

FCC 47 CFR PART 15 SUBPART C

for

PowerRay Model: PRA10 Brand: PowerVision Test Report Number:

C170314Z03-RP1 Issued Date: May 3, 2017

Issued for

Powervision Tech Inc. Room 301, Building A, No.9 Fulin Road, Chaoyang District, Beijing, 100107, China

Issued by:

Compliance Certification Services (Shenzhen) Inc.

No.10-1 Mingkeda Logistics park, No.18, Huanguan South Rd., Guan Lan Town, Baoan District, Shenzhen, China TEL: 86-755-28055000 FAX: 86-755-28055221 E-Mail: service@ccssz.com

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services (Shenzhen) Inc. This document may be altered or revised by Compliance Certification Services (Shenzhen) Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF, A2LA, NVLAP, NIST or any government agencies. The test results in the report only apply to the tested sample.

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	May 3, 2017	Initial Issue	ALL	Sabrina Wang

TABLE OF CONTENTS

1	TEST CERTIFICATION	4
	TEST RESULT SUMMARY	5
3	EUT DESCRIPTION	6
4	TEST METHODOLOGY	7
	4.1. DESCRIPTION OF TEST MODES	
5	SETUP OF EQUIPMENT UNDER TEST	8
	5.1. DESCRIPTION OF SUPPORT UNITS	.8
	5.2. CONFIGURATION OF SYSTEM UNDER TEST	
6	FACILITIES AND ACCREDITATIONS	9
	6.1. FACILITIES	.9
	6.2. ACCREDITATIONS	.9
	6.3. MEASUREMENT UNCERTAINTY	-
7	FCC PART 15.247 REQUIREMENTS 1	0
	7.1. POWER LINE CONDUCTED EMISSIONS MEASUREMENT	
	7.2. SPURIOUS EMISSIONS MEASUREMENT	17
	7.3. 6dB BANDWIDTH MEASUREMENT	53
	7.4. ANTENNA GAIN	
	7.5. PEAK OUTPUT POWER	
	7.6. BAND EDGES MEASUREMENT	
	7.7. PEAK POWER SPECTRAL DENSITY MEASUREMENT	33

1 TEST CERTIFICATION

Product	PowerRay
Model	PRA10
Brand PowerVision	
Tested March 14~May 3, 2017	
ApplicantPowervision Tech Inc. Room 301, Building A, No.9 Fulin Road, Chaoyang District, Beijing, 100107, Ch	
Manufacturer	Powervision Tech Inc. Room 301, Building A, No.9 Fulin Road, Chaoyang District, Beijing, 100107, China

APPLICABLE STANDARDS					
Standard Test Type		Standard	Test Type		
15.207(a)	Power Line Conducted Emissions	15.247(d) 15.209(a)	 Spurious Emissions Conducted Measurement Radiated Emissions 		
15.247(a)(2)	6dB Bandwidth Measurement	15.247(b)(3) 15.247(b)(4)	Peak Power Measurement		
15.247(d)	Band Edges Measurement	15.247(e)	Peak Power Spectral Density		

We hereby certify that:

The above equipment was tested by Compliance Certification Services (Shenzhen) Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in **ANSI C63.10: 2013** and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 15.207, 15.209, 15.247.

The test results of this report relate only to the tested sample EUT identified in this report.

Approved by:

Reviewed by:

Sunday Hu Supervisor of EMC Dept. Compliance Certification Services (Shenzhen) Inc. Ruby Zhang Supervisor of Report Dept. Compliance Certification Services (Shenzhen) Inc.

2 TEST RESULT SUMMARY

APPLICABLE STANDARDS					
Standard Test Type		Result	Remark		
15.247(a)(2)	6dB Bandwidth Measurement	Pass	Meet the requirement of limit.		
15.247(b)(3) 15.247(b)(4)	Peak Power Measurement	Pass	Meet the requirement of limit.		
15.247(d)	Band Edges Measurement	Pass	Meet the requirement of limit.		
15.247(e)	Peak Power Spectral Density	Pass	Meet the requirement of limit.		
15.247(d) 15.209(a)	 Spurious Emissions Conducted Measurement Radiated Emissions 	Pass	Meet the requirement of limit.		
15.207(a)	Power line Conducted Emissions	Pass	Meet the requirement of limit.		

Note: 1. The statements of test result on the above are decided by the request of test standard only; the measurement uncertainties are not factored into this compliance determination.

2. The information of measurement uncertainty is available upon the customer's request.

3 EUT DESCRIPTION

Product	PowerRay
Model Number	PRA10
Brand	PowerVision
Model Discrepancy	N/A
Identify Number	C170314Z03-RP1
Received Date	March 14, 2017
Power Supply	DC Power supplied by the Adapter or Battery
Battery Manufacturer /Model No.	Powervision Robot Inc. / PEGIB10 DC14.8V 6400mAh 94.72Wh
Transmit Power	IEEE 802.11b mode: 16.10dBm IEEE 802.11g mode: 21.60dBm IEEE 802.11n HT20 MHz mode: 21.70dBm IEEE 802.11n HT40 MHz mode: 20.60dBm
Modulation Technique	IEEE 802.11b mode: DSSS(CCK,QPSK, BPSK) IEEE 802.11g mode: OFDM (BPSK/QPSK/16QAM/64QAM) IEEE 802.11n HT20 MHz mode: OFDM (BPSK/QPSK/16QAM/64QAM) IEEE 802.11n HT40 MHz mode: OFDM (BPSK/QPSK/16QAM/64QAM)
Transmit Data Rate	IEEE 802.11b: 11Mbps(CCK) with fall back rates of 5.5/2/1Mbps IEEE 802.11g: 54Mbps with fall back rates of 48/36/24/18/12/9 /6Mbps IEEE 802.11n HT20: 65Mbps with fall back rates of 65/58.5/52/ 39/26/19.5/13/6.5Mbps IEEE 802.11n HT40: 135Mbps with fall back rates of 135/121.5/108/ 81/54/40.5/27/13.5Mbps
Number of Channels	IEEE 802.11b mode: 11 Channels IEEE 802.11g mode: 11 Channels IEEE 802.11n HT20 MHz mode: 11 Channels IEEE 802.11n HT40 MHz mode: 7 Channels
Antenna Specification	Embedded antenna with 3.49dBi gain (Max)
Channels Spacing	IEEE 802.11b/g ,802.11n HT20/HT40 : 5MHz
Temperature Range	−10°C ~ +50°C
Hardware Version	V1.0-H
Software Version	V1.0-S

Note: 1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.

2. This submittal(s) (test report) is intended for FCC ID: <u>2AKBMPRA10</u> filing to comply with Section 15.207, 15.209 and 15.247 of the FCC Part 15, Subpart C Rules.

4 TEST METHODOLOGY

4.1. DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition.

Used the QATool_Dbg software to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Test Item	Test mode	Worse mode
Conducted Emission	Mode 1: Charge	\boxtimes
Radiated Emission	Mode 1: Continuously Transmitting	

After verification, all tests were carried out with the worst case test modes as shown below except radiated spurious emission below 1GHz, which worst case was in normal link mode only, and power line conducted emission below 30MHz, which worst case was in normal link mode.

