.0
16829.500000		37.67	54.00	16.33	Н	16.2
17073.000000	50.58		74.00	23.42	Н	16.3
17142.000000		37.53	54.00	16.47	Н	16.2
17571.500000		38.17	54.00	15.83	V	17.0
17647.000000	50.58		74.00	23.42	Н	16.9
17928.000000	51.46		74.00	22.54	Н	17.6
17934.500000		38.80	54.00	15.20	V	17.6

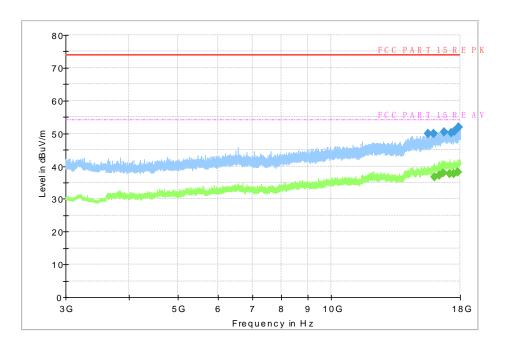
GFSK CH39 (1-18GHz)

Frequency	MaxPeak	Average	Limit	Margin	Pol	Corr.
(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	FUI	(dB)
15946.500000		36.75	54.00	17.25	Н	14.9
16033.500000	50.18		74.00	23.82	Н	15.3
16394.500000		37.07	54.00	16.93	V	15.5
16438.500000	49.93		74.00	24.07	V	15.5
16710.500000	50.30		74.00	23.70	V	16.3
16714.500000		37.83	54.00	16.17	Н	16.3
16933.500000		37.57	54.00	16.43	V	16.2
17110.500000	50.07		74.00	23.93	Н	16.2
17434.000000	50.61		74.00	23.39	Н	16.6
17573.000000		38.07	54.00	15.93	Н	16.9
17845.500000	51.09		74.00	22.91	Н	17.6
17888.500000		38.62	54.00	15.38	V	17.7

Note:

A "reference path loss" is established and the A_{Rpl} is the attenuation of "reference path loss", and Antenna Factor, the gain of the preamplifier, the cable loss. P_{Mea} is the field strength recorded from the instrument.

The measurement results are obtained as described below:


Result= P_{Mea} +Cable Loss +Antenna Factor-Gain of the preamplifier.

See below for test graphs. Conclusion: Pass

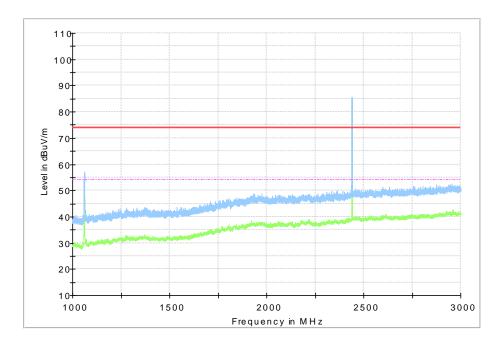


Fig.20 Radiated Spurious Emission (GFSK, Ch0, 1 GHz ~3 GHz, Horizontal Direction)

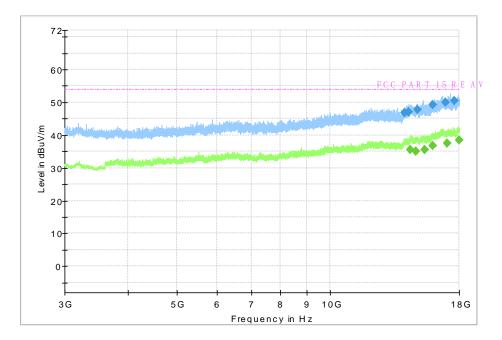


Fig.21 Radiated Spurious Emission (GFSK, Ch0, 3GHz ~18 GHz, Horizontal Direction)

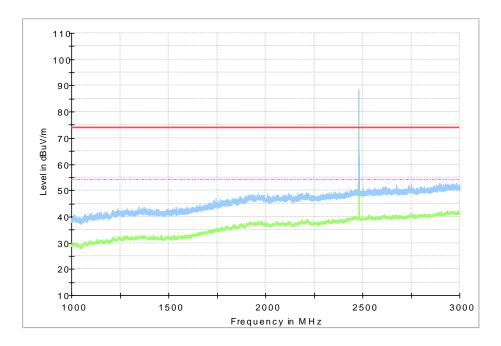


Fig.22 Radiated Spurious Emission (GFSK, Ch19, 1GHz ~3 GHz, Horizontal Direction)

