

Report No.: HK1809141091E

TEST REPORT

FCC PART 15 SUBPART C 15.247

Test report

On Behalf of

SHEN ZHEN XIN HUA TIAN TECHNOLOGY CO., LTD

For

Dual band wireless adapter Model No.: XHT-6B12, XHT-6B10

FCC ID: 2AKC6XHT-6B12

Prepared for: SHEN ZHEN XIN HUA TIAN TECHNOLOGY CO., LTD

3Foor, B Buliding, DaHong Industrial Park, GuangMin District, Shenzhen City,

China

Prepared By: Shenzhen HUAK Testing Technology Co., Ltd.

1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Fuhai Street,

Bao'an District, Shenzhen City, China

Date of Test: Sep. 15, 2018 ~ Sep. 26, 2018

Date of Report: Sep. 26, 2018
Report Number: HK1809141091E

Page 2 of 83 Report No.: HK1809141091E

TEST RESULT CERTIFICATION

Applicant's name SHEN ZHEN XIN HUA TIAN TECHNOLOGY CO., LTD

3Foor, B Buliding, DaHong Industrial Park, GuangMin District, Address....:

Shenzhen City, China

Manufacture's Name...... SHEN ZHEN XIN HUA TIAN TECHNOLOGY CO., LTD

3Foor, B Buliding, DaHong Industrial Park, GuangMin District, Address:

Shenzhen City, China

Product description

N/A Trade Mark:

Product name...... Dual band wireless adapter

Model and/or type reference ...: XHT-6B12 Series Model XHT-6B10

Model Difference All the same except for the model name.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test

Date of Issue....: Sep. 26, 2018

Test Result....: **Pass**

Testing Engineer

Gary Qian)

Fdan Hu

Technical Manager

Authorized Signatory

(Jason Zhou)

TABLE OF CONTENTS

1.SUMMARY	5
1.1 TEST STANDARDS	5
1.2 TEST DESCRIPTION	5
1.3 TEST FACILITY	6
1.4 STATEMENT OF THE MEASUREMENT UNCERTAINTY	6
2.GENERAL INFORMATION	7
2.1 ENVIRONMENTAL CONDITIONS	7
2.2 GENERAL DESCRIPTION OF EUT	7
2.3 DESCRIPTION OF TEST MODES AND TEST FREQUENCY	7
2.4 RELATED SUBMITTAL(S) / GRANT (S)	8
2.5 MODIFICATIONS	8
2.6. ACCESSORIES USED	
2.7. IEEE 802.11N MODULATION SCHEME	
2.8 EQUIPMENT USED	10
3. OUTPUT POWER	11
3.1. MEASUREMENT PROCEDURE	11
3.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	11
3.3. LIMITS AND MEASUREMENT RESULT	12
4. 6 DB BANDWIDTH	14
4.1. MEASUREMENT PROCEDURE	14
4.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	14
4.3. LIMITS AND MEASUREMENT RESULTS	15
5. CONDUCTED SPURIOUS EMISSION	23
5.1. MEASUREMENT PROCEDURE	23
5.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	23
5.3. LIMITS AND MEASUREMENT RESULT	23
6. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY	42
6.1 MEASUREMENT PROCEDURE	42
6.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	42
6.3 LIMITS AND MEASUREMENT RESULT	42
7. RADIATED EMISSION	53

8.

9.

7.1. MEASUREMENT PROCEDURE	
7.2. TEST SETUP	54
7.3. LIMITS AND MEASUREMENT RESULT	55
7.4. TEST RESULT	55
BAND EDGE EMISSION	61
8.1. MEASUREMENT PROCEDURE	61
8.2. TEST SET-UP	61
8.3. TEST RESULT	62
FCC LINE CONDUCTED EMISSION TEST	78
9.1. LIMITS OF LINE CONDUCTED EMISSION TEST	78
9.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST	78

APPENDIX A: PHOTOGRAPHS OF TEST SETUP82

Page 5 of 83 Report No.: HK1809141091E

1.SUMMARY

1.1 TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

ANSI C63.10:2013: American National Standard for Testing Unlicensed Wireless Devices

KDB558074 D01 15.247 Meas Guidance v05: Guidance for compliance measurements on Digital transmission system, frequency hopping spread spectrum system, and hybrid system devices operating under section 15.247 of the FCC rules.

1.2 TEST DESCRIPTION

FCC RULES	DESCRIPTION OF TEST	RESULT
§15.247	Output Power	Compliant
§15.247	6 dB Bandwidth	Compliant
§15.247	Conducted Spurious Emission	Compliant
§15.247	Maximum Conducted Output Power SPECTRAL Density	Compliant
§15.209	Radiated Emission	Compliant
§15.247	Band Edges	Compliant
§15.207	Line Conduction Emission	Compliant

Page 6 of 83 Report No.: HK1809141091E

1.3 TEST FACILITY

1.3.1 Address of the test laboratory

Shenzhen HUAK Testing Technology Co., Ltd.

Add.:1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Heping Community, Fuhai Street, Bao'an District, Shenzhen, China

There is one 3m semi-anechoic chamber and two line conducted labs for final test. The Test Sites meet the requirements in documents ANSI C63.4 and CISPR 32/EN 55032 requirements.

1.3.2 Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

IC Registration No.: 21210

The 3m alternate test site of Shenzhen HUAK Testing Technology Co., Ltd. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration No.: 21210 on May 24, 2016.

FCC Registration No.: CN1229

Test Firm Registration Number: 616276

1.4 STATEMENT OF THE MEASUREMENT UNCERTAINTY

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen HUAK Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for HUAK laboratory is reported:

Test	Measurement Uncertainty	Notes
Transmitter power conducted	±0.57 dB	(1)
Transmitter power Radiated	±2.20 dB	(1)
Conducted spurious emission 9KHz-40 GHz	±2.20 dB	(1)
Occupied Bandwidth	±0.01ppm	(1)
Radiated Emission 30~1000MHz	±4.10dB	(1)
Radiated Emission Above 1GHz	±4.32dB	(1)
Conducted Disturbance0.15~30MHz	±3.20dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Page 7 of 83 Report No.: HK1809141091E

2.GENERAL INFORMATION

2.1 ENVIRONMENTAL CONDITIONS

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature:	25°C
Relative Humidity:	55 %
Air Pressure:	101 kPa

2.2 GENERAL DESCRIPTION OF EUT

Product Name	Dual band wireless adapter
Model/Type reference	XHT-6B12
Power supply	DC5V
Mandada a	802.11 b/g/n20/n40
Modulation	DSSS(DBPSK/DQPSK/CCK);OFDM(BPSK/QPSK/16-QAM/64-QAM)
Operation Frequency	2.412 GHz~2.462GHz
Channel number	11
Antenna Designation	Internal antenna and external antenna(Use of reverse SMA connector)
Number of transmit chain	2(802.11b/g used antenna 0, 802.11n20/n40 used two antennas)
Antenna gain	Internal antenna: 5dBi; External antenna: 5dBi
Hardware Version	8812BU_D7A. V1.0
Software Version	V1.0

Note: For more details, refer to the user's manual of the EUT.

2.3 DESCRIPTION OF TEST MODES AND TEST FREQUENCY

Frequency Band	Channel Number	Frequency
	1	2412 MHZ
	2	2417 MHZ
	3	2422 MHZ
	4	2427 MHZ
	5	2432 MHZ
2400~2483.5MHZ	6	2437 MHZ
	7	2442 MHZ
	8	2447 MHZ
	9	2452 MHZ
	10	2457 MHZ
	11	2462 MHZ

Note: For 20MHZ bandwidth system use Channel 1 to Channel 11, For 40MHZ bandwidth system use Channel 3 to Channel 9

Page 8 of 83 Report No.: HK1809141091E

NO.	TEST MODE DESCRIPTION
1	Low channel TX
2	Middle channel TX
3	High channel TX
4	Normal operating

Note:

Transmit by 802.11b with Date rate (1/2/5.5/11)

Transmit by 802.11g with Date rate (6/9/12/18/24/36/48/54)

Transmit by 802.11n (20MHz) with Date rate (6.5/13/19.5/26/39/52/58.5/65)

Transmit by 802.11n (40MHz) with Date rate (13.5/27/40.5/54/81/108/121.5/135)

Note:

- 1. The EUT has been set to operate continuously on the lowest, middle and highest operation frequency Individually, and the eut is operating at its maximum duty cycle>or equal 98%
- 2. All modes under which configure applicable have been tested and the worst mode test data recording in the test report, if no other mode data.
- 3. For Radiated Emission, 3axis were chosen for testing for each applicable mode.