IEEE802.11b mode: Channel Low (2412MHz), Channel Mid (2437MHz) and Channel High (2462MHz) with 1Mbps data rate were chosen for full testing.

IEEE802.11g mode: Channel Low (2412MHz), Channel Mid (2437MHz) and Channel High (2462MHz) with 6Mbps data rate were chosen for full testing.

IEEE 802.11n HT20 MHz mode: Channel Low (2412MHz), Channel Mid(2437MHz) and Channel High (2462MHz) with 6.5Mbps data rate were chosen for full testing.

IEEE 802.11n HT40 MHz mode: Channel Low (2422MHz), Channel Mid (2437MHz) and Channel High (2452MHz) with 13.5Mbps data rate were chosen for full testing.

5 SETUP OF EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

No.	Equipment	Model No.	Serial No.	FCC ID	Brand	Data Cable	Power Cord
1	PowerRay Standard Controller	PRASC10	N/A	2AKBMPRASC10	PowerVision	N/A	N/A
2	PowerRay Base Station	PRABS10	N/A	2AKBMPRABS10	PowerVision	N/A	Unshielded 0.16m
3	PowerSeeker	PSE10	N/A	2AKBMPSE10	PowerVision	N/A	Unshielded 0.40m
4	Phone	CAM-AL00	N/A	N/A	Huawei	N/A	N/A
5	Adapter	PRAIC10	N/A	DoC	PowerVision	N/A	Unshielded 1.20m (AC Cable) Unshielded 0.50m (DC Cable)
6	Notebook	Aspire V13	N/A	DoC	Acer	Unshielde d 1.20m	Unshielded 1.80m (AC Cable) Unshielded 1.70m (DC Cable)

Note:

Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

5.2. CONFIGURATION OF SYSTEM UNDER TEST

See test photographs attached in Appendix II for the actual connections between EUT and support equipment.

6 FACILITIES AND ACCREDITATIONS

6.1. FACILITIES

All measurement facilities used to collect the measurement data are located at No.10-1 Mingkeda Logistics park, No.18, Huanguan South Rd., Guan Lan Town, Baoan District, Shenzhen, China

The sites are constructed in conformance with the requirements of ANSI C63.10, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

6.2. ACCREDITATIONS

Our laboratories are accredited and approved by the following accreditation body according to ISO/IEC 17025.

USA	A2LA
China	CNAS

The measuring facility of laboratories has been authorized or registered by the following approval agencies.

USA	FCC
Japan	VCCI (C-4815,R-4320,T-2317, G-10624)
Canada	INDUSTRY CANADA

Copies of granted accreditation certificates are available for downloading from our web site, <u>http://www.ccssz.com</u>

6.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Parameter	Uncertainty
Radiated Emission, 30 to 200 MHz Test Site : 966(2)	+/-3.6880dB
Radiated Emission, 200 to 1000 MHz Test Site : 966(2)	+/-3.6695dB
Radiated Emission, 1 to 8 GHz	+/-5.1782dB
Radiated Emission, 8 to 18 GHz	+/-5.2173dB
Conducted Emissions	+/-3.6836dB
Band Width	178kHz
Peak Output Power MU	+/-1.906dB
Band Edge MU	+/-0.182dB
Channel Separation MU	416.178Hz
Duty Cycle MU	0.054ms
Frequency Stability MU	226Hz

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

The measured result is above (below) the specification limit by a margin less than the measurement uncertainty; it is therefore not possible to state compliance based on the 95% level of confidence. However, the result indicates that compliance (non-compliance) is more probable than non-compliance) with the specification limit.

7 FCC PART 15.247 REQUIREMENTS

7.1. POWER LINE CONDUCTED EMISSIONS MEASUREMENT

7.1.1. LIMITS OF CONDUCTED EMISSIONS MEASUREMENT

According to §15.207(a), except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency Range	Limits (dBµV)		
(MHz)	Quasi-peak	Average	
0.15 to 0.50	66 to 56*	56 to 46*	
0.50 to 5	56	46	
5 to 30	60	50	

NOTE:

(1) The lower limit shall apply at the transition frequencies.

(2) The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

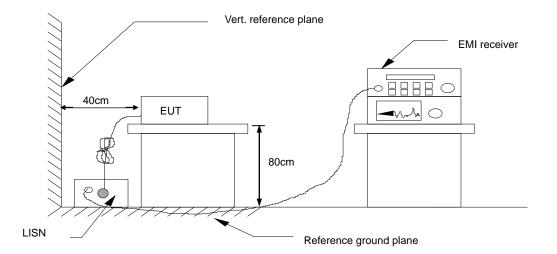
(3) All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

7.1.2. TEST INSTRUMENTS

	Conducted Emission Test Site									
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration					
EMI TEST RECEIVER	ROHDE&SCHWARZ	ESCI	100783	02/11/2017	02/10/2018					
LISN(EUT)	ROHDE&SCHWARZ	ENV216	101543-WX	02/11/2017	02/10/2018					
LISN	EMCO	3825/2	8901-1459	02/12/2017	02/11/2018					
Temp. / Humidity Meter	VICTOR	HTC-1	N/A	02/15/2017	02/14/2018					
Test S/W	FARAD	EZ-EMC/ CCS-3A1-CE								

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. N.C.R = No Calibration Request.



7.1.3. TEST PROCEDURES (please refer to measurement standard)

- The EUT and Support equipment, if needed, was placed on a non-conducted table, which is 0.8m above the ground plane and 0.4m away from the conducted wall.
- The test equipment EUT installed received AC main power, through a Line Impedance Stabilization Network (LISN), which supplied power source and was grounded to the ground plane. All support equipment power received from a second LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- The EUT test program was started. Emissions were measured on each current carrying line of the EUT using an EMI Test Receiver connected to the LISN powering the EUT.
- The frequency range from 150 kHz to 30 MHz was searched. The test data of the worst-case condition(s) was recorded. Emission levels under limit 20dB were not recorded.

