

	TEST REPORT		
Secondo i seguer	ti Standard / According to follow	ving Standards	
Test Methods	ANSI/TIA-603-D (2010)		
Test specification	FCC CFR Title 47 Chapter 1 - Par FCC CFR Title 47 Chapter 1 - Par	rt 2: 2016 (Subpart J) rt 87: 2016 (Subpart D)	
Modulation Characteristics. FCC Part 2 Sec	tion 2.1047:		
FCC Part 87 Section 87.141		Misurato/Measured	
RF Power Output, FCC Part 2 Section 2.10 FCC Part 87 Section 87.131	46;	Misurato/Measured	
Frequency Stability, FCC Part 2 Section 2.	1055;	Conforme/Compliant	
CC Part 87 Section 87.133 Occupied Bandwidth, FCC Part 2 Section 2	2.1049:		
FCC Part 87 Section 87.135		Misurato/Measured	
Spurious Emissions at Antenna Terminals, FCC Part 87 Section 87.139	FCC Part 2 Section 2.1051;	Conforme/Compliant	
Field Strength of Spurious Radiation, FCC FCC Part 87 Section 87.139	Part 2 Section 2.1053;	Conforme/Compliant	
Richiedente / Applicant's name:	Leonardo S.p.a.		
Indirizzo / Address:	Piazza Montegrappa, 4 – 00195	– Roma – Italy	
Produttore / Manufacturer:	Leonardo S.p.a.		
Indirizzo / Address:	Piazza Montegrappa, 4 – 00195	– Roma – Italy	
Dispositivo sottoposto ai test/	TRA-100B Mode S Transponde	r, model TAC-6003/03.05	
Device Under Test	FCC ID 2AKB2TRA100B		
Data di emissione/	18 th November 2016		
Date of issue	18 th November 2016		
Validità / <i>Validity</i>	Vedi sezione 1.1 / See section	1.1	
Test report redatto da/			
Author of Test report	Loris Fruch		
Tecnico/i di prova			
Engineer/s	Loris Fruch		
Approvato da (+ firma)			
Approved by (+ signature)	Silvano Chialina		
	Responsabile del laboratorio/		
	Head of the Laboratory		
Laboratorio / Testing Laboratory	EmilabSrl		
Indirizzo / Address	Via F.Ili Solari 5/A – 33020 Ama	ro (UD) - Italy	

Page 2 of 81

Report Ref. No.16-02555

Index

1.	INFORMAZIONI GENERALI / GENERAL INFORMATION	4
1.0	Laboratorio / Testing Laboratory	4
1.1	Campionamento e Documentazione / Sampling and Documentation	4
1.2	Specifiche del test / Test specifications	4
1.3	Svolgimento dei test e condizioni generali / Test scheduling and general condition	5
1.4	Espressione dei risultati finali / Test case of final verdicts	5
1.5	Incertezza / Uncertainty	5
1.6	Termini, Definizioni e Acronimi/ Terms, definitions and abbreviations	6
2.0	APPARECCHIATURA SOTTOPOSTA A TEST/ DEVICE UNDER TEST	7
3.0	MODULATION CHARACTERISTICS - CONDIZIONI DI PROVA / TEST CONDITIONS	9
3.1	Apparecchiature utilizzate / Test Equipment Used – Modulation Characteristics	9
3.2	Fotografie del setup / Photo of the test setup – Modulation Characteristics	10
3.3	Requisiti / Requirements - Modulation Characteristics	10
3.4	Misure / Measures - Modulation Characteristics	17
4.0	RF POWER OUTPUT - CONDIZIONI DI PROVA / TEST CONDITIONS	19
4.1	Apparecchiature utilizzate / Test Equipment Used – RF Power Output	19
4.2	Schema del setup / T <i>est setup diagram</i> – RF Power Output	20
4.3	Requisiti / Requirements - RF Power Output	20
4.4	Misure / Measurements - RF Power Output	21
4.3.1	Grafici / Graphical representation of data – RF Power Output	21
5.0	FREQUENCY STABILITY - CONDIZIONI DI PROVA / TEST CONDITIONS	25
5.1	Apparecchiature utilizzate / Test Equipment Used – Frequency Stability	25
5.2	Schema del setup / Test setup diagram – Frequency Stability	26
5.3	Requisiti / Requirements - Frequency Stability	26

Emilab Srl – Amaro (UD) - Italy

FCC 1	Fest Firm Registration #: 643914	
5.4	Risultati / Results - Frequency Stability	27
5.4.1	Tabelle e grafici dei risultati / <i>Tables and graphical representation of data</i> – Frequency Stability	27
6.0	OCCUPIED BANDWIDTH - CONDIZIONI DI PROVA / TEST CONDITIONS	32
6.1	Apparecchiature utilizzate / Test Equipment Used – Occupied Bandwidth	32
6.2	Schema del setup / Test setup diagram – Occupied Bandwidth	33
6.3	Requisiti / Requirements - Occupied Bandwidth	33
6.4	Misure / Measures - Occupied Bandwidth	34
6.4.1	Grafici / Graphical representation data – Occupied Bandwidth	34
7.0	SPURIOUS EMISSIONS AT ANTENNA TERMINALS -CONDIZIONI DI PROVA / TEST CONDITIONS	38
7.1	Apparecchiature utilizzate / <i>Test Equipment Used</i> – Spurious Emissions at Antenna Termir 38	als
7.2	Schema del setup / Test setup diagram – Spurious Emissions at Antenna Terminals	39
7.3	Requisiti / Requirements - Spurious Emissions at Antenna Terminals	40
7.4	Risultati / Results - Spurious Emissions at Antenna Terminals	41
7.3.1	Grafici dei risultati / Graphical representation data – Conducted Spurious Emissions	42
8.0	FIELD STRENGTH OF SPURIOUS RADIATION -CONDIZIONI DI PROVA / TEST_CONDITION	S52
8.1	Apparecchiature utilizzate / Test Equipment Used – Field Strength of Spurious Radiation	53
8.2	Schema del setup / Test setup diagram – Field Strength of Spurious Radiation	54
8.3	Requisiti / Requirements - Field Strength of Spurious Radiation	55
8.4	Risultati / Results - Field Strength of Spurious Radiation	56
8.4.1	Tabelle e grafici dei risultati / Tables and g <i>raphical representation data</i> – Field Strength of Spurious Radiation	57
Allega	to 2 / Annex 2: Incertezza / Uncertainty	81

1. Informazioni Generali / General Information

1.0 Laboratorio / Testing Laboratory

Luogo di Prova e partecipanti/ Testing location and participants:			
Testing Laboratory:			
Testing location/ address:	EmilabSrl		
	Via F.Ili Solari 5/A – 33020 Amaro (UD) – Italy		
	Tel +39 0433 468625		
	Fax +39 0433 494739		
	Email: <u>info@emilab.it</u>		
Partecipanti / Participants:	Loris Fruch		

1.1 Campionamento e Documentazione / Sampling and Documentation

I campioni sono stati consegnati dal Cliente. I risultati dei test contenuti in questo documento si riferiscono esclusivamente al modello e numero di serie provato. E' responsabilità del costruttore assicurare che la produzione dei modelli in serie rispetti i requisiti del presente documento. Questo documento non può essere riprodotto in parte senza il consenso scritto del responsabile del laboratorio EMILAB.

EMILAB non si assume nessuna responsabilità per danni derivanti da interpretazioni che esulano dal contesto e dall'applicazione del presente documento.

The samples was delivered by customer. The results contained in this report reflect the results for this particular model and serial number. It is the responsibility of the manufacturer to ensure that all production models meet the intent of the requirements detailed within this report. This report shall not be reproduced, except in full, without the written approval of the Issuing testing Emilab laboratory.

EMILAB takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

1.2 Specifiche del test / *Test specifications*

Test performed according to:

Test plan	/
Test specification	FCC CFR Title 47 Chapter 1 - Part 2: 2016 (Subpart J) Code of Federal Regulations – Telecommunications Federal Communications Commission Frequency Allocations and Radio Treaty Matters; General Rules and Regulations Equipment Authorization. Procedures Revised as of November 1, 2016;
	FCC CFR Title 47 Chapter 1 - Part 87: 2016 (Subpart D) Code of Federal Regulations – Telecommunications Federal Communications Commission Aviation Services Technical Requirements. Revised as of November 1, 2016 FCC CFR Title 47 Chapter 1 - Part 87: Not Accreditated by ACCREDIA
Test Method/Basic Standard	ANSI/TIA-603-D (2010) Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

1.3 Svolgimento dei test e condizioni generali / Test scheduling and general condition

Svolgimento dei test/ Scheduling		
Data ricezione EUT		
Date of receipt of EUT	07/11/2016	
Data esecuzione test		
Date (s) of performance of tests	08/11/2016 – 16/11/2016	
Condizioni ambientali	Se non diversamente specificato / If not otherwise specified:	
/ Environment Conditions	Temperature: 18-28°C	
	Humidity: 20-90%	
	Pressure: 87-108.56 kPa	
Intervallo delle tarature/		
Calibration Interval		

1.4 Espressione dei risultati finali / *Test case of final verdicts*

GIUDIZI NON SONO SOGGETTI AD ACCREDITAMENTO			
VERDICTS ARE NOT SUBJECT TO ACCREDITATION			
- test case does not apply to the test object:	N/A		
- test object does meet the requirement:	Compliant or PASS		
- test object does not meet the requirement:	Not Compliant or FAIL		

1.5 Incertezza / Uncertainty

L'incertezza estesa riportata è espressa come l'incertezza tipo moltiplicata per il fattore di copertura k = 2, che per una distribuzione normale corrisponde ad una probabilità di copertura di circa il 95 %.

The reported expanded uncertainty of measurements is stated as the standard uncertainty of measurement, multiplied by the coverage factor k=2, which for a normal distribution corresponding to a coverage probability of approximately 95%.

Termini, Definizioni e Acronimi/ Terms, definitions and abbreviations 1.6

AC	Alternating Current
ACK	Acknowledgement
AFH	Adaptive Frequency Hopping
AM	Amplitude modulation
AVF det	Average Detector
BIT	Burst Interval Time
	Channel Availability Check
	Dond/Width
CW	Continuous wave
DAA	Detect And Avoid
DC	Duty Cycle DFS
DFS	Dynamic Frequency Selection
DSSS	Direct Sequence Spread Spectrum
DUT	Device Under Test
EIRP	equivalent isotropically radiated power
EMC	Electro Magnetic Compatibility
EUT	Equipment Under test
FAR	Fully Anechoic Room
FM	Freguncy Modulation
FHSS	Frequency Hopping Spread Spectrum
HT20 High	Throughput in a 20 MHz channel
HT40 High	Throughput in a 40 MHz channel
IBT	Listen Before Talk
	Logarithmic Periodic Dipole Antenna
	Medulation Coding Schome
MINO	Multiple Input Multiple Output
	Madium I Miliantian
MO /-	Medium Utilisation
MS/S	Mega-Samples per second
NACK	Not Acknowledged
OATS	Open Air Test Site
OFDM	Orthogonal Frequency Division Multiplexing
OM	Operating Modes
OOB	Out Of Band
PK det	Peak Detector
PM	pulse modulation
Ppm	parts per million
PPS	Pulses Per Second
PRF	Pulse Repetition Frequency
RBW	Resolution BandWidth
RE	Radiated Emission
RMS	Root Mean Square
RF	Radio Frequency
Rx	Receiver
SAC	Semi Anechoic Chamber
TI	
TDC	Transmit Dowor Control
	Video DondWidth
VSWK	voltage standing wave ratio

2.0 Apparecchiatura sottoposta a test/ Device Under Test

Descrizione/ Description::	: TRA-100B Mode S Transponder	
Marchio commerciale / <i>Trade Mark</i> :	TRA-100B BOEING TRANSPONDER SER S16419478 MFR A0810 DMF 112016 AMDT ©©@@@B@@@ ©@@@@B@@@@@ WEIGHT 12.4 Lbs (5.63Kg) POWER 115 VAC/380-420 Hz	
Produttore / Manufacturer:	Leonardo S.p.a.	
Modello / Model/Type reference::	TAC-6003/03 Rev. 05	
Voltage/Current:	115V	
Frequency:	380-400Hz	
Power:	<60W	
Numero EUT / EUT Number :	16LA00343/01	
Serial Number:	S16419478	
FCC ID:	2AKB2TRA100B	
Numero di campioni testati / <i>Number of samples tested</i> :	1	
Hardware stage/level:	05	
Software stage/level :	TBR-6001/01.08 (revisione 08)	
Firmware stage/level:	TIS-5432/03.06 (revisione 06)	
Modification stage:	1	
Operating Mode:	Mode 1 (120 Mode S Long) Mode 2 (1200 ATCRBS) Mode 3 (1200 ATCRBS + 120 Mode S Long)	
Wiring harness:	2mt power supply cable, 8mt Control cable, 2mt TOP and BOTTOM antenna cables. For "Field Strength of Spurious Radiation" test all the cables were 8mt long.	
Monitoring	/	

Info:

The EUT is an Aircraft station transmitter.