2.4 RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.5 MODIFICATIONS

No modifications were implemented to meet testing criteria.

2.6. ACCESSORIES USED

Item	Equipment	Model No.	Specification	Remark	
1	Dell PC	Ins 14-7460-D1525S	N/A	Provided by test lab	
2	PC adapter	YH-195-462	DC19.5V/4.62A	Provided by test lab	

Page 9 of 83 Report No.: HK1809141091E

2.7. IEEE 802.11N MODULATION SCHEME

MCS Index	Nss	Modulation	R	NBPSC			NDBPS			nta Mbps) nsGl
					20MHz	40MHz	20MHz	40MHz	20MHz	40MHz
0	1	BPSK	1/2	1	52	108	26	54	6.5	13.5
1	1	QPSK	1/2	2	104	216	52	108	13.0	27.0
2	1	QPSK	3/4	2	104	216	78	162	19.5	40.5
3	1	16-QAM	1/2	4	208	432	104	216	26.0	54.0
4	1	16-QAM	3/4	4	208	432	156	324	39.0	81.0
5	1	64-QAM	2/3	6	312	648	208	432	52.0	108.0
6	1	64-QAM	3/4	6	312	648	234	489	58.5	121.5
7	1	64-QAM	5/6	6	312	648	260	540	65.0	135.0

Symbol	Explanation	
NSS	Number of spatial streams	
R	Code rate	
NBPSC	Number of coded bits per single carrier	
NCBPS	Number of coded bits per symbol	
NDBPS	Number of data bits per symbol	
GI	Guard interval	

Page 10 of 83 Report No.: HK1809141091E

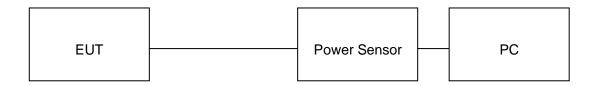
2.8 EQUIPMENT USED

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	L.I.S.N. Artificial Mains Network	R&S	ENV216	HKE-002	Dec. 28, 2017	1 Year
2.	Receiver	R&S	ESCI 7	HKE-010	Dec. 28, 2017	1 Year
3.	RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 28, 2017	1 Year
4.	Horn Antenna	Schewarzbeck	BBHA 9170	HKE-090	Dec. 28, 2017	1 Year
5.	Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 28, 2017	1 Year
6.	Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Dec. 28, 2017	1 Year
7.	EMI Test Receiver	Rohde & Schwarz	ESCI 7	HKE-010	Dec. 28, 2017	1 Year
8.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	HKE-012	Dec. 28, 2017	1 Year
9.	Loop Antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Dec. 28, 2017	1 Year
10.	Horn Antenna	Schewarzbeck	9120D	HKE-013	Dec. 28, 2017	1 Year
11.	Pre-amplifier	EMCI	EMC051845 SE	HKE-015	Dec. 28, 2017	1 Year
12.	Pre-amplifier	Agilent	83051A	HKE-016	Dec. 28, 2017	1 Year
13.	EMI Test Software EZ-EMC	Tonscend	JS1120-B Version	HKE-083	Dec. 28, 2017	N/A
14.	Power Sensor	Agilent	E9300A	HKE-086	Dec. 28, 2017	1 Year
15.	Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 28, 2017	1 Year
16.	Signal generator	Agilent	N5182A	HKE-029	Dec. 28, 2017	1 Year
17.	Signal Generator	Agilent	83630A	HKE-028	Dec. 28, 2017	1 Year
18.	Shielded room	Shiel Hong	4*3*3	HKE-039	Dec. 28, 2017	3 Year

The calibration interval was one year

Page 11 of 83 Report No.: HK1809141091E

3. OUTPUT POWER


3.1. MEASUREMENT PROCEDURE

For average power test:

- 1. Connect EUT RF output port to power sensor through an RF attenuator.
- 2. Connect the power sensor to the PC.
- 3. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 4. Record the maximum power from the software.

Note: The EUT was tested according to ANSI C63.10 (2013) for compliance to FCC 47CFR 15.247 requirements.

3.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) AVERAGE POWER SETUP

Page 12 of 83 Report No.: HK1809141091E

3.3. LIMITS AND MEASUREMENT RESULT

TEST ITEM	OUTPUT POWER
TEST MODE	802.11b with data rate 1

Frequency (GHz)	Average Power (dBm)	Applicable Limits (dBm)	Pass or Fail
2.412	9.21	30	Pass
2.437	9.33	30	Pass
2.462	9.18	30	Pass

TEST ITEM	OUTPUT POWER
TEST MODE	802.11g with data rate 6

Frequency (GHz)	Average Power (dBm)	Applicable Limits (dBm)	Pass or Fail
2.412	7.21	30	Pass
2.437	7.36	30	Pass
2.462	7.08	30	Pass

TEST ITEM	OUTPUT POWER
TEST MODE	802.11n 20 with data rate 6.5

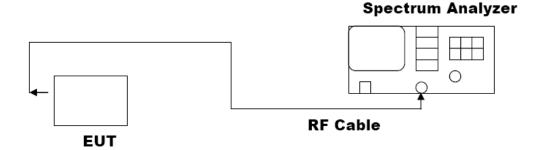
Frequency (GHz)	Average Power Chain 0 (dBm)	Average Power Chain 1 (dBm)	Average Power Total (dBm)	Applicable Limits (dBm)	Pass or Fail
2.412	4.18	3.85	7.03	30	Pass
2.437	4.45	3.95	7.22	30	Pass
2.462	4.17	3.74	6.97	30	Pass

Page 13 of 83 Report No.: HK1809141091E

TEST ITEM	OUTPUT POWER
TEST MODE	802.11n 40 with data rate 13.5

Frequency (GHz)	Average Power Chain 0 (dBm)	Average Power Chain 1 (dBm)	Average Power Total (dBm)	Applicable Limits (dBm)	Pass or Fail
2.422	2.35	2.12	5.25	30	Pass
2.437	2.72	2.32	5.53	30	Pass
2.452	2.45	2.05	5.26	30	Pass

Page 14 of 83 Report No.: HK1809141091E


4. 6 DB BANDWIDTH

4.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Centre Frequency = Operation Frequency, RBW= 100 KHz, VBW ≥ 3×RBW.
- 4. Set SPA Trace 1 Max hold, then View.

Note: The EUT was tested according to ANSI C63.10 (2013) for compliance to FCC 47CFR 15.247 requirements.

4.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

Page 15 of 83 Report No.: HK1809141091E

4.3. LIMITS AND MEASUREMENT RESULTS

TEST ITEM	6DB BANDWIDTH
TEST MODE	802.11b with data rate 11

LIMITS AND MEASUREMENT RESULT				
Annliachta Limita		Applicable Limits		
Applicable Limits	Test Data (MHz)		Criteria	
>500KHZ	Low Channel	9.117	PASS	
	Middle Channel	9.111	PASS	
	High Channel	9.246	PASS	

TEST ITEM	6DB BANDWIDTH
TEST MODE	802.11g with data rate 54

LIMITS AND MEASUREMENT RESULT				
A Paral la I ! !	Applicable Limits			
Applicable Limits	Test Data (MHz)		Criteria	
>500KHZ	Low Channel	16.54	PASS	
	Middle Channel	16.55	PASS	
	High Channel	16.54	PASS	

TEST ITEM	6DB BANDWIDTH
TEST MODE	802.11n 20 with data rate 65

LIMITS AND MEASUREMENT RESULT					
Applicable Limits	Applicable Limits				
	Test Data (MHz)		Criteria		
>500KHZ	Low Channel	17.67	PASS		
	Middle Channel	17.67	PASS		
	High Channel	17.68	PASS		

