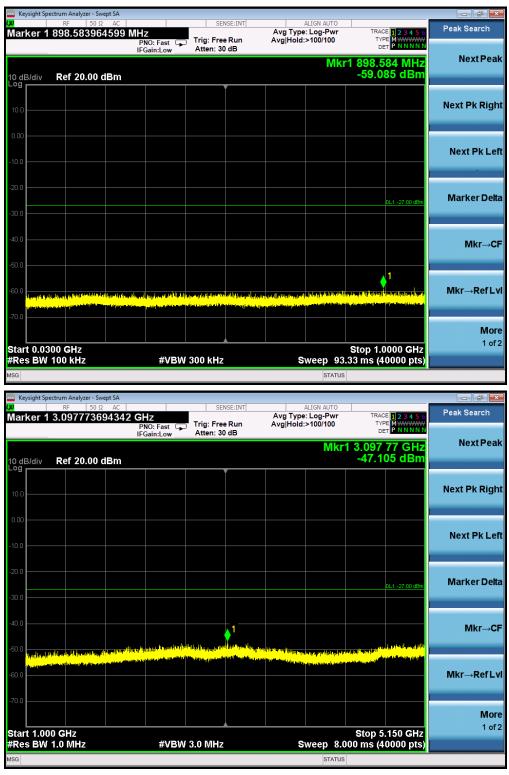
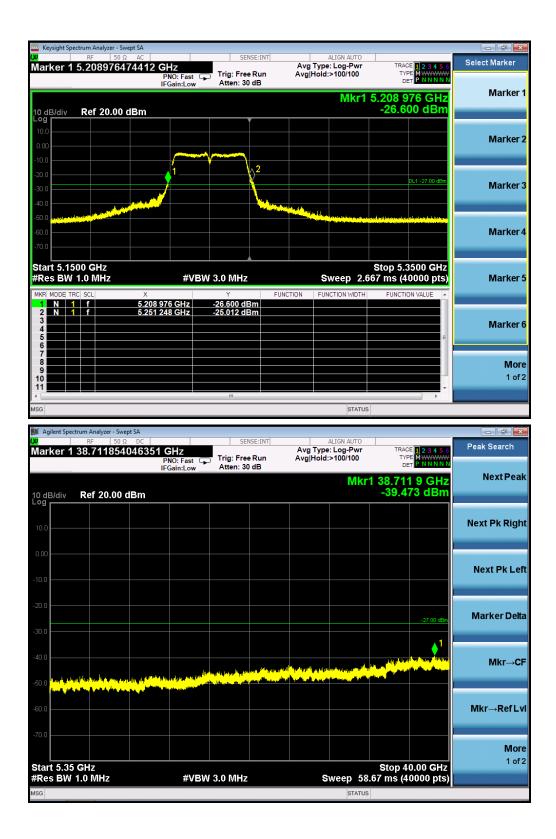
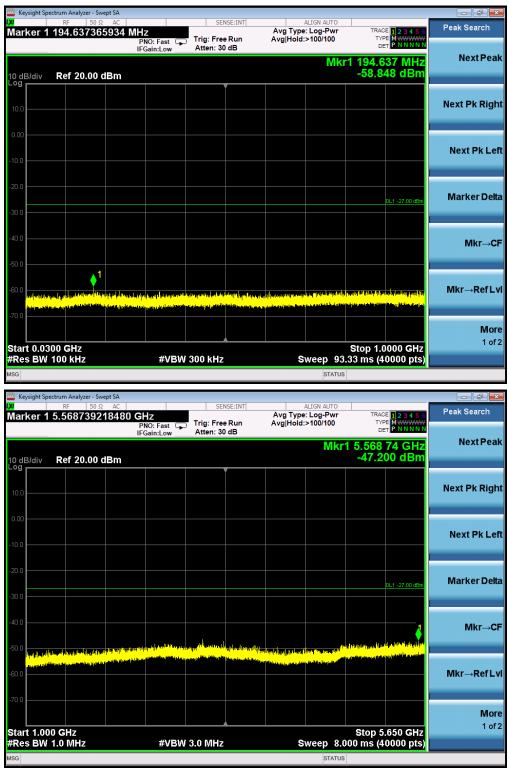