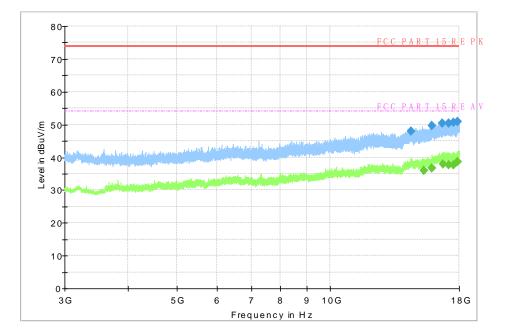


Fig.23 Radiated Spurious Emission (GFSK, Ch19, 3GHz ~18 GHz, Horizontal Direction)

Fig.24 Radiated Spurious Emission (GFSK, Ch39, 1GHz ~3 GHz, Horizontal Direction)

Fig.25 Radiated Spurious Emission (GFSK, Ch39, 3GHz ~18GHz, Horizontal Direction)

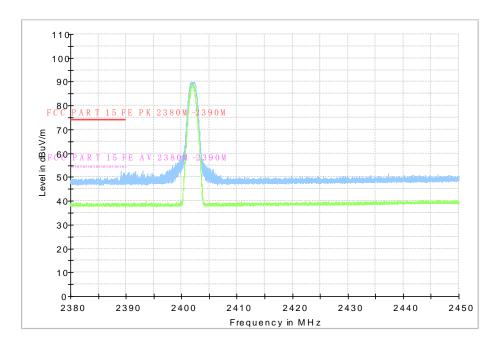


Fig.26 Radiated Band Edges (GFSK, Ch0, 2380GHz~2450GHz)

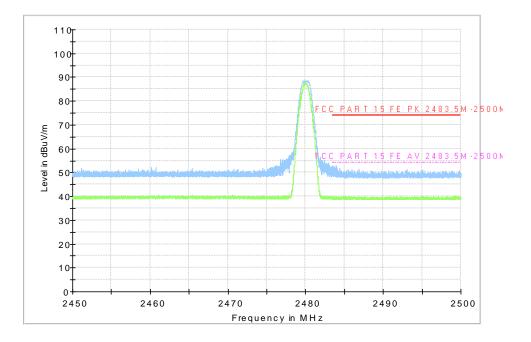


Fig.27 Radiated Band Edges (GFSK, Ch39, 2450GHz~2500GHz)

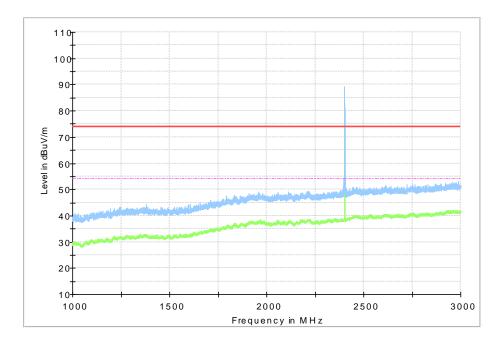


Fig.28 Radiated Spurious Emission (GFSK, Ch0, 1GHz ~3GHz , Vertical Direction)

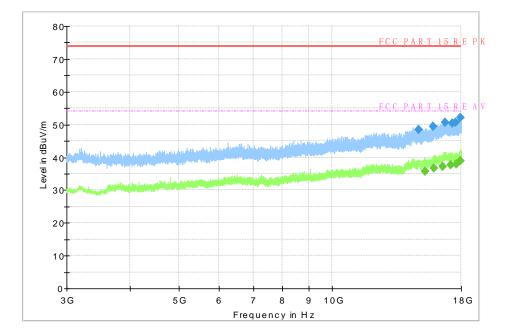


Fig.29 Radiated Spurious Emission (GFSK, Ch0, 3GHz ~18GHz , Vertical Direction)

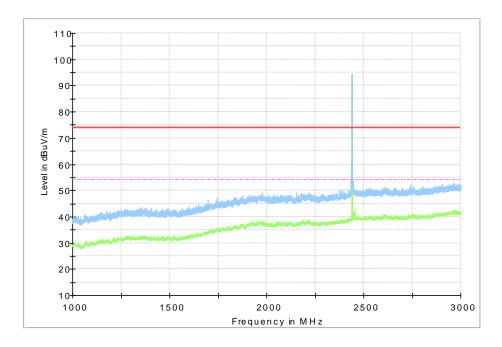


Fig.30 Radiated Spurious Emission (GFSK, Ch19, 1GHz ~3GHz , Vertical Direction)