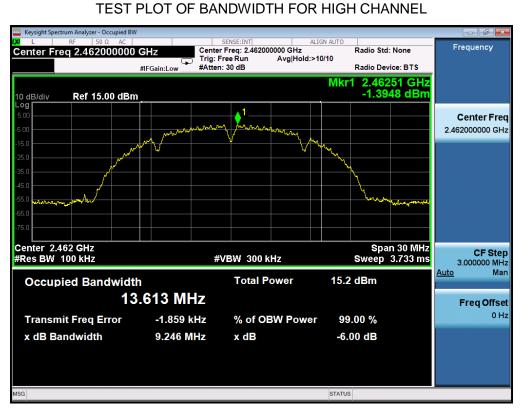
Page 16 of 83 Report No.: HK1809141091E

TEST ITEM	6DB BANDWIDTH
TEST MODE	802.11n 40 with data rate 135

LIMITS AND MEASUREMENT RESULT						
Applicable Limits	Applicable Limits					
	Test Data (MHz)		Criteria			
>500KHZ	Low Channel	36.55	PASS			
	Middle Channel	36.55	PASS			
	High Channel	36.55	PASS			

802.11b TEST RESULTTEST PLOT OF BANDWIDTH FOR LOW CHANNEL

Report No.: HK1809141091E



TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

802.11g TEST RESULTTEST PLOT OF BANDWIDTH FOR LOW CHANNEL



TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

Report No.: HK1809141091E

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

802.11n (20) TEST RESULT TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

Report No.: HK1809141091E

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

802.11n (40) TEST RESULT
TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

Report No.: HK1809141091E

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

Page 23 of 83 Report No.: HK1809141091E

5. CONDUCTED SPURIOUS EMISSION

5.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2, Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Trace 1 Max hold, then View.

Note: The EUT was tested according to ANSI C63.10 (2013) for compliance to FCC 47CFR 15.247 requirements. Owing to satisfy the requirements of the number of measurement points, we set the RBW=1MHz, VBW>RBW, scan up through 10th harmonic, and consider the tested results as the worst case, if the tested results conform to the requirement, we can deem that the real tested results(set the RBW=100KHz, VBW>RBW) are conform to the requirement.

5.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

The same as described in section 4.2.

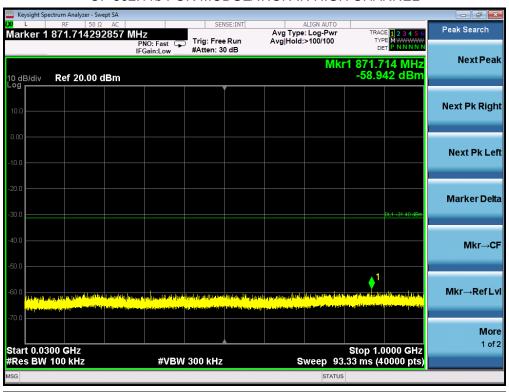
5.3. LIMITS AND MEASUREMENT RESULT

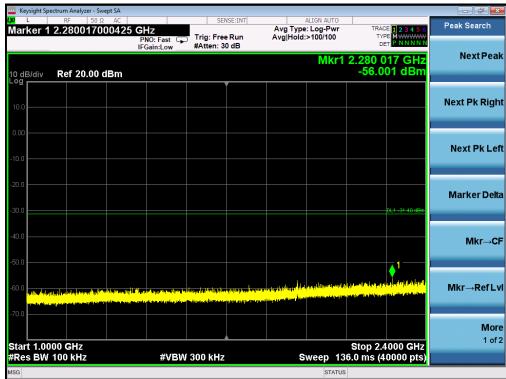
LIMITS AND MEASUREMENT RESULT				
Applicable Limite	Measurement Result			
Applicable Limits	Test Data	Criteria		
In any 100 KHz Bandwidth Outside the	At least -30dBc than the limit			
frequency band in which the spread spectrum	Specified on the BOTTOM	PASS		
intentional radiator is operating, the radio frequency	Channel			
power that is produce by the intentional radiator				
shall be at least 30 dB below that in 100KHz				
bandwidth within the band that contains the highest				
level of the desired power.	At least -30dBc than the limit	DACC		
In addition, radiation emissions which fall in the	Specified on the TOP Channel	PASS		
restricted bands, as defined in §15.205(a), must also				
comply with the radiated emission limits specified				
in§15.209(a))				

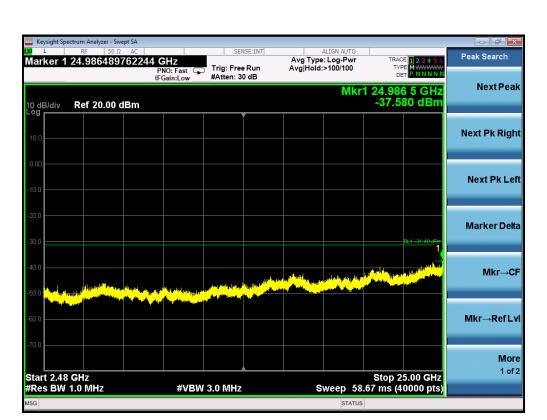
TEST PLOT OF OUT OF BAND EMISSIONS WITH THE WORST CASE OF 802.11b FOR MODULATION IN LOW CHANNEL



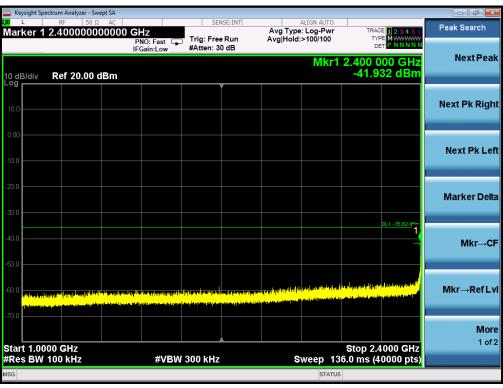
TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE OF 802.11b FOR MODULATION IN MIDDLE CHANNEL



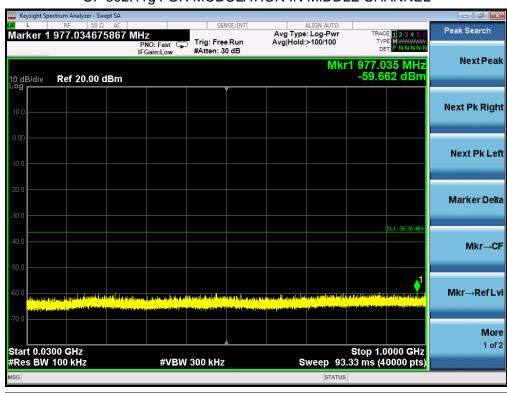


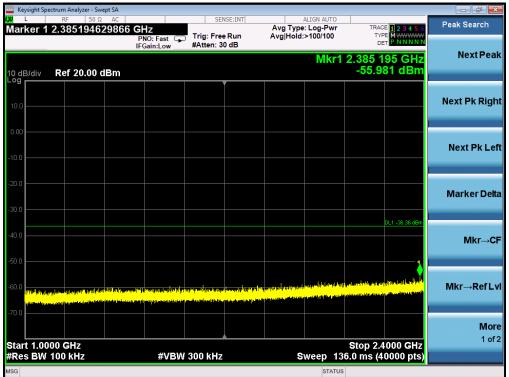


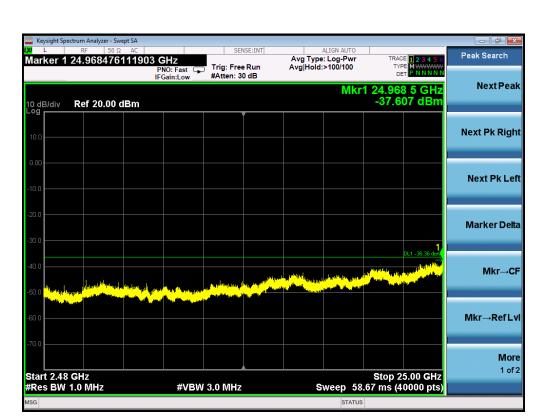
TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE OF 802.11b FOR MODULATION IN HIGH CHANNEL