7.1.4. TEST SETUP

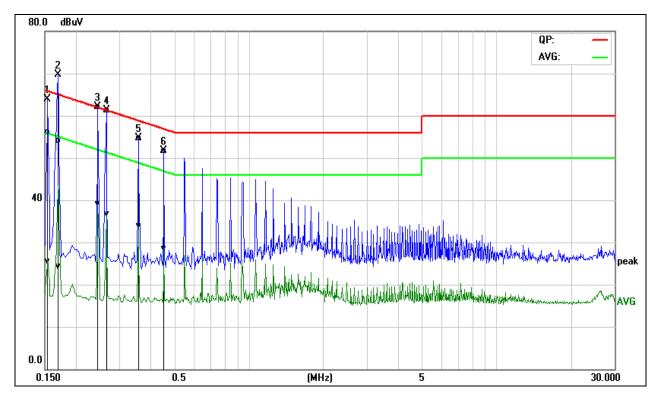
For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

7.1.5. DATA SAMPLE

	equency (MHz)		Average Reading (dBuV)		QuasiPeak Result (dBuV)	Average Result (dBuV)	QuasiPeak Limit (dBuV)	Average Limit (dBuV)	QuasiPeak Margin (dB)	Margin	Remark (Pass/Fail)
Х	.XXXX	32.69	25.65	11.52	44.21	37.17	65.78	55.79	-21.57	-18.62	Pass

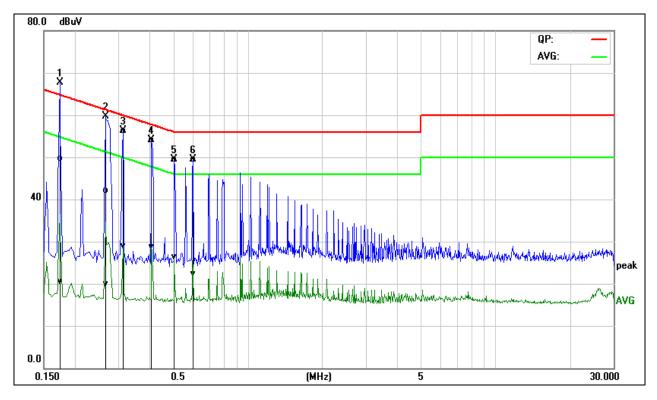
Factor = Insertion loss of LISN + Cable Loss

Result = Quasi-peak Reading/ Average Reading + Factor

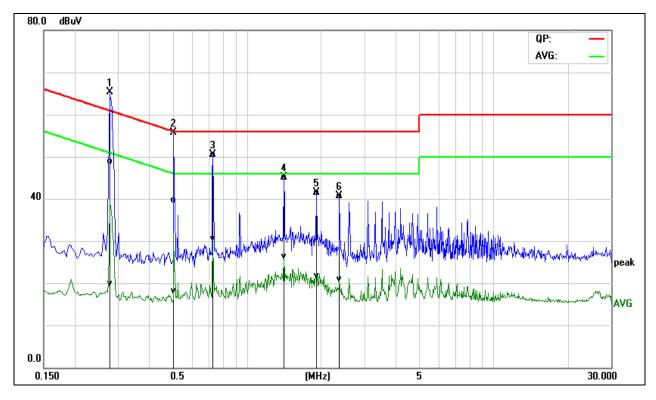

Limit = Limit stated in standard

Margin = Result (dBuV) – Limit (dBuV)

7.1.6. TEST RESULTS

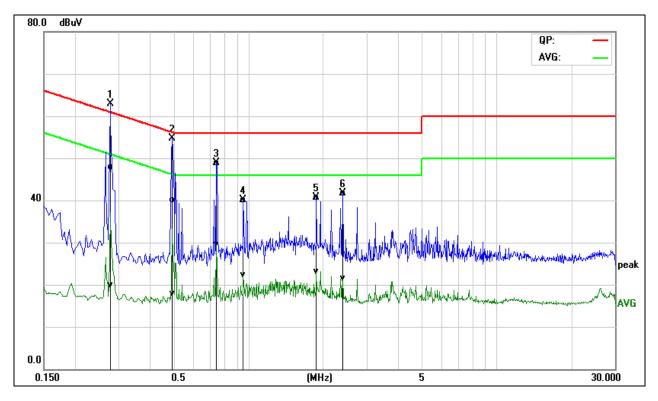

Model No.	PRA10	RBW,VBW	9 kHz
Environmental Conditions	22°C, 45% RH	Test Mode	Mode 1
Tested by	Fade Zhong	Line	L1
Test Date	April 26, 2017	Test Voltage	AC 120V/60Hz

Frequency (MHz)	QuasiPeak Reading (dBuV)	Average Reading (dBuV)		QuasiPeak Result (dBuV)	Average Result (dBuV)	QuasiPeak Limit (dBuV)	Average Limit (dBuV)	QuasiPeak Margin (dB)	Margin	Remark (Pass/Fail)
0.1539	36.48	5.88	19.62	56.10	25.50	65.78	55.79	-9.68	-30.29	Pass
0.1700	34.47	4.67	19.63	54.10	24.30	64.96	54.96	-10.86	-30.66	Pass
0.2460	42.55	19.53	19.62	59.17	39.15	61.89	51.89	-2.72	-12.74	Pass
0.2660	41.61	17.02	19.62	59.23	36.64	61.24	51.24	-2.01	-14.60	Pass
0.3580	35.04	14.24	19.58	54.62	33.82	58.77	48.77	-4.15	-14.95	Pass
0.4540	32.12	9.00	19.55	51.67	28.55	56.80	46.80	-5.13	-18.25	Pass


Model No.	PRA10	RBW,VBW	9 kHz
Environmental Conditions	22°C, 45% RH	Test Mode	Mode 1
Tested by	Fade Zhong	Line	L2
Test Date	April 26, 2017	Test Voltage	AC 120V/60Hz

Froquency	QuasiPeak	Average	Correction	QuasiPeak	Average	QuasiPeak	Average	QuasiPeak	Average	Remark
Frequency (MHz)	Reading	Reading	Factor	Result	Result	Limit	Limit	Margin	Margin	.
(=)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	(Pass/Fail)
0.1740	30.17	0.97	19.53	49.70	20.50	64.76	54.77	-15.06	-34.27	Pass
0.2660	22.56	0.46	19.54	42.10	20.00	61.24	51.24	-19.14	-31.24	Pass
0.3140	36.67	9.33	19.54	56.21	28.87	59.86	49.86	-3.65	-20.99	Pass
0.4100	34.56	9.16	19.53	54.09	28.69	57.65	47.65	-3.56	-18.96	Pass
0.5060	29.89	6.83	19.53	49.42	26.36	56.00	46.00	-6.58	-19.64	Pass
0.6020	29.84	2.80	19.57	49.41	22.37	56.00	46.00	-6.59	-23.63	Pass

REMARKS: L2 = Line Two (Neutral Line)


Model No.	PRA10	RBW,VBW	9 kHz
Environmental Conditions	22°C, 45% RH	Test Mode	Mode 1
Tested by	Fade Zhong	Line	L1
Test Date	April 26, 2017	Test Voltage	AC 240V/50Hz

Frequency (MHz)	QuasiPeak Reading (dBuV)	Average Reading (dBuV)		QuasiPeak Result (dBuV)	Average Result (dBuV)	QuasiPeak Limit (dBuV)	Average Limit (dBuV)	QuasiPeak Margin (dB)	Margin	Remark (Pass/Fail)
0.2779	29.29	0.39	19.61	48.90	20.00	60.88	50.88	-11.98	-30.88	Pass
0.5060	20.27	-1.33	19.53	39.80	18.20	56.00	46.00	-16.20	-27.80	Pass
0.7300	30.97	10.83	19.60	50.57	30.43	56.00	46.00	-5.43	-15.57	Pass
1.4180	25.52	6.69	19.62	45.14	26.31	56.00	46.00	-10.86	-19.69	Pass
1.9220	21.77	2.06	19.70	41.47	21.76	56.00	46.00	-14.53	-24.24	Pass
2.3780	20.93	1.27	19.72	40.65	20.99	56.00	46.00	-15.35	-25.01	Pass