Product family description:

The TRA-100B Transponder family is composed by the following equipment:

- 1. TRA-100B for Airbus platforms with code: TAC-6001/03.05
- 2. TRA-100B for Boeing platforms with code: TAC-6003/03.05
- 3. TRA-100B for EASA/FAA platforms with code: TAC-6004/03.05

Tested model: the device selected for the tests as representative of the above described family is the model TAC-6003/03 Rev. 05.

Justification: As stated in the Qualification Strategy document 6AA-FI100190 REV 03: 10/2016, the three P/Ns relevant the TRA-100B family share the same OSW TBR-6001/01 and the same HW/FW TAD-6001/03. The difference is related to the way in which the same SW is executed on the same HW: in fact at production time the setting of a specific register of the equipment dedicated PROM within DPIO HWCI is performed with the specific platform configuration parameter (HW P/N) related to each platform thus justifying the three different P/Ns associated to each of them. Some different functionalities are activated by the unique OSW CSCI that is triggered by the mentioned platform configuration code. In detail, during the equipment startup the platform configuration code is recovered from the specified PROM and stored into a dedicated FPGA register and then it is read by OSW CSCI and stored into a specific volatile memory register. At any time a platform dependent function is to be executed, the OSW CSCI checks the value of such a stored configuration code and then the required function is accordingly executed.

Specifically the main OSW CSCI functionalities differences are:

1. Boeing configuration uses ARINC labels 360 for flight ID, while Airbus one uses ARINC labels from 233 to 237

2. the Maintenance bus is used by Airbus configuration both in Normal and in Interactive Mode, while it is used only in Normal Mode by Boeing one

3. ARINC labels used for different ARINC ports can differ from a configuration to another one.

Complete and detailed information are recorded into Equipment Specification document (Ref. D6). Basing on what detailed above, the three equipment configurations are therefore composed by the same OSW TBR-6001/01, the same HW/FW TAD-6001/03 and differs for identification labels (same material and dimensions, different text content).

EUT Hardware features

These information are confidentially and were provided to the FCC.

Auxiliary equipment for tests supplied by the applicant:

- Control PC with ARING 429 PCB board model ALTADATA
- IFF-45TS IFF test bench

Test software installed on Control PC:

- Altaview Bus Analyser version 2.6.3.0;
- IFF-45TS Remote Control for Mode S, version 2.31 beta

3.0 Modulation Characteristics - Condizioni di prova / Test Conditions

Technician / Tecnico: Loris Fruch					
Table No.	able No. TEST: Modulation Characteristics, FCC Part 2 Section 2.1047			١	
Method	/			١	
Parameters re	quired prior to the test	Laboratory Ambient Temperature	18 to 28 °C		
		Relative Humidity	20 to 90 %		
Parameters re	corded during the test	Laboratory Ambient Temperature	21 °C		
		Relative Humidity	58 %		
Supplementary	information:				
 Conducted Test, executed on video detector taken at "PROG OUT1" output of the IFF45TS connected to the Oscilloscope; 					
- EUT powered at 115Vac 400Hz;					

- Test executed with the following EUT Operating Mode (see par. 2.0):
 - Mode 1 (120 Mode S Long)
 - Mode 2 (1200 ATCRBS)

3.1 Apparecchiature utilizzate / *Test Equipment Used* – Modulation Characteristics

Apparecchiature usate/Equipment Used	Modello/Model	Costruttore/ Manufacturer	Numero di serie/ Serial Number	Data calibrazione / Calibration date	Intervallo / Interval
Oscilloscope	DSO9254A	Agilent	MY52090217	12/2015	1 year
RF Cable	R284C0351050	Radiall	EL086215	10/2016	1 year
RF Cable TOP	TAN-5386/01	Selex ES	/	10/2016	1 year
RF Cable BOTTOM	TAN-5386/01	Selex ES	/	10/2016	1 year
2dB Attenuator	PE7085-2	Pasternack	EL091816	10/2016	1 year
6dB Attenuator	PE7021-6	Pasternack	EL017308	06/2016	1 year
6dB Attenuator	75-A-MFN-06	BIRD	9825	02/2016	1 year
30dB Attenuator	SBW-N30W5	Spin	EL041210	06/2016	1 year
AC Power Supply	KBT-100-C-109- 451	BEHLMAN	5896	12/2015	1 year

3.1.1 Apparecchiature ausiliarie / AuxiliaryEquipment

Apparecchiature usate / Used Equipment	Modello / <i>Model</i>	Costruttore /Manufacturer	Numero di serie / Serial Number
PCB board (installed on PC)	ARING 429	Altadata	/
Test bench	IFF-45TS IFF	Aeroflex Wichita INC.	100000001

3.2 Fotografie del setup / Photo of the test setup – Modulation Characteristics

3.3 Requisiti / *Requirements -* Modulation Characteristics

FCC Section 2.1047 (d) states: "A curve or equivalent data which shows that the equipment will meet the modulation requirements of the rules under which the equipment is to be licensed."

FCC Section 2.1049 goes on to describe conditions of this test for various widely used modulation formats. The relevant section to the EUT in question is paragraph 2.1049(d), which states: "Transmitters designed for other types of modulation — when modulated by an appropriate signal of sufficient amplitude to be representative of the type of service in which used. A description of the input signal should be supplied."

That description extracted from the EUT Component Maintenance Manual (CMM) Issue No. 02 of 2016/08 par. 4 follows.

TRA-100B Mode S Transponder – Modes Operation

The basic XPDR System consists of a transponder, a control unit, two antennas, and installation hardware. Communications for the control of the remote transponder are by one-way ARINC 429 bus.

If the transponder is part of a TCAS installation, two-way communications by ARINC 429 data bus are also utilized between the transponder and the TCAS. The transponder will perform normal Air Traffic Control (ATC) functions whether it is or is not part of the TCAS system; however the TCAS system cannot function without the transponder. Antenna diversity operation of the transponder is a requirement for TCAS installations.

The transponder is capable of accepting altitude (air data) information from a variety of optional sources. These include the ARINC 575 and ARINC 706 Air Data Computers. Furthermore, selection between a primary and secondary input for each of these sources is provided.

An input and output ARINC 429 Maintenance Interface is provided that conforms to ARINC 604 and OEM specific requirements.

The transponder may also receive ARINC 429 data from a variety of equipment (i.e. Inertial Reference System (IRS)/Flight Management System (FMS), Data Concentrator, Flight Management Computer (FMC)/Global Navigation Satellite System (GNSS), FMC Gen, Flight Control Computer (FCC)/Maintenance Computer Program (MCP), Control Head, and Air Data System (ADS)).

This data will be utilized to populate:

- Flight Identification required for Elementary Surveillance
- Downlink Aircraft Parameters required for Enhanced Surveillance
- ADS-B Extended Squitters.

The XPDR performs its intended function and not create a hazard to users of the National Airspace System (NAS).

The Transponder TRA-100B is a avionics equipment capable to provide the Mode S Transponder function required by Technical Standard Order (ETSO-C112d/TSO-C112e).

It also provides Extended Squitter ADS-B Out function required by ETSO-C166b/TSO-C166b. The TRA-100B is designed to be a Level 2 transponder.

Page 11 of 81

For Level 1 includes the following capabilities:

- Mode A identity and Mode C pressure-altitude reporting,
- Air Traffic Control Radar Beacon System (ATCRBS)/Mode-S and Mode S all-call transactions,
- Addressed surveillance altitude and identity transaction,
- Lockout protocols,
- Basic data protocols except data link capability reporting, and
- Air-to-air service and squitter transactions.

For Level 2 includes the following capabilities:

- Bi-directional air-to-air information exchange
- Ground-to-air data uplink, Comm-A
- Air-to-ground data downlink, Comm-B
- Multisite message protocol
- Data link capability reporting
- Aircraft identification reporting
- Traffic Alert and Collision Avoidance System (TCAS)/Airborne Collision Avoidance System (ACAS) crosslink capability

Furthermore the TRA-100B contains the following optional additional features (associated ID code for transponder marking):

- TCAS Compatibility (a)
- Antenna Diversity (d)
- Extended Squitter (e)
- Enhanced Surveillance (including Elementary Surveillance) (n)
- Surveillance Identifier Code (s)

Among the above characteristics, the Transponder TRA-100B:

- exceeds the minimum output power level of 125 watts required by Class 1 equipment as defined in RTCA/DO-181E. Therefore, the XPDR transponder marking for TSO-C112e is Level 2adens, Class 1.
- exceeds the minimum output power level of 125 watts required by Class A1 transmit only equipment as defined in RTCA/DO-260B. Therefore, the XPDR transponder marking for TSO-C166b is Class A1 transmit only.

ATCRBS System Operation

The ATCRBS system can be defined as "a secondary surveillance radar system developed for use within the air traffic control system for more precise position reporting of planes. It is used in conjunction with the primary radar, which is used to determine the presence of planes in the airspace. ATCRBS supplements this positional information with positive identification and altitude information allowing controllers to track each plane more precisely and efficiently."1

In this scenario the ATC ground based interrogator transmits an interrogation by means of sequence of pulses at a frequency of 1030 MHz and call all transponders for a response on the mode being used to reply. The received replies will be displayed on the ATC radar screen.

Page 12 of 81

Analog to the ground based interrogator, an airborne TCAS device may transmits interrogation for airborne traffic. TCAS can detects direction and altitude of an aircraft equipped with a transponder.

Figure 0-1 – ATCRBS System

ATCRBS Transmission Overview

The Air Traffic Control Radar Beacon System (ATCRBS) interrogates aircraft with either Mode A or Mode C. The Mode A interrogation requests the aircraft identification code. The Mode C interrogation requests the aircraft altitude. Any aircraft in the beam of the radar replies.

In order to prevent an undesired reply from an aircraft which are not in the main beam the Side Lobe Suppression (SLS) technique is used.

Looking at the radius antenna diagram, leaking signals (called side lobes), can be identified as interrogation by aircrafts which are not the desired targets.

The interrogation represented in Figure 0-2 would has multiplies replies from Target 1, 2 and 3.

The interrogation represented in Figure 0-3 will receive a reply from Target 1 according to the following diagram:

SLS can also be used to avoid the reflection effects.