TEST PLOT OF OUT OF BAND EMISSIONS WITH THE WORST CASE OF 802.11g FOR MODULATION IN LOW CHANNEL

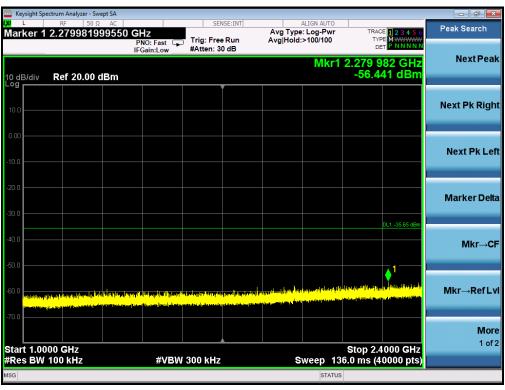






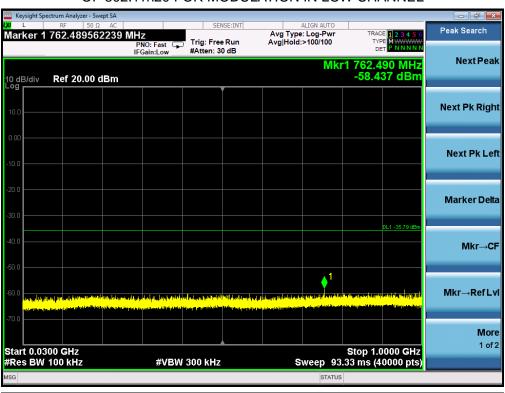
TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE OF 802.11g FOR MODULATION IN MIDDLE CHANNEL

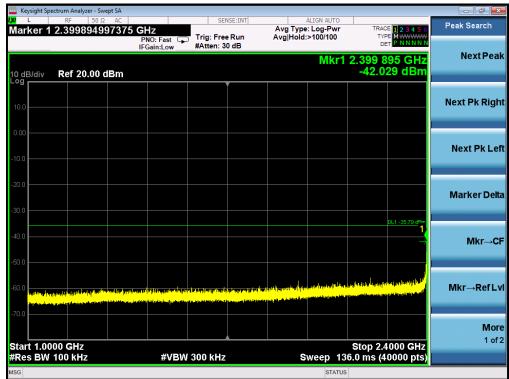




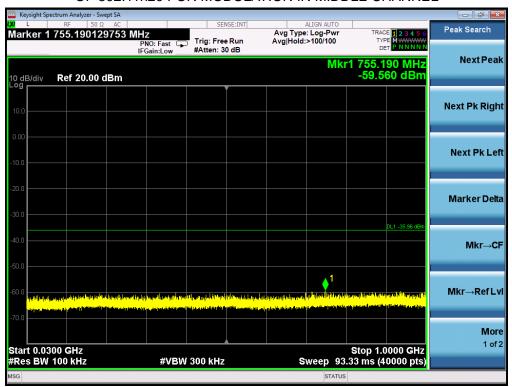


TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE
OF 802.11g FOR MODULATION IN HIGH CHANNEL

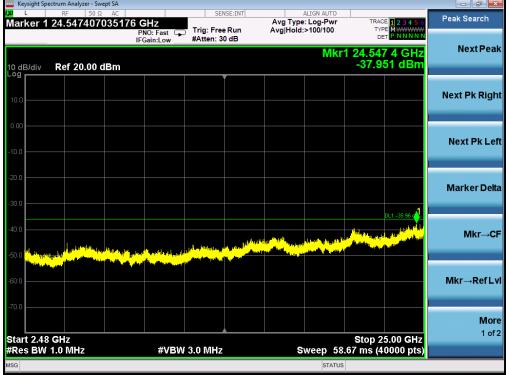




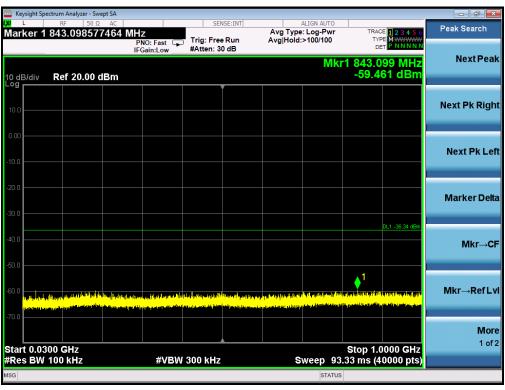
TEST PLOT OF OUT OF BAND EMISSIONS WITH THE WORST CASE OF 802.11n20 FOR MODULATION IN LOW CHANNEL

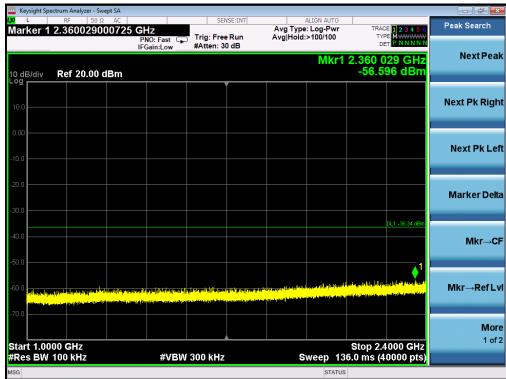


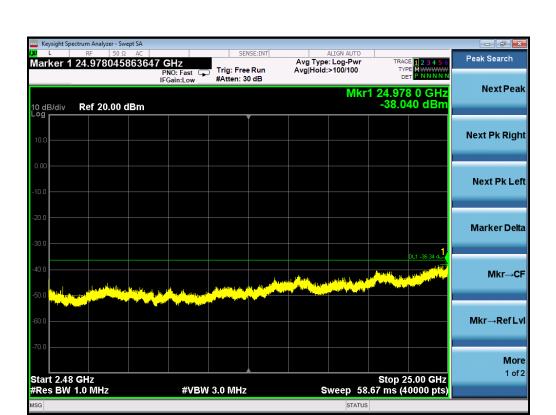




TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE OF 802.11n20 FOR MODULATION IN MIDDLE CHANNEL

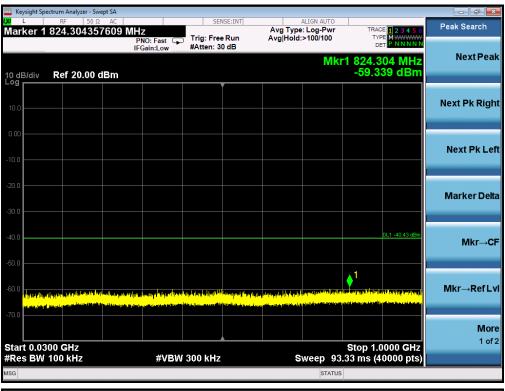


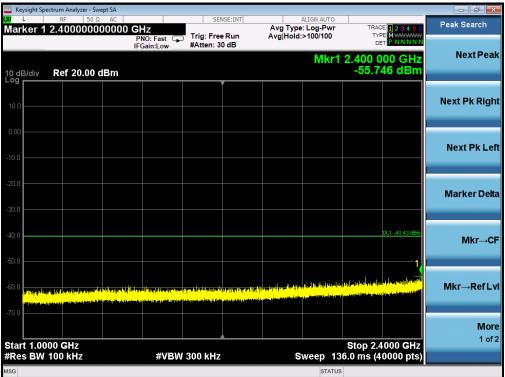


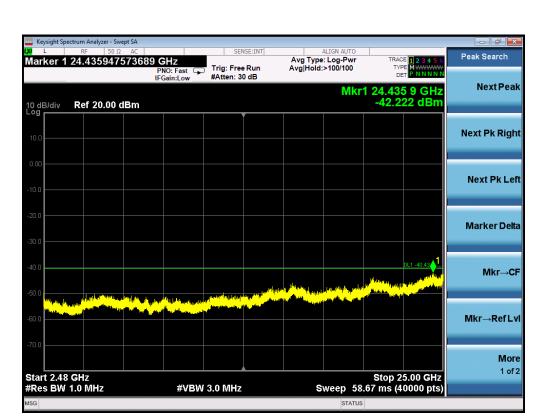


TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE OF 802.11n20 FOR MODULATION IN HIGH CHANNEL

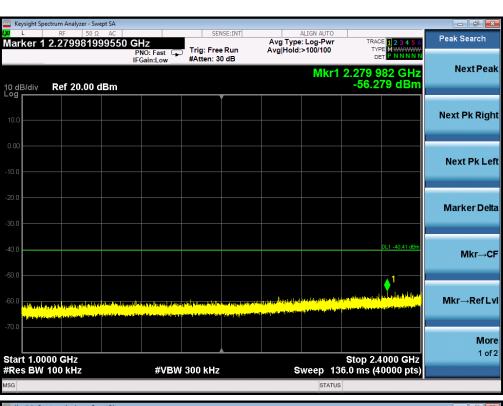
TEST PLOT OF OUT OF BAND EMISSIONS WITH THE WORST CASE OF 802.11n40 FOR MODULATION IN LOW CHANNEL







TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE OF 802.11n40 FOR MODULATION IN MIDDLE CHANNEL



TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE
OF 802.11n40 FOR MODULATION IN HIGH CHANNEL

Report No.: HK1809141091E

Note: Two transmit chains had been tested, the chain 0 was the worst case and record in the test report.