TEST PLOT OF OUT OF BAND EMISSIONS FOR MODULATION IN 5825MHz

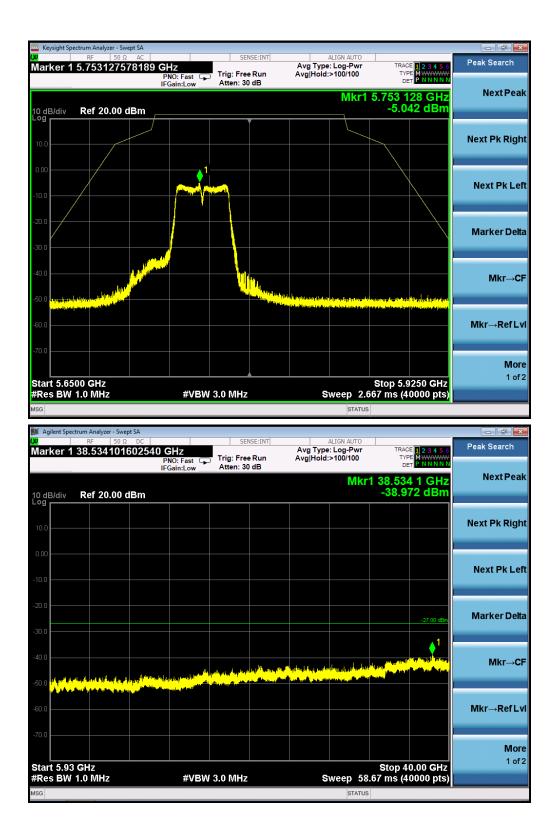


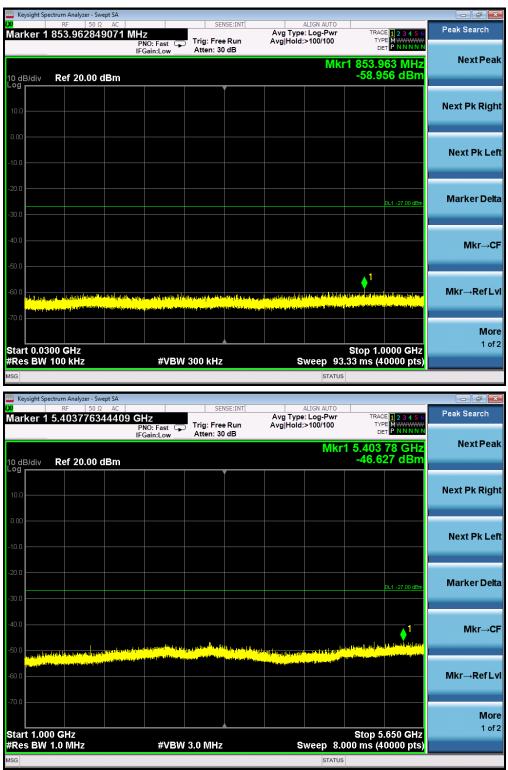
FOR 802.11N40 MODULATION

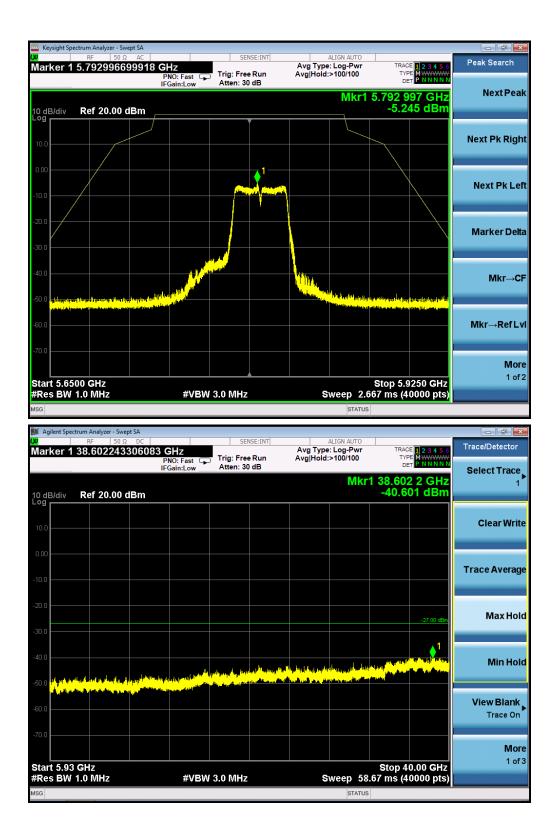

TEST PLOT OF OUT OF BAND EMISSIONS FOR MODULATION IN 5190MHz


		ALIGN AUTO		INSE:INT			RF 50 Ω AC	
Peak Search	TRACE 123456 TYPE MWWWWW DET P N N N N N	:: Log-Pwr :>100/100		e Run	Trig: Fre	PNO: Fast 🔾	RF 50 Ω AC 26.520663017	arker 1
Next Pe	1 926.521 MHz -59.190 dBm	Mkr1		0 dB	Atten: 3	IFGain:Low	tef 20.00 dBm	dB/div
Next Pk Rig								
Next Pk L								
Marker De	DL1 -27.00 dBm							0.0
Mkr⊸).0).0
Mkr→Refl	1							0.0 <u> </u>
	na tiyofa fa 1941 Manaza da Anton fa 1970 na da pana ya 1944 - Manaza da Mana	je na posta dal kontra dana Angeler da kana angeler da kana da kana Angeler da kana	lys a difficiency day names a lyteration of a second	Allowed and a state of	der for der son der son der forste son der son General der son der son General der son	Hand and a second difference of the line of the second second second second second second second second second	() de entrefficie de altréficier e seux y dépend a processe antice d'altré de la processe processe a processe antice d'altré d'altré de la processe processe).0 <mark>- Markel Markel - Markel Julya</mark>).0
Мс 1 с	Stop 1.0000 GHz 33 ms (40000 pts)	s weep 93.3		2	v 300 kHz	#VBV		art 0.030 Res BW
	Stop 1.0000 GHz 33 ms (40000 pts)	weep 93.33		2	V 300 kHz	#VBV		
	Stop 1.0000 GHz 33 ms (40000 pts)	weep 93.33				#VBV	0 kHz m Analyzer - Swept SA	Res BW
1 c	33 ms (40000 pts)	weep 93.33	Avg Ty	ENSE:INT	SE	GHz PNO: Fast G	0 kHz	Res BW
1 c	33 ms (40000 pts) TRACE 12 3 4 5 6 TYPE MYNNWY DET P NNNWY 5,149 58 GHz	weep 93.33 status	Avg Ty	ENSE:INT	SE	GHz	0 KHz m Analyzer - Swept SA RF 50 Ω AC 149584989625	Res BW
1 c بر المراجع	33 ms (40000 pts)	weep 93.33 status	Avg Ty	ENSE:INT	SE	GHz PNO: Fast G	0 kHz m Analyzer - Swept SA RF 50 Ω AC	Res BW
Peak Search	33 ms (40000 pts) TRACE 12 3 4 5 6 TYPE MYNNWY DET P NNNWY 5,149 58 GHz	weep 93.33 status	Avg Ty	ENSE:INT	SE	GHz PNO: Fast G	0 KHz m Analyzer - Swept SA RF 50 Ω AC 149584989625	Keysight Spe arker 1 dB/div
Peak Search Next Pe	33 ms (40000 pts) TRACE 12 3 4 5 6 TYPE MYNNWY DET P NNNWY 5,149 58 GHz	weep 93.33 status	Avg Ty	ENSE:INT	SE	GHz PNO: Fast G	0 KHz m Analyzer - Swept SA RF 50 Ω AC 149584989625	Keysight Spec
Peak Search Next Pe Next Pk Rig Next Pk L Marker De	TRACE 2 3 4 5 0 TYPE M DET NNNNN 5.149 58 GHZ -38.687	weep 93.33 status	Avg Ty	ENSE:INT	SE	GHz PNO: Fast G	0 KHz m Analyzer - Swept SA RF 50 Ω AC 149584989625	Keysight Spe arker 1 dB/div
1 c Peak Search Next Pe Next Pk Rig Next Pk L Marker De	33 ms (40000 pts)	weep 93.33 status	Avg Tyj Avg Hoi	ense:int	☐ SE Trig: Fre Atten: 3	GHz PNO: Fast IFGain:Low	0 KHz m Analyzer - Swept SA RF 50 Ω AC 149584989625	Keysight Spe arker 1 dB/div 9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
1 o Peak Search Next Pe Next Pk Rig Next Pk L Marker De Mkr→Ref I	33 ms (40000 pts)	weep 93.33 status	Avg Tyj Avg Hoi	ense:int	☐ SE Trig: Fre Atten: 3	GHz PNO: Fast IFGain:Low	0 kHz	Res BW Keysight Spectrum arker 1
1 c Peak Search Next Pe Next Pk Rig Next Pk L Marker De	33 ms (40000 pts)	weep 93.33 status		ense:int e Run io dB	☐ SE Trig: Fre Atten: 3	GHZ PNO: Fast G IFGain:Low	0 kHz	Keysight Spe arker 1 og g g g g g g g g g g g g g g g g g g