TRF No. Emilab MD-23 rev.5

Page 13 of 81

Figure 0-2 – ATCRBS Interrogation without Side Lobe Suppression (SLS)

Page 14 of 81

OVERVIEW OF MODE S

Mode Select (Mode S) is a combined secondary surveillance radar beacon system with ground-air-ground and air-air data link capability.

It includes a 24-bit aircraft technical address which provides more than 16 million unique addresses, allowing the interrogator to select then interrogate a specific aircraft of interest.

Each discrete interrogation contains the unique address of the aircraft for which it is intended and elicits a response dependent upon the level of capability of the corresponding transponder.

Civil aircraft have a permanently assigned technical address.

Implementation of a Mode S interrogation capability improve the existing systems in the following ways:

- Aircraft state (heading, speed, etc.) and aircraft intent information is available via Mode S selective interrogations.
- Adaptive re-interrogation will significantly improve the probability of detecting an aircraft that is in a marginal signal condition.
- The Mode S signal structure will provide improved error detection and correction.
- More than sixteen million transponder addresses will allow unique identification of all aircraft.
- Refined range and position accuracy is made possible via Mode S GPS squitter and/or Mode S datalink.

Signal Characteristics

Mode S is fully backwards compatible with the existing Air Traffic Control Radar Beacon System (ATCRBS). Mode S transponders respond to Mode S interrogations. Mode S interrogators can interrogate ATCRBS or Mode S transponders.

Both systems use the same interrogation and reply frequencies (1030 MHz and 1090 MHz, respectively).

Mode S-only interrogations use binary differential phase shift keying modulation (DPSK) at 4 MB/sec and Mode S replies have binary pulse position modulation (PPM) at 1 MB/sec.

The Mode S coding structure provides enhanced error detection and correction (less than 1 undetected error in 108 messages). Mode S is not secure or jam-resistant and is not intended to replace the encrypted military Mode 4.

Mode S has two basic message lengths: 56 bits and 112 bits.

The 56 bit surveillance formats include a 32 bit command field and a 24 bit address field.

The 112 bits communication formats include a 32 bit command field, a 56 bit data field and a 24 bit address field.

The 112 bit extended length message formats include an 8 bit command field, an 80 bit data field and a 24 bit address field.

Interrogation Process

Fully operational Mode S interrogators or clusters of interrogators are allocated on interrogator identification (II) code which, in conjunction with the unique aircraft technical address, enables linking between the interrogator and the aircraft of interest.

All-call interrogations are sent to all aircraft in a region to obtain the corresponding 24-bit technical addresses. These addresses are maintained in an internal database and, once the address is obtained, the all-call acquisition doesn't need to be repeated for that aircraft.

Upon receiving the technical address, the interrogator sends a lockout message to inhibit the corresponding transponder form replying to further Mode S all-call interrogations from any sensor with that interrogator identification code. Lockout is refreshed each antenna scan as part of the normal surveillance protocol and time-out occurs in 18 seconds if no further lockout commands are received. The interrogator also has the provision (lockout override") to command a transponder to respond regardless of the lockout status effect.

Page 15 of 81

Once it has the unique transponder address, the interrogator can selectively interrogate to obtain altitude and Mode 3/A codes for Mode S to Mark XII correlation or other useful information.

Figure 0-4 – Intermode (Mode A/C and S) Interrogation Pulse Sequence

Figure 0-5 – Mode S Interrogation Pulse Sequence

The mode S reply consist of a long train of 0.5 μ s and 1.0 μ s pulses lasting for up to 130 μ s. It is possible that such a train of pulses would give rise to multiple SSR bracket detections which could overload the plot extractor and effect its proper operation. It is advisable

Page 16 of 81

Report Ref. No.16-02555

FCC Test Firm Registration #: 643914

that an SSR plot extractor design should anticipate the introduction of Mode S and include circuitry to provide protection against Mode S replies.

In order to detect a Mode S reply it is only necessary to detect the four Mode S preamble pulses. These pulses are detected as follows:

- a second pulse leading edge occurs 7-9 clock periods after detection of the first pulse leading edge;
- a third pulse leading edge occurs 28-30 clock periods after detection of the first pulse leading edge;
- a fourth pulse leading edge occurs 36-38 clock periods after detection of the first pulse leading edge.

The detection of a Mode S preamble should suppress bracket detection for a period of 120 μ s (994 clock periods). After preamble detection the train of pulse leading edges should be monitored for a gap of at least 22 clock periods. Such a gap would exceed that which is possible in a Mode S reply and would indicate that the preamble had been spurious, possibly owing to chance overlapping fruit replies. If a gap of that size is detected, the bracket detection suppression should be released so that SSR reply processing can resume.

Figure 0-6 – Mode S Reply

3.4 Misure / Measures - Modulation Characteristics

These measures were performed on the Top Antenna Output, the measures performed on the Bottom Antenna Output are similar to these.

Measure of P1 pulse that is the first pulse of a "Mode S Long" answer

Measure of F1 pulse that is the first pulse of an "ATCRBS" answer

Measure of entire packet between P1 and a S112 of a "Mode S long" answer

Measure of entire packet between F1 and a F2 of an "ATCRBS" answer

FCC Test Firm Registration #: 643914

4.0 RF Power Output - Condizioni di prova / Test Conditions

Technician /	/ Tecnico: Loris Fruch					
Table No.	RF Power Output, FCC F	RF Power Output, FCC Part 2 Section 2.1046;				
	FCC Part 87 Section 87.1	CC Part 87 Section 87.131				
Method	1	1				
Parameters required prior to the test		Laboratory Ambient Temperature	18 to 28 °C			
		Relative Humidity	20 to 90%			
Parameters	recorded during the test	Laboratory Ambient Temperature	21 °C			
		Relative Humidity	60 %			

Supplementary information:

- Conducted Test, executed at antenna output (50ohm, ARINC600) TOP and BOTTOM connected to the Spectrum Analyser through an attenuator (43 dB);
- EUT powered at 115Vac 400Hz;
- Tuned frequency: 1090MHz;
- Test executed with the following EUT Operating Mode (see par. 2.0):
 - Mode 1 (120 Mode S Long)
 - Mode 2 (1200 ATCRBS)
 - Mode 3 (1200 ATCRBS + 120 Mode S Long)
- Spectrum analyser settings setup:
 - Detector: Peak
 - RBW: 1MHz and VBW=3MHz for measures with EUT in operating mode 3
 - RBW: 3MHz and VBW=3MHz for measures with EUT in operating mode 1 and 2
 - Instrument mode: Channel Power

4.1 Apparecchiature utilizzate / Test Equipment Used – RF Power Output

Apparecchiature usate/Equipment Used	Modello/Model	Costruttore/ Manufacturer	Numero di serie/ Serial Number	Data calibrazione / Calibration date	Intervallo / Interval
EMI Receiver MXE	N9038A	Agilent Technologies	MY51210230	06/2016	1 year
RF Cable	R284C0351050	Radiall	EL086215	10/2016	1 year
RF Cable TOP	TAN-5386/01	Selex ES	/	10/2016	1 year
RF Cable BOTTOM	TAN-5386/01	Selex ES	/	10/2016	1 year
2dB Attenuator	PE7085-2	Pasternack	EL091816	10/2016	1 year
6dB Attenuator	PE7021-6	Pasternack	EL017308	06/2016	1 year
6dB Attenuator	75-A-MFN-06	BIRD	9825	02/2016	1 year
30dB Attenuator	SBW-N30W5	Spin	EL041210	06/2016	1 year
AC Power Supply	KBT-100-C-109-451	BEHLMAN	5896	12/2015	1 year

4.1.1 Apparecchiature ausiliarie / Auxiliary Equipment

Apparecchiature usate / Used Equipment	ecchiature usate / Modello / Model		Numero di serie / Serial Number	
PCB board (installed on PC)	ARING 429	Altadata	/	
Test bench	IFF-45TS IFF	Aeroflex Wichita INC.	100000001	

4.2 Schema del setup / Test setup diagram – RF Power Output

4.3 Requisiti / *Requirements -* RF Power Output

FCC Section 2.1046 a) "For transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in §2.1033(c)(8). The electrical characteristics of the radio frequency load attached to the output terminals when this test is made shall be stated".

FCC Section 87.131, Note 7 "Frequency, emission, and maximum power will be determined by appropriate standards during the certification process".

Page 21 of 81

4.4 Misure / *Measurements -* RF Power Output

The measured transmitter power output for each of the operating conditions is contained below:

Antenna Out	Test Mode	Frequency (MHz)	Channel Power (dBm)	Insertion Loss Attenuators (dBm)	Insertion Loss Cable TOP/BOT (dBm)	Insertion Loss Cable EL086215 (dBm)	Calculated Peak RF Output Power (dBm)	Calculated Peak RF Output Power (W)
TOP	120 Mode S Long	1090	11,2	44,3	1,1	0,5	57,1	510.5
TOP	1200 ATCRBS	1090	9,1	44,3	1,1	0,5	55,0	319.2
TOP	1200 ATCRBS + 120 Mode S Long	1090	11,1	44,3	1,1	0,5	57,0	500.0
BOTTOM	120 Mode S Long	1090	11,1	44,3	1,1	0,5	57,0	502.3
BOTTOM	1200 ATCRBS	1090	9,1	44,3	1,1	0,5	55,0	316.2
воттом	1200 ATCRBS + 120 Mode S Long	1090	11,1	44,3	1,1	0,5	57,0	500.0

4.3.1 Grafici / Graphical representation of data - RF Power Output

Antenna Output: TOP

Page 22 of 81

Report Ref. No.16-02555

1200 ATCRBS

1200 ATCRBS + 120 Mode S Long

Keynight Spectrum Analyzer - Channel Power	and and a start of				11.07.04 144.00.00 10
larker 1 Hz	1 36/6C2401 ALMERADIO	Center Freq: 1.090210000 GHz		Radio Std: None	1110/309 449 960 979, 20
	#FGain:Low	#Atten: 25 dB	Avg Hold:>10/10	Radio Device: BTS	
o dB/div Ref 20.00 dBm	20.000				
00					
80					
00					
0.0					
0.0					
0.0					
0.0					
0.0					
Center 1.09 GHz					Span 15 M
Res BW 1 MHz		#VBW 3 MHz			Sweep 1 m
100					
Channel Power	Power Spectral Density				
44 00 15	50.04 15				
11.09 dBm / 10 MHz	-58.91 dBm /Hz				
10			STATUS		

Antenna Output: BOTTOM

1200 ATCRBS

1200 ATCRBS + 120 Mode S Long

FCC Test Firm Registration #: 643914

5.0 Frequency Stability - Condizioni di prova / Test Conditions

Technician / Tecnico: Loris Fruch							
Table No.	TEST: Frequency Stability, FCC Part 87 Section 87.13	EST: Frequency Stability, FCC Part 2 Section 2.1055; CC Part 87 Section 87.133					
Method	/						
Parameters required prior to the test		Laboratory Ambient Temperature	18 to 28 °C				
		Relative Humidity	20 to 90 %				
Parameters recorded during the test		Laboratory Ambient Temperature	23 °C				
		Relative Humidity	52 - 54 %				

Supplementary information:

- Test executed at antenna output (50ohm, ARINC600) TOP and BOTTOM connected to the Spectrum Analyser through an attenuator (43 dB);
- Test executed with the following EUT Operating Mode (see par. 2.0):
 - Mode 3 (1200 ATCRBS + 120 Mode S Long)
- The measures were performed with the EUT powered at 100%, 85% and 115% of 115Vac nominal power supply voltage, for each test voltage the frequency was set at 380Hz and 420Hz (minimum and maximum frequency range);
- The EUT was placed in a temperature chamber with all other equipment outside at room ambient. The test unit was operated at the minimum, nominal and maximum applied AC voltages and relative frequencyes. Sufficient time was allowed to stabilize the unit after the chamber reached the desidered temperature (1hour). Data was taken in 10 degree steps from -30°C to +50°C;
- Short-term transient effects were verified by the Oscilloscope and the Spectrum Analiser as described at par. 5.4;
- Spectrum analyser settings setup:
 - Detector: Peak
 - RBW: 1KHz, VBW=1kHz, SPAN: 100KHz
 - Reference Level: -5 dBm, Display Mode: 10 dB/div
 - Input Attenuation: 20 dB

5.1 Apparecchiature utilizzate / Test Equipment Used – Frequency Stability

Apparecchiature usate/Equipment Used	Modello/Model	Costruttore/ Manufacturer	Numero di serie/ Serial Number	Data calibrazione / Calibration date	Intervall o / Interval
EMI Receiver MXE	N9038A	Agilent	MY51210230	06/2016	1 year
Oscilloscope	DSO9254A	Agilent	MY52090217	12/2015	1 year
RF Cable	R284C0351050	Radiall	EL086215	10/2016	1 year
RF Cable TOP	TAN-5386/01	Selex ES	/	10/2016	1 year
RF Cable BOTTOM	TAN-5386/01	Selex ES	1	10/2016	1 year
2dB Attenuator	PE7085-2	Pasternack	EL091816	10/2016	1 year
6dB Attenuator	PE7021-6	Pasternack	EL017308	06/2016	1 year
6dB Attenuator	75-A-MFN-06	BIRD	9825	02/2016	1 year
30dB Attenuator	SBW-N30W5	Spin	EL041210	06/2016	1 year
Data Logger USB TC	OM-EL-USB-TC-LCD	Omega Engineering	10033112	06/2016	1 year
Fast Cycling temperature Chamber	D-E702-800	Haida International Equipment Co., LTD	151200301	06/2016	1 year
AC Power Supply	KBT-100-C-109-451	BEHLMAN	5896	12/2015	1 year

5.1.1 Apparecchiature ausiliarie / Auxiliary Equipment

Apparecchiature usate / Used Equipment	Modello / <i>Model</i>	Costruttore /Manufacturer	Numero di serie / Serial Number
PCB board (installed on PC)	ARING 429	Altadata	/
Test bench	IFF-45TS IFF	Aeroflex Wichita INC.	100000001

5.2 Schema del setup / Test setup diagram – Frequency Stability

5.3 Requisiti / *Requirements -* Frequency Stability

FCC Section 2.1055

(a) (1) The frequency shall be measured with variation of ambient temperature from -30° to +50° centigrade for equipment licensed for use aboard aircraft in the Aviation Services under 47CFR2.1055.

(b) Frequency measurements shall be made at the extremes of the specified temperature range and at intervals of not more than 10° centigrade through the range. A period of time sufficient to stabilize all of the components of the oscillator circuit at each temperature level shall be allowed prior to frequency measurement. The short term transient effects on the frequency of the transmitter due to keying (except for broadcast transmitters) and any heating element cycling normally occurring at each ambient temperature level also shall be shown. Only the portion or portions of the transmitter containing the frequency determining and stabilizing circuitry need be subjected to the temperature variation test.

(c) Not applicable; the reference source is not an ovenized oscillator.

(d) (1) (3) The frequency stability shall be measured with variation of primary supply voltage from 85 to 115 percent of the nominal value. The supply voltage shall be measured at the input to the cable normally provided with the equipment, or at the power supply terminals if cables are not normally provided.

Definition from 47CFR2.1 *Frequency Tolerance*. The maximum permissible departure by the center frequency of the frequency band occupied by an emission from the assigned frequency or, by the characteristic frequency of an emission from the reference frequency.

CFR47 87.133 (d) requirements

The EUT i can be defined as "a secondary surveillance radar system developed for use within the air traffic control system for more precise position reporting of planes" (see pag. 11 of this test report). For radar transmitters, except non-pulse signal radio altimeters, the frequency at which maximum emission occurs

Page 27 of 81

must be within the authorized frequency band and must not be closer than 1.5/T MHz to the upper and lower limits of the authorized bandwidth, where T is the pulse duration in microseconds.

For pulse width T equal to 0.5 microseconds this equation produces 3 MHz restriction from the OBW edge. Testing of 99% Occupied Band Width (OBW) demonstrated a minimum of11 MHz. Therefore stability requirement would be OBW-(2*3*10⁶)=5MHz. This would require stability of something less than 5 MHz. The EUT demonstrated less than 1 MHz requirement (well within the DO 181D standard).

The FAA requirements for frequency stability is ±1000 PPM.

5.4 Risultati / *Results -* Frequency Stability

The measured frequencies are inside the limits than the result of the test is: **PASS.** See the details in the charts/tables of the following paragraphs (see the worst case in bold text).

<u>Short-term transient measurement:</u> through the oscilloscope was measured the signal in the base band and through the spectrum analyser was verified that the FM residual components.

The frequency band measured through the spectrum analyser at -6dB from the peak carrier is about 10KHz (see par. 5.4.1.1 Figure 3), so we can say that the FM residual components do not are greater than 10KHz.

5.4.1 Tabelle e grafici dei risultati / *Tables and graphical representation of data* – Frequency Stability

Measure on TOP Antenna Cable Carrier frequency: 1090MHz

	AC Supply 97.75V		AC Supply 115V		AC Supply 132.25V	
	380Hz	420Hz	380Hz	420Hz	380Hz	420Hz
Temperature (°C)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)
-30	1090,113	1090,115	1090,109	1090,104	1090,118	1090,117
-20	1090,155	1090,163	1090,165	1090,163	1090,167	1090,167
-10	1090,207	1090,207	1090,207	1090,207	1090,206	1090,206
0	1090,227	1090,227	1090,227	1090,227	1090,227	1090,227
10	1090,236	1090,236	1090,236	1090,236	1090,236	1090,236
20	1090,229	1090,229	1090,229	1090,229	1090,229	1090,229
30	1090,208	1090,208	1090,208	1090,208	1090,209	1090,208
40	1090,187	1090,186	1090,187	1090,187	1090,187	1090,187
50	1090,151	1090,151	1090,151	1090,152	1090,153	1090,153

Measure on BOTTOM Antenna Cable Carrier frequency: 1090MHz

FCC Test Firm Registration #: 643914

	AC Supply 97.75V		AC Sup	AC Supply 115V		ly 132.25V
	380Hz	420Hz	380Hz	420Hz	380Hz	420Hz
Temperature (°C)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)
-30	1090,125	1090,125	1090,123	1090,124	1090,122	1090,121
-20	1090,169	1090,168	1090,168	1090,169	1090,167	1090,165
-10	1090,207	1090,207	1090,207	1090,207	1090,207	1090,207
0	1090,227	1090,227	1090,227	1090,227	1090,227	1090,227
10	1090,235	1090,236	1090,236	1090,236	1090,236	1090,236
20	1090,230	1090,229	1090,230	1090,229	1090,230	1090,230
30	1090,207	1090,207	1090,207	1090,207	1090,207	1090,207
40	1090,189	1090,189	1090,189	1090,189	1090,191	1090,190
50	1090,149	1090,149	1090,149	1090,149	1090,149	1090,149

Page 29 of 81

Report Ref. No.16-02555

Top Antenna-AC Supply 115V, 420Hz

Result: PASS

Bottom Antenna-AC Supply 115V, 420Hz

Result: PASS

Page 30 of 81

5.4.1.1 Short-term transient measurement performed on TOP Antenna Output

At the Key-ON the EUT do not transmits, transmission start about after 2sec.

Note: the measures performed on BOTTOM antenna are similar to this, and no differences were detected respect the measures performed at -30 °C and the measures performed at + 50 °C.

Signal in the base band measured through the Oscilloscope

Check of FM residual components through the Spectrum Analyser

Figure 3

6.0 Occupied Bandwidth - Condizioni di prova / Test Conditions

Technician / Te	ecnico: Loris Fruch					
Table No		١				
	FCC Part 87 Section 87.13	5				
Method	1			١		
Parameters re	arameters required prior to the test Laboratory Ambient Temperature 18 to 28 °C					
		Relative Humidity	20 to 90 %			
Parameters recorded during the test		Laboratory Ambient Temperature	21 °C			
Relative Humidity 60 %						
Supplementary	/ information:					
- Conducted Spectrum A	 Conducted Test, executed at antenna output (50ohm, ARINC600) TOP and BOTTOM connected to the Spectrum Analyser through an attenuator (43 dB); 					
- EUT powered at 115Vac 400Hz;						
- Tuned frequency: 1090MHz;						

- Test executed with the following EUT Operating Mode (see par. 2.0):
 - Mode 1 (120 Mode S Long)
 - Mode 2 (1200 ATCRBS)
 - Mode 3 (1200 ATCRBS + 120 Mode S Long)
- Spectrum analyser settings setup:
 - 99% automatic bandwidth measurement
 - Detector: Peak,
 - Trace: max hold (sweep until a solid representation of the transmitted signal is present)
 - RBW: 100 kHz
 - SPAN: 20 MHz
 - Reference Level: 20 dBm
 - Display Mode: 10 dB/div
 - Input Attenuation: 20 dB

6.1 Apparecchiature utilizzate / Test Equipment Used – Occupied Bandwidth

Apparecchiature usate/Equipment Used	Modello/Model	Costruttore/ Manufacturer	Numero di serie/ Serial Number	Data calibrazione / Calibration date	Intervallo / Interval
EMI Receiver MXE	N9038A	Agilent Technologies	MY51210230	06/2016	1 year
RF Cable	R284C0351050	Radiall	EL086215	10/2016	1 year
RF Cable TOP	TAN-5386/01	Selex ES	/	10/2016	1 year
RF Cable BOTTOM	TAN-5386/01	Selex ES	/	10/2016	1 year
2dB Attenuator	PE7085-2	Pasternack	EL091816	10/2016	1 year
6dB Attenuator	PE7021-6	Pasternack	EL017308	06/2016	1 year
6dB Attenuator	75-A-MFN-06	BIRD	9825	02/2016	1 year
30dB Attenuator	SBW-N30W5	Spin	EL041210	06/2016	1 year
AC Power Supply	KBT-100-C-109-451	BEHLMAN	5896	12/2015	1 year

6.1.1 Apparecchiature ausiliarie / Auxiliary Equipment

Apparecchiature usate / Used Equipment	Modello / <i>Model</i>	Costruttore / <i>Manufacturer</i>	Numero di serie / Serial Number
PCB board (installed on PC)	ARING 429	Altadata	/
Test bench	IFF-45TS IFF	Aeroflex Wichita INC.	100000001

6.2 Schema del setup / Test setup diagram – Occupied Bandwidth

6.3 Requisiti / *Requirements -* Occupied Bandwidth

FCC Section 2.1049 "The occupied bandwidth that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured under the following conditions as applicable."

FCC Section 2.1049 (h) "Transmitters employing digital modulation techniques—when modulated by an input signal such that its amplitude and symbol rate represent the maximum rated conditions under which the equipment will be operated. The signal shall be applied through any filter networks, pseudo-random generators or other devices required in normal service. Additionally, the occupied bandwidth shall be shown for operation with any devices used for modifying the spectrum when such devices are optional at the discretion of the user".

FCC Section 87.135

(a) Occupied bandwidth is the width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to 0.5 percent of the total mean power of a given emission.

(b) The authorized bandwidth is the maximum occupied bandwidth authorized to be used by a station.

(c) The necessary bandwidth for a given class of emission is the width of the frequency band which is just sufficient to ensure the transmission of information at the rate and with the quality required under specified conditions.