Model No.	PRA10	RBW,VBW	9 kHz
Environmental Conditions	22°C, 45% RH	Test Mode	Mode 1
Tested by	Fade Zhong	Line	L2
Test Date	April 26, 2017	Test Voltage	AC 240V/50Hz

Fraguanay	QuasiPeak	Average	Correction	QuasiPeak	Average	QuasiPeak	Average	QuasiPeak	Average	Remark
Frequency (MHz)	Reading	Reading	Factor	Result	Result	Limit	Limit	Margin	Margin	.
(=)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	(Pass/Fail)
0.2779	28.46	0.46	19.54	48.00	20.00	60.88	50.88	-12.88	-30.88	Pass
0.4940	20.67	-1.63	19.53	40.20	17.90	56.10	46.10	-15.90	-28.20	Pass
0.7460	29.32	9.91	19.60	48.92	29.51	56.00	46.00	-7.08	-16.49	Pass
0.9580	20.62	2.67	19.56	40.18	22.23	56.00	46.00	-15.82	-23.77	Pass
1.8780	20.96	3.37	19.70	40.66	23.07	56.00	46.00	-15.34	-22.93	Pass
2.3980	22.06	1.71	19.73	41.79	21.44	56.00	46.00	-14.21	-24.56	Pass

REMARKS: L2 = Line Two (Neutral Line)

7.2. SPURIOUS EMISSIONS MEASUREMENT

7.2.1. CONDUCTED EMISSIONS MEASUREMENT

7.2.1.1. LIMITS OF CONDUCTED EMISSIONS MEASUREMENT

§15.247(d)specifies that in any 100 kHz bandwidth outside of the authorized frequency band, the power shall be attenuated according to the following conditions:

If the peak output power procedure is used to measure the fundamental emission power to demonstrate compliance to 15.247(b)(3)requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level.

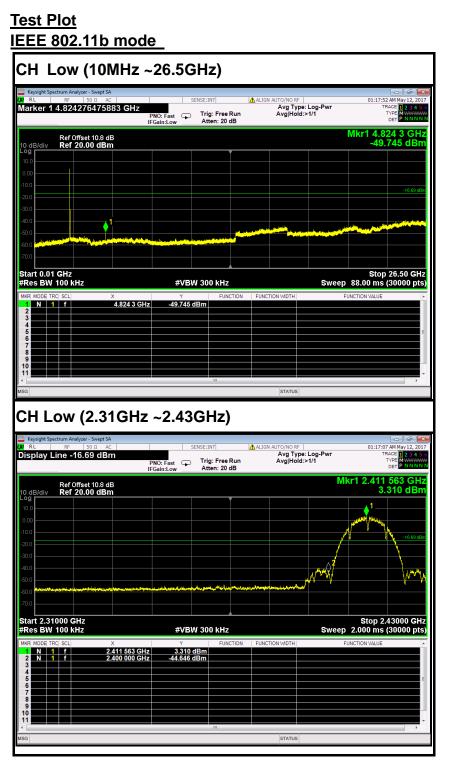
If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to 15.247(b) (3) requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured in-band average PSD level.

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)).

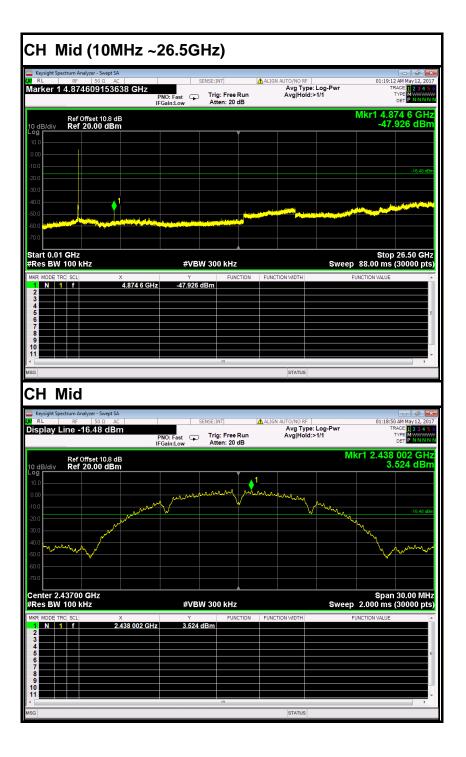
7.2.1.2. TEST INSTRUMENTS

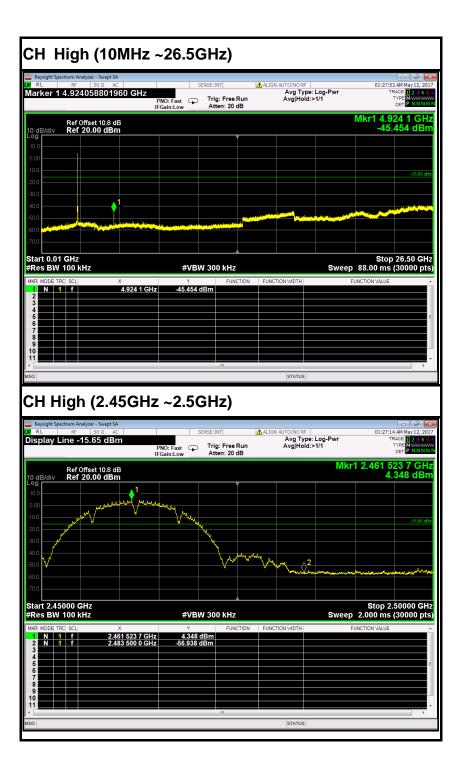
Name of Equipment	Manufacturer	Model	Serial Number	Last Calibration	Due Calibration
Spectrum Analyzer	Agilent	N9010A	MY55370330	02/21/2017	02/20/2018

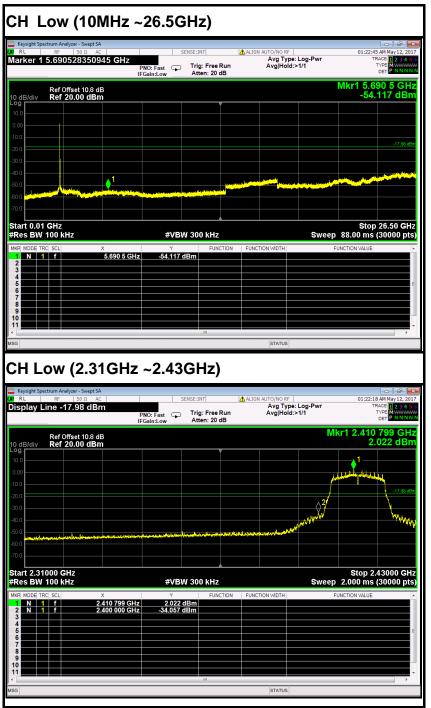
7.2.1.3. TEST PROCEDURE (please refer to measurement standard)