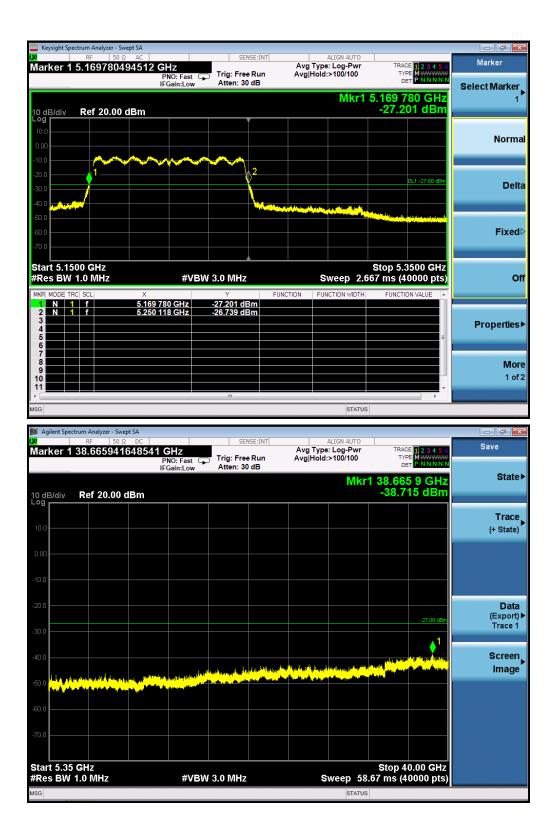
GHz		Avg Type: Log-Pwr	TRACE 123456	Marker
		Avg Hold:>100/100		Select Marker
		Mkr2	5.211 502 GHz	2
		I	-27.495 dBm	
				Norma
-				
2				
			DL1 -27.00 dBm	Delta
				Fixed▷
#VBM 3.0 MI	47	Sween 26	Stop 5.3500 GHz	Of
7 8 Day 3.0 Mi				
	dBm			
				Properties •
			E	
				More
				1 of 2
		STATUS		
	SENSE:INT	ALIGN AUTO	TRACE 123456	Peak Search
PNO: Fast C Trig: F		Avg Hold:>100/100	TYPE MWWWWW DET P NNNNN	
		Mkr		NextPeak
		ININI	1 38.600 1 GHz	NEXTEAN
			-38.550 dBm	Nextreat
			-38.550 dBm	
			-38.550 dBm	
			-38.550 dBm	
			-38.550 dBm	Next Pk Righ
			-38.550 dBm	Next Pk Righ
			-38.550 dBm	Next Pk Righ
			-38.550 dBm	Next Pk Righ Next Pk Lef
			-38.550 dBm	Next Pk Righ Next Pk Lef
			-38.550 dBm	Next Pk Righ Next Pk Lef Marker Delta
			-38.550 dBm	Next Pk Righ Next Pk Lef Marker Delta
			-38.550 dBm	Next Pk Righ Next Pk Lef Marker Delta
			-38.550 dBm	Next Pk Righ Next Pk Lef Marker Delta Mkr→Cf
			-38.550 dBm	Next Pk Righ Next Pk Lef Marker Delta Mkr→Cf
			-38.550 dBm	Next Pk Right Next Pk Left Marker Delta Mkr→CF Mkr→Ref Lv
			-38.550 dBm	Next Pk Righ Next Pk Lef Marker Delta Mkr→Cf Mkr→Ref Lv More
#VBW 3.0 MI			-38.550 dBm	Next Pk Right Next Pk Left Marker Delta Mkr→CF Mkr→Ref Lvt More 1 of 2
	GHz PN0: Fast IFGain:Low 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	PNO: Fast IFGain:Low Trig: Free Run Atten: 30 dB 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4	GHz PNO: Fast IFGain:Low Trig: Free Run Atten: 30 dB Avg Type: Log-Pwr Avg Hold:>100/100 Mkr2 2 Image: Second	GHz PNO: Fast IFGain:Low Trig: Free Run Atten: 30 dB Avg Type: Log-Pwr Avg Hold:>100/100 TRACE Type Trig: Free Run Atten: 30 dB Mkr2 5.211 502 GHz -27,495 dBm 2 0(1-2700 den 200 den 2