Page 42 of 83 Report No.: HK1809141091E

6. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY

6.1 MEASUREMENT PROCEDURE

- (1). Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- (2). Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- (3). Set SPA Trace 1 Max hold, then View.

Note: The method of AVGPSD-1 in the ANSI C63.10 (2013) item 11.10 was used in this testing.

6.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

Refer To Section 4.2.

6.3 LIMITS AND MEASUREMENT RESULT

TEST ITEM POWER SPECTRAL DENSITY			
TEST MODE	802.11b with data rate 1		

Channel No.	Power density Limit (dBm/20kHz) (dBm/3kHz)		Result
Low Channel	-5.712	8	Pass
Middle Channel	-5.822	8	Pass
High Channel	-5.662	8	Pass

TEST ITEM	POWER SPECTRAL DENSITY	
TEST MODE	802.11g with data rate 6	

Channel No.	Power density (dBm/20kHz)	Limit (dBm/3kHz)	Result
Low Channel	-11.370	8	Pass
Middle Channel	-11.470	8	Pass
High Channel	-11.298	8	Pass

Page 43 of 83 Report No.: HK1809141091E

TEST ITEM POWER SPECTRAL DENSITY		
TEST MODE	802.11n 20 with data rate 6.5	

Channel No.	Power density Chain 0 (dBm/20kHz)	Power density Chain 1 (dBm/20kHz)	Power density Total (dBm/20kHz)	Limit (dBm/3kHz)	Result
Low Channel	-9.760	-10.468	-7.089	8	Pass
Middle Channel	-9.728	-9.777	-6.742	8	Pass
High Channel	-9.876	-10.073	-6.963	8	Pass

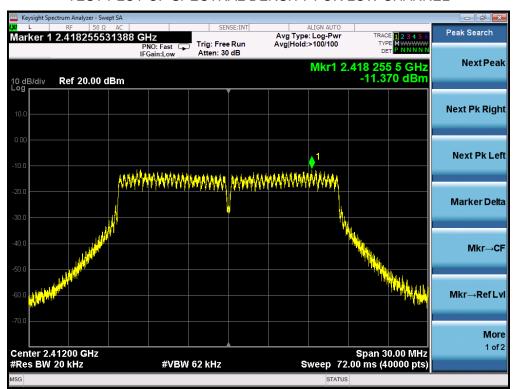
TEST ITEM POWER SPECTRAL DENSITY			
TEST MODE	802.11n 40 with data rate 13.5		

Channel No.	Power density Chain 0 (dBm/20kHz)	Power density Chain 1 (dBm/20kHz)	Power density Total (dBm/20kHz)	Limit (dBm/3kHz)	Result
Low Channel	-12.983	-13.064	-10.013	8	Pass
Middle Channel	-12.997	-13.362	-10.165	8	Pass
High Channel	-12.224	-13.157	-9.655	8	Pass

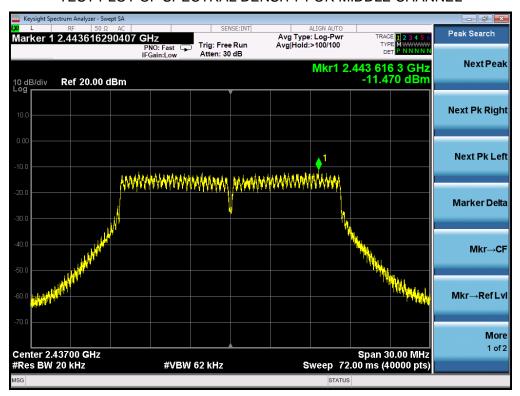
802.11b TEST RESULT TEST PLOT OF SPECTRAL DENSITY FOR LOW CHANNEL

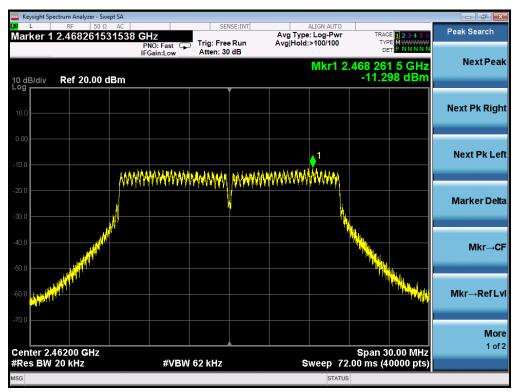
Report No.: HK1809141091E

TEST PLOT OF SPECTRAL DENSITY FOR MIDDLE CHANNEL



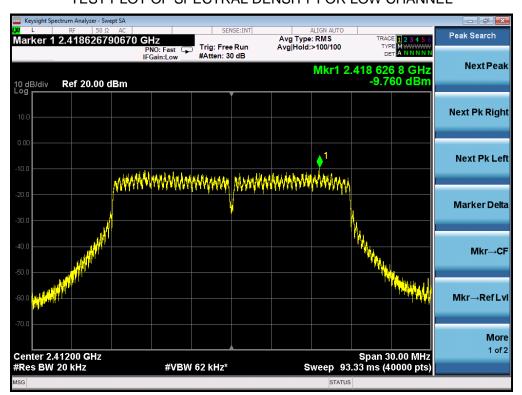
TEST PLOT OF SPECTRAL DENSITY FOR HIGH CHANNEL