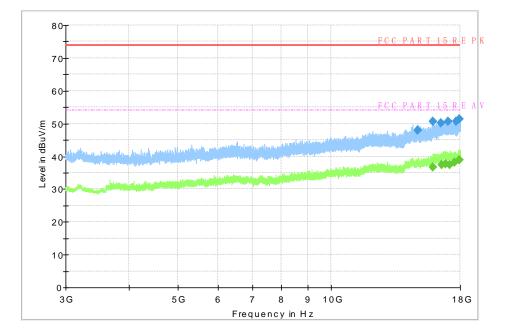


Fig.31 Radiated Spurious Emission (GFSK, Ch19, 3GHz ~18GHz , Vertical Direction)

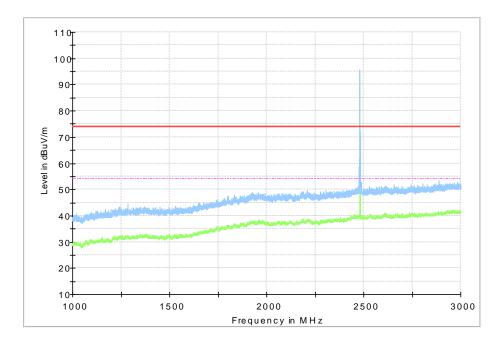


Fig.32 Radiated Spurious Emission (GFSK, Ch39, 1GHz ~3GHz , Vertical Direction)

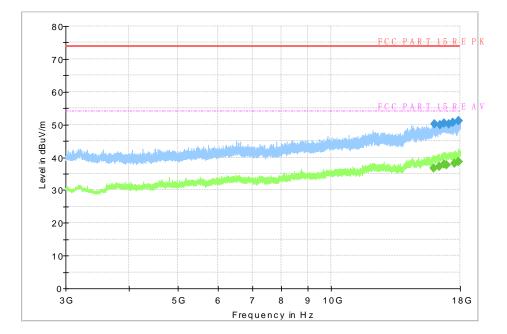


Fig.33 Radiated Spurious Emission (GFSK, Ch39, 3GHz ~18GHz , Vertical Direction)

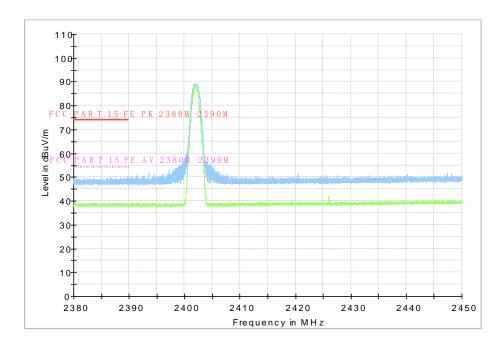


Fig.34 Radiated Band Edges (GFSK, Ch0, 2380GHz~2450GHz , Vertical Direction)

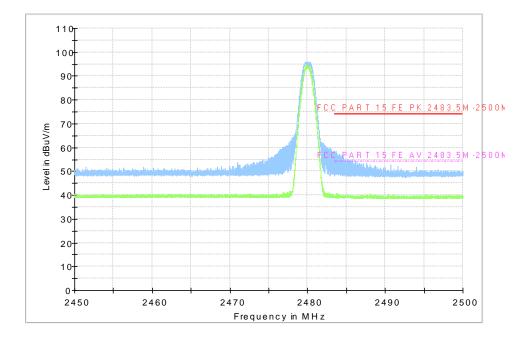


Fig.35 Radiated Band Edges (GFSK, Ch39, 2450GHz~2500GHz , Vertical Direction)

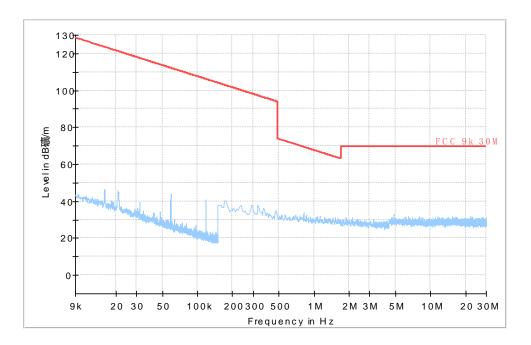


Fig.36 Radiated Spurious Emission (GFSK, All Channels, 9 kHz-30 MHz)