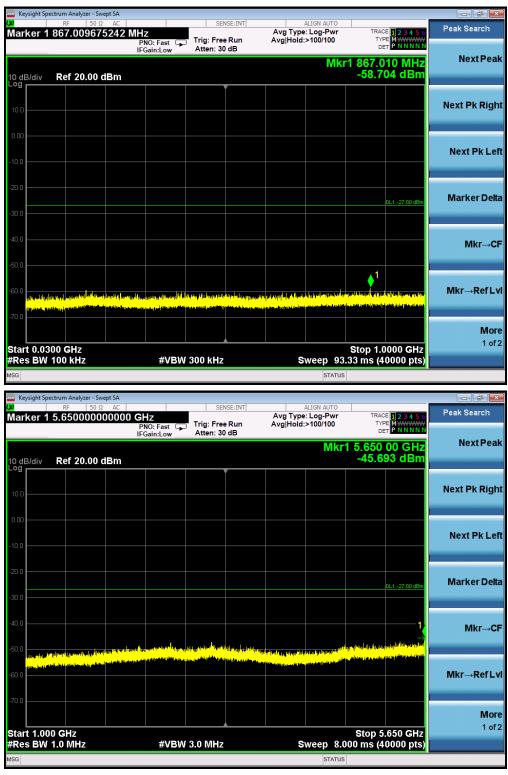



TEST PLOT OF OUT OF BAND EMISSIONS FOR MODULATION IN 5230MHz

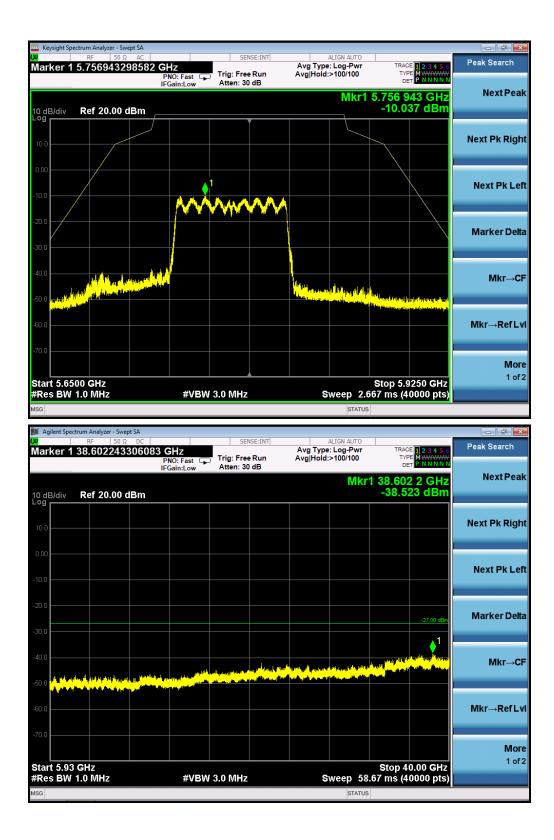


TEST PLOT OF OUT OF BAND EMISSIONS FOR MODULATION IN 5755MHz


TEST PLOT OF OUT OF BAND EMISSIONS FOR MODULATION IN 5795MHz



FOR 802.11AC80 MODULATION

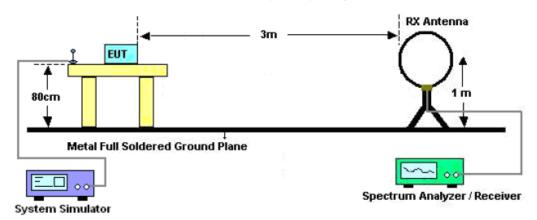

TEST PLOT OF OUT OF BAND EMISSIONS FOR MODULATION IN 5210MHz

XI	pectrum Analyze	50 Ω AC		SEI	NSE:INT		ALIGN AUTO			Peak Search
larker	1 833.543	8838596 M	PNO: Fast G FGain:Low	Trig: Free Atten: 30		Avg Type Avg Hold:	e: Log-Pwr :>100/100		ACE 1 2 3 4 5 6 YPE M WWWWW DET P N N N N N	T Out Obaron
			Guinteow				Mk	1 833.	544 MHz	NextPea
0 dB/div . ^{og}	Ref 20.	00 dBm		·	Y			-59.7	232 dBm	
10.0										Next Pk Righ
10.0										
0.00										Next Dk Le
10.0										Next Pk Le
20.0										
									DL1 -27.00 dBm	Marker Delt
30.0										
-40.0										Mkr→C
-50.0										
								♦ ¹		Mkr→RefL
-60.0	Allon o duala na anti a bana	Al-Marine Cold in Alexandr General Processing Street International	the strength of the state	<mark>Dadd (</mark> Albeleol Alb Arterigae Auf Mah	ladifi tili og soki sedire som soki	la han Handradad Ang ang ang ang ang ang ang ang ang ang a	lational design in the	alari panjana Nganganana	an than the state of the state	wiki → Kei L
-70.0										Mor
	200 CU-							Stop 1	.0000 GHz	Moi 1 of
Start 0.0								Stop 1	.0000 GHZ	
	300 GH2 100 kHz		#VBN	/ 300 kHz		S	weep 93	.33 ms (40000 pts)	
#Res B₩			#VBW	/ 300 kHz		S	status	.33 ms (40000 pts)	
#Res BM	100 kHz		#VBW				STATUS	.33 ms (40000 pts)	
FRes BW	pectrum Analyze	50 Ω AC 31623291 C	GHz	SE	NSE:INT		STATUS	TRJ		Peak Search
#Res BW ISG Keysight S	pectrum Analyze	50 Ω AC 31623291 C		SE	NSE:INT	Avg Type	STATUS ALIGN AUTO e: Log-Pwr :>100/100	TRJ	ACE 123456 MYPE MWWWW DET PNNNNN	Peak Search
FRes BM Isg Keysight S Marker	V 100 kHz	50 Ω AC 31623291 C	Hz PNO: Fast	Trig: Free	NSE:INT	Avg Type	STATUS ALIGN AUTO e: Log-Pwr :>100/100	TR. 1 5.114		Peak Search
1SG Keysight S	V 100 kHz	50 Ω AC 31623291 C	Hz PNO: Fast	Trig: Free	NSE:INT	Avg Type	STATUS ALIGN AUTO e: Log-Pwr :>100/100	TR. 1 5.114		Peak Search Next Pea
FRes BM Isg Keysight S Marker	V 100 kHz	50 Ω AC 31623291 C	Hz PNO: Fast	Trig: Free	NSE:INT	Avg Type	STATUS ALIGN AUTO e: Log-Pwr :>100/100	TR. 1 5.114		Peak Search Next Pea
FRes BW	V 100 kHz	50 Ω AC 31623291 C	Hz PNO: Fast	Trig: Free	NSE:INT	Avg Type	STATUS ALIGN AUTO e: Log-Pwr :>100/100	TR. 1 5.114		Peak Search Next Pea
Keysight S Keysight S Marker 0 dB/div 0 0 0 0 0 0	V 100 kHz	50 Ω AC 31623291 C	Hz PNO: Fast	Trig: Free	NSE:INT	Avg Type	STATUS ALIGN AUTO e: Log-Pwr :>100/100	TR. 1 5.114		Peak Search Next Pea Next Pk Rigi
Keysight S Keysight S Marker 0 dB/div 0 0 0 0 0 0	100 kHz	50 Ω AC 31623291 C	Hz PNO: Fast	Trig: Free	NSE:INT	Avg Type	STATUS ALIGN AUTO e: Log-Pwr :>100/100	TR. 1 5.114		Peak Search Next Pea Next Pk Righ
#Res BW Isg Keysight S Marker 10.0 0.00	100 kHz	50 Ω AC 31623291 C	Hz PNO: Fast) Trig: Free	NSE:INT	Avg Type	STATUS ALIGN AUTO e: Log-Pwr :>100/100	TR. 1 5.114	ACE 1 2 3 4 5 6 YPE MINIMU 93 GHz 121 dBm	Peak Search Next Pea Next Pk Righ Next Pk Le
#Res BW Issg Seysight S Marker 10 0 10.0 10.0 20.0	100 kHz	50 Ω AC 31623291 C	Hz PNO: Fast) Trig: Free	NSE:INT	Avg Type	STATUS ALIGN AUTO e: Log-Pwr :>100/100	TR. 1 5.114		Peak Search Next Pea Next Pk Righ Next Pk Le
#Res BW ISG Keysight S M Marker 10 dB/div - 09 10.0	100 kHz	50 Ω AC 31623291 C	Hz PNO: Fast) Trig: Free	NSE:INT	Avg Type	STATUS ALIGN AUTO e: Log-Pwr :>100/100	TR. 1 5.114	ACE 1 2 3 4 5 6 YPE MINIMU 93 GHz 121 dBm	Peak Search Next Pea Next Pk Righ Next Pk Le Marker Dell
#Res BW Iss Keysight S Marker 10.0 0 000	100 kHz	50 Ω AC 1623291 C 00 dBm	SHZ PNO: Fast FGain:Low	Trig: Free Atten: 30	vsE:INT ■ Run D dB	Avg Type Avg Hold	STATUS ALIGN AUTO e: Log-Pwr :>100/100	TR. 1 5.114	ACE 1 2 3 4 5 6 YPE MINIMU 93 GHz 121 dBm	Peak Search Next Pea Next Pk Rigi Next Pk Le Marker Dei
#Res BW Iss Keysight S Marker 10.0 0 000	100 kHz	50 Ω AC 31623291 C	SHZ PNO: Fast FGain:Low) Trig: Free	vse:INT	Avg Type Avg Hold:	STATUS ALIGN AUTO e: Log-Pwr :>100/100	TR: T T T T T T T T T T T T T T T T T T	ACE 1 2 3 4 5 6 YPE MINIMU 93 GHz 121 dBm	Peak Search Next Pea Next Pk Rigi Next Pk Le Marker Dei
Keysight S Keysight S Marker 10 dB/div 0 0 0 0.00 .0.00 .0.00 .0.00 .0.00 .0.00 .0.00 .0.00 .0.00 .0.00	100 kHz	50 Ω AC 1623291 C 00 dBm	SHZ PNO: Fast FGain:Low	Trig: Free Atten: 30	vse:int e Run d dB	Avg Type Avg Hold:	STATUS	TR: T T T T T T T T T T T T T T T T T T	ACE 1 2 3 4 5 6 YPE MINIMU 93 GHz 121 dBm	Peak Search Next Pea Next Pk Rigi Next Pk Le Marker Del Mkr→C
#Res BW Iss Keysight S Marker 10.0 • O dB/div • O data • O data	100 kHz	50 Ω AC 1623291 C 00 dBm	SHZ PNO: Fast FGain:Low	Trig: Free Atten: 30	vse:int e Run d dB	Avg Type Avg Hold:	STATUS	TR: T T T T T T T T T T T T T T T T T T	ACE 1 2 3 4 5 6 YPE MINIMU 93 GHz 121 dBm	Peak Search Next Pea Next Pk Rigi Next Pk Le Marker Del Mkr→C
#Res BW Iss Keysight S Marker 10.0 • O dB/div • O data • O data	100 kHz	50 Ω AC 1623291 C 00 dBm	SHZ PNO: Fast FGain:Low	Trig: Free Atten: 30	vse:int e Run d dB	Avg Type Avg Hold:	STATUS	TR: T T T T T T T T T T T T T T T T T T	ACE 1 2 3 4 5 6 YPE MINIMU 93 GHz 121 dBm	Peak Search Next Pea Next Pk Rigi Next Pk Le Marker Dei Mkr→C Mkr→Ref L
#Res BW Issg Issg	100 kHz ipectrum Analyze RF 1 5.11493 Ref 20.	50 Ω AC 1623291 C 00 dBm	SHZ PNO: Fast FGain:Low	Trig: Free Atten: 30	se Run dB		ALIGN AUTO 2: Log-Pwr >100/100 MIKT	TR. T T 1 5.114 -42.*	ACE 1 2 3 4 5 6 YPE MINIMU 93 GHz 121 dBm	

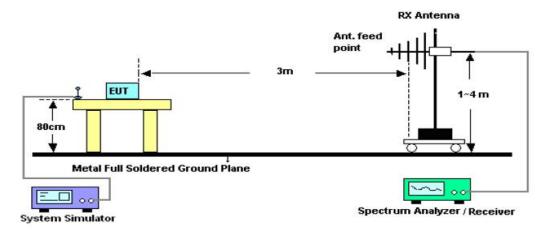
TEST PLOT OF OUT OF BAND EMISSIONS FOR MODULATION IN 5775MHz

Note: All the 20MHz bandwidth modulation had been tested, the 802.11a20 was the worst case and record in his test report. All the 40MHz bandwidth modulation had been tested, the 802.11N40 was the worst case and record in his test report. All the 80MHz bandwidth modulation had been tested, the 802.11ac80 was the worst case and record in his test report.