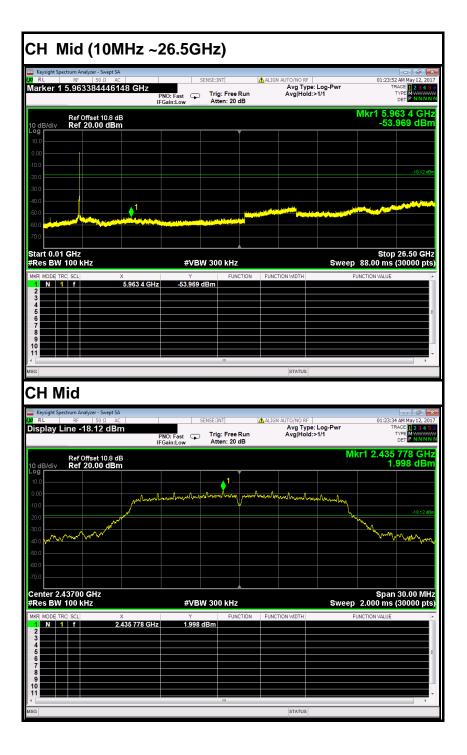

Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site. The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is

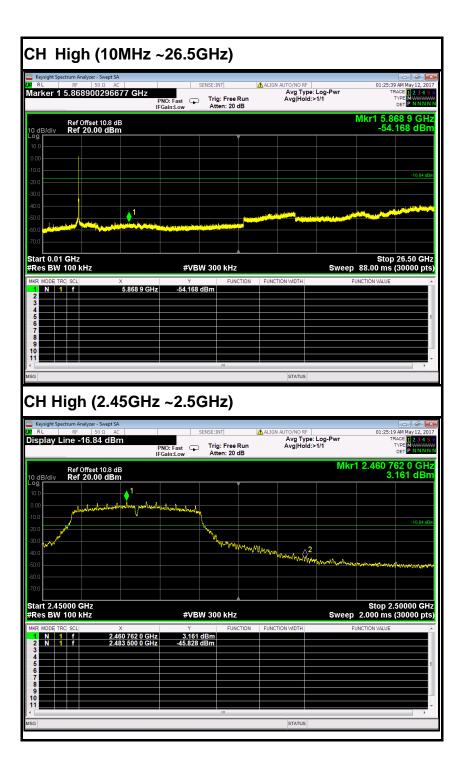
set to 100 kHz. The video bandwidth is set to 300 kHz.

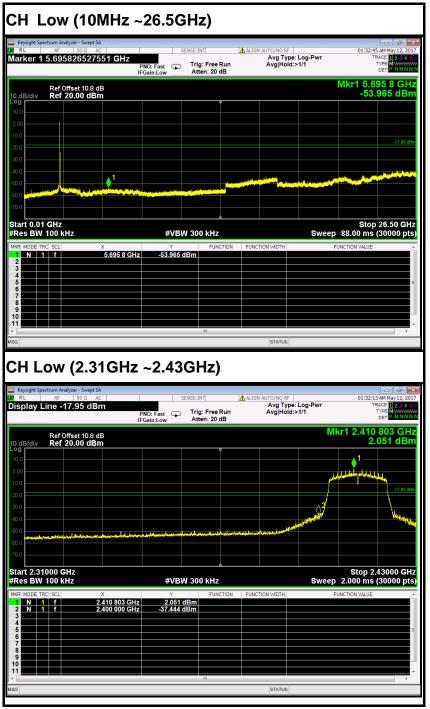

Measurements are made over the 9kHz to 26GHz range with the transmitter set to the lowest, middle, and highest channels. No emission found between lowest internal used/generated frequency to 10MHz, it is only recorded 10MHz to 26GHz.

