FCC ID	TEST REPOR	RT
ECC ID .	2AKAIEID90	
Test Report No:	TCT240415E010	
Date of issue:	Apr. 25, 2024	
Testing laboratory: :	SHENZHEN TONGCE TESTIN	NG LAB
Testing location/ address:	2101 & 2201, Zhenchang Fact Subdistrict, Bao'an District, Sh People's Republic of China	ory Renshan Industrial Zone, Fuhai enzhen, Guangdong, 518103,
Applicant's name: :	SHENZHEN HARMONY INDU	STRIAL CO., LTD
Address:		IAL ZONE, HEPING COMMUNITY UANROAD, FUYONG, BAO'AN,
Manufacturer's name :	SHENZHEN HARMONY INDU	STRIAL CO., LTD
Address:	•	IAL ZONE, HEPING COMMUNITY UANROAD, FUYONG, BAO'AN,
Standard(s):	FCC CFR Title 47 Part 15 Sub FCC KDB 558074 D01 15.247 ANSI C63.10:2013	
Product Name::	TABLET PC	
Trade Mark:	Emerson	
Model/Type reference :	EID-9000, HN-M908	
Rating(s):	Refer to EUT description of pa	ge 3
Date of receipt of test item	Apr. 15, 2024	
Date (s) of performance of test:	Apr. 15, 2024 ~ Apr. 25, 2024	
Tested by (+signature) :	Onnado YE	Onnado Janger
Check by (+signature) :	Beryl ZHAO	Bod PTCT
Approved by (+signature):	Tomsin	Tomsters

General disclaimer:

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Table of Contents

TCT 通测检测 TESTING CENTRE TECHNOLOGY

1. General Product Information	
1.1. EUT description	3
1.2. Model(s) list	3
1.3. Operation Frequency	4
2. Test Result Summary	
3. General Information	
3.1. Test environment and mode	6
3.2. Description of Support Units	6
4. Facilities and Accreditations	
4.1. Facilities	
4.2. Location	7
4.3. Measurement Uncertainty	
5. Test Results and Measurement Data	
5.1. Antenna requirement	8
5.2. Conducted Emission	
5.3. Conducted Output Power	13
5.4. 20dB Occupy Bandwidth	14
5.5. Carrier Frequencies Separation	15
5.6. Hopping Channel Number	16
5.7. Dwell Time	
5.8. Pseudorandom Frequency Hopping Sequence	
5.9. Conducted Band Edge Measurement	19
5.10.Conducted Spurious Emission Measurement	
5.11.Radiated Spurious Emission Measurement	21
Appendix A: Test Result of Conducted Test	
Appendix B: Photographs of Test Setup	
Appendix C: Photographs of EUT	

1. General Product Information

1.1. EUT description

Product Name:	TABLET PC	3	
Model/Type reference:	EID-9000		
Sample Number:	TCT240415E010-0101		
Bluetooth Version:	V5.0		
Operation Frequency:	2402MHz~2480MHz		
Transfer Rate:	1/2/3 Mbits/s	\mathcal{C}	$\langle \mathcal{C} \rangle$
Number of Channel:	79		
Modulation Type:	GFSK, π/4-DQPSK, 8DPSK		
Modulation Technology:	FHSS		
Antenna Type:	Internal Antenna		
Antenna Gain:	1.83dBi	\mathcal{O}	S)
Rating(s):	Adapter Information: MODEL: HJ-050200U INPUT: AC 100-240V, 50/60Hz, 0.6/ OUTPUT: DC 5V, 2A Rechargeable Li-ion Battery DC 3.7		

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

No.	Model No.	Tested with
1	EID-9000	\boxtimes
Other models	HN-M908	
	s are derivative models. The test data of EID-900	
		Page 3 of 96

Report No.: TCT240415E010

1.3. Operation Frequency

02MHz	20					
	20	2422MHz	40	2442MHz	60	2462MHz
03MHz	21	2423MHz	41	2443MHz	61	2463MHz
			·		<u> </u>	
12MHz	30	2432MHz	50	2452MHz	70	2472MHz
13MHz	31	2433MHz	51	2453MHz	71	2473MHz
/		.		S		S
20MHz	38	2440MHz	58	2460MHz	78	2480MHz
21MHz	39	2441MHz	- 59	2461MHz		-
	 12MHz 13MHz 20MHz 21MHz	 12MHz 30 13MHz 31 20MHz 38 21MHz 39	12MHz 30 2432MHz 13MHz 31 2433MHz 20MHz 38 2440MHz 21MHz 39 2441MHz	412MHz 30 2432MHz 50 413MHz 31 2433MHz 51 420MHz 38 2440MHz 58 421MHz 39 2441MHz 59	.12MHz 30 2432MHz 50 2452MHz .13MHz 31 2433MHz 51 2453MHz .20MHz 38 2440MHz 58 2460MHz .21MHz 39 2441MHz 59 2461MHz	.12MHz 30 2432MHz 50 2452MHz 70 .13MHz 31 2433MHz 51 2453MHz 71 .20MHz 38 2440MHz 58 2460MHz 78

Remark: Channel 0, 39 & 78 have been tested for GFSK, $\pi/4$ -DQPSK, 8DPSK modulation mode.

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna Requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247 (b)(1)	PASS
20dB Occupied Bandwidth	§15.247 (a)(1)	PASS
Carrier Frequencies Separation	§15.247 (a)(1)	PASS
Hopping Channel Number	§15.247 (a)(1)	PASS
Dwell Time	§15.247 (a)(1)	PASS
Radiated Emission	§15.205/§15.209	PASS
Band Edge	§15.247(d)	PASS

Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

3. General Information

3.1. Test environment and mode

Operating Environment:		
Condition	Conducted Emission	Radiated Emission
Temperature:	24.6 °C	22.9 °C
Humidity:	51 % RH	52 % RH
Atmospheric Pressure:	1010 mbar	1010 mbar
Test Software:		

Software Information:	rf_test version 1.0	0
Power Level:	Default	

Test Mode:

	Keep the EUT in continuous transmitting by select channel and modulations with Fully-charged battery.
--	---

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case (Z axis) are shown in Test Results of the following pages.

DH1 DH3 DH5 all have been tested, only worse case DH1 is reported.

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
/	/	/	/	/

Note:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

3. For conducted measurements (Output Power, 20dB Occupied Bandwidth, Carrier Frequencies Separation, Hopping Channel Number, Dwell Time, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC - Registration No.: 10668A-1

SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory, Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

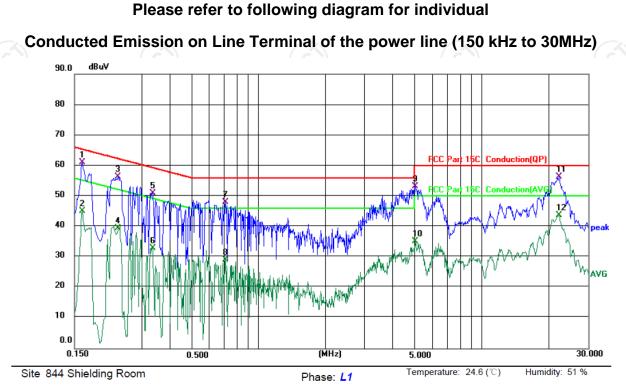
No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

5.2. Conducted Emission

5.2.1. Test Specification

			(
Test Requirement:	FCC Part15 C Section	15.207	No. Contraction of the second se
Test Method:	ANSI C63.10:2013		
Frequency Range:	150 kHz to 30 MHz	3	
Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep time	e=auto
	Frequency range	Limit (dBuV)
	(MHz)	Quasi-peak	Áverage
Limits:	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
		6)	
	Referenc	e Plane	
Test Setup:	40cm E.U.T AC powe		7
	Test table/Insulation plane Remarkc E.U.T: Equipment Under Test LISN: Line Impedence Stabilization No Test table height=0.8m		r — AC power
Test Mode:	Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization No Test table height=0.8m Charging + Transmittin	etwork	
	Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization No Test table height=0.8m	etwork etwork	er through a line (L.I.S.N.). This pedance for the ected to the main a 50ohm/50ul- nination. (Please test setup and test setup and ed for maximun ind the maximun ipment and all o l according to
Test Mode:	Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Na Test table height=0.8m Charging + Transmittin 1. The E.U.T is conne impedance stabiliz provides a 50ohm/S measuring equipme 2. The peripheral device power through a LI coupling impedance refer to the block photographs). 3. Both sides of A.C. conducted interferen emission, the relative the interface cables	etwork etwork	er through a line (L.I.S.N.). This pedance for the ected to the main a 50ohm/50ul- nination. (Please test setup and test setup and ed for maximum ind the maximum ipment and all o l according to

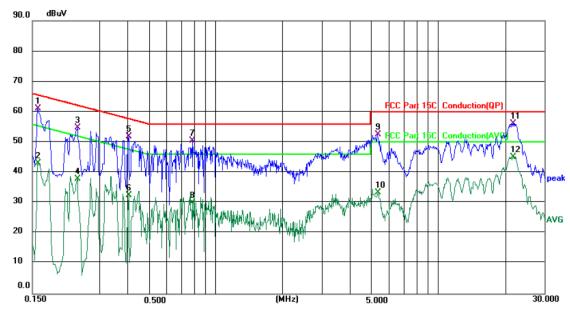
Page 9 of 96


5.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)						
Equipment	Manufacturer	Model	Serial Number	Calibration Due		
EMI Test Receiver	R&S	ESCI3	100898	Jun. 29, 2024		
Line Impedance Stabilisation Newtork(LISN)	Schwarzbeck	NSLK 8126	8126453	Jan. 31, 2025		
Line-5	ТСТ	CE-05	/	Jul. 03, 2024		
EMI Test Software	Shurple Technology	EZ-EMC	1	1		

Page 10 of 96

5.2.3. Test data


Limit: F	Limit: FCC Part 15C Conduction(QP)				Power: AC 120 V/60 Hz		20 V/60 Hz	
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1620	51.08	10.03	61.11	65.36	-4.25	QP	
2	0.1620	35.17	10.03	45.20	55.36	-10.16	AVG	
3	0.2353	46.63	9.84	56.47	62.26	-5.79	QP	
4	0.2353	29.59	9.84	39.43	52.26	-12.83	AVG	
5	0.3339	41.10	9.84	50.94	59.35	-8.41	QP	
6	0.3339	23.20	9.84	33.04	49.35	-16.31	AVG	
7	0.7137	38.98	9.15	48.13	56.00	-7.87	QP	
8	0.7137	20.02	9.15	29.17	46.00	-16.83	AVG	
9	5.0339	42.83	10.42	53.25	60.00	-6.75	QP	
10	5.0339	24.69	10.42	35.11	50.00	-14.89	AVG	
11 *	22.2099	45.67	10.66	56.33	60.00	-3.67	QP	
12	22.2099	33.02	10.66	43.68	50.00	-6.32	AVG	

Note:

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$ Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Report No.: TCT240415E010

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Site 844 Shielding Room Phase: N Temperature: 24.6 (°C) Humidity: 51 % Limit: FCC Part 15C Conduction(QP) Power: AC 120 V/60 Hz Humidity: 51 %

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1590	51.12	10.01	61.13	65.52	-4.39	QP	
2		0.1590	33.14	10.01	43.15	55.52	-12.37	AVG	
3		0.2379	44.88	9.82	54.70	62.17	-7.47	QP	
4		0.2379	28.18	9.82	38.00	52.17	-14.17	AVG	
5		0.4060	42.40	9.40	51.80	57.73	-5.93	QP	
6		0.4060	23.20	9.40	32.60	47.73	-15.13	AVG	
7		0.7900	41.37	9.05	50.42	56.00	-5.58	QP	
8		0.7900	20.88	9.05	29.93	46.00	-16.07	AVG	
9		5.3620	42.26	10.35	52.61	60.00	-7.39	QP	
10		5.3620	23.05	10.35	33.40	50.00	-16.60	AVG	
11	*	21.7220	45.67	10.57	56.24	60.00	-3.76	QP	
12		21.7220	34.58	10.57	45.15	50.00	-4.85	AVG	

Note1:

TCT通测检测 TESTING CENTRE TECHNOLOGY

> Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$ Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note2:

Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (Lowest channel and 8DPSK) was submitted only.