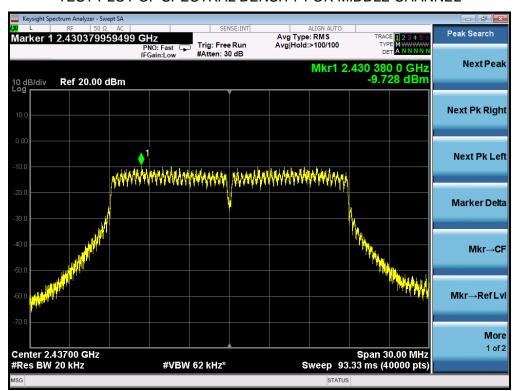

802.11g TEST RESULT
TEST PLOT OF SPECTRAL DENSITY FOR LOW CHANNEL



TEST PLOT OF SPECTRAL DENSITY FOR MIDDLE CHANNEL

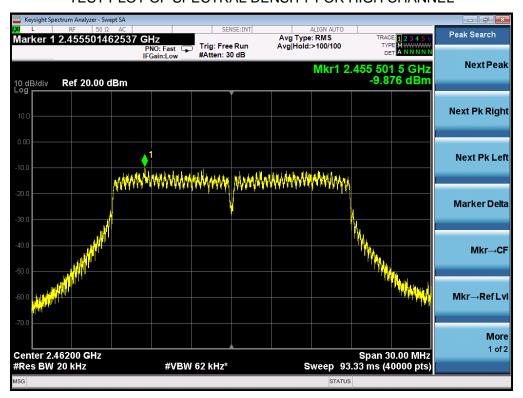
Report No.: HK1809141091E


TEST PLOT OF SPECTRAL DENSITY FOR HIGH CHANNEL

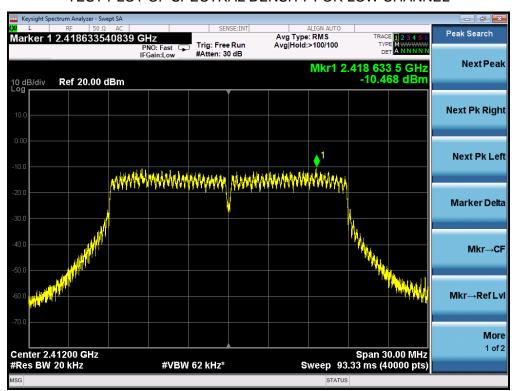


802.11n 20 TEST RESULT AT CHAIN 0 TEST PLOT OF SPECTRAL DENSITY FOR LOW CHANNEL

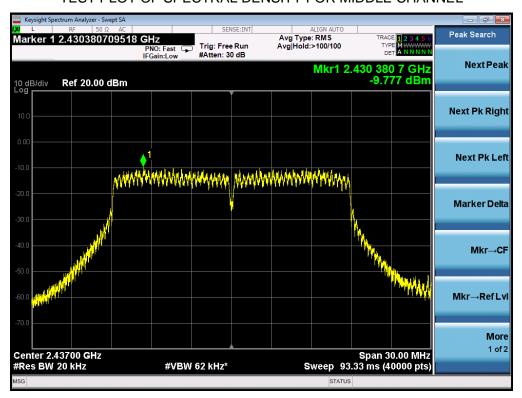
Report No.: HK1809141091E

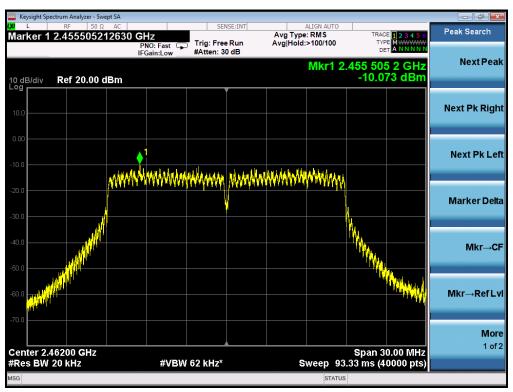


TEST PLOT OF SPECTRAL DENSITY FOR MIDDLE CHANNEL



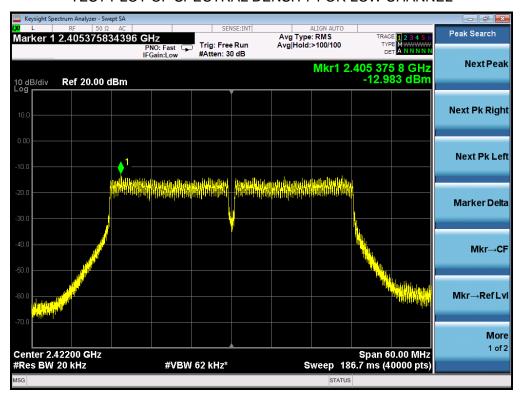
TEST PLOT OF SPECTRAL DENSITY FOR HIGH CHANNEL

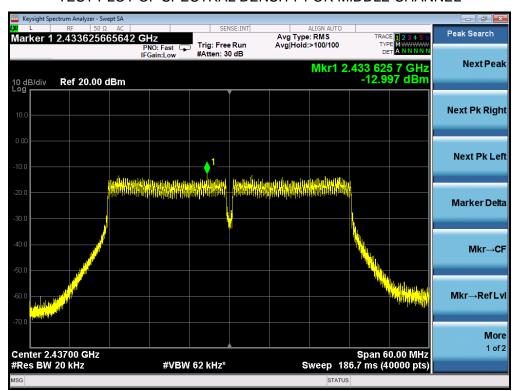

802.11n 20 TEST RESULT AT CHAIN 1
TEST PLOT OF SPECTRAL DENSITY FOR LOW CHANNEL



TEST PLOT OF SPECTRAL DENSITY FOR MIDDLE CHANNEL

Report No.: HK1809141091E

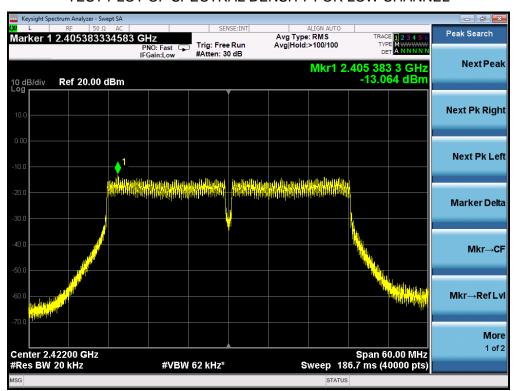

TEST PLOT OF SPECTRAL DENSITY FOR HIGH CHANNEL



802.11n 40 TEST RESULT AT CHAIN 0 TEST PLOT OF SPECTRAL DENSITY FOR LOW CHANNEL

Report No.: HK1809141091E

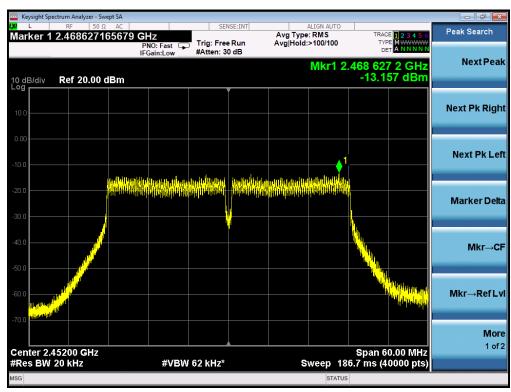

TEST PLOT OF SPECTRAL DENSITY FOR MIDDLE CHANNEL



Report No.: HK1809141091E

TEST PLOT OF SPECTRAL DENSITY FOR HIGH CHANNEL

802.11n 40 TEST RESULT AT CHAIN 1
TEST PLOT OF SPECTRAL DENSITY FOR LOW CHANNEL



TEST PLOT OF SPECTRAL DENSITY FOR MIDDLE CHANNEL

Report No.: HK1809141091E

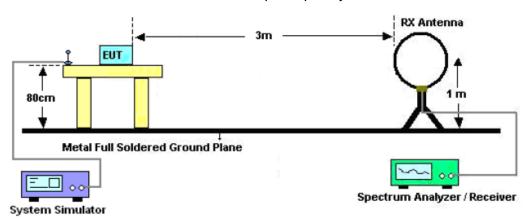
TEST PLOT OF SPECTRAL DENSITY FOR HIGH CHANNEL

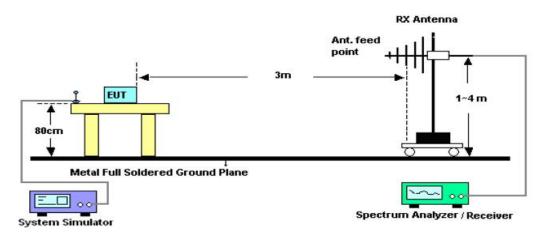
Page 53 of 83 Report No.: HK1809141091E

7. RADIATED EMISSION

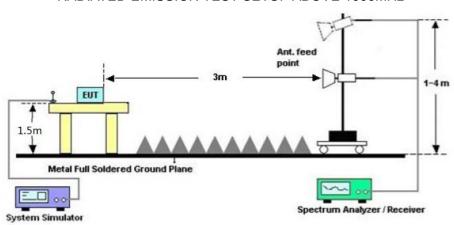
7.1. MEASUREMENT PROCEDURE

- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz RBW and 3MHz VBW for peak reading. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8.If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.




7.2. TEST SETUP

Radiated Emission Test-Setup Frequency Below 30MHz


Report No.: HK1809141091E

RADIATED EMISSION TEST SETUP 30MHz-1000MHz

RADIATED EMISSION TEST SETUP ABOVE 1000MHz

Page 55 of 83 Report No.: HK1809141091E

7.3. LIMITS AND MEASUREMENT RESULT

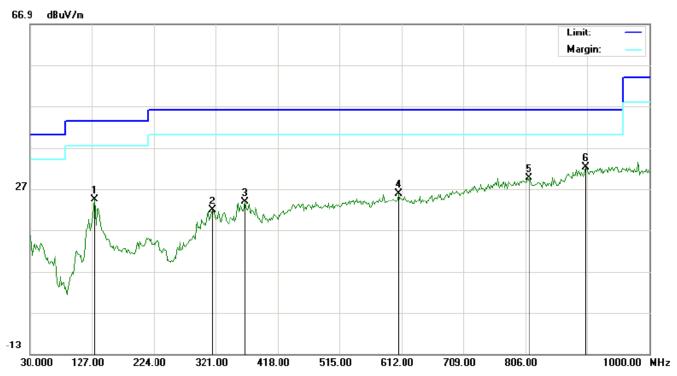
15.209(a) Limit in the below table has to be followed

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Note: All modes were tested For restricted band radiated emission,

the test records reported below are the worst result compared to other modes.