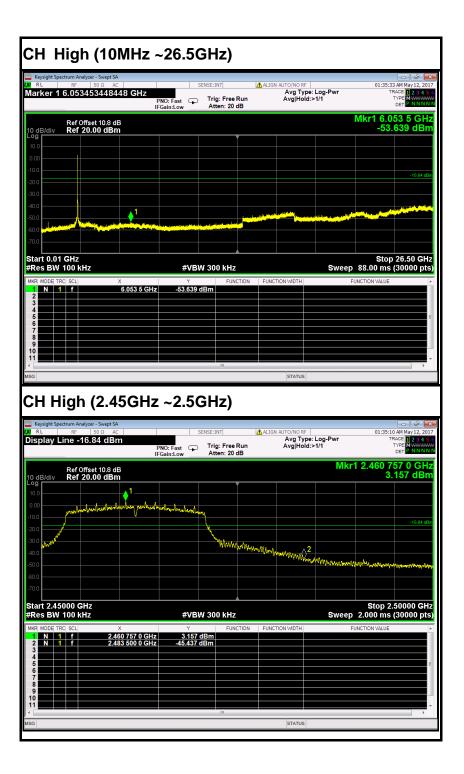

7.2.1.4. TEST RESULTS

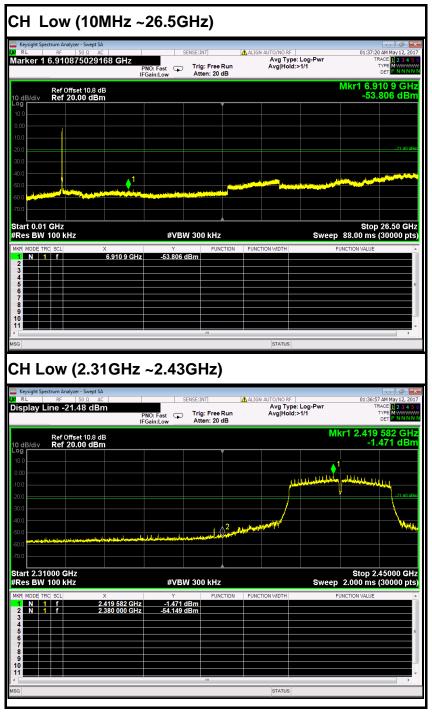




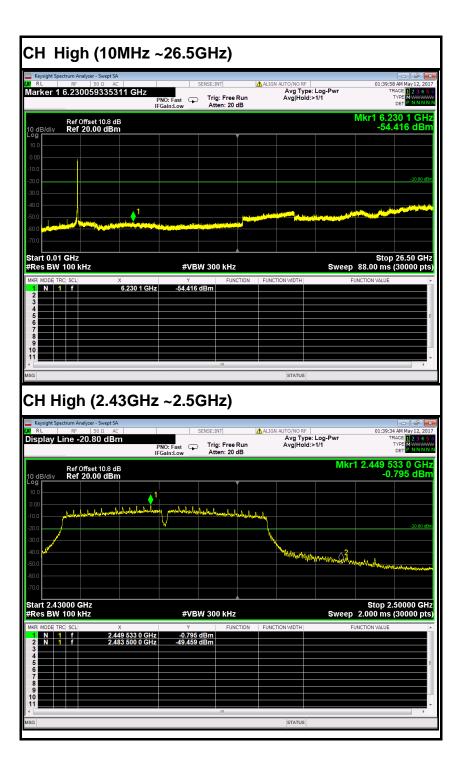

IEEE 802.11g mode




IEEE 802.11n HT20 MHz mode



CH Mid (10MHz ~26.5GHz) ALIGN A AUTO/NO RF | Avg Type: Log-Pwr Avg|Hold:>1/1 Marker 1 5.613704790160 GHz PNO: Fast Trig: Free Run IFGain:Low Atten: 20 dB Mkr1 5.613 7 GF -53.948 dB Ref Offset 10.8 dB Ref 20.00 dBm ø Start 0.01 GHz #Res BW 100 kHz Stop 26.50 GHz Sweep 88.00 ms (30000 pts #VBW 300 kHz 5.613 7 GHz -53.948 dl STAT CH Mid Avg Type: Log-Pwr Avg|Hold:>1/1 y Line -17.66 dBm PNO: Fast Trig: Free Run IFGain:Low Atten: 20 dB TYP Ref Offset 10.8 dB Ref 20.00 dBm 2.344 dB ۲ WARA Span 30.00 MHz Sweep 2.000 ms (30000 pts) Center 2.43700 GHz #Res BW 100 kHz #VBW 300 kHz 2.438 292 GHz 2.344 dE


IEEE 802.11n HT40 MHz mode

CH Mid (10MHz ~26.5GHz) ALIGN A AUTO/NO RF | Avg Type: Log-Pwr Avg|Hold:>1/1 Marker 1 6.198270275676 GHz PNO: Fast Trig: Free Run IFGain:Low Atten: 20 dB Mkr1 6.1 Ref Offset 10.8 dB Ref 20.00 dBm 38 dE Start 0.01 GHz #Res BW 100 kHz Stop 26.50 GHz Sweep 88.00 ms (30000 pts #VBW 300 kHz 6.198 3 GHz 54.588 d STAT CH Mid / Line -20.85 dBm Avg Type: Log-Pwr Avg|Hold:>1/1 PNO: Fast Trig: Free Run IFGain:Low Atten: 20 dB TYPE DE1 2 434 Ref Offset 10.8 dB Ref 20.00 dBm -0.848 dB . Augusta Span 60.00 MHz Sweep 2.000 ms (30000 pts) Center 2.43700 GHz #Res BW 100 kHz #VBW 300 kHz 2.434 529 GHz -0.848 dBm

7.2.2. RADIATED EMISSIONS MEASUREMENT

7.2.2.1. LIMITS OF RADIATED EMISSIONS MEASUREMENT

According to §15.209(a), except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (mV/m)	Measurement Distance (m)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100*	3
88-216	150*	3
216-960	200*	3
Above 960	500	3

Remark: Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

1. In the emission table above, the tighter limit applies at the band edges.

Frequency (MHz)	Field Strength (µV/m at 3-meter)	Field Strength (dBµV/m at 3-meter)
30-88	100	40
88-216	150	43.5
216-960	200	46
Above 960	500	54

 $\ensuremath{\textbf{NOTE}}\xspace:$ (1) The lower limit shall apply at the transition frequencies.

(2) Emission level (dBuV/m) = 20 log Emission level (uV/m).

7.2.2.2. TEST INSTRUMENTS

Radiated Emission Test Site 966(2)								
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration			
PSA Series Spectrum Analyzer	Agilent	E4446A	US44300399	02/21/2017	02/20/2018			
EMI TEST RECEIVER	ROHDE&SCHWARZ	ESCI	100783	02/21/2017	02/20/2018			
Amplifier	EMEC	EM330	060661	03/18/2017	03/17/2018			
High Noise Amplifier	Agilent	8449B	3008A01838	02/21/2017	02/20/2018			
Loop Antenna	COM-POWER	AL-130	121044	09/25/2016	09/24/2017			
Bilog Antenna	SCHAFFNER	CBL6143	5082	02/21/2017	02/20/2018			
Horn Antenna	SCHWARZBECK	BBHA9120	D286	02/28/2017	02/27/2018			
Board-Band Horn Antenna	Schwarzbeck	BBHA 9170	9170-497	02/28/2017	02/27/2018			
Turn Table	N/A	N/A	N/A	N.C.R	N.C.R			
Antenna Tower	SUNOL	TLT2	N/A	N.C.R	N.C.R			
Controller	Sunol Sciences	SC104V	022310-1	N.C.R	N.C.R			
Controller	СТ	N/A	N/A	N.C.R	N.C.R			
Temp. / Humidity Meter	Anymetre	JR913	N/A	02/21/2017	02/20/2018			
Test S/W	FARAD		LZ-RF / CCS	S-SZ-3A2				

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The FCC Site Registration number is 101879.

3. N.C.R = No Calibration Required.

7.2.2.3. Measuring Instruments and Setting

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10kHz for Average
RB / VB (Emission in non-restricted	1MHz / 1MHz for Peak, 1 MHz / 10kHz for
band)	Average

The following table is the setting of spectrum analyzer and receiver.

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP/AVG
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP/AVG
Start ~ Stop Frequency	30MHz~1000MHz / RB 100kHz for QP

7.2.2.4. TEST PROCEDURE (please refer to measurement standard)

1) Sequence of testing 9 kHz to 30 MHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.

--- If the EUT is a floor standing device, it is placed on the ground.

--- Auxiliary equipment and cables were positioned to simulate normal operation conditions.

--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.

--- The measurement distance is 3 meter.

--- The EUT was set into operation.

Pre measurement:

--- The turntable rotates from 0° to 315° using 45° steps.

--- The antenna height is 0.8 meter.

--- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

--- Identified emissions during the pre measurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).

--- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the pre measurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.

--- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.

--- Auxiliary equipment and cables were positioned to simulate normal operation conditions

--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.

- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Pre measurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.

--- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (\pm 45°) and antenna movement between 1 and 4 meter.

--- The final measurement will be done with QP detector with an EMI receiver.

--- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

3) Sequence of testing 1 GHz to 18 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.

--- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.

--- Auxiliary equipment and cables were positioned to simulate normal operation conditions

--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.

--- The measurement distance is 3 meter.

--- The EUT was set into operation.

Pre measurement:

--- The turntable rotates from 0° to 315° using 45° steps.

- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 2.5 meter.

--- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (\pm 45°) and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.

--- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector. --- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the pre measurement with marked maximum final measurements and the limit will be stored.

4) Sequence of testing above 18 GHz Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.

--- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.

--- Auxiliary equipment and cables were positioned to simulate normal operation conditions

--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.

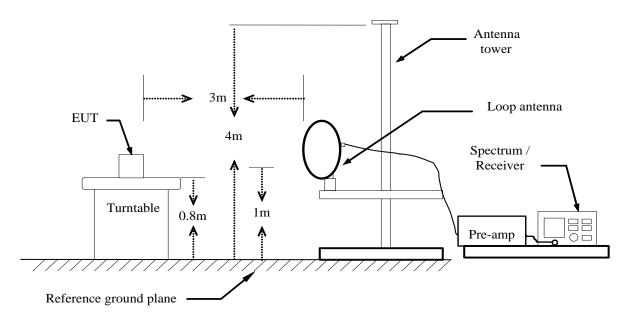
--- The measurement distance is 1 meter.