Section 87.137 Authorized Bandwidth for Emission Type M1D.

Misure / Measures - Occupied Bandwidth 6.4

Cable Antenna Top				
Mode of Operation	99% Power Occupied Bandwidth (MHz)	Reference Figure		
Mode 1 (120 Mode S Long)	11.22	Figure 1		
Mode 2 (1200 ATCRBS)	12.10	Figure 2		
Mode 3 (1200 ATCRBS + 120 Mode S Long)	11.32	Figure 3		

Cable Antenna Bottom				
Mode of Operation	99% Power Occupied Bandwidth (MHz)	Reference Figure		
Mode 1 (120 Mode S Long)	11.00	Figure 4		
Mode 2 (1200 ATCRBS)	11.08	Figure 5		
Mode 3 (1200 ATCRBS + 120 Mode S Long)	11.34	Figure 6		

6.4.1 Grafici / Graphical representation data - Occupied Bandwidth

Page 35 of 81

Figure 2

Figure 3

Page 36 of 81

Figure 4

Figure 5

Page 37 of 81

Figure 6

7.0 Spurious Emissions at Antenna Terminals - Condizioni di prova / Test Conditions

Technician / Te	ecnico: Loris Fruch							
Table No.TEST: Spurious Emissions at Antenna Terminals, FCC Part 2 Section 2.1051; FCC Part 87 Section 87.139								
Method /								
Parameters re	quired prior to the test	Laboratory Ambient Temperature	18 to 28 °C					
		Relative Humidity	20 to 90 %					
Parameters re	corded during the test	Laboratory Ambient Temperature	20 - 21 °C					
		Relative Humidity	58 - 60 %					
Supplementary information:								

- Conducted Test, executed at antenna output (50ohm, ARINC600) TOP and BOTTOM connected to the Spectrum Analyser:

- through an attenuator (43 dB) for measures from 9KHz to 1168MHz;
- through a DC Coupler loaded with 50ohm high power termination for measures from 1168MHz to 11GHz;
- EUT powered at 115Vac 400Hz;
- Tuned frequency: 1090MHz;
- Test executed with the following EUT Operating Mode (see par. 2.0):
 - Mode 3 (1200 ATCRBS + 120 Mode S Long)
- Frequency range of the measurements: 9KHz to 11GHz.
- Spectrum analyser settings setup:
 - Detector = Peak from 9KHz to 1012MHz and from 1168MHz to 11GHz Average from 1012MHz to 1168MHz
 - Trace = max hold (over last 20 sweeps),
 - RBW, VBW and sweep time:

Start Freq	Stop Freq	Res BW
9 kHz	0.15 MHz	200 Hz
0.15 MHz	30 MHz	9 kHz
30 MHz	11 GHz	120 kHz

7.1 Apparecchiature utilizzate / *Test Equipment Used* – Spurious Emissions at Antenna Terminals

Apparecchiature usate/Equipment Used	Modello/Model	Costruttore/ Manufacturer	Numero di serie/ Serial Number	Data calibrazione / Calibration date	Intervallo / Interval
EMI Receiver MXE	N9038A	Agilent Technologies	MY51210230	06/2016	1 year
RF Cable	R284C0351050	Radiall	EL086215	10/2016	1 year
RF Cable TOP	TAN-5386/01	Selex ES	/	10/2016	1 year
RF Cable BOTTOM	TAN-5386/01	Selex ES	/	10/2016	1 year
2dB Attenuator	PE7085-2	Pasternack	EL091816	10/2016	1 year
6dB Attenuator	PE7021-6	Pasternack	EL017308	06/2016	1 year
6dB Attenuator	75-A-MFN-06	BIRD	9825	02/2016	1 year

Report Ref. No.16-02555

FCC Test Firm Registration #: 643914

30dB Attenuator	SBW-N30W5	Spin	EL041210	06/2016	1 year
DC Coupler	PE2236-35	Pasternack	EL017408	02/2016	1 year
10dB Attenuator	SA4014	CPE Italia Spa	03VCV-5093	09/2016	1 year
10dB Attenuator	R411810121	Radiall	EL021709	07/2016	1 year
Load 50Ohm	PE6039	Pasternack	EL034809	08/2016	1 year
AC Power Supply	KBT-100-C-109-451	BEHLMAN	5896	12/2015	1 year

7.1.1 Apparecchiature ausiliarie / Auxiliary Equipment

Apparecchiature usate / Used Equipment	Modello / <i>Model</i>	Costruttore / <i>Manufacturer</i>	Numero di serie / Serial Number
PCB board (installed on PC)	ARING 429	Altadata	/
Test bench	IFF-45TS IFF	Aeroflex Wichita INC.	100000001

7.2 Schema del setup / Test setup diagram – Spurious Emissions at Antenna Terminals

7.3 Requisiti / *Requirements -* Spurious Emissions at Antenna Terminals

The EUT is an Aircraft station transmitter.

FCC Section 2.1051 The radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in §2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.

The referenced section in 2.1049 is (i) Transmitters designed for other types of modulation—when modulated by an appropriate signal of sufficient amplitude to be representative of the type of service in which used. A description of the input signal should be supplied.

FCC Section 87.139 (a) Except for ELTs and when using single sideband (R3E, H3E, J3E), or frequency modulation (F9) or digital modulation (F9Y) for telemetry or telecommand in the 1435-1525 MHz, 2345-2395 MHz, or 5091-5150 MHz band or digital modulation (G7D) for differential GPS, the mean power of any emissions must be attenuated below the mean power of the transmitter (pY) as follows:

- (1) When the frequency is removed from the assigned frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth the attenuation must be at least 25 dB;
- (2) When the frequency is removed from the assigned frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth the attenuation must be at least 35 dB.
- (3) When the frequency is removed from the assigned frequency by more than 250 percent of the authorized bandwidth the attenuation for aircraft station transmitters must be at least 40 dB;

Therefore the limit is the following:

Carrier frequency = 1090MHz Authorized bandwidth = 13.5MHz 50% of Authorized bandwidth = 6.75MHz 100% of Authorized bandwidth = 13.5MHz 250% of Authorized bandwidth = 33.75MHz

(*) the amplitude was calculated respect 57dBm (RF Output Power measured at par. 4.4)

7.4 Risultati / *Results* - Spurious Emissions at Antenna Terminals

The amplitude of spurious emissions is lower to the limit, thus the result of the test is: **PASS**. See the details in the charts of the following paragraphs.

The worst case emissions are:

Antenna Output: TOP

Frequency (MHz)	Average Measure	Limit	Difference from limit	Result
	(dBm)	(dBm)	(dB)	(Pass/Fail)
1093,700	-2,3	14,0	-16,3	Pass

Antenna Output: BOTTOM

Frequency (MHz)	Average Measure	Limit	Difference from limit	Result
	(dBm)	(dBm)	(dB)	(Pass/Fail)
1085,400	-2,3	14,0	-16,3	Pass

Note: this is a measurement into a broadband 50 ohm system, and does not include any frequencydependent attenuation due to possible antenna mismatch.

7.3.1 Grafici dei risultati / Graphical representation data – Conducted Spurious Emissions

Antenna Output: TOP

Measure from 9KHz to 1012MHz

Frequency (MHz)	Peak Measure (dBm)	Limit (dBm)	Difference from limit (dB)	Result (Pass/Fail)
0,051	-55,5	-1,0	-54,5	Pass
0,066	-45,8	-1,0	-44,8	Pass
0,332	-51,2	-1,0	-50,2	Pass
0,901	0,901 -34,9		-33,9	Pass
1006,200	-24,3	-1,0	-23,3	Pass

Measure from 1012MHz to 1168MHz

Frequency (MHz)	Average Measure (dBm)	Limit (dBm)	Difference from limit (dB)	Result (Pass/Fail)
1078,500	-15,0	4,0	-19,0	Pass
1079,200	-14,4	4,0	-18,4	Pass
1079,900	-15,4	14,0	-29,4	Pass
1084,700	-3,1	14,0	-17,1	Pass
1085,400	-3,4	14,0 -17,4		Pass
1086,100	-6,0	14,0	-20,0	Pass
1093,700	-2,3	3 14,0 -16,3		Pass
1095,100	-5,9	14,0	-19,9	Pass

Measure from 1168MHz to 11000MHz

Keysight EMI Receiver - Frei	quency Scan										
RF PRESEL	50 Ω AC CORREC	SENSE:INT	ALIGN AUTO							09:24:06 AM	Nov 10, 2016
				FREQUENCY SCAN	Scan				TRACE	1 2 3	
PASS	CISPR		Smooth 😱	Attany 40 dB	>1/1				DET	PPP	
	PREAMP	Scan		Atten: 10 db	Free	cun					
10 dBidiy Ref A	0.00 dBm										
Log											
Trace 1 Pass											
30.0											
20.0											
20.0											
10.0					() () () () () () () () () () () () () (-			
0.00											
-10.0											
-20.0											
×											
20.0											
a latter in much	مشيم بالمراك وسل التعاتين التعات المتافر تبار فيعط مرفان	and the second second	ب بيواري من يولي الم فالله عام السب	and a second	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				in half	ad a flat his side	and the latest of the
And the state of the state		and all the loop in the second		and the second	Anthen white a stand of the ball of the	a a little bull and a state of the state of	-A - HILE LAND AND A STATE OF A ST	Contraction in particular	(here with		
-40.0	strated and a line of high spectrum in the second state	sing the set	(inder the little little in the target of party).	And Discourse and the Party of	State of the second					post share in sol	-the - curber
				Source South	Solution Processing of the second	and the second state of the second state of the	"Indone light of	and the set of Street of State	Auffa Ladid		
-50.0											
Start 1.168 GHz										Stop) 11 GHz
#Res BW 120 kHz	s BW 120 kHz VBW 1.2 MHz Scan Time 1.114 s(327735 pts)										

Detail from 1168MHz to 1200MHz

🛄 Keys	ght EMI Receiver - Freq	Jency Scan						
(XII)	RF PRESEL 5	i0 Ω AC CORREC	SENSE:INT	ALIGN AUTO				09:30:37 AM Nov 10, 2016
						FREQUENCY SCAN	Scan	TRACE 1 2 3
PAS		CISPR		Smooth	Ģ	Atten: 10 dB	>1/1 Free Run	DET P P P
			acar			Atten. IV ub	Free Run	
10 dB	Jdiv Ref 6	0.00 dBm						
Log	Trees 1 Dage							
	Trace T Pass							
50.0								
10.0								
40.0								
30.0								
20.0								
10.0								
0.00								
10.0								
-20.0	A A A A	A . A . A .	ň ň		ň.	X X	19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	rever shah	man had had had	when the way a survey	And heren these	Mumuni	pour prover and pro	MANUME motion and an and an and and and and and and	town the most of the the second of the secon
30.0								
L								
Start	1.168 GHz							Stop 1.2 GHz
#Res	BW 120 KHz						VBW 1.2 MHz	Scan Time 3.624 ms(1067 pts)

Frequency (MHz)	Peak Measure (dBm)	Limit (dBm)	Difference from limit (dB)	Result (Pass/Fail)
1169,200	-20,9	-1,0	-19,9	Pass
1170,300	-21,5	-1,0	-20,5	Pass
1174,200	-21,6	-1,0	-20,6	Pass
1176,200	-21,6	-1,0	-20,6	Pass
1180,200	-21,1	-1,0	-20,1	Pass
1182,200	-21,3	-1,0	-20,3	Pass
1184,200	-21,1	-1,0	-20,1	Pass