7.4. TEST RESULT

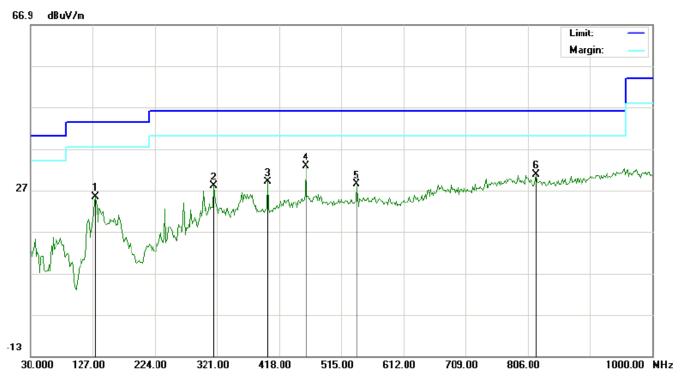

RADIATED EMISSION BELOW 30MHZ

No emission found between lowest internal used/generated frequencies to 30MHz.

Page 56 of 83 Report No.: HK1809141091E

RADIATED EMISSION BELOW 1GHZ

EUT	Dual band wireless adapter	Model Name	XHT-6B12
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11b with date rate 1 2412MHZ	Antenna	Horizontal



No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height		Comment
	-	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1		131.8500	13.03	11.39	24.42	43.50	-19.08	peak			
2		316.1500	5.32	16.49	21.81	46.00	-24.19	peak			
3		366.2667	4.90	18.85	23.75	46.00	-22.25	peak			
4		607.1500	2.12	23.75	25.87	46.00	-20.13	peak			
5		812.4666	2.27	27.32	29.59	46.00	-16.41	peak			
6	*	901.3833	3.55	28.65	32.20	46.00	-13.80	peak			

Page 57 of 83 Report No.: HK1809141091E

EUT	Dual band wireless adapter	Model Name	XHT-6B12
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11b with date rate 1 2412MHZ	Antenna	Vertical

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1		131.8500	13.54	11.80	25.34	43.50	-18.16	peak			
2		316.1500	11.59	16.49	28.08	46.00	-17.92	peak			
3		400.2167	9.90	19.08	28.98	46.00	-17.02	peak			
4	*	460.0333	12.05	20.70	32.75	46.00	-13.25	peak			
5		539.2500	6.22	22.19	28.41	46.00	-17.59	peak			
6		818.9333	3.49	27.32	30.81	46.00	-15.19	peak			

RESULT: PASS

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

- 2. The "Factor" value can be calculated automatically by software of measurement system.
- 3. All test modes had been pre-tested. The 802.11b at low channel is the worst case and recorded in the report.

Page 58 of 83 Report No.: HK1809141091E

RADIATED EMISSION ABOVE 1GHZ

EUT	Dual band wireless adapter	Model Name	XHT-6B12
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11b with date rate 1 2412MHZ	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type			
4824.059	44.19	3.72	47.91	74	-26.09	peak			
4824.100	41.32	3.72	45.04	54	-8.96	AVG			
7236.097	43.58	8.15	51.73	74	-22.27	peak			
7236.057	40.21	8.15	48.36	54	-5.64	AVG			
Remark:									
actor = Antenna Factor + Cable Loss – Pre-amplifier.									

EUT Dual band wireless adapter		Model Name	XHT-6B12
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11b with date rate 1 2412MHZ	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type		
4824.116	45.01	3.72	48.73	74	-25.27	peak		
4824.067	40.29	3.72	44.01	54	-9.99	AVG		
7236.116	44.68	8.15	52.83	74	-21.17	peak		
7236.086	39.86	8.15	48.01	54	-5.99	AVG		
Remark:								

Page 59 of 83 Report No.: HK1809141091E

EUT	Dual band wireless adapter	Model Name	XHT-6B12
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11b with date rate 1 2437MHZ	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type			
4874.070	44.12	3.75	47.87	74	-26.13	peak			
4874.107	40.82	3.75	44.57	54	-9.43	AVG			
7311.099	42.91	8.16	51.07	74	-22.93	peak			
7311.023	39.6	8.16	47.76	54	-6.24	AVG			
Remark:									
-actor = Ante	enna Factor + C	able Loss – P	re-amplifier.						

EUT	Dual band wireless adapter	Model Name	XHT-6B12
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11b with date rate 1 2437MHZ	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4874.040	45.96	3.75	49.71	74	-24.29	peak
4874.041	41.85	3.75	45.6	54	-8.4	AVG
7311.064	43.16	8.16	51.32	74	-22.68	peak
7311.048	38.42	8.16	46.58	54	-7.42	AVG
)						
Remark:						
actor = Anter	nna Factor + Cable	Loss - Pre-	amplifier.			

Page 60 of 83 Report No.: HK1809141091E

EUT	Dual band wireless adapter	Model Name	XHT-6B12
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11b with date rate 1 2462MHZ	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type			
4924.069	45.96	3.81	49.77	74	-24.23	peak			
4924.044	41.59	3.81	45.4	54	-8.6	AVG			
7386.026	44.1	8.19	52.29	74	-21.71	peak			
7386.057	39.14	8.19	47.33	54	-6.67	AVG			
Remark:	ı		I		1	ı			
Factor = Anter	na Factor + Cabl	e Loss – Pre-	amplifier.		·				

EUT	Dual band wireless adapter	Model Name	XHT-6B12
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11b with date rate 1 2462MHZ	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type	
4924.079	44.87	3.81	48.68	74	-25.32	peak	
4924.071	40.59	3.81	44.4	54	-9.6	AVG	
7386.098	42.91	8.19	51.1	74	-22.9	peak	
7386.118	36.32	8.19	44.51	54	-9.49	AVG	
Remark:							
-actor = Anter	na Factor + Cabl	e Loss – Pre-	amplifier.			•	

RESULT: PASS

Note:

Other emissions from 1G to 25 GHz are considered as ambient noise. No recording in the test report. Factor = Antenna Factor + Cable loss - Amplifier gain, Over=Measure-Limit.

The "Factor" value can be calculated automatically by software of measurement system.

All test modes had been pre-tested. The 802.11b mode is the worst case and recorded in the report.

Page 61 of 83 Report No.: HK1809141091E

8. BAND EDGE EMISSION

8.1. MEASUREMENT PROCEDURE

Radiated restricted band edge measurements

The radiated restricted band edge measurements are measured with an EMI test receiver connected to the receive antenna while the EUT is transmitting

8.2. TEST SET-UP

same as 7.2

Note:

- 1. Factor=Antenna Factor + Cable loss Amplifier gain. Field Strength=Factor + Reading level
- 2. The factor had been edited in the "Input Correction" of the Spectrum Analyzer. So the Amplitude of test plots is equal to Reading level plus the Factor in dB. Use the A dB(μ V) to represent the Amplitude. Use the F dB(μ V/m) to represent the Field Strength. So A=F.