Two transmit chains had been tested, the chain 0 was the worst case and record in the test report. The spurious emission at chain 0 is more than 3dB below the limits, so the MIMO results for the spurious emissions are comply with the requirement.


9. RADIATED EMISSION

9.1. MEASUREMENT PROCEDURE


- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz RBW and 3M VBW for peak reading. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8.If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

9.2. TEST SETUP

Radiated Emission Test-Setup Frequency Below 30MHz

RADIATED EMISSION TEST SETUP 30MHz-1000MHz

RADIATED EMISSION TEST SETUP ABOVE 1000MHz

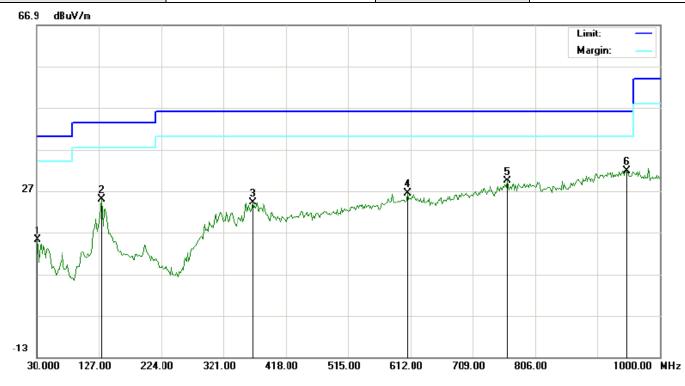
9.3. LIMITS AND MEASUREMENT RESULT

15.209(a) Limit in the below table has to be followed

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Note: All modes were tested For restricted band radiated emission,

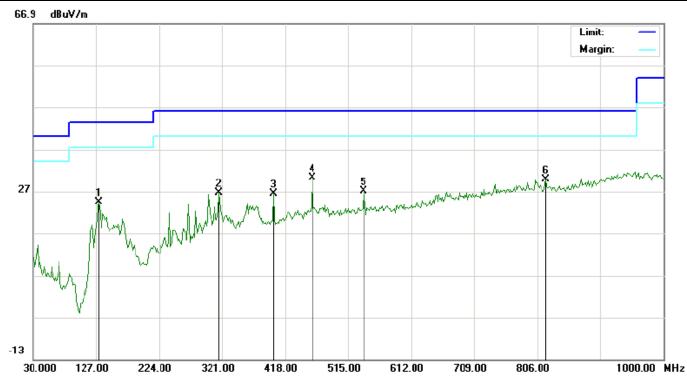
the test records reported below are the worst result compared to other modes.


9.4. TEST RESULT

RADIATED EMISSION BELOW 30MHZ

No emission found between lowest internal used/generated frequencies to 30MHz.

RADIATED EMISSION BELOW 1GHZ


EUT	Dual band wireless adapter	Model Name	XHT-6B12
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11a20 5180MHz	Antenna	Horizontal

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1		31.6167	14.07	1.09	15.16	40.00	-24.84	peak			
2		131.8500	13.53	11.39	24.92	43.50	-18.58	peak			
3		366.2667	5.40	18.85	24.25	46.00	-21.75	peak			
4		607.1500	2.62	23.75	26.37	46.00	-19.63	peak			
5		762.3500	2.61	26.80	29.41	46.00	-16.59	peak			
6	*	948.2667	1.85	29.95	31.80	46.00	-14.20	peak			

RESULT: PASS

EUT	Dual band wireless adapter	Model Name	XHT-6B12
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11a20 5180MHz	Antenna	Vertical

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1		131.8500	13.04	11.80	24.84	43.50	-18.66	peak			
2		316.1500	11.09	16.49	27.58	46.00	-18.42	peak			
3		400.2167	10.40	19.08	29.48	46.00	-16.52	peak			
4	*	460.0333	13.55	20.70	34.25	46.00	-11.75	peak			
5		539.2500	7.22	22.19	29.41	46.00	-16.59	peak			
6		818.9333	3.49	27.32	30.81	46.00	-15.19	peak			

RESULT: PASS

Note: All test channels had been tested. The 802.11a20 at 5180MHz is the worst case and recorded in the test report.

Factor = Antenna Factor + Cable loss - Amplifier gain, Margin= Limit-Level.

The "Factor" value can be calculated automatically by software of measurement system.

RADIATED EMISSION ABOVE 1GHZ

EUT	Dual band wireless adapter	Model Name	XHT-6B12
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11a20 5180MHz	Antenna	Horizontal/Vertical

RADIATED EMISSION ABOVE 1GHZ-Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type		
10360.120	42.41	9.14	51.55	74	-22.45	peak		
10360.120	34.63	9.14	43.77	54	-10.23	AVG		
15540.180	40.22	10.22	50.44	74	-23.56	peak		
15540.180	36.91	10.22	47.13	54	-6.87	AVG		
Remark:	Remark:							
Factor = Ante	enna Factor + C	able Loss – Pi	re-amplifier.					

RADIATED EMISSION ABOVE 1GHZ–Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type			
10360.120	41.29	9.14	50.43	74	-23.57	peak			
10360.120	38.4	9.14	47.54	54	-6.46	AVG			
15540.180	39.43	10.22	49.65	74	-24.35	peak			
15540.180	33.28	10.22	43.5	54	-10.5	AVG			
Remark:	Remark:								
Factor = Ante	enna Factor + C	able Loss – Pr	e-amplifier.						

EUT	Dual band wireless adapter	Model Name	XHT-6B12
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11a20 5240MHz	Antenna	Horizontal/Vertical

RADIATED EMISSION ABOVE 1GHZ-Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type	
10480.120	41.21	9.27	50.48	74	-23.52	peak	
10480.120	36.54	9.27	45.81	54	-8.19	AVG	
15720.180	39.06	10.38	49.44	74	-24.56	peak	
15720.180	34.91	10.38	45.29	54	-8.71	AVG	
Remark:							
Factor = Antenna Factor + Cable Loss – Pre-amplifier.							

RADIATED EMISSION ABOVE 1GHZ-Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type	
10480.120	41.28	9.27	50.55	74	-23.45	peak	
10480.120	35.26	9.27	44.53	54	-9.47	AVG	
15720.180	39.55	10.38	49.93	74	-24.07	peak	
15720.180	34.01	10.38	44.39	54	-9.61	AVG	
Remark:							
Factor = Antenna Factor + Cable Loss – Pre-amplifier.							