Page 12 of 96

5.3. Conducted Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 1	5.247 (b)(1)			
Test Method:	KDB 558074 D01 v05r02	2			
Limit:	power of the intentional following: (1) For frequen in the 2400-2483.5 MHz non-overlapping hopping				
Test Setup:	Spectrum Analyzer	EUT			
Test Mode:	Transmitting mode with	modulation			
Test Procedure:	centered on a hopping c RBW > the 20 dB bandw measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize	5 times the 20 dB bandwidth, hannel vidth of the emission being			
Test Result:	PASS				

5.3.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB		

5.4. 20dB Occupy Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)					
Test Method:	KDB 558074 D01 v05r02					
Limit:	N/A					
Test Setup:	Spectrum Analyzer EUT					
Test Mode:	Transmitting mode with modulation					
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 					
Test Result:	PASS					

5.4.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB	/	/

5.5. Carrier Frequencies Separation

5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.
Test Result:	PASS

5.5.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB	/ >>	1

Page 15 of 96

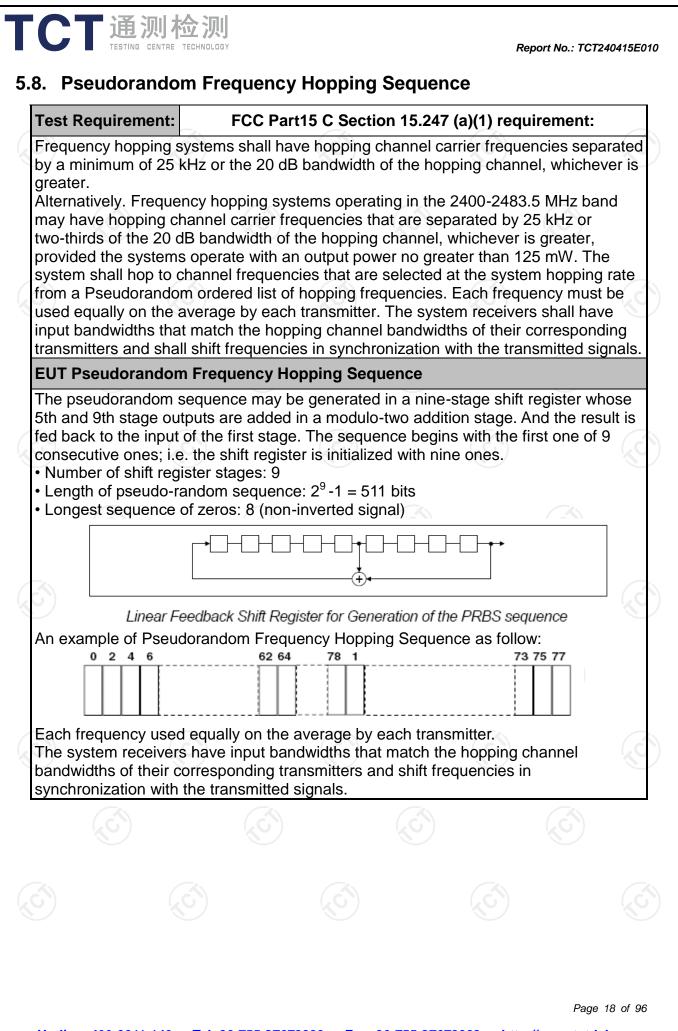
5.6. Hopping Channel Number

5.6.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. The number of hopping frequency used is defined as the number of total channel. Record the measurement data in report.
Test Result:	PASS
5.6.2 Test Instruments	

5.6.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB	/	/


5.7. Dwell Time

5.7.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)					
Test Method:	KDB 558074 D01 v05r02					
Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.					
Test Setup:	Spectrum Analyzer EUT					
Test Mode:	Hopping mode					
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 					
Test Result:	PASS					

5.7.2. Test Instruments

Name	Name Manufacturer Mo		Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB		

5.9. Conducted Band Edge Measurement

5.9.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 v05r02
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz (≥1% span=10MHz), VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report.
Test Result:	PASS

5.9.2. Test Instruments

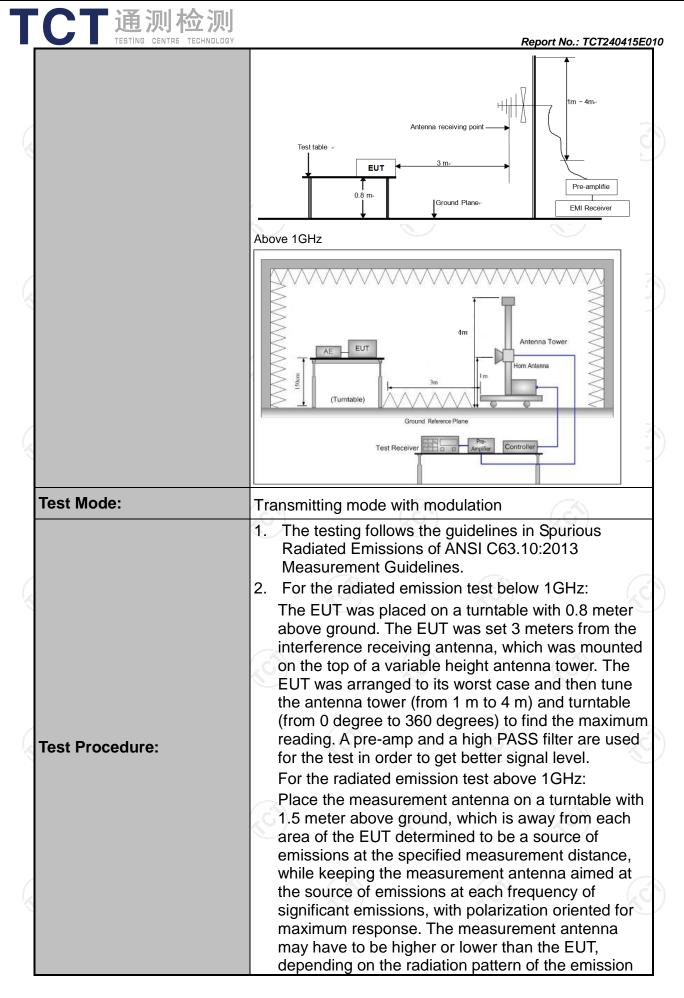
Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A MY491006 ⁻		Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB	/	/

5.10. Conducted Spurious Emission Measurement

5.10.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 v05r02
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Test Result:	PASS

5.10.2. Test Instruments


Name	Name Manufacturer		Serial Number	Calibration Due Jun. 28, 2024		
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024		
Combiner Box	Ascentest	AT890-RFB				

5.11. Radiated Spurious Emission Measurement

5.11.1. Test Specification

TCT 通测检测 TESTING CENTRE TECHNOLOGY

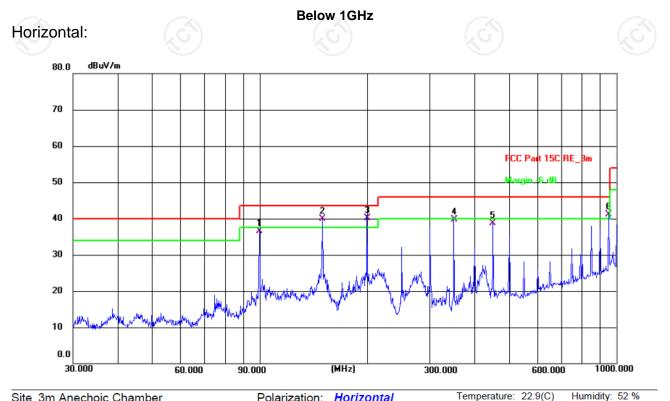
Test Requirement:	FCC Part15	C Sectior	n 15.209	S S		
Test Method:	ANSI C63.10):2013				
Frequency Range:	9 kHz to 25 (GHz				6
Measurement Distance:	3 m	K	\mathbf{y}		R	
Antenna Polarization:	Horizontal &	Vertical				
	Frequency Detector RBW			VBW		Remark
	9kHz- 150kHz	Quasi-peal		1kHz		si-peak Value
Receiver Setup:	150kHz- 30MHz	Quasi-peal	k 9kHz	30kHz	Quas	si-peak Value
	30MHz-1GHz	Quasi-peal	k 120KHz	300KHz	Quas	i-peak Value
	Above 1GHz	Peak	1MHz	3MHz		eak Value
	Above IGHZ	Peak	1MHz	10Hz	Ave	erage Value
	Eroquer		Field Str	ength	Me	asurement
	Frequen		(microvolts	/meter)	Dista	nce (meters)
	0.009-0.4	/	2400/F(300
	0.490-1.7		24000/F 30	(KHZ)		<u>30</u> 30
	30-88		100)		30
	88-216		150		3	
.imit:	216-96		200		3	
	Above 9	500	00 3			
	Frequency		d Strength ovolts/meter)	Measurer Distand (meter	nce Detector	
	Above 1GH	z	500	3	3 Average	
			5000	3		Peak
Test setup:	For radiated emis	stance = 3m	d Plane		Compu	
5)			(,	C)		
						Page 21 of

Page 22 of 96

	3. 4.	receiving the maxim measurement anter maximizes the emi- antenna elevation restricted to a rang above the ground of Set to the maxim EUT transmit cont Use the following (1) Span shall wid emission bein (2) Set RBW=120 for f>1GHz ; V Sweep = aut = max hold for (3) For average correction fac 15.35(c). Duty	spectrum analyzer se de enough to fully cap g measured;) kHz for f < 1 GHz, R /BW≥RBW; o; Detector function =	e that which ment ins shall be m to 4 m blane. d enable the ettings: oture the BW=1MHz BW=1MHz peak; Trace uty cycle milliseconds
		Where N1 is length of type Average Emi Level + 20*lo Corrected Rea	number of type 1 puls e 1 pulses, etc. ssion Level = Peak E og(Duty cycle) ading: Antenna Factor	mission r + Cable
Test results:	PA	Where N1 is length of type Average Emi Level + 20*lo Corrected Rea Loss + Read L	number of type 1 puls e 1 pulses, etc. ssion Level = Peak E og(Duty cycle)	mission r + Cable
Test results:	PA	Where N1 is length of type Average Emi Level + 20*lo Corrected Rea Loss + Read L	number of type 1 puls e 1 pulses, etc. ssion Level = Peak E og(Duty cycle) ading: Antenna Factor	mission r + Cable
Test results:	PA CO	Where N1 is length of type Average Emi Level + 20*lo Corrected Rea Loss + Read L	number of type 1 puls e 1 pulses, etc. ssion Level = Peak E og(Duty cycle) ading: Antenna Factor	mission r + Cable
Test results:	PA	Where N1 is length of type Average Emi Level + 20*lo Corrected Rea Loss + Read L	number of type 1 puls e 1 pulses, etc. ssion Level = Peak E og(Duty cycle) ading: Antenna Factor	mission r + Cable

5.11.2. Test Instruments

	Radiated En	nission Test Site	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESIB7	100197	Jun. 29, 2024
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 29, 2024
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Jan. 31, 2025
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Jan. 31, 2025
Pre-amplifier	HP	8447D	2727A05017	Jun. 27, 2024
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jul. 02, 2024
Broadband Antenna	Schwarzbeck	VULB9163	340	Jul. 01, 2024
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jul. 01, 2024
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Feb. 02, 2025
Antenna Mast	Keleto	RE-AM	/	/
Coaxial cable	SKET	RC-18G-N-M	1	Jan. 31, 2025
Coaxial cable	SKET	RC_40G-K-M	/	Jan. 31, 2025
EMI Test Software	Shurple Technology	EZ-EMC		1



Page 24 of 96

5.11.3. Test Data

TCT通测检测 TCT通测检测

Please refer to following diagram for individual

Site 3m Anechoic Chamber Limit: FCC Part 15C RE 3m

Polarization: Horizontal

Power: DC 3.7 V

Report No.: TCT240415E010

÷,		COTARTISCIN	<u></u>							1
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
	1	99.8777	57.54	-21.12	36.42	43.50	-7.08	QP	Р	
	2!	150.0108	56.78	-16.93	39.85	43.50	-3.65	QP	Р	
	3 *	199.9856	60.96	-20.76	40.20	43.50	-3.30	QP	Р	
	4	350.4768	56.09	-16.33	39.76	46.00	-6.24	QP	Р	
	5	451.1350	51.90	-13.28	38.62	46.00	-7.38	QP	Р	
	6!	952.0937	45.57	-4.40	41.17	46.00	-4.83	QP	Р	

Page 25 of 96

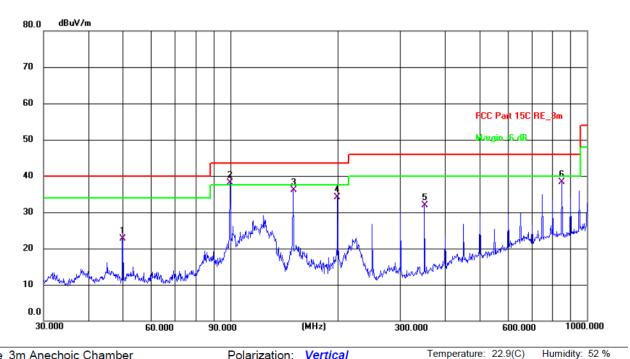
Vertical:

4

5

6

199.9855


350.4767

851.0353

54.88

48.20

44.41

Site 3m Anechoic Chamber Polarization: Vertical DC 3.7 V Limit: FCC Part 15C RE_3m Power[.] Frequency Reading Factor Level Limit Margin P/F Detector Remark No. (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 1 49.8814 41.08 -18.45 22.63 40.00 -17.37 QP Ρ 2 99.8777 59.25 -21.12 38.13 43.50 -5.37 QP Ρ 3 150.0108 53.00 -16.93 36.07 43.50 -7.43 QP Ρ

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

43.50

46.00

46.00

-9.38

-14.13

-7.72

QP

QP

QP

Ρ

Ρ

Ρ

2. Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK, 8DPSK) and the worst case Mode (Lowest channel and 8DPSK) was submitted only.