Measure on first harmonic

🛄 Keys	ght EMI Receiver - Frequency Scan	and not				- 0 -
Mark	er 1 2.1804 GHz	SENSELINI	ALIGN AUTO	FREQUENCY SC	WN Scan	TRACE 1 2 2
	CISPR PREAMP	Scan	Smooth 🕞	Atten: 10 dB	>1/1 Free Run	DET P P P
						Mkr1 2.18042 GHz
10 dB Log r	Idiv Ref 40.00 dBm					-34.782 dBm
30.0						
20.0						
10.0						
0.00						
-10.0						
-20.0						
-30.0	a human and the Martin and another and	man march has he	markan	~ martalana	1-	Lemonad Mar marsh rall have a free of the
-40.0						
-50.0						
	0.465.00					
#Res	BW 120 kHz				VBW 1	.2 MHz Scan Time 3.4 ms(1001 pts)

Signal list

Frequency (MHz)	Peak Measure	Limit	Difference from limit	Result
	(dBm)	(dBm)	(dB)	(Pass/Fail)
2180,400	-34,8	-1,0	-33,8	Pass

Measure on second harmonic

🛄 Key	sight EMI Receiver - Frequency Scan						- • •
Mar	ker 1 3.2707 GHz	SENSE:INT	ALIGN AUTO		FREQUENCY SCAN	Scan	09:32:10 AM Nov 10, 2016 TRACE 1 2 3
	CISPR	Scan	Smooth	Ģ	Atten: 10 dB	>1/1 Free Run	DET P P P
—	P POLICIAR						Mkr1 3 27066 GHz
10 di	Sidiv Ref 40.00 dBm						-29.865 dBm
Log							
20.0							
30.0							
20.0							
10.0							
-10.0							
-20.0							
20.0					♦ ¹		
-30.0	a	mann	marm	mm	marina	all was somewhat a sold	mannaman
-40.0							
-50.0							
Star	t 3.256 GHz						Stop 3.286 GHz
#Re	5 BW 120 KHZ					VBW 1.2 MHZ	scan Time 3.4 ms(1001 pts)

Frequency (MHz)	Peak Measure	Limit	Difference from limit	Result
	(dBm)	(dBm)	(dB)	(Pass/Fail)
3270,700	-29,9	-1,0	-28,9	Pass

Page 46 of 81

Measure on third harmonic

🛄 Keysi	ht EMI Receiver - Frequency Scan					
	RF PRESEL S0 Q AC CORREC	SENSE:INT	ALIGN AUTO	EDEOUENCY COM	5	09:33:25 AM Nov 10, 2016
Mark	er 1 4.3601 GHZ		t	PREQUENCT SCAN	>1/1	TRACE 1 2 3 TYPE WWW
	PREAMP	Scan	smooth 😱	Atten: 10 dB	Free Run	DET P P P
						Mkr1 4 36012 GHz
10 10	Bof 40.00 dBm					-33 565 dBm
Log	div Rel 40.00 dBm					
30.0						
20.0						
10.0						
0.00						
-10.0						
-20.0						
22.0				a1		
-30.0				• • • • • • • • • • • • • • • • • • •		
l h	walken alkeline and the and the second all all and a second	מיזאיריאניי ואיגרייינייאנאניינייאראיניי	un su guadamenta	water the mark the mark hall and	answere and some prover and prover and	warden and an
-40.0						
-50.0						
C to a t	1 246 04-					Oten 4 275 OUr
Start #Pac	4.340 GHZ BW 120 FH2				VBM 12 MHz	Stop 4.376 GHZ Scan Time 3.4 me(1001 pte)
#Res	DW 120 KH2				VBW 1.2 MHz	acan fille 3.4 lis (1001 pts)

Frequency (MHz)	Peak Measure	Limit	Difference from limit	Result
	(dBm)	(dBm)	(dB)	(Pass/Fail)
4360,100	-33,6	-1,0	-32,6	Pass

Antenna Output: BOTTOM

Measure from 9KHz to 1012MHz

Frequency (MHz)	Peak Measure (dBm)	Limit (dBm)	Difference from limit (dB)	Result (Pass/Fail)
0,050	-57,2	-1,0	-56,2	Pass
0,065	-46,1	-1,0	-45,1	Pass
0,335	-50,4	-1,0	-49,4	Pass
0,892	-33,3	-1,0	-32,3	Pass
0,996	-26,0	-1,0	-25,0	Pass

Measure from 1012MHz to 1168MHz

Frequency (MHz)	Average Measure (dBm)	Limit (dBm)	Difference from limit (dB)	Result (Pass/Fail)
1078,500	-13,4	4,0	-17,4	Pass
1079,200	-12,4	4,0	-16,4	Pass
1083,300	-6,0	14,0	-20,0	Pass
1084,700	-2,6	14,0	-16,6	Pass
1085,400	-2,3	14,0	-16,3	Pass
1093,700	-3,2	14,0	-17,2	Pass
1095,100	-6,0	14,0	-20,0	Pass

Measure from 1168MHz to 11000MHz

🔤 Key	sight EMI Receiver - Freq	uency Scan											
LXI	RF PRESEL	50 Ω AC CORREC	SENSE:INT		ALIGN AUTO							08:35:39 AM	Nov10, 2016
						FREQUENCY SCAN	Scan				TRACE	1 2 3	
PAS	S	CISPR		Sm	nooth 😱	Atten: 10 dB	>1/1	Pup			DET	PPP	
		PREAMP		Scan		Atten: To db	Free	Kun					
10 di	B/div Ref 4	0.00 dBm											
Log	Trace 1 Pass												
	frace frass												
30.0													
20.0	-												
10.0													
0.00	-												
										-			
-10.0													
20.0													
30.0	X						1						
00.0	المراجع المراجع المراجع	ول يصد المريد ومن والمستان المستعمان ولا ألا يعاله ومع	and the state of the second	de bardhe an del th	and the state of the second second	Manager of south and a state of the	and the state of the second	and a second second	1000	and the first set to a she	المراجلية المحسر	distance in the	Countral of the lot
10.0	Paul Print and the second	ويرجعه ومعادية والمترافقة والمترافقة أتسترد أأنا المتأسطين	Alexand Base		and the second second	and the second	R. Harrison and Street and Street	and the second second second	and station that the				
-40.0			and both	damasichte		and a state of the	disarding lower interest of the part of the low	International defension white	and the state of the	the state of the s	A DOCTOR DATE	a diama a	
100.0													
-50.0													
Star	t 1.168 GHz									*		Stor	11 GHz
#Re	s BW 120 kHz							VBW 1.2	MHz	Scar	Time 1.11	14 s(327	735 pts)

Detail from 1168MHz to 1200MHz

🔤 Key	ight EMI Receiver - Frequency Scan					
	RF PRESEL 50 Q AC CORREC	SENSE:INT	ALIGN AUTO	ERECHENCY SCAN	Saan	08:50:57 AM Nov 10, 2016
Sele	ct Signal 12		Smooth (FREQUENCY SCAN	>1/1	TYPE WWWM
	PREAMP	Scan	Silloun Cp	Atten: 10 dB	Free Run	DET P P P
10 dF	Vdiv Ref 40.00 dBm					
Log						
30.0						
20.0						
10.0						
0.001						
-10.0						
-20.0	X X X X	¥	×	× ×	and the second	
	1 mile hand hand and	nel ala A	Mar. M.	m. M. m. M. m.	An An An An A	
-30,0	AN ON AN AN AN AN	And Dr. Alt	a Charles along the	an white we have a for the second of the sec	אירייטן אירוציינט אירועט אירייט איר אייניאיין אין אירידייט	when the provided for the second for the second of the second will be the second second the second
-40.0						
-50.0						
Star	t 1.168 GHz					Stop 1.2 GHz
#Res	s BW 120 kHz				VBW 1.2 MHz	Scan Time 3.624 ms(1067 pts)
_						

Frequency (MHz)	Peak Measure (dBm)	Limit (dBm)	Difference from limit (dB)	Result (Pass/Fail)
1168,200	-21,4	-1,0	-20,4	Pass
1169,200	-22,0	-1,0	-21,0	Pass
1170,200	-22,0	-1,0	-21,0	Pass
1171,200	-22,6	-1,0	-21,6	Pass
1172,200	-21,9	-1,0	-20,9	Pass
1173,200	-23,7	-1,0	-22,7	Pass
1174,200	-22,9	-1,0	-21,9	Pass
1176,200	-22,6	-1,0	-21,6	Pass
1178,200	-22,8	-1,0	-21,8	Pass
1180,200	-22,9	-1,0	-21,9	Pass
1182,200	-23,2	-1,0	-22,2	Pass
1184,200	-22,3	-1,0	-22,3	Pass

Page 50 of 81

Measure on first harmonic

UP No No CORREC SENSE:INT ALION AUTO Marker 1 2.1805 GHz CISPR PREAMP Scan FREQUENCY SCAN Scan Scan Smooth To dB/div Atten: 10 dB Free Run	08:59:10 AM Nov 10, 2016 TRACE 2 23 TYPE WWM DET P P P Mkr1 2.18045 GHz -31 151 dBm
Marker 1 2,1805 GHz FRECUENCY SCAN Scan CISPR Scan Smooth Atten: 10 dB Free Run 10 dB/dly Ref 40.00 dBm	Mkr1 2.18045 GHz
CISPR Smooth C 21/1 PREAMP Scan Atten: 10 dB Free Run	Mkr1 2.18045 GHz
PRE-MIP Scan Atten: 10 dB Pree Run 10 dB/diy Ref 40.00 dBm	Mkr1 2.18045 GHz
10 dB/diy Ref 40.00 dBm	Mkr1 2.18045 GHz
10 dB/diy Ref 40.00 dBm	-31 151 dBm
10 dB/div Ref 40.00 dBm	
au	-01.101 0.011
30.0	
20.0	
100	
-10.0	
.20.0	
And marked and a second	a hard the hand a frank
-00	
80.0	
Start 2,165 GHz	Stop 2.195 GHz
#Res BW 120 kHz VBW 1.2 MHz Scan	Time 3.4 ms(1001 pts)

Signal list

Frequency (MHz)	Peak Measure	Limit	Difference from limit	Result
	(dBm)	(dBm)	(dB)	(Pass/Fail)
2180,500	-31,2	-1,0	-30,2	Pass

Measure on second harmonic

🛄 Key	ght EMI Receiver - Frequency Scan					
100	RF PRESEL 50 Ω AC CORREC SENSE:INT	ALIGN AUTO				09:01:42 AM Nov 10, 2016
Mar	er 1 3.2707 GHz		FRE	EQUENCY SCAN	Scan	TRACE 1 2 3
	CISPR	Smooth	♀	10 dB	>1/1	DET P P P
	PREAMP Sc	an	Atte	en: 10 dB	Free Run	
						Mkr1 3.27066 GHz
10 di	dia Ref 40 00 dBm					-29,161 dBm
Loa						
30.0						
20.0						
10.0						
10.0						
0.00						
-10.0						
-20 R						
				≜ '		
-30.0				Ă.		
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ulmounter	mound	some how many marker	many and the war and a second and the second and th	warman have marched
-0.0						
-40.0						
-50.0						
Star	3 256 CH7					Stop 3 286 CH
atai #Do	5.250 GHZ				VPW 4.2 MHz Con	a Time 2.4 mg/4004 ptc)
#Re	BW 120 KHZ				VBW 1.2 IVINZ SCa	n Time 3.4 ms (1001 pts)

Frequency (MHz)	Peak Measure	Limit	Difference from limit	Result
	(dBm)	(dBm)	(dB)	(Pass/Fail)
3270,700	-29,2	-1,0	-28,2	Pass