EUT	Dual band wireless adapter	ireless adapter Model Name	
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11a20 5745MHz	Antenna	Horizontal/Vertical

RADIATED EMISSION ABOVE 1GHZ-Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type	
11490.120	36.35	9.42	45.77	74	-28.23	peak	
11490.120	31.67	9.42	41.09	54	-12.91	AVG	
17235.180	36.39	10.51	46.9	74	-27.1	peak	
17235.180	32.05	10.51	42.56	54	-11.44	AVG	
Remark:							
Factor = Antenna Factor + Cable Loss – Pre-amplifier.							

RADIATED EMISSION ABOVE 1GHZ-Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type	
11490.120	40.12	9.42	49.54	74	-24.46	peak	
11490.120	35.26	9.42	44.68	54	-9.32	AVG	
17235.180	36.68	10.51	47.19	74	-26.81	peak	
17235.180	32.07	10.51	42.58	54	-11.42	AVG	
Remark:							
Factor = Antenna Factor + Cable Loss – Pre-amplifier.							

EUT	Dual band wireless adapter	Model Name	XHT-6B12
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11a20 5825MHz	Antenna	Horizontal/Vertical

RADIATED EMISSION ABOVE 1GHZ-Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type		
11650.120	40.93	9.62	50.55	74	-23.45	peak		
11650.120	35.81	9.62	45.43	54	-8.57	AVG		
17475.180	38.66	10.75	49.41	74	-24.59	peak		
17475.180	33.57	10.75	44.32	54	-9.68	AVG		
Remark:								
Factor = Ante	Factor = Antenna Factor + Cable Loss – Pre-amplifier.							

RADIATED EMISSION ABOVE 1GHZ–Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type		
11650.120	40.34	9.62	49.96	74	-24.04	peak		
11650.120	35.04	9.62	44.66	54	-9.34	AVG		
17475.180	38.51	10.75	49.26	74	-24.74	peak		
17475.180	32.28	10.75	43.03	54	-10.97	AVG		
Remark:								
Factor = Ante	Factor = Antenna Factor + Cable Loss – Pre-amplifier.							

Note: All the case had been tested. The 802.11a modulation is the worst case and recorded in the test report. Other frequencies radiation emission from 1GHz to 40GHz at least have 20dB margin and not recorded in the test report.

Factor = Antenna Factor + Cable loss - Amplifier gain, Margin= Limit-Level.

The "Factor" value can be calculated automatically by software of measurement system.

10. BAND EDGE EMISSION

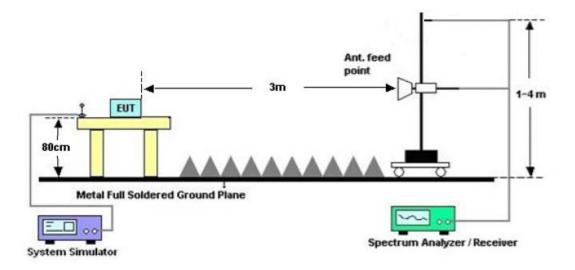
10.1. MEASUREMENT PROCEDURE

1. The EUT operates at transmitting mode. The operate channel is tested to verify the largest transmission and spurious emissions power at the continuous transmission mode.

2. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission: (a) PEAK: RBW=1MHz, VBW=3MHz / Sweep=AUTO

(b) AVERAGE: RBW=1MHz ; VBW=1/on time(1KHz) / Sweep=AUTO

3. Other procedures refer to clause 11.2.


Note:

1. Factor=Antenna Factor + Cable loss - Amplifier gain. Field Strength=Factor + Reading level

2. The factor had been edited in the "Input Correction" of the Spectrum Analyzer. So the Amplitude of test plots is equal to Reading level plus the Factor in dB. Use the A dB(μ V) to represent the Amplitude. Use the F dB(μ V/m) to represent the Field Strength. So A=F.

3. Only the data of band edge emission at the restricted band 4.5GHz-5.15GHz record in the report. Other restricted band 5.35GHz-5.46GHz and 7.25GHz-7.77GHz were considered as ambient noise. No recording in the test report.

10.2. TEST SET-UP

10.3. TEST RESULT

EUT	Dual band wireless adapter	Model Name	XHT-6B12
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11a20 5180MHz	Antenna	Horizontal

	F 50 Ω AC 76800000000	0 GHz PNO: Fast C IFGain:Low	Trig: Free Run #Atten: 20 dB	Avg T	ALIGN AUTO ype: RMS old:>100/100	TRACE 1 2 3 4 5 TYPE A WWW DET A NNN	N N
0 dB/div R	ef 106.99 dBµ\	V			Mk	r1 5.176 8 GH 88.574 dBµ	
°g 97.0 37.0							Next Pk Rig
7.0							Next Pk Lo
7.0 7.0 7.0							Marker De
tart 5.0000 Res BW 1.0	MHz	#VB	W 3.0 MHz*	FUNCTION	Sweep 1	Stop 5.2000 GH 000 ms (1001 pt FUNCTION VALUE	z s) Mkr→0
1 N 1 f 2 N 1 f 3 4 5 5 6	5	.176 8 GHz .150 0 GHz	88.558 dBµV 38.265 dBµV	FUNCTION	PONCTION WIDTH	FORCHOIN VALUE	Mkr→RefL
6 7 8 9 0							Ma 1 o
1							

EUT	Dual band wireless adapter	Model Name	XHT-6B12
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11a20 5180MHz	Antenna	Vertical

AV	/alue
----	-------

	İ	RF	alyzer - Swept SA 50 Ω AC		SENSE:		ALIGN AUTO			Peak Search
arker	15	5.174	400000000	PNO: Fast IFGain:Low	Trig: Free Ru #Atten: 20 dl	un Avg	Type: RMS Hold:>100/100	TRACE 1 2 TYPE A 4 DET A N	AAAAAAA	Teak Search
0 dB/di	v	Ref	106.99 dBµ\	1			Mk	r1 5.174 4 87.346 d	GHz BµV	Next Pea
og 37.0 37.0										Next Pk Righ
7.0							2 ²			Next Pk Le
7.0 7.0 7.0										Marker Del
tart 5. Res B	W 1	.0 M	Hz	#VE	3W 3.0 MHz*			Stop 5.2000 .000 ms (1001	i pts)	Mkr→C
KR MODE	1 1	f		174 4 GHz 150 0 GHz	Υ 87.346 dBµV 37.280 dBµV		FUNCTION WIDTH	FUNCTION VAL		Mkr→RefL
4										
3 4 5 6 7 8 9 0 1					m					Mor 1 of

EUT	Dual band wireless adapter	Model Name	XHT-6B12
Temperature	25°C	Relative Humidity	
Pressure	ssure 960hPa Test		Normal Voltage
Test Mode	802.11n40 5190MHz	Antenna	Horizontal

AV Value

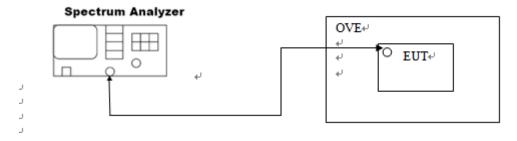
EUT	Dual band wireless adapter	vireless adapter Model Name	
Temperature	25°C	Relative Humidity	
Pressure	Pressure 960hPa		Normal Voltage
Test Mode	802.11n40 5190MHz	Antenna	Vertical

AV Value

EUT	Dual band wireless adapter	Model Name	XHT-6B12
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11ac80 5210MHz	Antenna	Horizontal

EUT	Dual band wireless adapter	band wireless adapter Model Name	
Temperature	25°C	Relative Humidity	
Pressure	essure 960hPa		Normal Voltage
Test Mode	802.11ac80 5210MHz	Antenna	Vertical

RESULT: PASS


Note: All the 20MHz bandwidth modulation had been tested, the 802.11a20 was the worst case and record in his test report. All the 40MHz bandwidth modulation had been tested, the 802.11N40 was the worst case and record in his test report.