 Freq. = Emission frequency in MHz Measurement (dBμV/m) = Reading level (dBμV) + Corr. Factor (dB) Correction Factor= Antenna Factor + Cable loss – Pre-amplifier Limit (dBμV/m) = Limit stated in standard

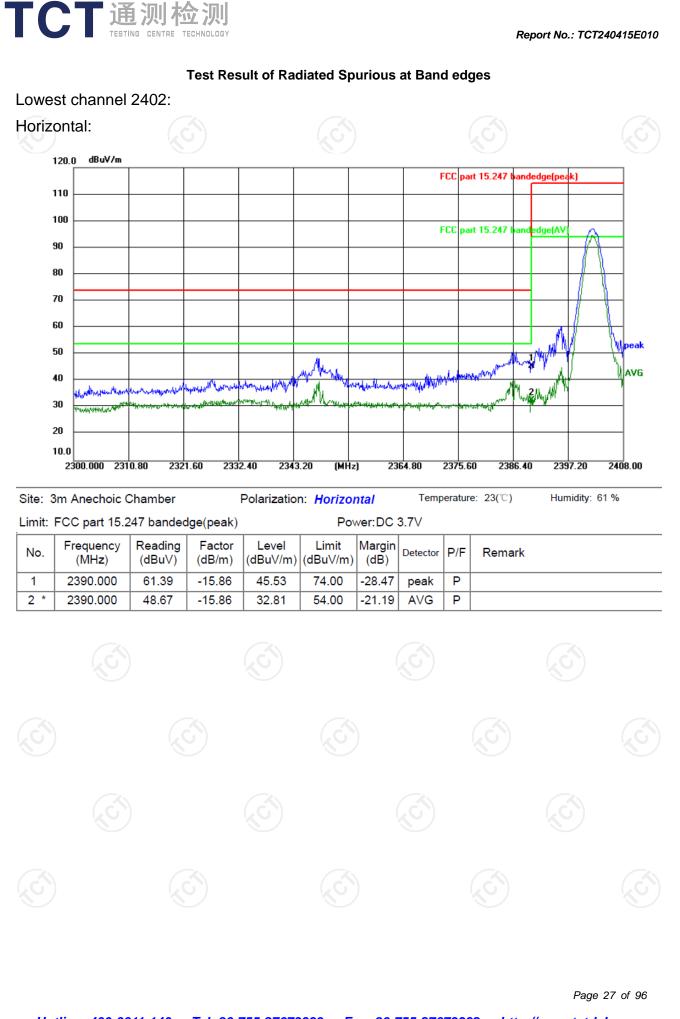
-20.76

-16.33

-6.13

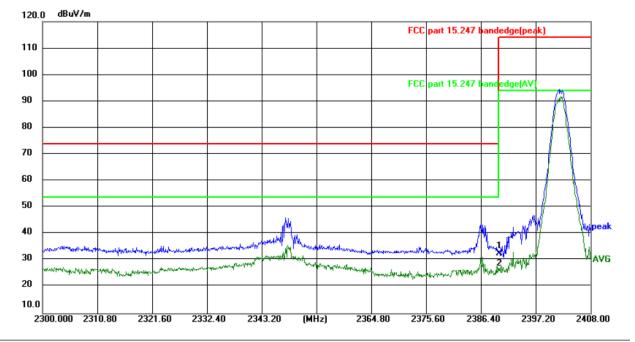
Over $(dB) = Measurement (dB\mu V/m) - Limits (dB\mu V/m)$

 * is meaning the worst frequency has been tested in the test frequency range.


34.12

31.87

38.28


Page 26 of 96

Report No.: TCT240415E010

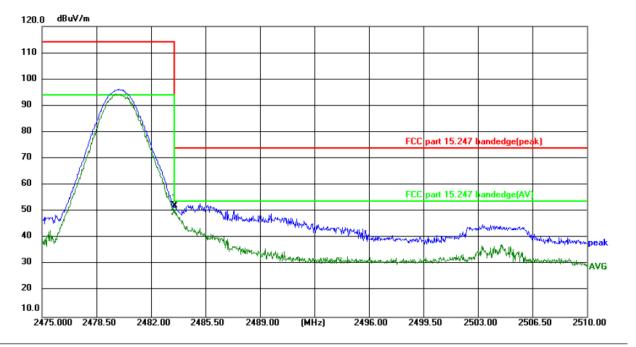
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Vertical:

Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 23(°C) Humidity: 61 %

Limit: FCC part 15.247 bandedge(peak)

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	2390.000	48.48	-15.86	32.62	74.00	-41.38	peak	Ρ	
2 *	2390.000	42.02	-15.86	26.16	54.00	-27.84	AVG	Ρ	


Power:DC 3.7V

Page 28 of 96

Highest channel 2480:

Horizontal:

Site: 3m Anechoic Chamber Polarization: Horizontal Temperature: 23(°C) Humidity: 61 %

Limit: I	FCC part 15.2	47 banded		Pov	ver:DC :	3.7∨			
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	2483.500	68.08	-15.87	52.21	74.00	-21.79	peak	Ρ	
2 *	2483.500	65.44	-15.87	49.57	54.00	-4.43	AVG	Ρ	

Report No.: TCT240415E010

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Report No.: TCT240415E010 Vertical: dBu¥/m 120.0 110 100 90 80 FCC part 15.247 ndedge(pe k) 70 60 FCC part 15.247 bandedge(AV 50 40 When Black Marrie ANY DAM 30 AVG 20 10.0 2475.000 2478.50 2482.00 2485.50 2489.00 (MHz) 2496.00 2499.50 2503.00 2506.50 2510.00 Temperature: 23(°C) Humidity: 61 % Site: 3m Anechoic Chamber Polarization: Vertical Limit: FCC part 15.247 bandedge(peak) Power:DC 3.7V Reading Level Limit Frequency Factor Margin No. Detector P/F Remark (MHz) (dBuV) (dBuV/m) (dBuV/m) (dB) (dB/m) 2483.500 64.80 -15.87 48.93 74.00 -25.07 Ρ 1 peak 2 2483,500 63.21 -15.87 47.34 54.00 -6.66 AVG Ρ * Note: Measurements were conducted in all three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (8DPSK) was submitted only. Page 30 of 96

Above 1GHz

Modulation	Type: 8D	PSK							
Low chann	el: 2402 N	IHz							
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4804	Н	45.24		0.66	45.90		74	54	-8.10
7206	Н	34.86		9.50	44.36		74	54	-9.64
	Н					~~~			
	<u> </u>		U,C) 		· C`)		(\mathcal{O})	
4804	V	44.39		0.66	45.05		74	54	-8.95
7206	V	35.01		9.50	44.51		74	54	-9.49
	V								

Middle cha	nnel: 2441	MHz		X)			j ko
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak	Peak limit (dBµV/m)		Margin (dB)
4882	Н	45.43		0.99	46.42	 74	54	-7.58
7323	KOH)	36.07	-120	9.87	45.94	74	54	-8.06
	H							
4882	V	45.28		0.99	46.27	 74	54	-7.73
7323	V	35.10		9.87	44.97	 74	54	-9.03
	V			X	/			

High channel: 2480 MHz

CT通测检测 TESTING CENTRE TECHNOLOGY

Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Level		Poak limit	AV/ limit	Margin
				Peak (dBµV/m)	AV			(dB)
H	44.56)	1.33	45.89		74	54	-8.11
Н	34.08		10.22	44.30		74	54	-9.70
Н				· · · ·				
	(G)		(.0			(.c)		(.C
V	44.61		1.33 🔪	45.94		74	54	-8.06
V	35.42		10.22	45.64		74	54	-8.36
V								
	H/V H H	Ant. Pol. reading (dBµV) H 44.56 H 34.08 H V 44.61 V 35.42	Ant. Pol. H/V reading (dBμV) reading (dBμV) H 44.56 H 34.08 H V 44.61 V 35.42	Ant. Pol. reading (dBµV) reading (dBµV) Factor (dBµN) H 44.56 1.33 H 34.08 10.22 H 10.22 H V 44.61 1.33 V 35.42 10.22	Ant. Pol. H/V reading (dBµV) reading (dBµV) Factor (dB/m) Peak (dBµV/m) H 44.56 1.33 45.89 H 34.08 10.22 44.30 H V 44.61 1.33 45.94 V 35.42 10.22 45.64	Ant. Pol. H/V reading (dBμV) reading (dBμV) Factor (dB/m) Peak (dBμV/m) AV (dBμV/m) H 44.56 1.33 45.89 H 34.08 10.22 44.30 H V 44.61 1.33 45.94 V 35.42 10.22 45.64	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Note:

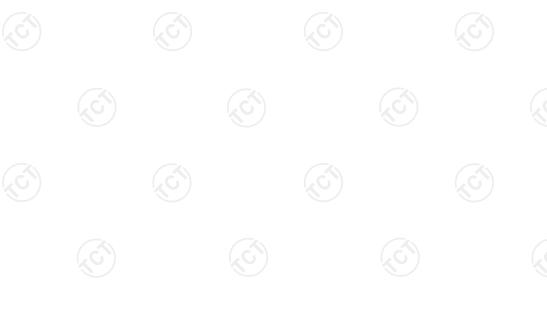
1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

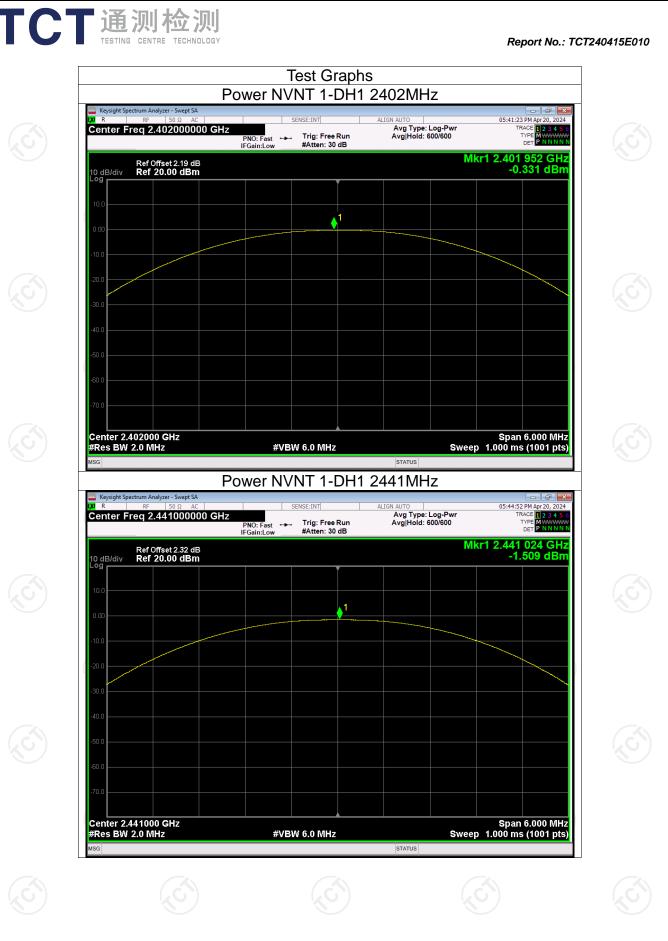
3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

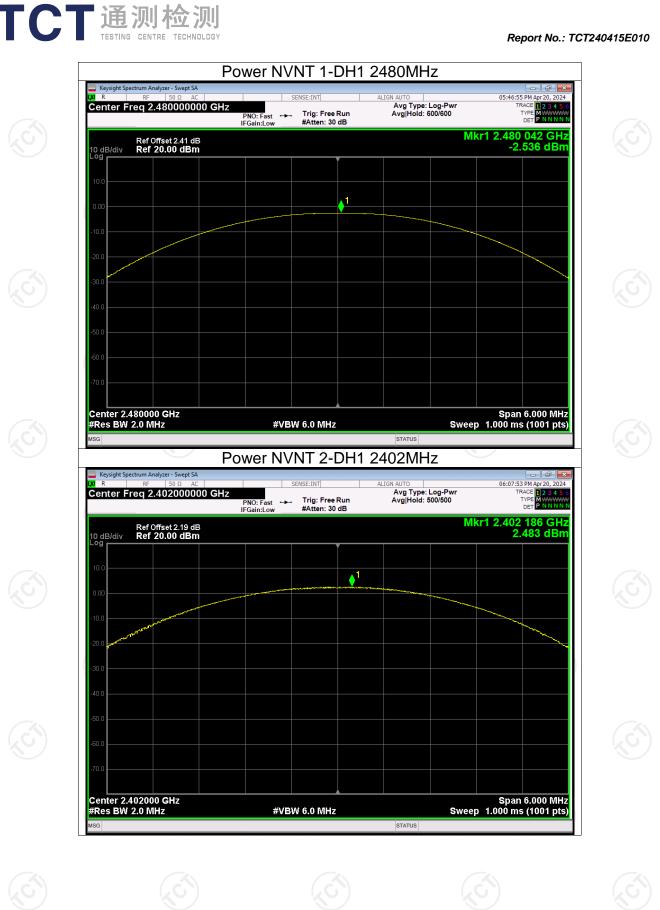
5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.


6. Measurements were conducted in all three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (8DPSK) was submitted only.