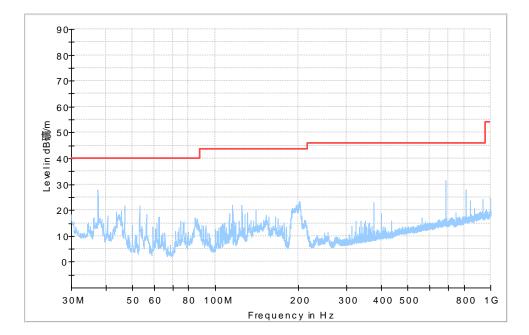


Fig.37 Radiated Spurious Emission (GFSK, All Channels, 30 MHz ~1 GHz)

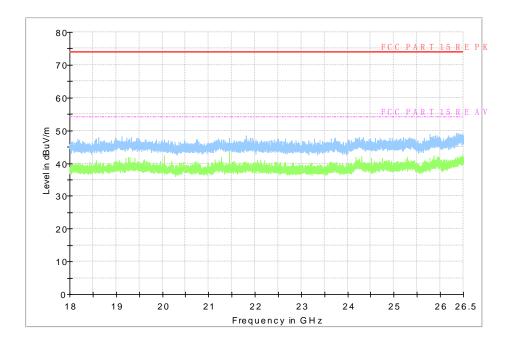


Fig.38 Radiated Spurious Emission (GFSK, All Channels, 18 GHz~ 26.5 GHz)

A.7 Occupied Bandwidth

Measurement Limit:

Standard	Limit (kHz)
RSS-Gen section 6.7	/

Measurement Result:

Mode	Frequency (MHz)	Test Results (kHz)		Conclusion
	2402(CH0)	Fig.39	1036.00	Р
GFSK	2440(CH19)	Fig.40	1037.00	Р
	2480(CH39)	Fig.41	1040.00	Р

See below for test graphs.

Conclusion: PASS

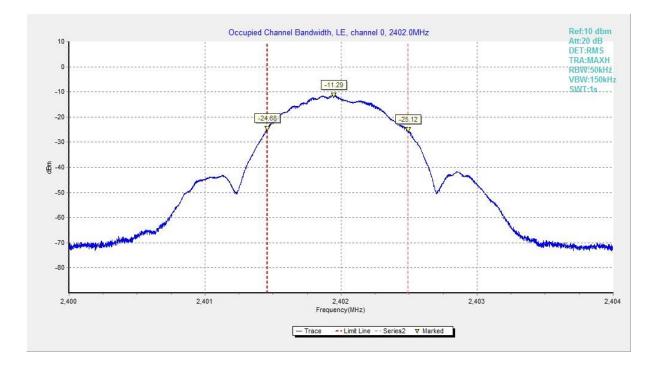
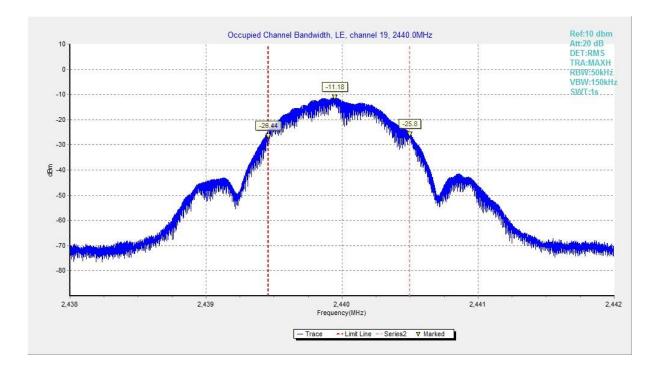
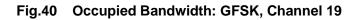
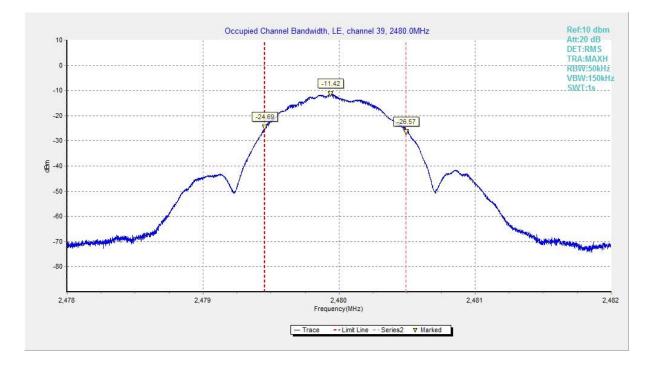





Fig.39 Occupied Bandwidth: GFSK, Channel 0

Fig.41 Occupied Bandwidth: GFSK, Channel 39

END OF REPORT