11. FREQUENCY STABILITY

11.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the operation frequency.
- 3. Set SPA Centre Frequency = Operation Frequency. SPAN=enough to measure the emission is maintained within the band
- 4. Set SPA Trace 1 Max hold, then View.
- 5. Extreme temperature rule is -10°C~60°C.

11.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

11.3. MEASUREMENT RESULTS

Test Mode	Temperature	Measurement Frequency (MHz)	Result	Conclusion
	- 10 ℃	5180	within the band	PASS
	0 °C	5180	within the band	PASS
	10 ℃	5180	within the band	PASS
	20 ℃	5180	within the band	PASS
	30 ℃	5180	within the band	PASS
	40 ℃	5180	within the band	PASS
	50 ℃	5180	within the band	PASS
	60 ℃	5180	within the band	PASS
	- 10 ℃	5240	within the band	PASS
	0 °C	5240	within the band	PASS
	10 ℃	5240	within the band	PASS
	20 ℃	5240	within the band	PASS
	30 ℃	5240	within the band	PASS
	40 ℃	5240	within the band	PASS
	50 ℃	5240	within the band	PASS
802.11a	60 ℃	5240	within the band	PASS
002.11a	- 10 ℃	5745	within the band	PASS
	0 °C	5745	within the band	PASS
	10 ℃	5745	within the band	PASS
	20 ℃	5745	within the band	PASS
	30 ℃	5745	within the band	PASS
	40 °C	5745	within the band	PASS
	50 ℃	5745	within the band	PASS
	60 ℃	5240	within the band	PASS
	- 10 ℃	5825	within the band	PASS
	0 °C	5825	within the band	PASS
	10 ℃	5825	within the band	PASS
	20 ℃	5825	within the band	PASS
	30 ℃	5825	within the band	PASS
	40 °C	5825	within the band	PASS
	50 ℃	5825	within the band	PASS
	60 ℃	5825	within the band	PASS

Test Mode	Temperature	Measurement Frequency (MHz)	Result	Conclusion
	- 10℃	5180	within the band	PASS
	0 °C	5180	within the band	PASS
	10 ℃	5180	within the band	PASS
	20 ℃	5180	within the band	PASS
	30 ℃	5180	within the band	PASS
	40 ℃	5180	within the band	PASS
	50 ℃	5180	within the band	PASS
	60 ℃	5180	within the band	PASS
	- 10 ℃	5240	within the band	PASS
	0 °C	5240	within the band	PASS
	10 ℃	5240	within the band	PASS
	20 ℃	5240	within the band	PASS
	30 ℃	5240	within the band	PASS
	40 ℃	5240	within the band	PASS
	50 ℃	5240	within the band	PASS
802.11n20	60 ℃	5240	within the band	PASS
002.11120	- 10℃	5745	within the band	PASS
	0 °C	5745	within the band	PASS
	10 ℃	5745	within the band	PASS
	20 ℃	5745	within the band	PASS
	30 ℃	5745	within the band	PASS
	40 ℃	5745	within the band	PASS
	50 ℃	5745	within the band	PASS
	60 ℃	5240	within the band	PASS
	- 10℃	5825	within the band	PASS
	0 °C	5825	within the band	PASS
	10 ℃	5825	within the band	PASS
	20 ℃	5825	within the band	PASS
	30 ℃	5825	within the band	PASS
	40 ℃	5825	within the band	PASS
	50 ℃	5825	within the band	PASS
	60 ℃	5825	within the band	PASS

Test Mode	Temperature	Measurement Frequency (MHz)	Result	Conclusion
	- 10℃	5180	within the band	PASS
	0 °C	5180	within the band	PASS
	10 ℃	5180	within the band	PASS
	20 ℃	5180	within the band	PASS
	30 ℃	5180	within the band	PASS
	40 °C	5180	within the band	PASS
	50 ℃	5180	within the band	PASS
	60 ℃	5180	within the band	PASS
	- 10 ℃	5240	within the band	PASS
	0 °C	5240	within the band	PASS
	10 ℃	5240	within the band	PASS
	20 ℃	5240	within the band	PASS
	30 ℃	5240	within the band	PASS
	40 ℃	5240	within the band	PASS
	50 ℃	5240	within the band	PASS
802.11ac20	60 ℃	5240	within the band	PASS
002.118620	- 10℃	5745	within the band	PASS
	0 °C	5745	within the band	PASS
	10 ℃	5745	within the band	PASS
	20 ℃	5745	within the band	PASS
	30 ℃	5745	within the band	PASS
	40 ℃	5745	within the band	PASS
	50 ℃	5745	within the band	PASS
	60 ℃	5240	within the band	PASS
	- 10℃	5825	within the band	PASS
	0 °C	5825	within the band	PASS
	10 ℃	5825	within the band	PASS
	20 ℃	5825	within the band	PASS
	30 ℃	5825	within the band	PASS
	40 ℃	5825	within the band	PASS
	50 ℃	5825	within the band	PASS
	60 ℃	5825	within the band	PASS

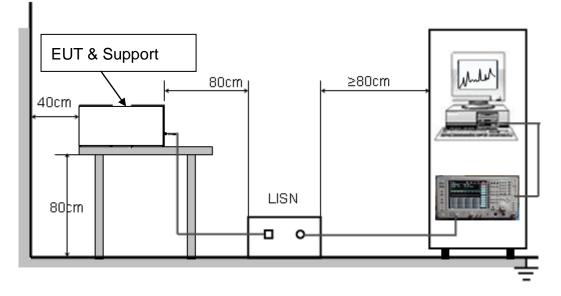
Test Mode	Temperature	Measurement Frequency (MHz)	Result	Conclusion
	- 10℃	5190	within the band	PASS
	0 °C	5190	within the band	PASS
	10 ℃	5190	within the band	PASS
	20 °C	5190	within the band	PASS
	30 °C	5190	within the band	PASS
	40 °C	5190	within the band	PASS
	50 ℃	5190	within the band	PASS
	60 ℃	5190	within the band	PASS
	- 10℃	5230	within the band	PASS
	0 °C	5230	within the band	PASS
	10 ℃	5230	within the band	PASS
	20 °C	5230	within the band	PASS
	30 °C	5230	within the band	PASS
	40 ℃	5230	within the band	PASS
	50 ℃	5230	within the band	PASS
802.11n40	60 ℃	5230	within the band	PASS
002.11140	- 10 ℃	5755	within the band	PASS
	0 °C	5755	within the band	PASS
	10 ℃	5755	within the band	PASS
	20 °C	5755	within the band	PASS
	30 °C	5755	within the band	PASS
	40 ℃	5755	within the band	PASS
	50 ℃	5755	within the band	PASS
	60 ℃	5755	within the band	PASS
	- 10 ℃	5795	within the band	PASS
	0 °C	5795	within the band	PASS
	10 ℃	5795	within the band	PASS
	20 ℃	5795	within the band	PASS
	30 ℃	5795	within the band	PASS
	40 ℃	5795	within the band	PASS
	50 ℃	5795	within the band	PASS
	60 ℃	5795	within the band	PASS