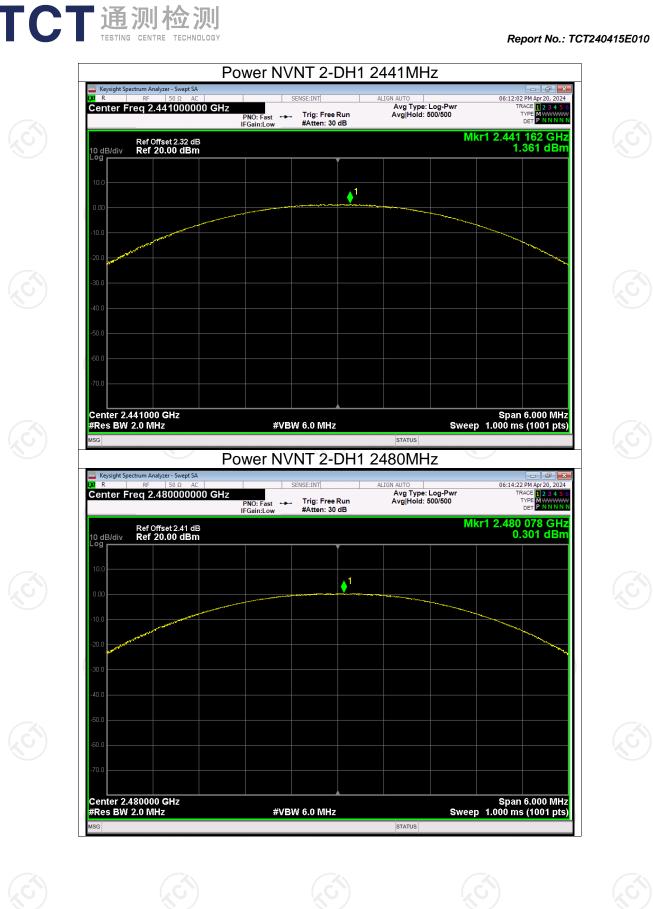
7. All the restriction bands are compliance with the limit of 15.209.

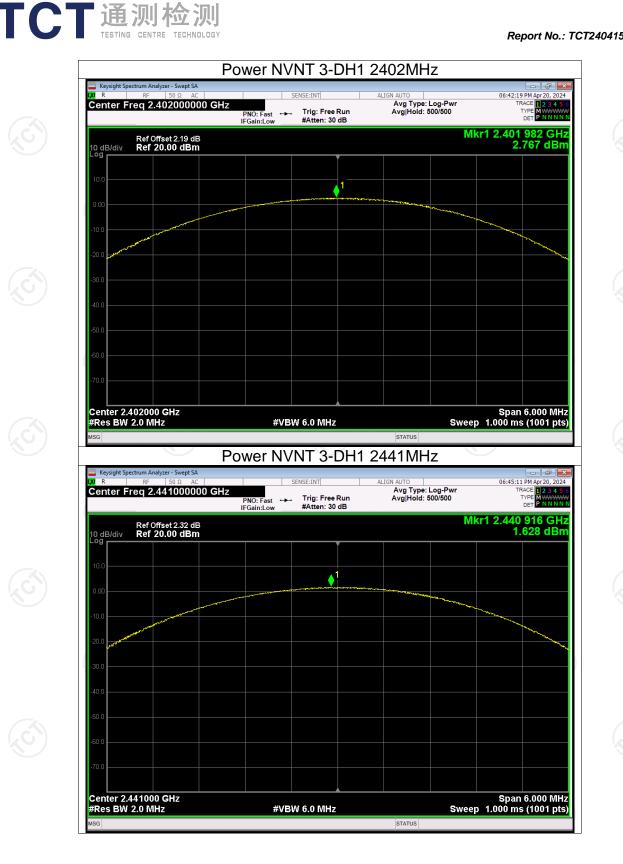

Appendix A: Test Result of Conducted Test

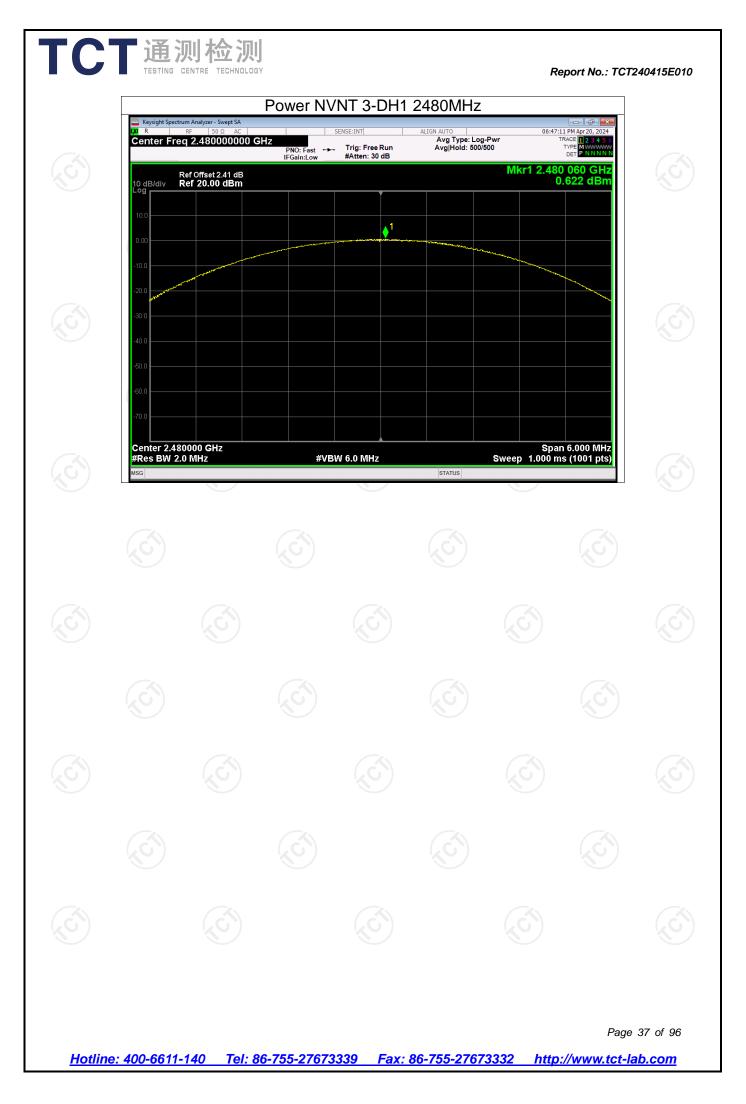
Maximum Conducted Output Power									
Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict				
NVNT	1-DH1	2402	-0.33	30	Pass				
NVNT	1-DH1	2441	-1.51	30	Pass				
NVNT	1-DH1	2480	-2.54	30	Pass				
NVNT	2-DH1	2402	2.48	21	Pass				
NVNT 🐇	2-DH1	2441	1.36	21	Pass				
NVNT	2-DH1	2480	0.30	21	Pass				
NVNT	3-DH1	2402	2.77	21	Pass				
NVNT	3-DH1	2441	1.63	21	Pass				
NVNT	3-DH1	2480	0.62	21	Pass				