Page 62 of 83 Report No.: HK1809141091E

8.3. TEST RESULT

EUT	Dual band wireless adapter	Model Name	XHT-6B12
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11b with data rate 1 2412MHZ	Antenna	Horizontal

PΚ

ΑV

Page 63 of 83 Report No.: HK1809141091E

EUT	Dual band wireless adapter	Model Name	XHT-6B12
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11b with data rate 1 2412MHZ	Antenna	Vertical

PΚ

 AV

Page 64 of 83 Report No.: HK1809141091E

EUT	Dual band wireless adapter	Model Name	XHT-6B12
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11b with data rate 1 2462MHZ	Antenna	Horizontal

PΚ

 AV

Page 65 of 83 Report No.: HK1809141091E

EUT	Dual band wireless adapter	Model Name	XHT-6B12
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11b with data rate 1 2462MHZ	Antenna	Vertical

PΚ

AV

Page 66 of 83 Report No.: HK1809141091E

EUT	Dual band wireless adapter	Model Name	XHT-6B12
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11g with data rate 6 2412MHZ	Antenna	Horizontal

PΚ

AV

Page 67 of 83 Report No.: HK1809141091E

EUT	Dual band wireless adapter	Model Name	XHT-6B12
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11g with data rate 6 2412MHZ	Antenna	Vertical

PΚ

 AV

Page 68 of 83 Report No.: HK1809141091E

EUT	Dual band wireless adapter	Model Name	XHT-6B12
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11g with data rate 6 2462MHZ	Antenna	Horizontal

PΚ

 AV

Page 69 of 83 Report No.: HK1809141091E

EUT	Dual band wireless adapter	Model Name	XHT-6B12
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11g with data rate 6 2462MHZ	Antenna	Vertical

PΚ

 AV



Page 70 of 83 Report No.: HK1809141091E

EUT	Dual band wireless adapter	Model Name	XHT-6B12
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11n 20 with data rate 6.5 2412MHZ	Antenna	Horizontal

PΚ

 AV

Page 71 of 83 Report No.: HK1809141091E

EUT	Dual band wireless adapter	Model Name	XHT-6B12
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11n 20 with data rate 6.5 2412MHZ	Antenna	Vertical

PΚ

 AV

Page 72 of 83 Report No.: HK1809141091E

EUT	Dual band wireless adapter	Model Name	XHT-6B12
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11n 20 with data rate 6.5 2462MHZ	Antenna	Horizontal

PΚ

AV

Page 73 of 83 Report No.: HK1809141091E

EUT	Dual band wireless adapter	Model Name	XHT-6B12
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11n 20 with data rate 6.5 2462MHZ	Antenna	Vertical

PΚ

AV

Page 74 of 83 Report No.: HK1809141091E

EUT	Dual band wireless adapter	Model Name	XHT-6B12
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11n 40with data rate 13.5 2422MHZ	Antenna	Horizontal

PΚ

ΑV

Page 75 of 83 Report No.: HK1809141091E

EUT	Dual band wireless adapter	Model Name	XHT-6B12	
Temperature	25°C	Relative Humidity	55.4%	
Pressure	960hPa	Test Voltage	Normal Voltage	
Test Mode	802.11n 40 with data rate 13.5 2422MHZ	Antenna	Vertical	

PΚ

ΑV

Page 76 of 83 Report No.: HK1809141091E

EUT	Dual band wireless adapter	Model Name	XHT-6B12
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11n 40with data rate 13.5 2452MHZ	Antenna	Horizontal

PΚ

ΑV

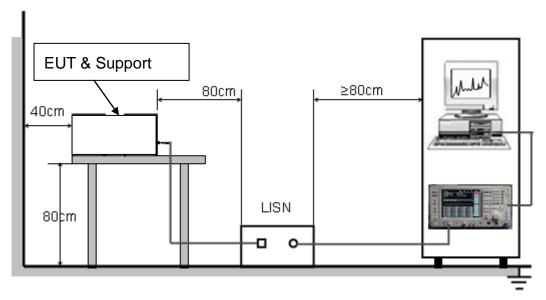
Page 77 of 83 Report No.: HK1809141091E

EUT	Dual band wireless adapter	Model Name	XHT-6B12
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11n 40 with data rate 13.5 2452MHZ	Antenna	Vertical

PΚ

Report No.: HK1809141091E

9. FCC LINE CONDUCTED EMISSION TEST


9.1. LIMITS OF LINE CONDUCTED EMISSION TEST

Francisco	Maximum RF Line Voltage				
Frequency	Q.P.(dBuV)	Average(dBuV)			
150kHz~500kHz	66-56	56-46			
500kHz~5MHz	56	46			
5MHz~30MHz	60	50			

Note:

- 1. The lower limit shall apply at the transition frequency.
- 2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

9.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST

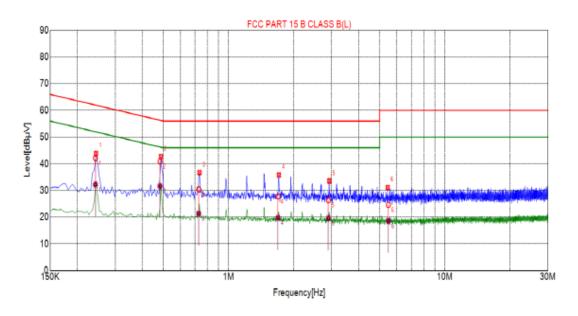
Page 79 of 83 Report No.: HK1809141091E

9.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. All support equipments received AC120V/60Hz power from a LISN, if any.
- 5. The EUT received DC 5V power from adapter which received AC120V/60Hz power from a LISN.
- 6. The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.
- 9. The test mode(s) were scanned during the preliminary test.

Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.

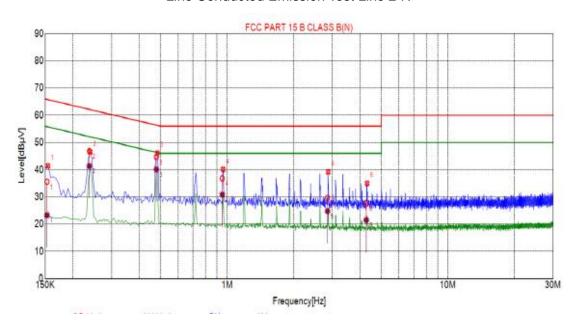
9.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST


- 1. EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- 2. A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- 3. The test data of the worst case condition(s) was reported on the Summary Data page.

9.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST

Line Conducted Emission Test Line 1-L

Report No.: HK1809141091E


Suspected List							
NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Detector	
1	0.2445	43.85	10.03	61.94	18.09	PK	
2	0.4875	42.70	10.04	56.21	13.51	PK	
3	0.7350	36.75	10.06	56.00	19.25	PK	
4	1.7115	35.79	10.13	56.00	20.21	PK	
5	2.9265	33.58	10.21	56.00	22.42	PK	
6	5.4465	31.09	10.26	60.00	28.91	PK	

Final	Final Data List								
NO.	Freq. [MHz]	Factor [dB]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	
1	0.2429	10.03	42.12	61.99	19.87	32.17	51.99	19.82	
2	0.4833	10.04	40.79	56.28	15.49	31.66	46.28	14.62	
3	0.7290	10.06	30.39	56.00	25.61	21.35	46.00	24.65	
4	1.6954	10.13	27.78	56.00	28.22	19.77	46.00	26.23	
5	2.8973	10.21	26.37	56.00	29.63	19.60	46.00	26.40	
6	5.4883	10.26	24.57	60.00	35.43	18.59	50.00	31.41	

1

Page 81 of 83 Report No.: HK1809141091E

Line Conducted Emission Test Line 2-N

Suspected List								
NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Detector		
1	0.1545	41.43	10.03	65.75	24.32	PK		
2	0.2400	46.59	10.03	62.10	15.51	PK		
3	0.4830	46.10	10.04	56.29	10.19	PK		
4	0.9600	40.14	10.06	56.00	15.86	PK		
5	2.8725	39.20	10.21	56.00	16.80	PK		
6	4.3080	35.00	10.25	56.00	21.00	PK		

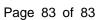
Final	Final Data List									
NO.	Freq. [MHz]	Factor [dB]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]		
1	0.1530	10.03	35.57	65.84	30.27	23.31	55.84	32.53		
2	0.2381	10.03	46.82	62.16	15.34	41.41	52.16	10.75		
3	0.4782	10.04	44.71	56.37	11.66	40.12	46.37	6.25		
4	0.9516	10.06	36.84	56.00	19.16	30.84	46.00	15.16		
5	2.8520	10.21	29.71	56.00	26.29	24.84	46.00	21.16		
6	4.2707	10.25	27.65	56.00	28.35	21.57	46.00	24.43		

RESULT: PASS

Note: All the test modes had been tested, the mode 1 was the worst case. Only the data of the worst case would be record in this test report.

Y DID Y

APPENDIX A: PHOTOGRAPHS OF TEST SETUP


Report No.: HK1809141091E

FCC RADIATED EMISSION TEST SETUP BELOW 1GHZ

FCC RADIATED EMISSION TEST SETUP ABOVE 1GHZ

Report No.: HK1809141091E

FCC LINE CONDUCTED EMISSION TEST SETUP

----END OF REPORT----