Test Mode	Temperature	Measurement Frequency (MHz)	Result	Conclusion
	- 10℃	5190	within the band	PASS
	0 °C	5190	within the band	PASS
	10 ℃	5190	within the band	PASS
	20 ℃	5190	within the band	PASS
	30 ℃	5190	within the band	PASS
	40 °C	5190	within the band	PASS
	50 ℃	5190	within the band	PASS
	60 ℃	5190	within the band	PASS
	- 10 ℃	5230	within the band	PASS
	0 °C	5230	within the band	PASS
	10 ℃	5230	within the band	PASS
	20 °C	5230	within the band	PASS
	30 ℃	5230	within the band	PASS
	40 ℃	5230	within the band	PASS
	50 ℃	5230	within the band	PASS
802.11ac40	60 ℃	5230	within the band	PASS
002.11dC40	- 10℃	5755	within the band	PASS
	0 °C	5755	within the band	PASS
	10 ℃	5755	within the band	PASS
	20 °C	5755	within the band	PASS
	30 ℃	5755	within the band	PASS
	40 ℃	5755	within the band	PASS
	50 ℃	5755	within the band	PASS
	60 ℃	5755	within the band	PASS
	- 10℃	5795	within the band	PASS
	0 °C	5795	within the band	PASS
	10 ℃	5795	within the band	PASS
	20 ℃	5795	within the band	PASS
	30 ℃	5795	within the band	PASS
[40 ℃	5795	within the band	PASS
	50 ℃	5795	within the band	PASS
	60 ℃	5795	within the band	PASS

Test Mode	Temperature	Measurement Frequency (MHz)	Result	Conclusion	
	- 10℃	5210	within the band	PASS	
	0 °C	5210	within the band	PASS	
	10 ℃	5210	within the band	PASS	
	20 ℃	5210	within the band	PASS	
	30 ℃	5210	within the band	PASS	
	40 ℃	5210	within the band	PASS	
	50 ℃	5210	within the band	PASS	
802.11ac80	60 ℃	5210	within the band	PASS	
002.11800	- 10 ℃	5775	within the band	PASS	
	0 °C	5775	within the band	PASS	
	10 ℃	5775	within the band	PASS	
	20 ℃	5775	within the band	PASS	
	30 °C	5775	within the band	PASS	
	40 ℃	5775	within the band	PASS	
	50 ℃	5775	within the band	PASS	
	60 ℃	5775	within the band	PASS	

12. FCC LINE CONDUCTED EMISSION TEST

12.1. LIMITS OF LINE CONDUCTED EMISSION TEST

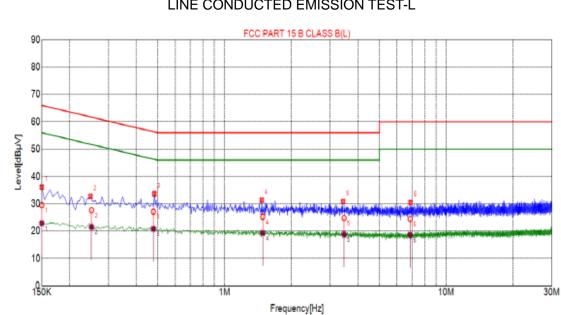

Frequency	Maximum RF Line Voltage				
Frequency	Q.P.(dBuV)	Average(dBuV)			
150kHz~500kHz	66-56	56-46			
500kHz~5MHz	56	46			
5MHz~30MHz	60	50			

Note:

1. The lower limit shall apply at the transition frequency.

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50MHz.

12.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST

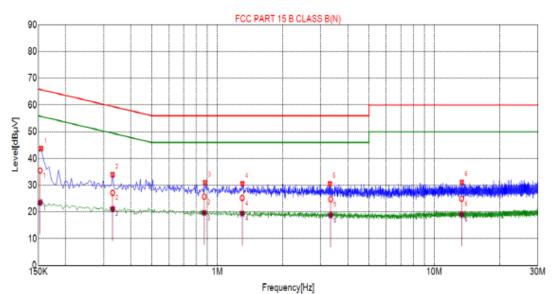

12.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST

- The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. All support equipments received AC120V/60Hz power from a LISN, if any.
- 5. The EUT received charging voltage by adapter which received 120V/60Hzpower by a LISN.
- 6. The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.
- 9. The test mode(s) were scanned during the preliminary test.

Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.

12.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST

- 1. EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- 3. The test data of the worst case condition(s) was reported on the Summary Data page.



12.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST

LINE CONDUCTED EMISSION TEST-L

Suspected List								
NO.	Freq. [MHz]	Level (dBµV)	Factor [dB]	Limit (dBµV)	Margin (dB)	Detector		
1	0.1500	36.10	10.03	66.00	29.90	РК		
2	0.2490	32.72	10.04	61.79	29.07	PK		
3	0.4830	33.67	10.04	56.29	22.62	PK		
4	1.4730	31.35	10.10	56.00	24.65	PK		
5	3.4305	30.78	10.24	56.00	25.22	PK		
6	6.9090	30.44	10.20	60.00	29.56	PK		

Final Data List									
NO.	Freq. [MHz]	Factor [dB]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	
1	0.1500	10.03	29.53	66.00	36.47	22.90	56.00	33.10	
2	0.2515	10.04	27.63	61.71	34.08	21.57	51.71	30.14	
3	0.4782	10.04	27.12	56.37	29.25	20.80	46.37	25.57	
4	1.4874	10.10	25.24	56.00	30.76	19.31	46.00	26.69	
5	3.4644	10.25	24.83	56.00	31.17	18.80	46.00	27.20	
6	6.8818	10.20	24.43	60.00	35.57	18.56	50.00	31.44	

LINE CONDUCTED EMISSION TEST-N

Suspected List									
NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Detector			
1	0.1545	43.71	10.03	65.75	22.04	PK			
2	0.3300	33.92	10.04	59.45	25.53	PK			
3	0.8790	30.98	10.06	56.00	25.02	PK			
4	1.3065	30.51	10.10	56.00	25.49	PK			
5	3.3045	30.46	10.24	56.00	25.54	PK			
6	13.3935	31.10	9.96	60.00	28.90	PK			

Final Data List									
NO.	Freq. [MHz]	Factor (dB)	QP Value [dBµV]	QP Limit (dBµV)	QP Margin [dB]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	
1	0.1530	10.03	35.46	65.84	30.38	23.47	55.84	32.37	
2	0.3300	10.04	27.16	59.45	32.29	21.13	49.45	28.32	
3	0.8721	10.06	25.68	56.00	30.32	19.69	46.00	26.31	
4	1.3042	10.10	25.26	56.00	30.74	19.37	46.00	26.63	
5	3.3313	10.24	24.76	56.00	31.24	18.83	46.00	27.17	
6	13.3563	9.96	24.96	60.00	35.04	19.08	50.00	30.92	

RESULT: PASS

APPENDIX A: PHOTOGRAPHS OF TEST SETUP FCC LINE CONDUCTED EMISSION TEST SETUP

FCC RADIATED EMISSION TEST SETUP BELOW 1GHZ

FCC RADIATED EMISSION TEST SETUP ABOVE 1GHZ

----END OF REPORT----