Page 32 of 96

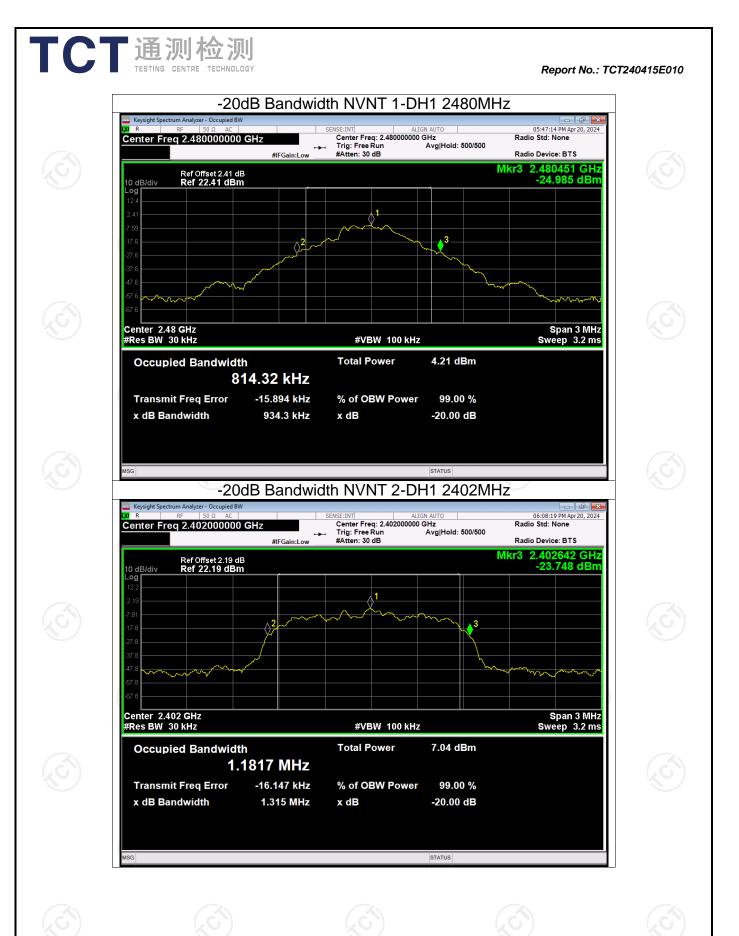

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

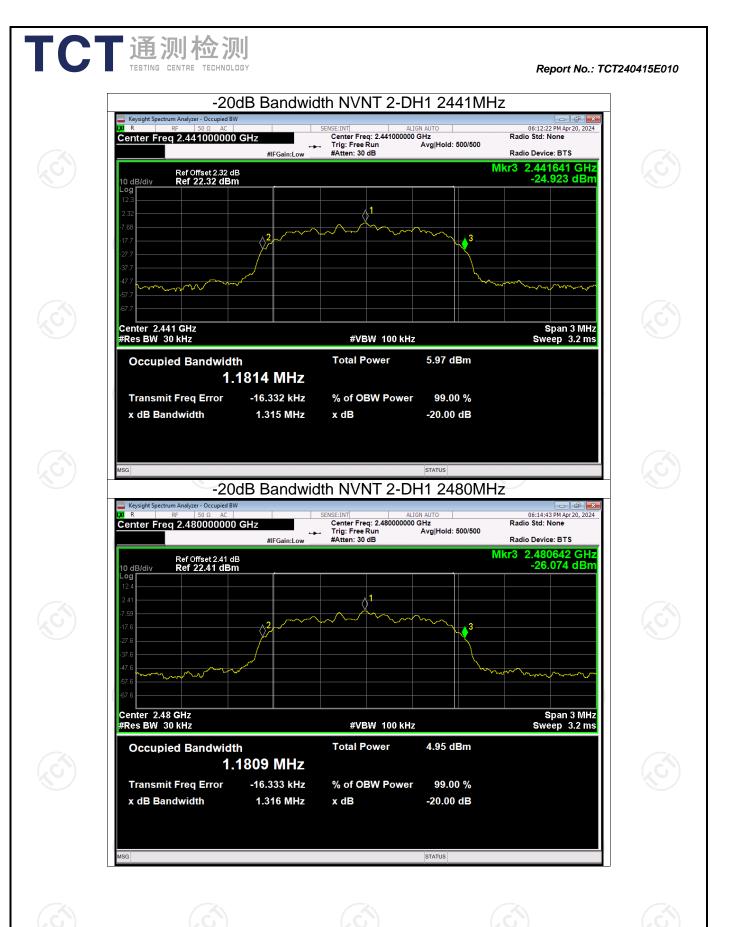


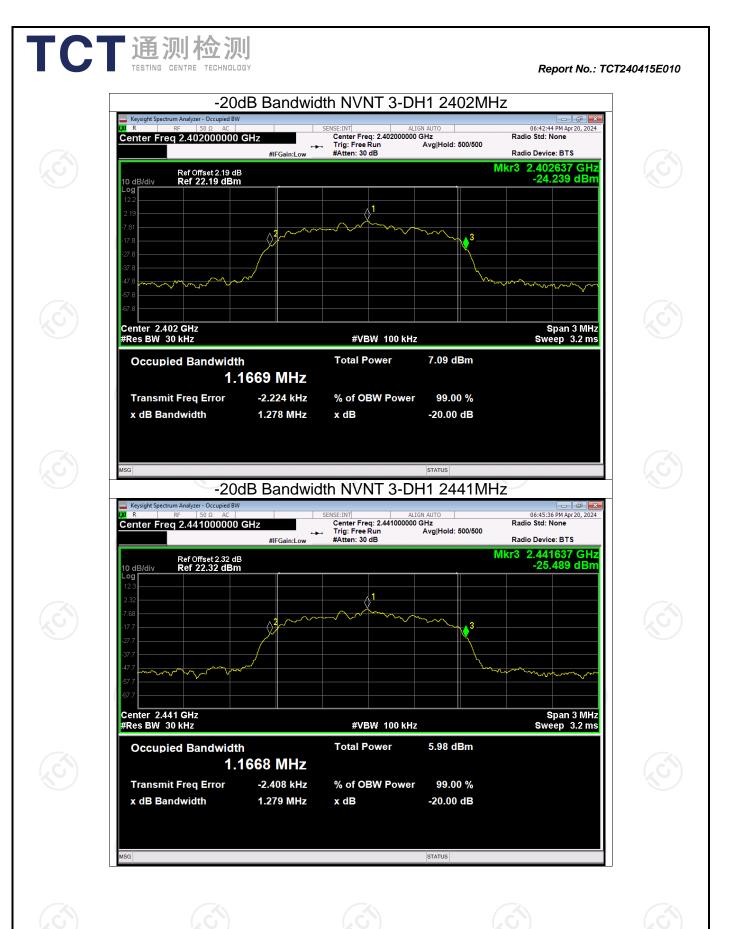

Page 33 of 96

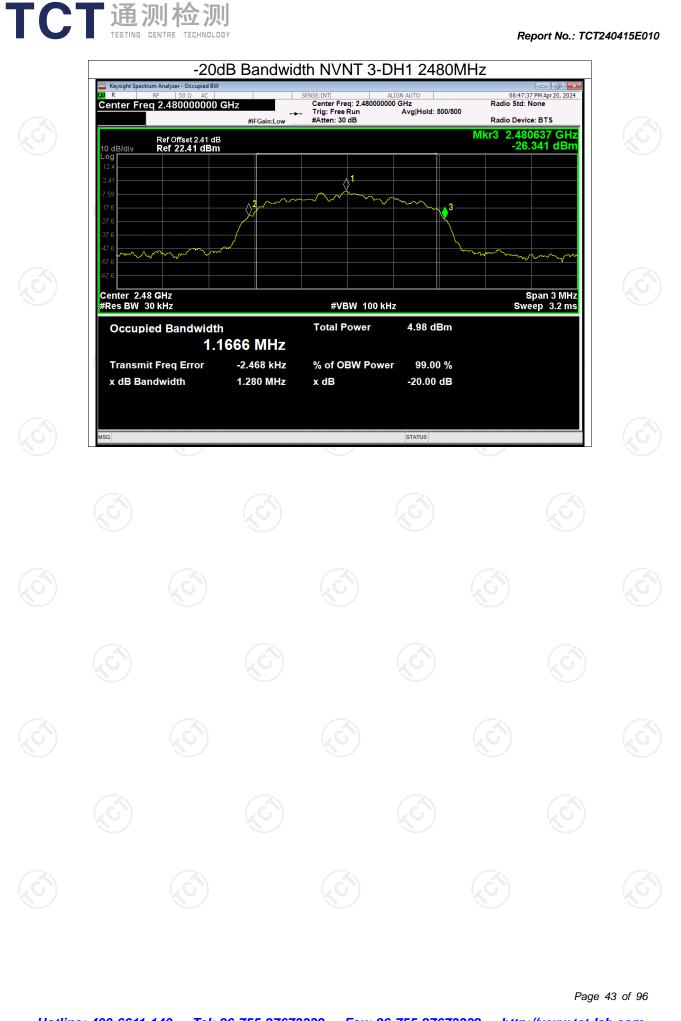
Page 34 of 96

Condition Mode		Frequency (MHz)	-20 dB Bandwidth (MHz)	Verdict				
NVNT	1-DH1	2402	0.930	Pass				
NVNT 🚫	1-DH1	2441	0.929	Pass				
NVNT	1-DH1	2480	0.934	Pass				
NVNT	2-DH1	2402	1.315	Pass				
NVNT	2-DH1	2441	1.315	Pass				
NVNT	2-DH1	2480	1.316	Pass				
NVNT	3-DH1	2402	1.278	Pass				
NVNT	3-DH1	2441	1.279	Pass				
NVNT	3-DH1	2480	1.280	Pass				
KO)			KO)					




Page 38 of 96


Page 39 of 96


Page 40 of 96

Page 41 of 96

Page 42 of 96

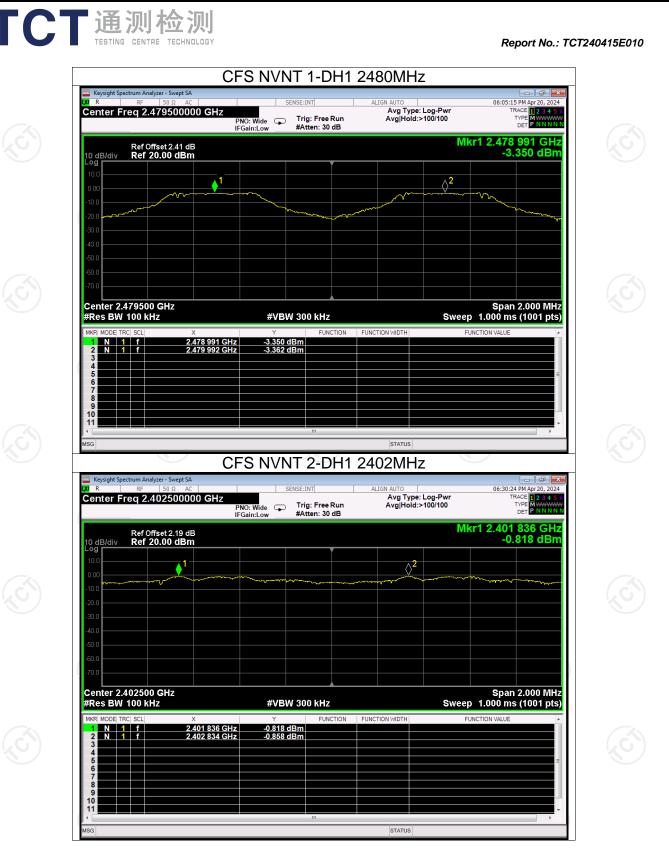
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

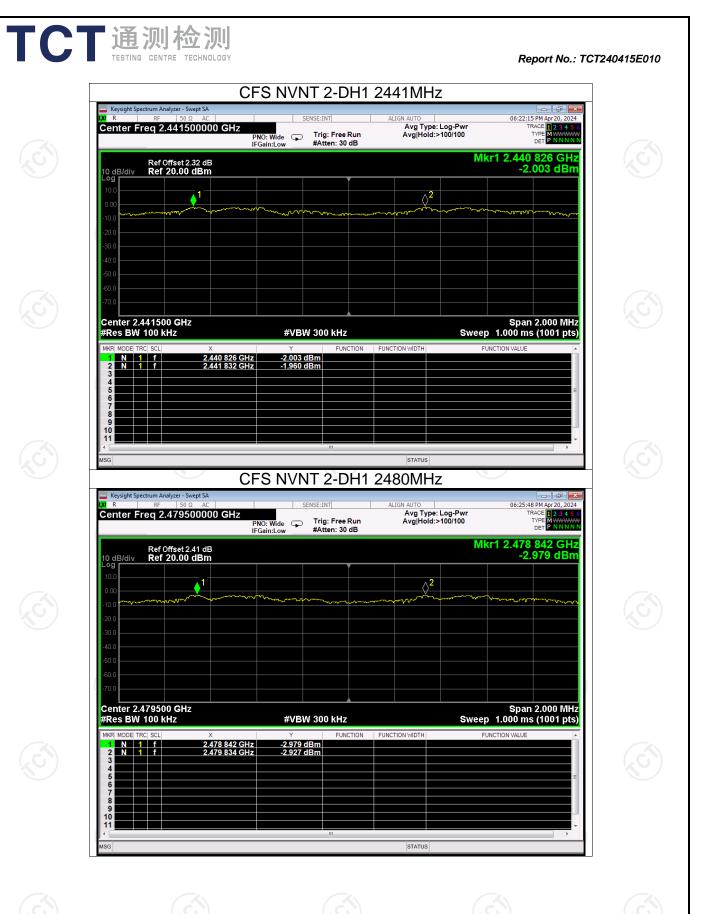
Condition	Mode	(MHz)	(MHz)	(MHz)	(MHz)	Verdict
NVNT	1-DH1	2401.991	2402.990	0.999	0.934	Pass
NVNT	1-DH1	2440.993	2441.989	0.996	0.934	Pass
NVNT	1-DH1	2478.991	2479.992	1.001	0.934	Pass
NVNT	2-DH1	2401.836	2402.834	0.998	0.877	Pass
NVNT	2-DH1	2440.826	2441.832	1.006	0.877	Pass
NVNT 🐇	2-DH1	2478.842	2479.834	0.992	0.877	Pass
NVNT	3-DH1	2401.840	2402.834	0.994	0.853	Pass
NVNT	3-DH1	2440.834	2441.838	1.004	0.853	Pass
NVNT	3-DH1	2478.830	2479.824	0.994	0.853	Pass

Carrier Frequencies Separation

Report No.: TCT240415E010

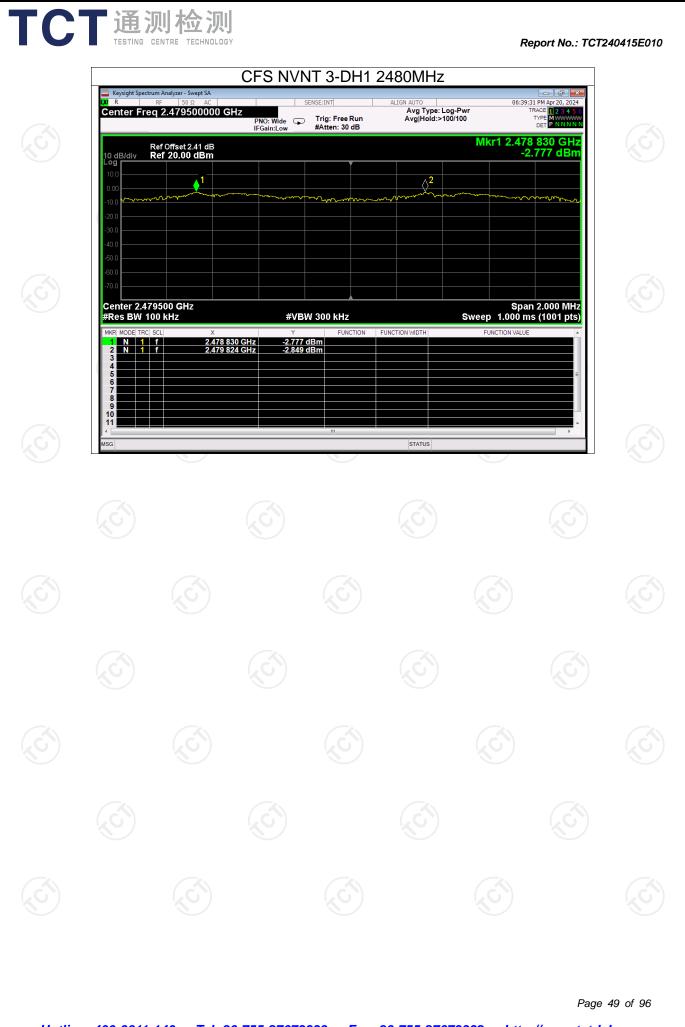

I imit

Page 44 of 96



Report No.: TCT240415E010

Page 46 of 96


-1

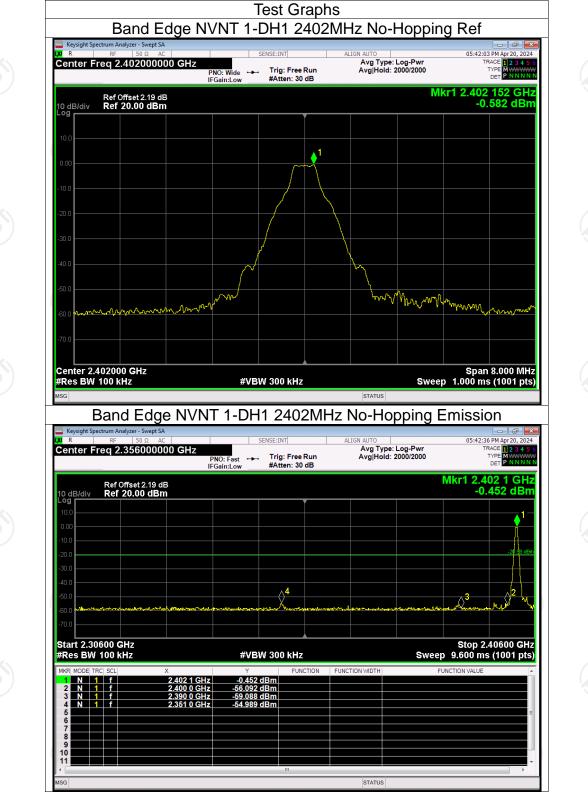
Page 47 of 96

Page 48 of 96

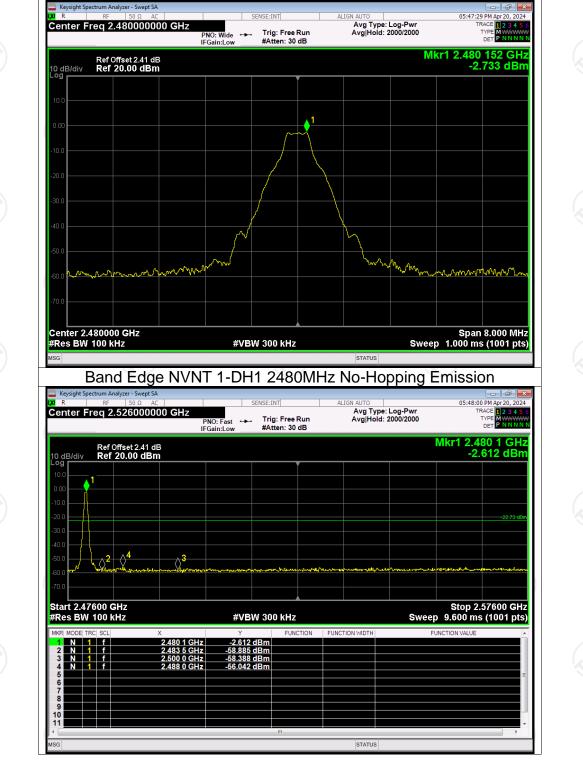

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Condition	Mode	Frequency (MHz)	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH1	2402	No-Hopping	-54.40	-20	Pass
NVNT	1-DH1	2480	No-Hopping	-53.31	-20	Pass
NVNT	2-DH1	2402	No-Hopping	-54.65	-20	Pass
NVNT	2-DH1	2480	No-Hopping	-53.44	-20	Pass
NVNT	3-DH1	2402	No-Hopping	-53.43	-20	Pass
NVNT 🐇	3-DH1	2480	No-Hopping	-53.57	-20	Pass