--- The EUT was set into operation.

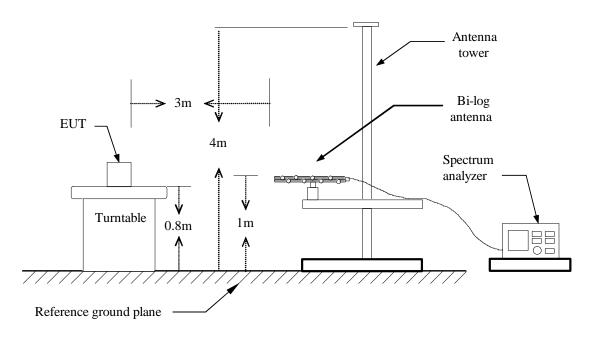
Pre measurement:

--- The antenna is moved spherical over the EUT in different polarisations of the antenna.

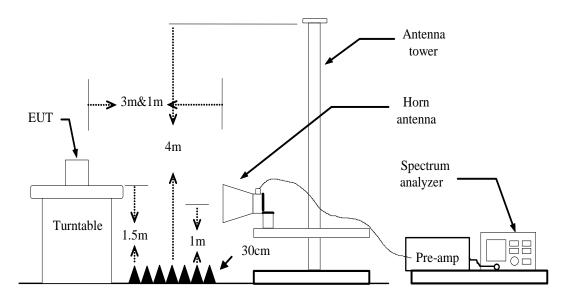
Final measurement:


--- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector.

--- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.


Compliance Certification Services (Shenzhen) Inc.

7.2.2.5. TEST SETUP


Below 30MHz

Below 1 GHz

Above 1 GHz

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

7.2.2.6. DATA SAPLE

Below 1GHz

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
XXX.XXXX	36.37	-12.20	24.17	40.00	-15.83	V	QP

Frequency (MHz)	= Emission frequency in MHz
Reading (dBuV)	= Uncorrected Analyzer / Receiver reading
Correct Factor (dB/m)	= Antenna factor + Cable loss – Amplifier gain
Result (dBuV/m)	= Reading (dBuV) + Corr. Factor (dB/m)
Limit (dBuV/m)	= Limit stated in standard
Margin (dB)	= Result (dBuV/m) – Limit (dBuV/m)
Q.P.	= Quasi-peak Reading

Above 1GHz

Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
XXXX.XXXX	62.09	-11.42	50.67	74.00	-23.33	V	Peak
XXXX.XXXX	49.78	-11.42	38.36	54.00	-15.64	V	AVG

Frequency (MHz) Reading (dBuV) Correction Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) Margin (dB) Peak AVG	 = Emission frequency in MHz = Uncorrected Analyzer / Receiver reading = Antenna factor + Cable loss – Amplifier gain = Reading (dBuV) + Corr. Factor (dB/m) = Limit stated in standard = Result (dBuV/m) – Limit (dBuV/m) = Peak Reading = Average Reading
--	---

Calculation Formula

Margin (dB) = Result (dBuV/m) – Limits (dBuV/m) Result (dBuV/m) = Reading (dBuV) + Correction Factor

Tested by: Saber Huang

7.2.2.7. TEST RESULTS

Below 1 GHz

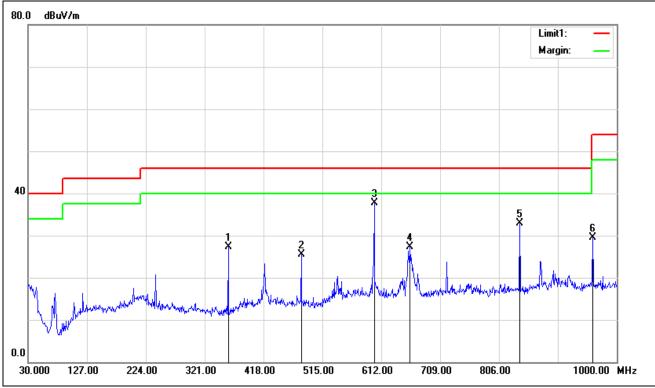
Test Mode: TX / IEEE 802.11b(CH Low)

Ambient temperature: <u>24°C</u> Relative humidity: <u>52% RH</u> Date: <u>April 25, 2017</u>

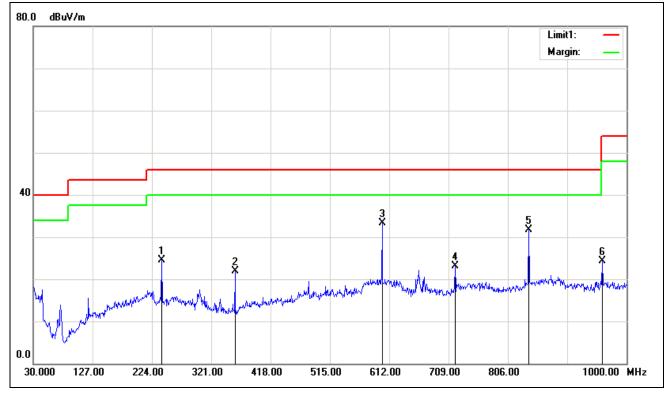
Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
359.8000	44.73	-17.42	27.31	46.00	-18.69	V	QP
480.0800	39.91	-14.36	25.55	46.00	-20.45	V	QP
600.3600	50.54	-12.86	37.68	46.00	-8.32	V	QP
659.5300	39.76	-12.39	27.37	46.00	-18.63	V	QP
839.9500	43.59	-10.75	32.84	46.00	-13.16	V	QP
960.2300	38.14	-8.69	29.45	54.00	-24.55	V	QP
		•		•			
239.5200	46.02	-21.52	24.50	46.00	-21.50	Н	QP
359.8000	39.38	-17.42	21.96	46.00	-24.04	Н	QP
600.3600	46.14	-12.86	33.28	46.00	-12.72	Н	QP
719.6700	34.89	-11.86	23.03	46.00	-22.97	Н	QP
839.9500	42.48	-10.75	31.73	46.00	-14.27	Н	QP
960.2300	33.06	-8.69	24.37	54.00	-29.63	Н	QP

**Remark: 1. No emission found between lowest internal used/generated frequency to 30MHz.

2. Pre-scan all mode and recorded the worst case results in this report (802.11b (Low Channel)


Notes:

- 1. Radiated emissions measured in frequency range from 9kHz to 1GHz were made with an instrument using Quasi-peak detector mode.
- 2. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3. The IF bandwidth of Receiver between 30MHz to 1GHz was 120kHz.