Page 51 of 81

### Measure on third harmonic

🔤 Key	sight EMI Receiver - Frequency Scan					
<b>X</b>	RF PRESEL S0 Q AC CORREC	SENSE:INT	ALIGN AUTO			09:04:30 AM Nov 10, 2016
Mar	ker 1 4.3609 GHz			FREQUENCY SCA	Scan	TRACE 1 2 3
	CISPR	-	Smooth 🕞		>1/1	TYPE WWM
	PREAMP	Scan		Atten: 10 dB	Free Run	and the second se
						Mkr1 4.3609 GHz
10.1	Def 40.00 dDm					-32 334 dBm
10 0	Sidia Kel 40.00 UBIII					
r. A						
30.0						
20.0						
10.0						
10.0						
0.00						
+10.0						
-20.8						
30.0				^1		
- 30.0				X		
	mullownonanam	mohillan	manter	mmulines	mallenane	how we all man and a server and a server and a server all and a server and a server and a server and a server a
-40.0		• • • • • • • •				
-50.0						
Star	t 4.346 GHz					Stop 4.376 GHz
#Re	s BW 120 kHz				VBW 1.2 MHz	Scan Time 3.4 ms (1001 pts)
					TOT ILE INITE	2001. The off mo( 1001 pts)

Frequency (MHz)	Peak Measure	Limit	Difference from limit	Result
	(dBm)	(dBm)	(dB)	(Pass/Fail)
4360,900	-32,3	-1,0	-31,3	Pass



# 8.0 Field Strength of Spurious Radiation – Condizioni di prova / Test Conditions

Technic	cian / Te	ecnico: Loris Fruch						
Table N	lo.	TEST: Field Strength of Spurio FCC Part 87 Section 87.139	ous Radiation, FCC Part 2 Section 2.1053	;	١			
Method	1	ANSI/TIA-603-D (2010), Par. 2	2.2		١			
Parame	eters red	quired prior to the test	Laboratory Ambient Temperature	18 to 28 °C				
			Relative Humidity	20 to 90 %				
Parame	eters red	corded during the test	Laboratory Ambient Temperature	20-21 °C				
			Relative Humidity	51-56 %				
Supple	mentary	information:	L					
-	Freque	ncy range of the measurements:	9KHz to 11GHz;					
-	Test sit	e: SAC for measures from 30MH or) for measures from 9KHz to 30	z to 1GHz and FAR (Semi-anechoic char MHz and from 1GHz to 11GHz;	ber with additional abso	orbers on			
-	EUT po	owered at 115Vac 400Hz;						
-	Test ex	ecuted with the following EUT O	perating Mode (see par. 2.0): Mode 3 (120	0 ATCRBS + 120 Mode	S Long)			
-	Measu then w	res were performed first with the lith the EUT that transmits on BO	EUT that transmits on TOP antenna outpu TTOM antenna output terminated on 50 $\Omega$	t terminated on 50Ω loa load;	d and			
-	The EU measu	JT was placed on turn-platform or res up to 1GHz and on a dielectri	n a dielectric support of 0.8m height (above ic support of 1.5m height for measures from	e the ground plane) for m 1GHz to 11GHz;				
-	The EL	JT was placed 3m apart from the	receiving antenna;					
-	The receiving antenna was positioned in horizontal and vertical polarization;							
-	Explora degree level.	atory measures were performed r es and moving the antenna height	nanually, manipulating the harness and ro t from 1m to 4m to determine the position of	tating the EUT from 0° for the form the form of the formation of the forma	to 360° nission			
-	Pre-sca antenn emissio	an measures were performed with a height from 1m to 4m by mean on. For measures from 1GHz to 1	n the EUT at 0° and 180° (worst positions of an automatic procedure computer ass 1GHz the antenna aim the EUT;	detected) and changing isted, to find the highest	the t			
-	Pre-sca to 150k 11GHz	an measurements were performe KHz, of 9KHz from 150KHz to 30 ;; The detected spurious emissior	d with the detector set to PEAK within a IF MHz, of 120KHz from 30MHz to 1GHz and ns were re-measured with the Average det	bandwidth of 200Hz fro d of 1000KHz from 1GH ector;	om 9KHz z to			
-	The fina method	al measures of each detected sp d specified by ANSI/TIA-603-D (2	urious components (see par. 8.4), were pe 010) par. 2.2, as follows:	rformed using the subst	itution			
	1) T	he EUT was removed from the S	emi-anechoic chamber and was substitute	ed with the substitution a	intenna;			
	2) T	he substitution antenna was conr	nected to the output of the signal generato	r by a RF cable;				
	3) C w d	On the signal generator the freque vas increased until, on the EMI Re uring the pre-scan;	ncy was set as the frequency of the spuric eceiver was measured the amplitude level	ous to measure and the (average detector) dete	power cted			
	4) A c	t this point, the power at the sub oming from the signal generator	stitution antenna input was measured by to the EMI Receiver set as power meter;	connecting the RF cab	le			
	5) T s	he EIRP level of the spurious is a ubstitution antenna gain;	given by the power at the substitution ant	enna input adding the				
	6) T	he procedure was repeated for e	each spurious that shall be measured;					
-	Rx mea	asuring Antennas: Loop antenna a from 1GHz to 11GHz;	from 9KHz to 30MHz, Bilog antenna from	30MHz to 1GHz and Ho	rn			



# 8.1 Apparecchiature utilizzate / *Test Equipment Used* – Field Strength of Spurious Radiation

Apparecchiature usate/Equipment Used	Modello/Model	Costruttore/ Manufacturer	Numero di serie/ Serial Number	Data calibrazione / <i>Calibration</i> <i>dat</i> e	Intervallo / Interval
EMI Receiver MXE	N9038A	Agilent Technologies	MY51210230	06/2016	1 year
Loop Antenna	6502	ETS-Lindgren	164807	06/2016	1 year
Bilog Antenna	Bilog CBL6111C	Chase	2415	10/2015 09/2016 (verification)	1 year
Horn Antenna Double- Ridged Waveguides	3117	ETS-Lindgren	00201258	08/2015 08/2016 (verification)	1 year
Pre-Amplifier	JS32-00104000-58- 5P-R	Narda -Miteq	2008138	11/2016	1 year
Pre-Amplifier	HP8447F, OPT H64	Hewlett/Packard	3113A07568	04/2016	1 year
Substitution Antenna ≥30MHz and ≤1GHz	SBA 9114	Schwarzbeck	UBAA 9114- 250	12/2015	1 year
Substitution Antenna >1GHz	VT10180DRHA10NK	Vector Telecom Pty Ltd	1407630100 01	05/2014 05/2016 (verification)	1 year
RF Cable for substitution method	41.275.000-L04	CPE Italia Spa	F4539	02/2016	1 year
Signal Generator	83752A	Hewlett Packard	3447A00549	09/2016	1 year
RF Cable	S5LL-900	Spin electronics	02-053-12	03/2016	1 year
RF Cable	SLULL18-NMNM- 4.00M	Timesmicrowave	07035-002- 001	07/2016	1 year
RF Cable	41.275.000-L03	CPE Italia Spa	F4538	02/2016	1 year
RF Cable	SKBL-2M-LOW	Minicircuits	1101189	09/2016	1 year
Multi-Device Controller	2090	ETS-Lindgren	81311	-	-
Antenna Mast	2175	ETS-Lindgren	136028	-	-
Accessory for azimuth antenna control	-	Emilab	EL088916	-	-
SAC3 – DC Filter	N6006	ETS-Lindgren	202031	-	_
Semi-Anechoic Chamber	-	ETS-Lindgren	5207	-	-
AC Power Supply	KBT-100-C-109-451	BEHLMAN	5896	12/2015	1 year

Software	Revisione/Revision	Costruttore/Manufacturer	Intervallo Verifica/Verification Interval
Integral EMI/EMC measurement software	RadiMation Version 2016.1.3	DARE Instruments	1 year

# 8.1.1 Apparecchiature ausiliarie / Auxiliary Equipment

Apparecchiature usate / Used Equipment	Modello / <i>Model</i>	Costruttore / <i>Manufacturer</i>	Numero di serie / Serial Number
PCB board (installed on PC)	ARING 429	Altadata	/
Test bench	IFF-45TS IFF	Aeroflex Wichita INC.	100000001





#### Schema del setup / Test setup diagram – Field Strength of Spurious Radiation 8.2



# 8.3 Requisiti / *Requirements -* Field Strength of Spurious Radiation

#### FCC Section 2.1053

(a) "Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission. For this test, single sideband, independent sideband, and controlled carrier transmitters shall be modulated under the conditions specified in paragraph (c) of §2.1049, as appropriate.

...Information submitted shall include the relative radiated power of each spurious emission with reference to the rated power output of the transmitter, assuming all emissions are radiated from halfwave dipole antennas".

- (b) The measurements specified in paragraph (a) of this section shall be made for the following equipment:
  - (2) All equipment operating on frequencies higher than 25 MHz.

FCC Section 87.139

(a) Except for ELTs and when using single sideband (R3E, H3E, J3E), or frequency modulation (F9) or digital modulation (F9Y) for telemetry or telecommand in the 1435-1525 MHz, 2345-2395 MHz, or 5091-5150 MHz band or digital modulation (G7D) for differential GPS, the mean power of any emissions must be attenuated below the mean power of the transmitter (pY) as follows:

(3) When the frequency is removed from the assigned frequency by more than 250 percent of the authorized bandwidth the attenuation for aircraft station transmitters must be at least 40 dB;



# 8.4 Risultati / *Results -* Field Strength of Spurious Radiation

The result of the test is: **PASS**. See the details in the charts/tables of the following paragraphs. In the following two tables, are collected the maximum EIRP power of each spurious detected.

Limit: the EUT carrier peak power is 500W, the duty cycle is 1.6% than the carrier mean power is  $500 \times 0.016 = 8W$  equal to 39dBm, at this value is added the dipole antenna gain of 1.64dBm than the carrier mean power is 40.64dBm.

The limit is -40dB respect to the carrier mean power: 40.6 – 40 = 0.6dBm

	Antenna TOP to 50Ω load											
Spurious Frequency [MHz]	Antenna Polarization	Power at substitution antenna input [dBm]	Substitution antenna Gain [dBi]	EIRP Power (dBm)	Limit [dBm]	Difference from limit [dB]	Result					
48,00	Horizontal	-42,2	-24,7	-66,9	0,6	67,5	Pass					
336,00	Vertical	-46,3	1,5	-44,8	0,6	45,4	Pass					
2180,00	Vertical	-56,2	9,1	-47,1	0,6	47,7	Pass					
5451,00	Horizontal	-72,9	10,3	-62,6	0,6	63,2	Pass					
6541,00	Horizontal	-73,1	11,6	-61,5	0,6	62,1	Pass					
3271,00	Horizontal	-67,4	9,2	-58,2	0,6	58,8	Pass					
4361,00	Vertical	-73,8	10,4	-63,4	0,6	64,0	Pass					

	Antenna BOTTOM to 50Ω load											
Spurious Frequency [MHz]	Antenna Polarization	Power at substitution antenna input [dBm]	Substitution antenna Gain [dBi]	EIRP Power (dBm)	Limit [dBm]	Difference from limit [dB]	Result					
48,00	Vertical	-39,7	-24,7	-64,4	0,6	65,0	Pass					
336,00	Vertical	-51,6	1,5	-50,1	0,6	50,7	Pass					
2180,00	Horizontal	-56,5	9,1	-47,4	0,6	48,0	Pass					
5451,00	Vertical	-72,1	10,3	-61,8	0,6	62,4	Pass					
6541,00	Horizontal	-74,4	11,6	-62,8	0,6	63,4	Pass					
3271,00	Vertical	-67,1	9,2	-57,9	0,6	58,5	Pass					
4361,00	Vertical	-73,7	10,4	-63,3	0,6	63,9	Pass					

Note: below 30MHz only noise floor was measured (no spurious emissions were detected).