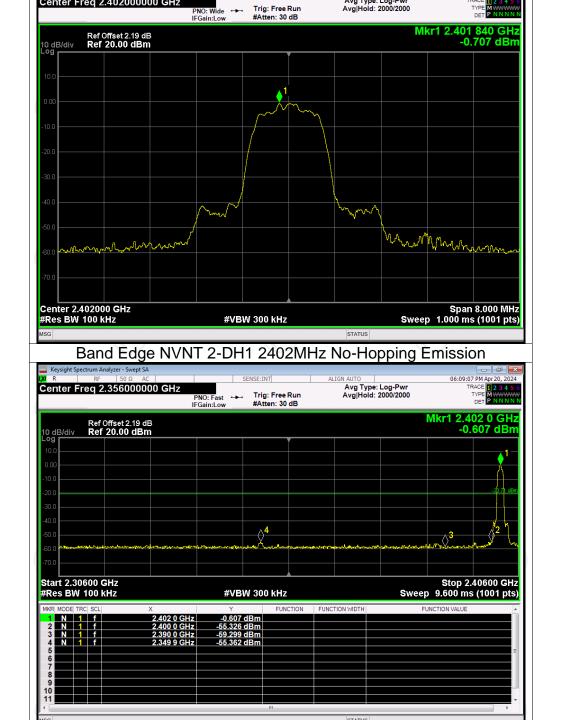
					•	
			Band Edge			
Condition	Mode	Frequency (MHz)	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdi
NVNT	1-DH1	2402	No-Hopping	-54.40	-20	Pas
NVNT	1-DH1	2480	No-Hopping	-53.31	-20	Pas
NVNT	2-DH1	2402	No-Hopping	-54.65	-20	Pas
NVNT	2-DH1	2480	No-Hopping	-53.44	-20	Pas


CT	通测检测
	TESTING CENTRE TECHNOLOGY

Report No.: TCT240415E010


Page 50 of 96

Report No.: TCT240415E010


Page 51 of 96

Band Edge NVNT 1-DH1 2480MHz No-Hopping Ref

Report No.: TCT240415E010

Page 52 of 96

Band Edge NVNT 2-DH1 2402MHz No-Hopping Ref

Keysight S X/R

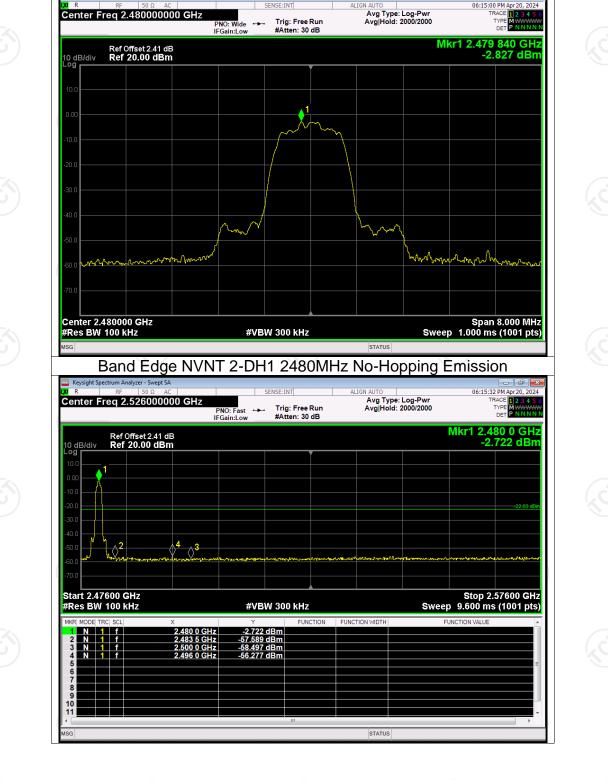
Center Freq 2.402000000 GHz

Report No.: TCT240415E010

06:08:34 PM Apr 2

12345 MW/////

AVG Type: Log-Pwr Avg Hold: 2000/2000



Band Edge NVNT 2-DH1 2480MHz No-Hopping Ref

Keysight S X/R

Report No.: TCT240415E010

Page 54 of 96

06:15:00 PM Ap

12345 MWWW PNNNN PNO: Wide +++ Trig: Free Run IFGain:Low #Atten: 30 dB TYPE DET Mkr1 2.401 840 GHz -0.625 dBm Ref Offset 2.19 dB Ref 20.00 dBm 10 dB/div bg ø ~ $\sim \sim$ mannyman manne ഹിവം Center 2.402000 GHz #Res BW 100 kHz Span 8.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz STATUS Band Edge NVNT 3-DH1 2402MHz No-Hopping Emission 43:34 PM Apr 20, 2024 KU R ALIGN AUT Avg Type: Log-Pwr Avg|Hold: 2000/2000 Center Freq 2.356000000 GHz PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB TYPE Mkr1 2.402 0 GHz -0.596 dBm Ref Offset 2.19 dB Ref 20.00 dBm 10 dB/div Log (2 $\langle \rangle^3$ Start 2.30600 GHz #Res BW 100 kHz Stop 2.40600 GHz Sweep 9.600 ms (1001 pts) #VBW 300 kHz FUNCTION WIDTH -0.596 dBm -55.994 dBm -59.779 dBm -54.051 dBm 2.402 0 GHz 2.400 0 GHz 2.390 0 GHz 2.349 7 GHz N 1 f N 1 f

Band Edge NVNT 3-DH1 2402MHz No-Hopping Ref

Keysight S X/R

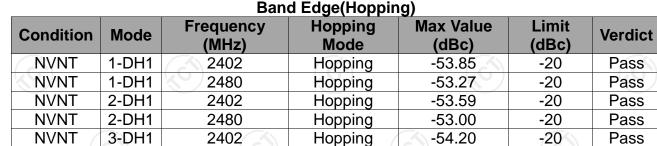
Center Freq 2.402000000 GHz

Report No.: TCT240415E010

Page 55 of 96

06:43:02 PM Apr 2

AVG Type: Log-Pwr Avg Hold: 2000/2000


Band Edge NVNT 3-DH1 2480MHz No-Hopping Ref

Keysight S X/R

Report No.: TCT240415E010

Page 56 of 96

06:47:56 PM Apr

3-DH1

2480

NVNT

Band Edge(Hopping)