4. Frequency (MHz). Reading (dBμV/m) Correction Factor (dB) Limit (dBμV/m)	= Emission frequency in MHz = Receiver reading = Antenna factor + Cable loss – Amplifier gain = Limit stated in standard
Margin (dB)	= Measured ($dB\mu V/m$) – Limits ($dB\mu V/m$)
Antenna Pol e(H/V)	= Current carrying line of reading

Vertical

Horizontal

Above 1 GHz

Test Mode: TX / IEEE 802.11b(CH Low)

Deletive humidity 500/ DU

Tested by: Saber Huang

Ambient ter	Ambient temperature: <u>24°C</u> Relative humidity: <u>52% RH</u>					: <u>March 3</u>	<u>31, 2017</u>
Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
1198.000	48.06	-7.80	40.26	74.00	-33.74	V	peak
2233.000	45.95	-3.72	42.23	74.00	-31.77	V	peak
2566.000	46.02	-2.14	43.88	74.00	-30.12	V	peak
3367.000	43.83	-0.74	43.09	74.00	-30.91	V	peak
4825.000	49.82	4.41	54.23	74.00	-19.77	V	peak
4825.000	47.57	4.41	51.98	54.00	-2.02	V	AVG
5581.000	43.68	5.90	49.58	74.00	-24.42	V	peak
1324.000	47.86	-7.34	40.52	74.00	-33.48	Н	Peak
2494.000	45.27	-2.29	42.98	74.00	-31.02	н	Peak
2818.000	45.30	-1.69	43.61	74.00	-30.39	Н	Peak
3799.000	43.87	0.74	44.61	74.00	-29.39	Н	peak
4276.000	43.51	2.56	46.07	74.00	-27.93	Н	Peak
4825.000	43.68	4.41	48.09	74.00	-25.91	Н	peak
REMARKS.							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Test Mode: TX / IEEE 802.11b (CH Mid)

Ambient temperature: <u>24°C</u> Relative humidity: <u>52% RH</u>

Tested by: <u>Saber Huang</u> Date: March 31, 2017

	-	-					
Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
1333.000	48.17	-7.30	40.87	74.00	-33.13	V	Peak
2512.000	45.96	-2.24	43.72	74.00	-30.28	V	Peak
3358.000	43.99	-0.76	43.23	74.00	-30.77	V	Peak
3772.000	43.82	0.63	44.45	74.00	-29.55	V	Peak
4870.000	47.68	4.56	52.24	74.00	-21.76	V	Peak
4870.000	46.55	4.56	51.11	54.00	-2.89	V	AVG
5653.000	42.36	5.93	48.29	74.00	-25.71	V	Peak
	•	•		•		•	
1540.000	47.80	-6.81	40.99	74.00	-33.01	Н	Peak
2530.000	45.37	-2.21	43.16	74.00	-30.84	Н	Peak
3034.000	43.99	-1.30	42.69	74.00	-31.31	Н	Peak
4033.000	43.62	1.71	45.33	74.00	-28.67	Н	Peak
4879.000	43.35	4.59	47.94	74.00	-26.06	Н	Peak
6481.000	42.43	6.86	49.29	74.00	-24.71	Н	Peak
REMARKS:	•	•		•		•	•

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

пиану											
Ambient temperature: <u>24°C</u> Relative humidity: <u>52% RH</u> Date: <u>March 31, 2017</u>											
Remark	Antenna Pole (V/H)	Margin (dB)	Limit (dBuV/m)	Result (dBuV/m)	Correction Factor (dB/m)	Reading (dBuV)	Frequency (MHz)				
Peak	V	-33.65	74.00	40.35	-7.40	47.75	1306.000				
Peak	V	-31.97	74.00	42.03	-3.62	45.65	2251.000				
Peak	V	-30.43	74.00	43.57	-2.24	45.81	2512.000				
Peak	V	-31.61	74.00	42.39	-0.73	43.12	3376.000				
Peak	V	-29.60	74.00	44.40	1.05	43.35	3871.000				
Peak	V	-22.18	74.00	51.82	4.73	47.09	4924.000				
Peak	н	-33.03	74.00	40.97	-7.37	48.34	1315.000				
Peak	Н	-31.73	74.00	42.27	-4.22	46.49	2143.000				
Peak	Н	-30.14	74.00	43.86	-2.21	46.07	2530.000				
Peak	Н	-30.85	74.00	43.15	-1.21	44.36	3088.000				
Peak	Н	-30.13	74.00	43.87	0.59	43.28	3763.000				
Peak	Н	-25.82	74.00	48.18	4.73	43.45	4924.000				
-	н	-30.13	74.00	43.87	0.59	43.28	3763.000				

Test Mode: TX / IEEE 802.11b (CH High)

Tested by: Saber Huang

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Ambient temperature: 24°C Relative humidity: 52% RH Date: March 31, 2017 Correction Antenna Frequency Reading Result Limit Margin Remark Factor Pole (dBuV) (dBuV/m) (dBuV/m) (MHz) (dB) (dB/m) (V/H) 1315.000 47.91 -7.37 40.54 74.00 -33.46 V 74.00 V 2494.000 -2.29 43.08 -30.92 45.37 3052.000 42.72 V 43.99 -1.27 74.00 -31.28 44.74 V 44.04 0.70 74.00 -29.26 3790.000 2.47 46.14 74.00 V 4249.000 43.67 -27.86 V 4825.000 44.87 4.41 49.28 74.00 -24.72 1324.000 48.07 -7.34 40.73 74.00 -33.27 Н Н 2800.000 44.39 -1.72 42.67 74.00 -31.33 3790.000 44.14 0.70 44.84 74.00 -29.16 Н 4159.000 43.38 2.15 45.53 74.00 -28.47 Н 4996.000 43.91 4.97 48.88 74.00 -25.12 Н 5698.000 42.16 5.95 48.11 74.00 -25.89 н

Test Mode: TX / IEEE 802.11g(CH Low)

Tested by: Saber Huang

Peak

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Test Mode: TX / IEEE 802.11g (CH Mid)	
---------------------------------------	--

Ambient temperature: 24°C Relative humidity: 52% RH

Tested by: Saber Huang

Date: March 31, 2017

$\frac{1}{2} \frac{1}{2} \frac{1}$									
Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark		
1522.000	47.38	-6.84	40.54	74.00	-33.46	V	Peak		
2494.000	45.61	-2.29	43.32	74.00	-30.68	V	Peak		
2782.000	45.32	-1.75	43.57	74.00	-30.43	V	Peak		
4159.000	44.04	2.15	46.19	74.00	-27.81	V	Peak		
5284.000	42.28	5.49	47.77	74.00	-26.23	V	Peak		
5743.000	42.45	5.97	48.42	74.00	-25.58	V	Peak		
1324.000	47.91	-7.34	40.57	74.00	-33.43	Н	Peak		
2530.000	45.89	-2.21	43.68	74.00	-30.32	Н	Peak		
3313.000	43.40	-0.83	42.57	74.00	-31.43	Н	Peak		
3844.000	43.56	0.93	44.49	74.00	-29.51	Н	Peak		
4339.000	43.28	2.78	46.06	74.00	-27.94	Н	Peak		
5626.000	42.23	5.92	48.15	74.00	-25.85	н	Peak		

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).