Page 57 of 81

# 8.4.1 Tabelle e grafici dei risultati / Tables and graphical representation data – Field Strength of Spurious Radiation

Note: the equivalent "E limit" used during pre-scan phase and represented on the next graphics, was calculated by the next formula:

$$E = \frac{\sqrt{P_t \times 30}}{r}$$

where  $P_t$  is the total power radiated from an isotropic radiator and r is the distance from the isotropic radiator.

## Noise Floor Measures from 9KHz to 30MHz

Noise floor measured from 9KHz to 30MHz. Peak detector (green trace) with IF=200Hz from 9KHz to 150KHz and 9KHz from 150KHz to 30MHz. Average equivalent E limit (blue line). Vertical polarization, orthogonal respect to the EUT-Antenna axis.





Noise floor measured from 9KHz to 30MHz. Peak detector (green trace) with IF=200Hz from 9KHz to 150KHz and 9KHz from 150KHz to 30MHz. Average equivalent E limit (blue line). Vertical polarization, parallel respect to the EUT-Antenna axis.





Noise floor measured from 9KHz to 30MHz. Peak detector (green trace) with IF=200Hz from 9KHz to 150KHz and 9KHz from 150KHz to 30MHz. Average equivalent E limit (blue line). Horizontal polarization.





Page 60 of 81

## Noise Floor Measures from 30MHz to 1GHz

Noise floor measured from 30MHz to 1GHz. Peak detector (green trace) with IF=120KHz. Average equivalent E limit (blue line). Vertical polarization.



Noise floor measured from 30MHz to 1GHz. Peak detector (green trace) with IF=120KHz. Average equivalent E limit (blue line). Horizontal polarization.





### Noise Floor Measures from 1GHz to 11GHz

Noise floor measured from 1GHz to 11GHz. Peak detector (green trace) with IF=1MHz. Average equivalent E limit (blue line). Vertical polarization.



Noise floor measured from 1GHz to 11GHz. Peak detector (green trace) with IF=1MHz. Average equivalent E limit (blue line). Horizontal polarization.





Page 62 of 81

# Cable of antenna TOP connected to 50ohm Load

## Measure on EUT from 9KHz to 30MHz

Radiated emissions measured from 9KHz to 30MHz. Peak detector (green trace) with IF=200Hz from 9KHz to 150KHz and 9KHz from 150KHz to 30MHz. Average equivalent E limit (blue line). Vertical polarization, orthogonal respect to the EUT-Antenna axis.



Frequency [KHz]	Peak [dBµV/m]	Average Limit [dBµV/m]	Difference from Limit [dB]	EUT Angle [°]	Antenna Height [mt]	Result
10,650	62,0	95,9	-33,9	0	1,00	Pass



Page 63 of 81

Radiated emissions measured from 9KHz to 30MHz. Peak detector (green trace) with IF=200Hz from 9KHz to 150KHz and 9KHz from 150KHz to 30MHz. Average equivalent E limit (blue line). Vertical polarization, parallel respect to the EUT-Antenna axis.





Page 64 of 81

Radiated emissions measured from 9KHz to 30MHz. Peak detector (green trace) with IF=200Hz from 9KHz to 150KHz and 9KHz from 150KHz to 30MHz. Average equivalent E limit (blue line). Horizontal polarization.



Frequency [KHz]	Peak [dBµV/m]	Average Limit [dBµV/m]	Difference from Limit [dB]	EUT Angle [°]	Antenna Height [mt]	Result
10,550	62,4	95,9	-33,5	0	1,00	Pass



Page 65 of 81

# Measure on EUT from 30MHz to 1GHz

Radiated emissions measured from 30MHz to 1GHz. Peak detector (green trace) with IF=120KHz. Average equivalent E limit (blue line). Vertical polarization.



Frequency [MHz]	Average [dBµV/m]	Average Limit [dBµV/m]	Difference from Limit [dB]	EUT Angle [°]	Antenna Height [mt]	Result
48,000	27,9	95,9	-68,0	0	1,00	Pass
336,000	50,2	95,9	-45,7	0	1,00	Pass



Radiated emissions measured from 30MHz to 1GHz. Peak detector (green trace) with IF=120KHz. Average equivalent E limit (blue line). Horizontal polarization.



Frequency [MHz]	Average [dBµV/m]	Average Limit [dBµV/m]	Difference from Limit [dB]	EUT Angle [°]	Antenna Height [mt]	Result
336,000	41,0	95,9	-54,9	0	2,81	Pass



Page 67 of 81

# Measure on EUT from 1GHz to 11GHz

Radiated emissions measured from 1GHz to 11GHz. Peak detector (green trace) with IF=1MHz. Average equivalent E limit (blue line). Vertical polarization.

Note: carrier intentional emission at 1090MHz



Frequency (Hz)



Radiated emissions measured from 2.165GHz to 6.556GHz. Average detector (brown trace) with IF=1MHz. Average equivalent E limit (blue line). Vertical polarization.



Frequency [MHz]	Average [dBµV/m]	Average Limit [dBµV/m]	Difference from Limit [dB]	EUT Angle [°]	Antenna Height [mt]	Result
2181,000	46,2	95,9	-49,7	0	3,79	Pass
3271,000	36,6	95,9	-59,3	0	2,29	Pass
4361,000	32,4	95,9	-63,5	0	2,29	Pass
5451,000	34,4	95,9	-61,5	0	1,86	Pass
6541,000	33,1	95,9	-62,8	0	1,86	Pass



Radiated emissions measured from 1GHz to 11GHz. Peak detector (green trace) with IF=1MHz. Average equivalent E limit (blue line). Horizontal polarization.

Note: carrier intentional emission at 1090MHz





Radiated emissions measured from 2.165GHz to 6.556GHz. Average detector (brown trace) with IF=1MHz. Average equivalent E limit (blue line). Horizontal polarization.



Frequency [MHz]	Average [dBµV/m]	Average Limit [dBµV/m]	Difference from Limit [dB]	EUT Angle [°]	Antenna Height [mt]	Result
2180,000	49,0	95,9	-46,9	0	3,36	Pass
3271,000	35,7	95,9	-60,2	0	2,29	Pass
4360,000	32,0	95,9	-63,9	0	1,86	Pass
5451,000	33,1	95,9	-62,8	0	1,86	Pass
6541,000	33,2	95,9	-62,7	0	1,00	Pass



Page 71 of 81

# Cable of antenna BOTTOM connected to 50ohm Load

## Measure on EUT from 9KHz to 30MHz

Radiated emissions measured from 9KHz to 30MHz. Peak detector (green trace) with IF=200Hz from 9KHz to 150KHz and 9KHz from 150KHz to 30MHz. Average equivalent E limit (blue line). Vertical polarization, orthogonal respect to the EUT-Antenna axis.





Page 72 of 81

Radiated emissions measured from 9KHz to 30MHz. Peak detector (green trace) with IF=200Hz from 9KHz to 150KHz and 9KHz from 150KHz to 30MHz. Average equivalent E limit (blue line). Vertical polarization, parallel respect to the EUT-Antenna axis.



Frequency [KHz]	Peak [dBµV/m]	Average Limit [dBµV/m]	Difference from Limit [dB]	EUT Angle [°]	Antenna Height [mt]	Result
9,000	60,1	95,9	-35,8	0	1,00	Pass


Page 73 of 81

Radiated emissions measured from 9KHz to 30MHz. Peak detector (green trace) with IF=200Hz from 9KHz to 150KHz and 9KHz from 150KHz to 30MHz. Average equivalent E limit (blue line). Horizontal polarization.





Page 74 of 81

## Measure on EUT from 30MHz to 1GHz

Radiated emissions measured from 30MHz to 1GHz. Peak detector (green trace) with IF=120KHz. Average equivalent E limit (blue line). Vertical polarization.



Signal list						
Frequency [MHz]	Average [dBµV/m]	Average Limit [dBµV/m]	Difference from Limit [dB]	EUT Angle [°]	Antenna Height [mt]	Result
48,000	30,0	95,9	-65,9	0	1,50	Pass
336,000	36,8	95,9	-59,1	0	1,00	Pass



Radiated emissions measured from 30MHz to 1GHz. Peak detector (green trace) with IF=120KHz. Average equivalent E limit (blue line). Vertical polarization.



Fre	equency [MHz]	Average [dBµV/m]	Average Limit [dBµV/m]	Difference from Limit [dB]	EUT Angle [°]	Antenna Height [mt]	Result
3	36,000	44,4	95,9	-51,5	180	1,00	Pass



Radiated emissions measured from 30MHz to 1GHz. Peak detector (green trace) with IF=120KHz. Average equivalent E limit (blue line). Horizontal polarization.



Frequency [MHz]	Average [dBµV/m]	Average Limit [dBµV/m]	Difference from Limit [dB]	EUT Angle [°]	Antenna Height [mt]	Result
336,000	44,1	95,9	-51,8	180	1,00	Pass



Page 77 of 81

## Measure on EUT from 1GHz to 11GHz

Radiated emissions measured from 1GHz to 11GHz. Peak detector (green trace) with IF=1MHz. Average equivalent E limit (blue line). Vertical polarization.

Note: carrier intentional emission at 1090MHz



Frequency (Hz)



Radiated emissions measured from 2.165GHz to 6.556GHz. Average detector (brown trace) with IF=1MHz. Average equivalent E limit (blue line). Vertical polarization.



#### Signal list

Frequency [MHz]	Average [dBµV/m]	Average Limit [dBµV/m]	Difference from Limit [dB]	EUT Angle [°]	Antenna Height [mt]	Result
2180,000	45,4	95,9	-50,5	0	2,93	Pass
3271,000	36,6	95,9	-59,3	0	2,29	Pass
4360,000	32,3	95,9	-63,6	0	2,29	Pass
5451,000	33,8	95,9	-62,1	0	1,86	Pass
6541,000	32,9	95,9	-63,0	0	2,07	Pass



Radiated emissions measured from 1GHz to 11GHz. Peak detector (green trace) with IF=1MHz. Average equivalent E limit (blue line). Horizontal polarization.

Note: carrier intentional emission at 1090MHz





Radiated emissions measured from 2.165GHz to 6.556GHz. Average detector (brown trace) with IF=1MHz. Average equivalent E limit (blue line). Horizontal polarization.



Signal list

Frequency [MHz]	Average [dBµV/m]	Average Limit [dBµV/m]	Difference from Limit [dB]	EUT Angle [°]	Antenna Height [mt]	Result
2180,000	48,2	95,9	-47,7	0	3,36	Pass
3271,000	36,4	95,9	-59,5	0	2,07	Pass
4361,000	32,0	95,9	-63,9	0	2,07	Pass
5451,000	32,9	95,9	-63,0	0	1,86	Pass
6541,000	33,2	95,9	-62,7	0	1,64	Pass



Page 81 of 81

# Allegato 2 / Annex 2: Incertezza / Uncertainty

# A.2.1 Radiated Emissions: FCC

From 9kHz to 30MHz using Loop a	antenna
Field intensity	:±4.2dB
From 30MHz to 1000MHz using E	Bilog antenna
Field intensity	:±4.7dB
From 1GHz to 18GHz using Horn	antenna
Field intensity	:±4.9dB

## A.2.2 Radio test

Conducted output power	: ± 2.1dB
Conducted Bandwidth	: ± 8.1KHz (Span=20M, RBW=100KHz, 10000pti)
Conducted spurious emission	: ± 3.7dB
RF Frequency	: ± 350Hz