Hopping

-52.66

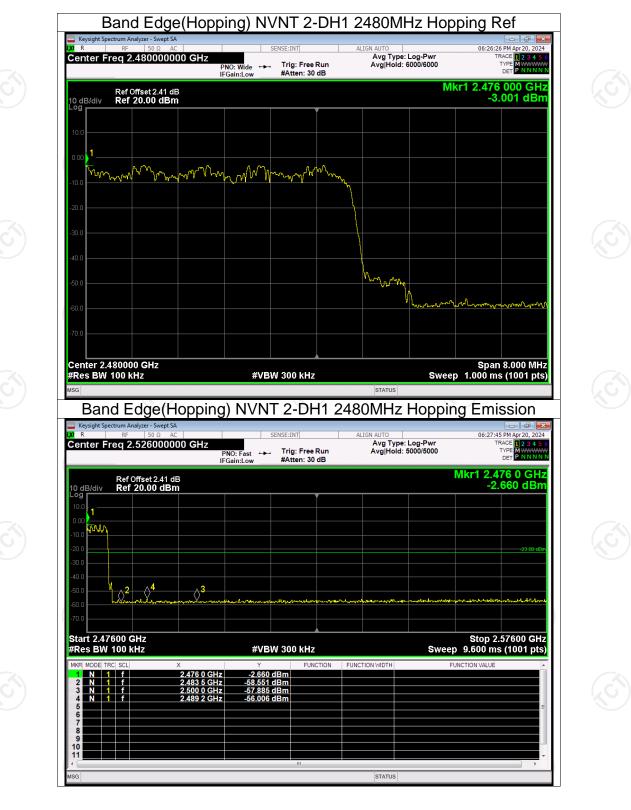
Report No.: TCT240415E010

-20

Pass

Page 57 of 96

Test Graphs


Report No.: TCT240415E010

Page 58 of 96

Page 60 of 96

Report No.: TCT240415E010

Page 62 of 96

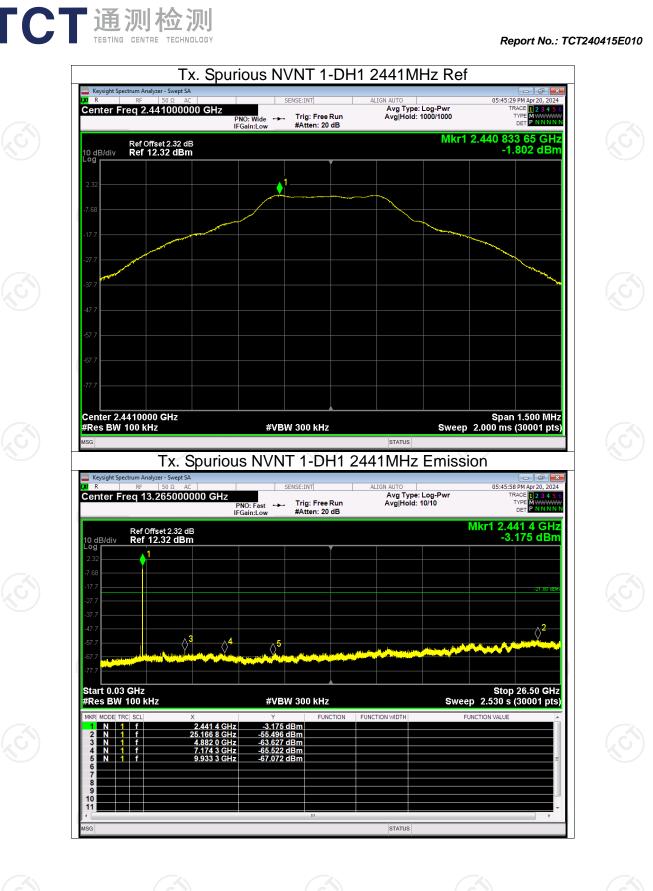
Report No.: TCT240415E010

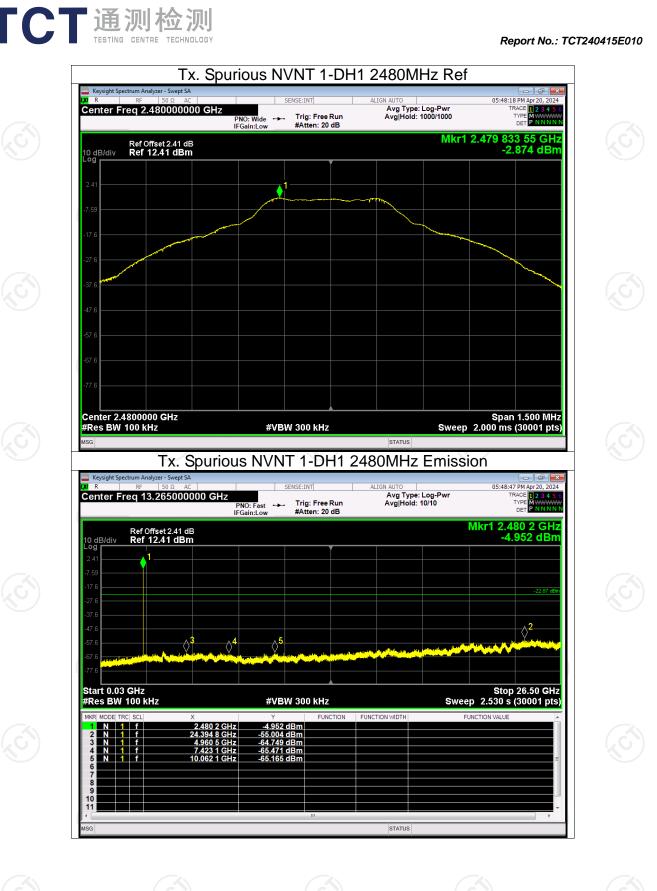


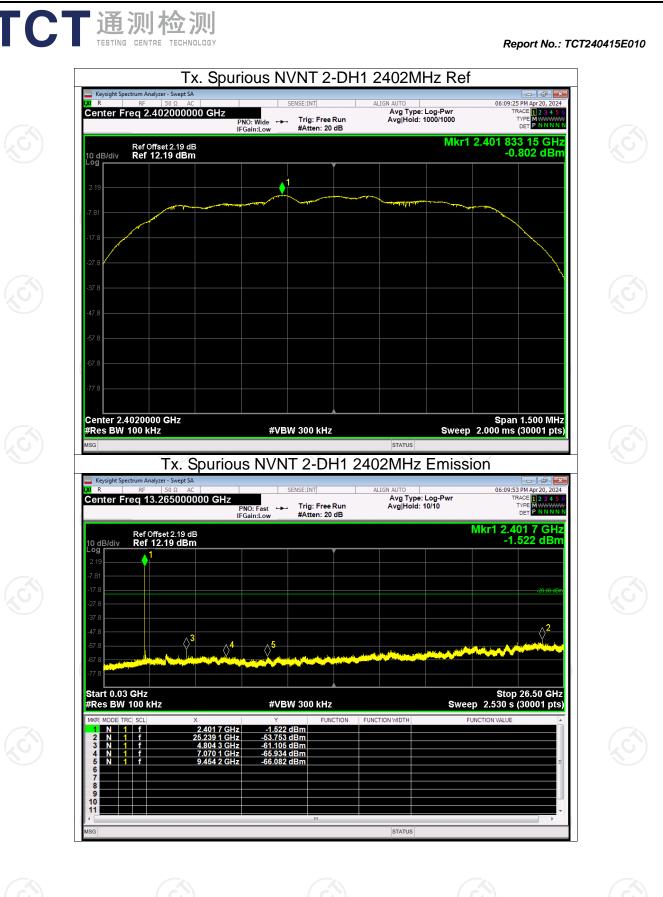
Page 63 of 96

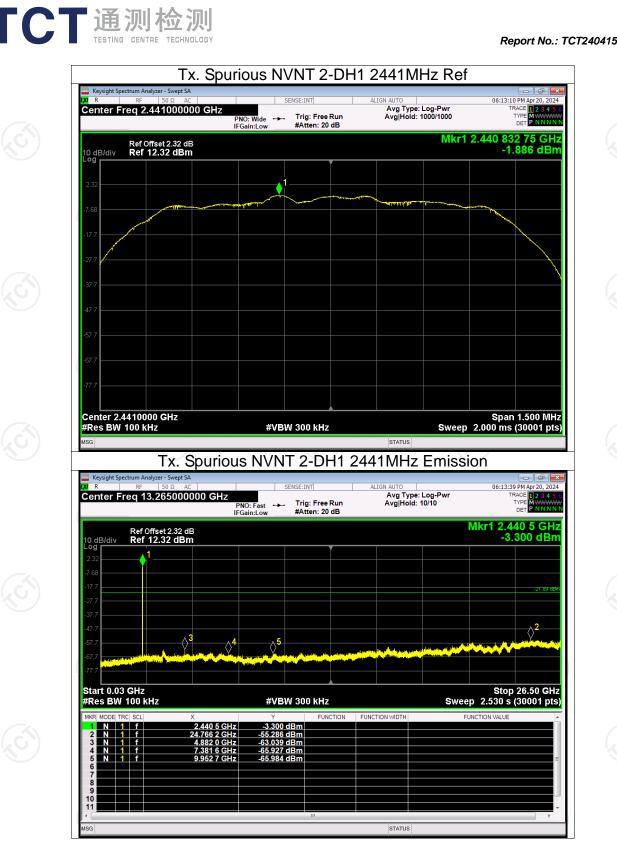
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

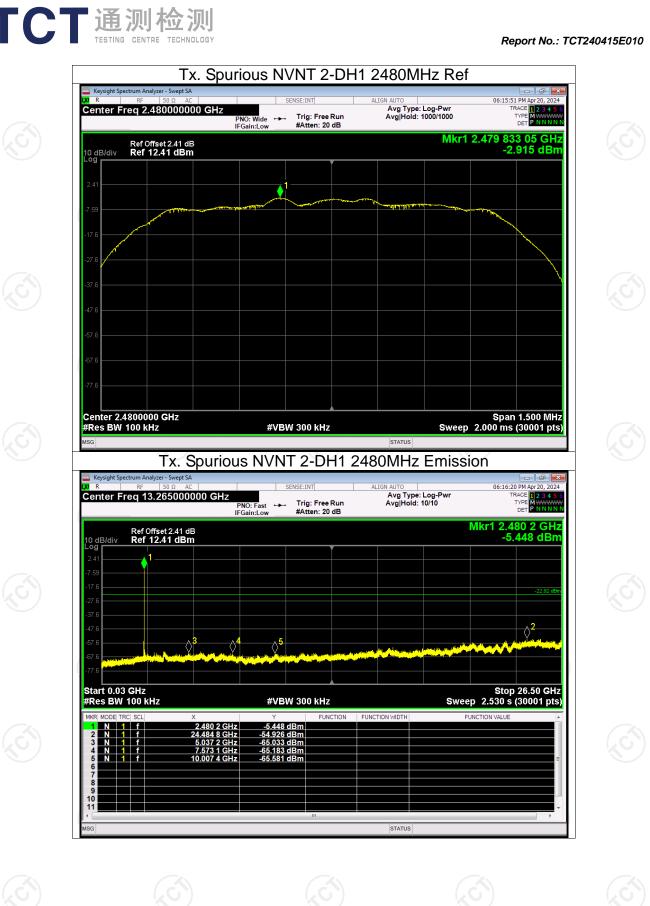
Conducted	RF	Spurious	Emission
Conducted	111	opunous	

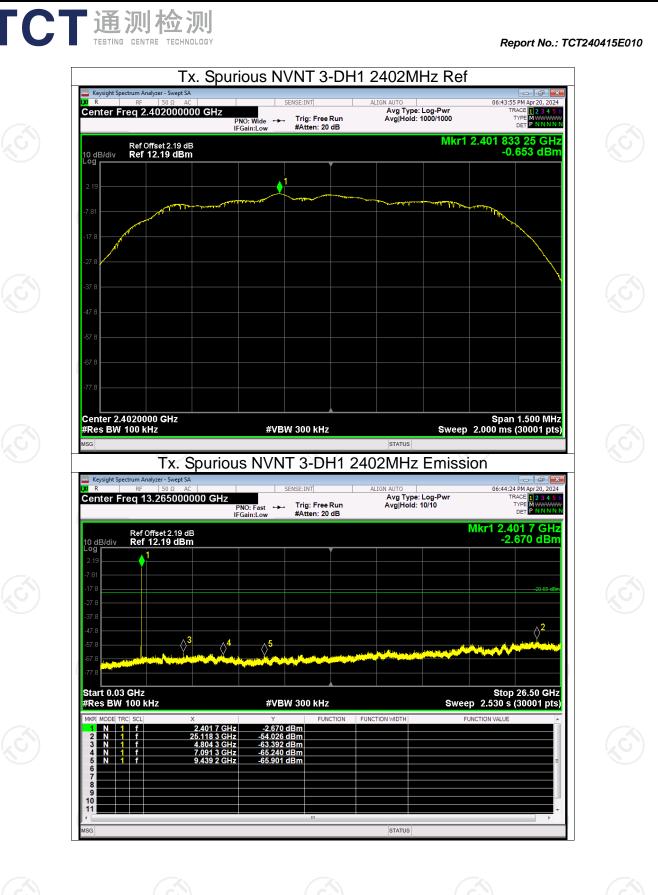

Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict				
NVNT	1-DH1	2402	-54.67	-20	Pass				
NVNT	1-DH1	2441	-53.69	-20	Pass				
NVNT	1-DH1	2480	-52.13	-20	Pass				
NVNT	2-DH1	2402	-52.95	-20	Pass				
NVNT	2-DH1	2441	-53.39	-20	Pass				
NVNT	2-DH1	2480	-52.01	-20	Pass				
NVNT 🚫	3-DH1	2402	-53.37	-20	Pass				
NVNT	3-DH1	2441	-45.97	-20	Pass				
NVNT	3-DH1	2480	-45.46	-20	Pass				

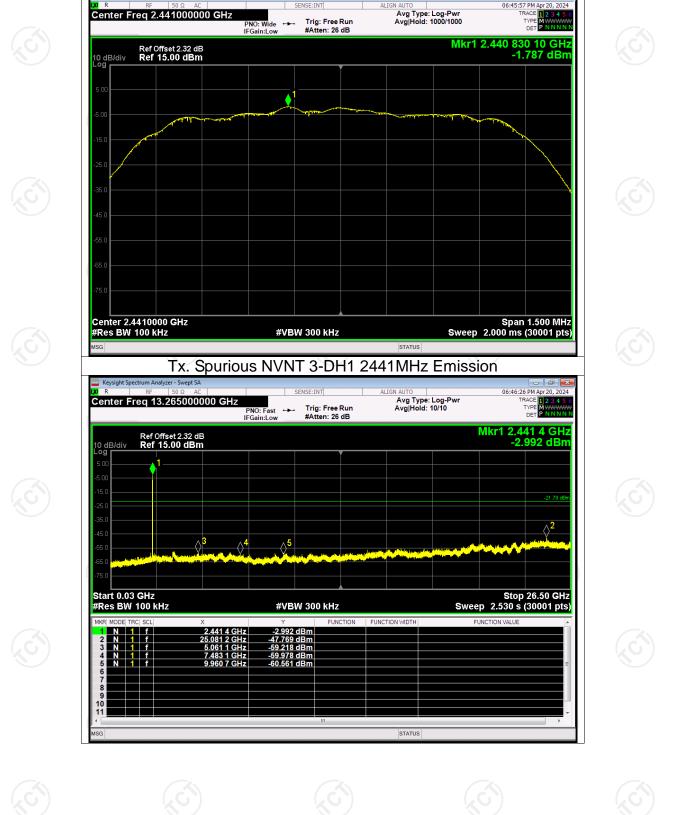

Page 64 of 96


Page 65 of 96




Page 67 of 96

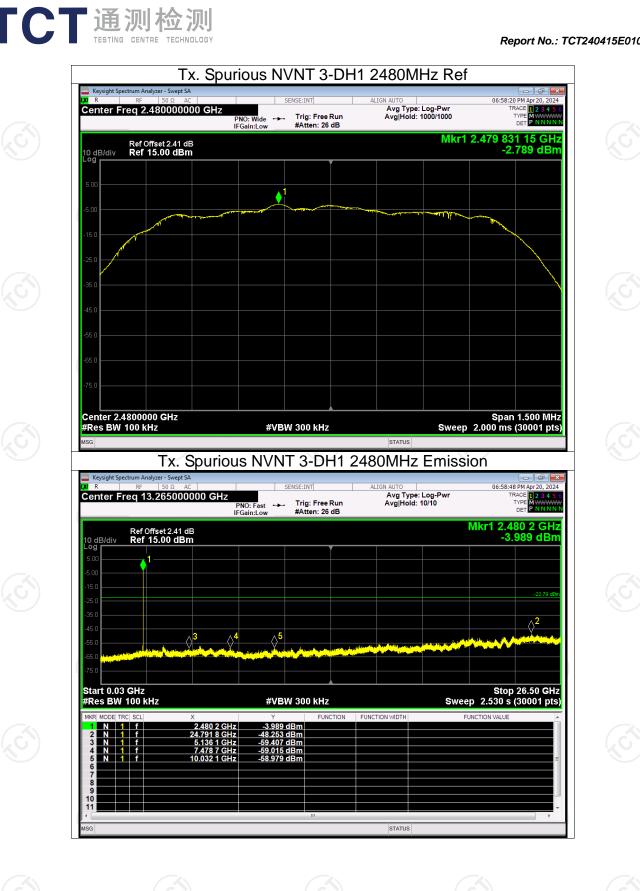




Page 69 of 96

Report No.: TCT240415E010

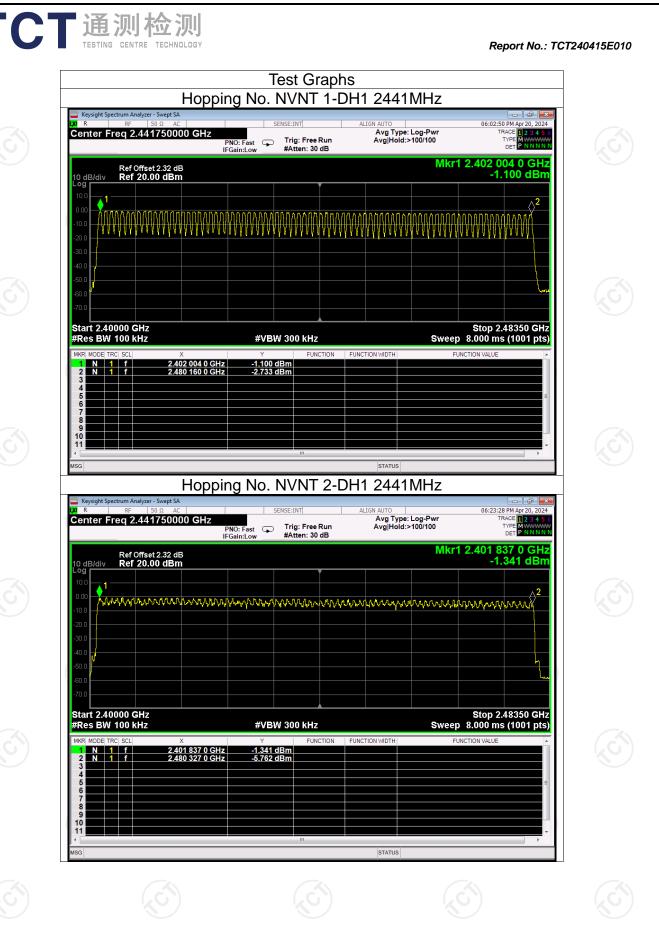
Tx. Spurious NVNT 3-DH1 2441MHz Ref


ALIGN

FCT通测检测 TESTING CENTRE TECHNOLOGY

Keysight Spe

Report No.: TCT240415E010


06:45:57 PM

Report No.: TCT240415E010

Page 73 of 96

TC		则检测 CENTRE TECHNOLOGY				Rej	port No.: TCT2	240415E010
Condition NVNT NVNT NVNT		Mode 1-DH1 2-DH1 3-DH1		mber of Hopping Channel Hopping Number 79 79 79 79 79			Verd Pas Pas Pas	is is
<u>Hotli</u>	ine: 400-6611-	-140 Tel: 86	-755-27673	339 Fax:	86-755-2767	<u>3332 http:/</u>	Page //www.tct-la	74 of 96 <u>b.com</u>

Page 75 of 96

) GHz	PNO: Fast IFGain:Low	SENSE:INT Trig: Free F #Atten: 30 o	ALIGN	Z441IVI AUTO Avg Type: Log Avg Hold:>100/	06:3 Pwr 100 Mkr1 2.401	650 PM Apr20, 2024 TRACE 12 23 45 6 TYPE PUNNINN 586 5 GHZ 5,100 dBm	
ᡯᠰᠺᠺᠺᠹᠰ	ለፋክኒሳላላኪ	anavaay	NANANA	naannan	ᡅᡎᠮᡃᡅᡴᡛᡙᡳᡐᡧ᠋᠋ᢩᠶᠮ	2. WWWWWW	
					Stop	9 2.48350 GHz	
586 5 GH 327 0 GH	Y Z -5.10	BW 300 kHz 10 dBm 19 dBm		N WIDTH	Sweep 8.000 FUNCTION VAL		
		m		STATUS		•	

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

ГСТ		 检测 IRE TECHNOLOGY				Repo	ort No.: TC	T240415E010
			Dwe	II Time				
Condition	Mode	Frequency (MHz)	Pulse Time (ms)	Total Dwell Time (ms)	Burst Count	Period Time (ms)	Limit (ms)	Verdict
NVNT	1-DH1	2441	0.38	120.84	318	31600	400	Pass
NVNT	1-DH3	2441	1.63	251.02	154	31600	400	Pass
NVNT	1-DH5	2441	2.88	316.80	110	31600	400	Pass
NVNT	2-DH1	2441	0.39	124.41	319	31600	400	Pass
NVNT	2-DH3	2441	1.64	250.92	153	31600	400	Pass
NVNT	2-DH5	2441	2.88	285.12	99	31600	400	Pass
NVNT	3-DH1	2441	0.39	124.41	319	31600	400	Pass
NVNT	3-DH3	2441	1.63	236.35	145	31600	400	Pass

328.32

2.88



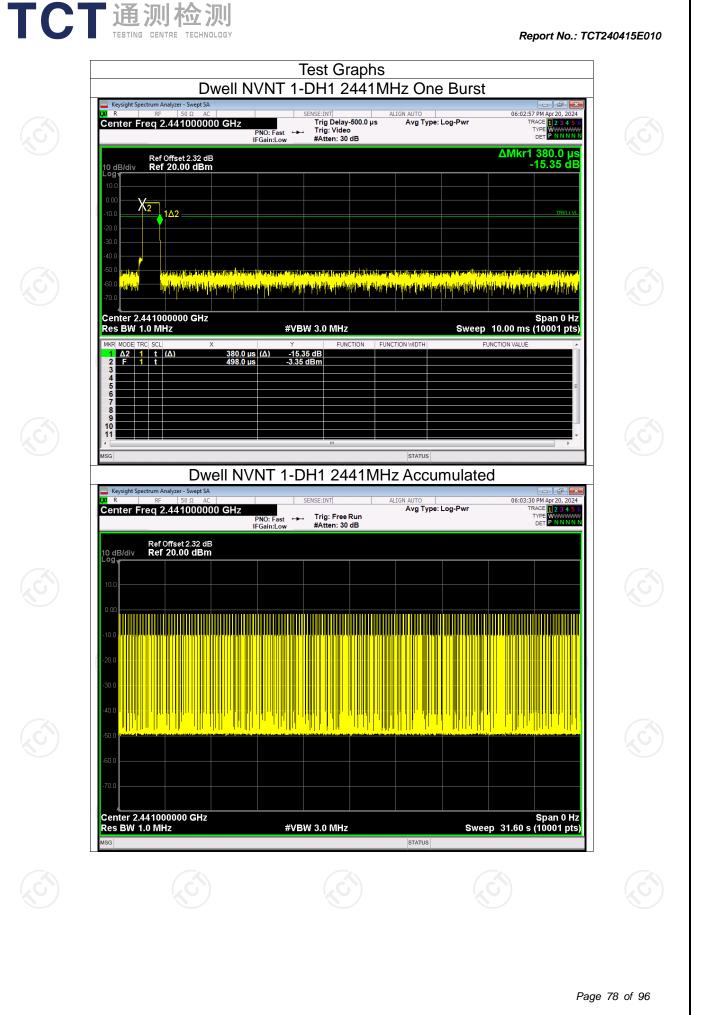
3-DH5

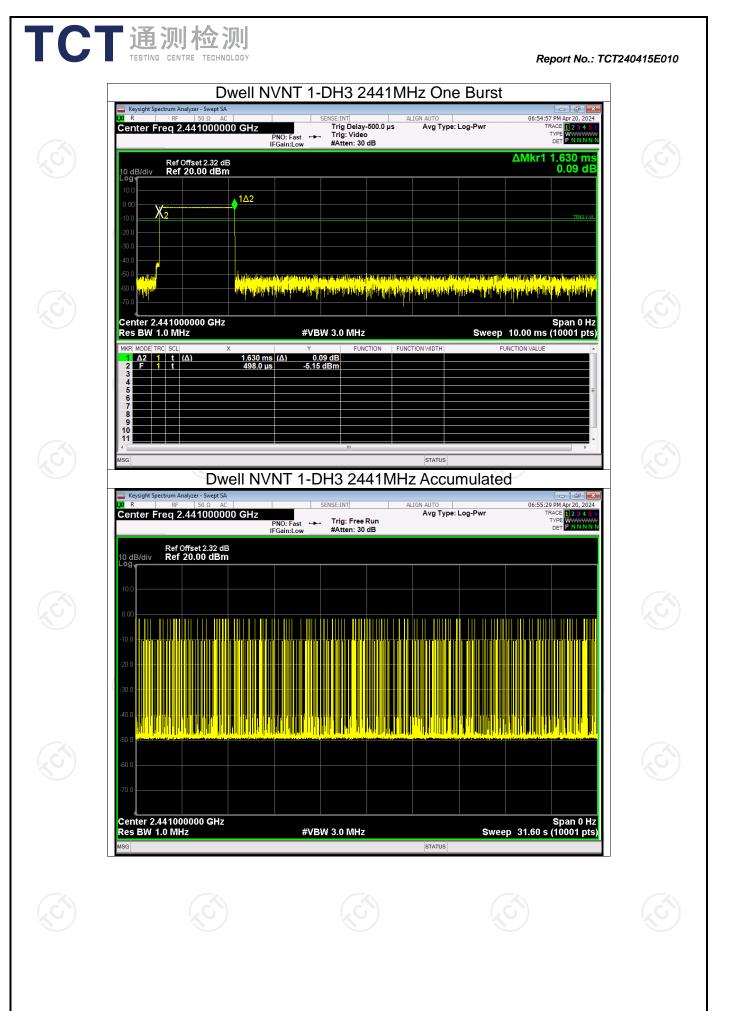
2441

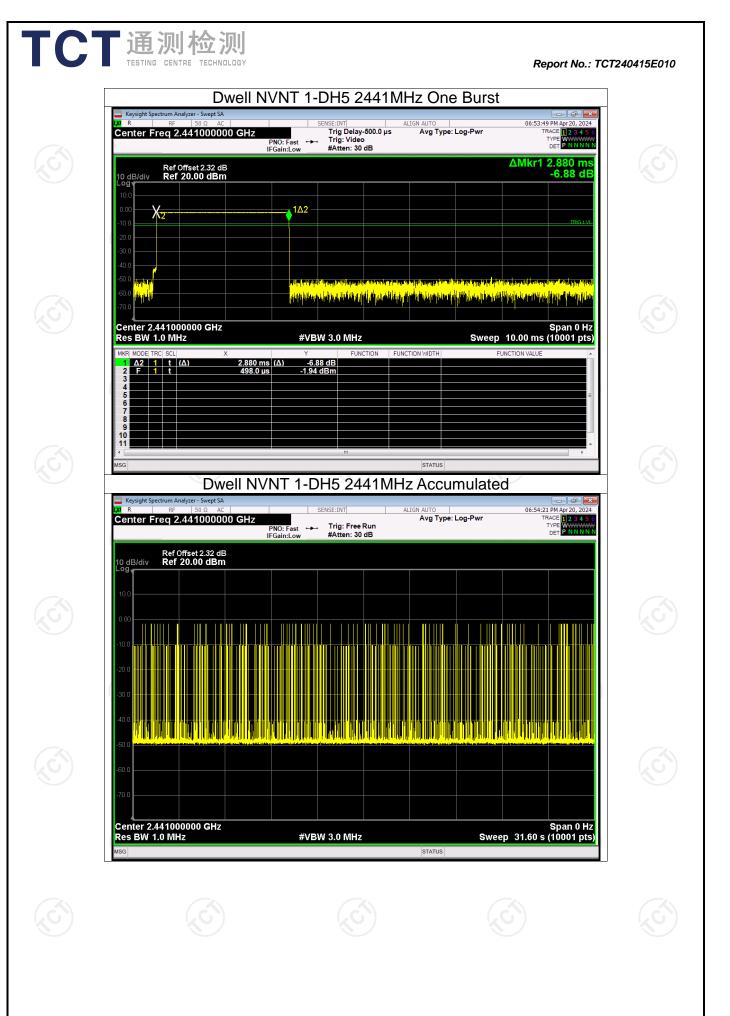
NVNT

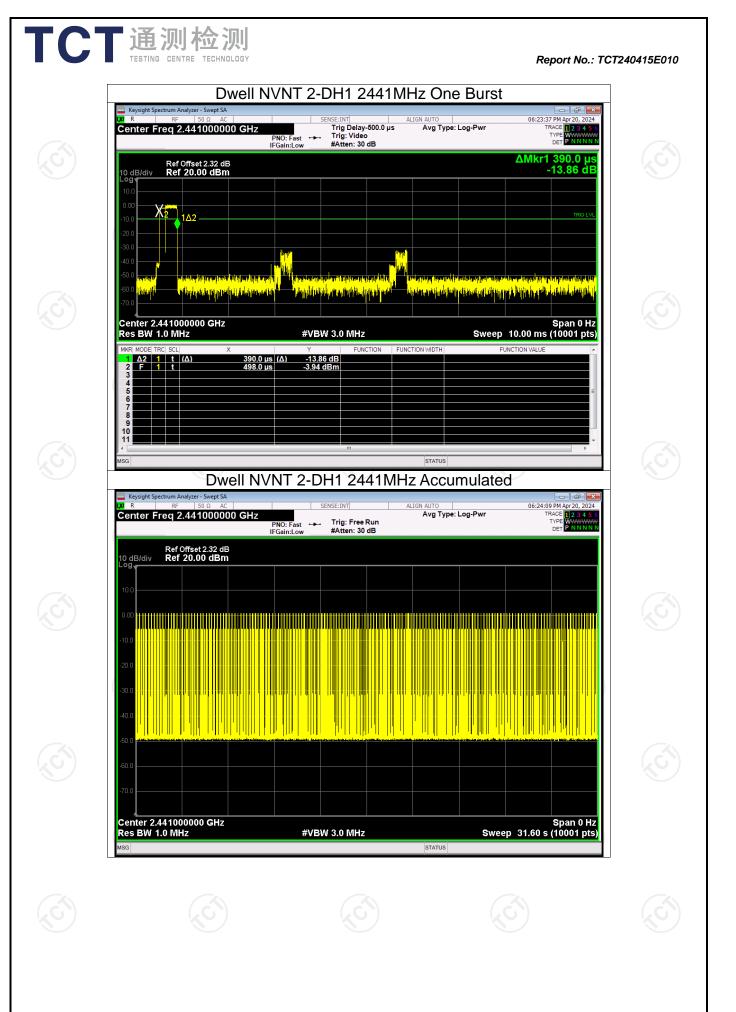
114

31600


400


Pass




Page 77 of 96

