

Hardware Design Version: V1.0 Date: 2024-03-27 Status: Released

Important Notice

No Guarantee Statement

There makes no express or implied representations or warranties regarding any content in this document, and shall not be liable for any indirect, special, or consequential losses for specific purposes or suitability.

Confidentiality Statement

The information contained in this document (including any attachments) is confidential. The recipient understands that the document obtained is confidential and shall not be used for any purpose other than the specified purpose, nor shall it be disclosed to any third party.

Disclaimers

Our company does not assume any responsibility for property or personal injury caused by abnormal customer operations. Please develop the corresponding product according to the technical specifications and reference design in the manual. Before declaration, our company has the right to make changes to the content of this manual according to the needs of technological development, and the modified version will not be notified separately.

Caution

Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions:

(1) This device may not cause harmful interference, and

(2) This device must accept any interference received, including interference that may cause undesired operation.

Note: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

-Reorient or relocate the receiving antenna.

-Increase the separation between the equipment and receiver.

-Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.

-Consult the dealer or an experienced radio/TV technician for help.

FCC Label Instructions

If using a permanently affixed label, the modular transmitter must be labeled with its own FCC identification number, and, if the FCC identification number is not visible when the module is installed inside another device, then the outside of the device into which the module is installed must also display a label referring to the enclosed module. This exterior label can use wording such as the following: "Contains FCC ID: 2AKAF-MDM01".

Any similar wording that expresses the same meaning may be used. The Grantee may either provide such a label, an example of which must be included in the application for equipment authorization, or, must provide adequate instructions along with the module which explain this requirement.

OEM Guidance

• Applicable FCC rules

This device complies with part 22H/24E/27 of the FCC Rules.

• The specific operational use conditions

This module can be used in IoT devices. The input voltage to the module is nominally 3.8V DC. The operational ambient temperature of the module is -35°C~75°C. the external antenna is allowed, such as rod antenna.

• Limited module procedures

N/A

• Trace antenna designs

N/A

• RF exposure considerations

The equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20cm between the radiator and your body. If the equipment built into a host as a portable usage, the additional RF exposure evaluation may be required as specified by 2.1093.

• Antennas

To meet RF exposure & ERP/ERIP, the maximum net gains of antennas allowed are 8.0 dBi @ FDD (Band 2), 5.0 dBi @ FDD (Band 4), 9.41 dBi @ FDD (Band 5), 8.69 dBi @ FDD (Band 12), 8.7 dBi @ FDD (Band 17), 5 dBi @ FDD (Band 66).The antenna(s) used for this transmitter must be installed to provide a separation distance of at least 20 cm from all persons and must not be co-located or operating in conjunction with any other antenna or transmitter.

Label and compliance information

An exterior label on OEM's end product can use wording such as the following: "Contains Transmitter Module FCC ID: 2AKAF-MDM01" or "Contains FCC ID: 2AKAF-MDM01"

• Information on test modes and additional testing requirements

The modular transmitter has been fully tested by the module grantee on the required number of channels, modulation types, and modes, it should not be necessary for the host installer to re-test all the available transmitter modes or settings. It is recommended that the host product manufacturer, installing the modular transmitter, perform some investigative measurements to confirm that the resulting composite system does not exceed the spurious emissions limits or band edge limits (e.g., where a different antenna may be causing additional emissions).

The testing should check for emissions that may occur due to the intermixing of emissions with the other transmitters, digital circuitry, or due to physical properties of the host product (enclosure). This investigation is especially important when integrating multiple modular transmitters where the certification is based on testing each of them in a stand-alone configuration. It is important to note that host product manufacturers should not assume that because the modular transmitter is certified that they do not have any responsibility for final product compliance.

If the investigation indicates a compliance concern the host product manufacturer is obligated to

mitigate the issue. Host products using a modular transmitter are subject to all the applicable individual technical rules as well as to the general conditions of operation in Sections 15.5, 15.15, and 15.29 to not cause interference. The operator of the host product will be obligated to stop operating the device until the interference have been corrected.

The final host / module combination need to be evaluated against the FCC Part 15B criteria for unintentional radiators in order to be properly authorized for operation as a Part 15 digital device.

• Additional testing, Part 15 Sub part B disclaimer

The host integrator installing this module into their product must ensure that the final composite product complies with the FCC requirements by a technical assessment or evaluation to the FCC rules, including the transmitter operation and should refer to guidance in KDB 996369. For host products with certified modular transmitter, the frequency range of investigation of the composite system is specified by rule in Sections 15.33(a)(1) through (a)(3), or the range applicable to the digital device, as shown in Section 15.33(b)(1), whichever is the higher frequency range of investigation.

When testing the host product, all the transmitters must be operating. The transmitters can be enabled by using publicly-available drivers and turned on, so the transmitters are active. In certain conditions it might be appropriate to use a technology-specific call box (test set) where accessory 50 devices or drivers are not available. When testing for emissions from the unintentional radiator, the transmitter shall be placed in the receive mode or idle mode, if possible. If receive mode only is not possible then, the radio shall be passive (preferred) and/or active scanning. In these cases, this would need to enable activity on the communication BUS (i.e., PCIe, SDIO, USB) to ensure the unintentional radiator circuitry is enabled. Testing laboratories may need to add attenuation or filters depending on the signal strength of any active beacons (if applicable) from the enabled radio(s). See ANSI C63.4, ANSI C63.10 and ANSI C63.26 for further general testing details.

The product under test is set into a link/association with a partnering device, as per the normal intended use of the product. To ease testing, the product under test is set to transmit at a high duty cycle, such as by sending a file or streaming some media content.

About the Document

Revision History

Version	Date	Description
V1. 0	2024-03-27	- Released
		_

Contents

IMPOR	TANT NOTICE	1
CAUTIO	DN	2
OEM G	UIDANCE	
ABOUT	THE DOCUMENT	5
CONTE	NTS	
FIGURE	E INDEX	
TARIF	INDEX	0
1 INTDO		
IINIK		
1.1	Safety Information	
2 PROD	UCT OVERVIEW	
2.1	Product Diagram	
2.2	Key Features	14
2.3	Functional Diagram	
2.4	Pin Assignment	
2.5	Pin Description	
2.6	EVB	
3 OPER	ATING CHARACTERISTICS	
3.1	Operating Modes	
3.2	Sleep Mode	
	3.2.1 UART Application Scenario	
	3.2.2 USB Application Scenario	
3.3	Airplane Mode	
3.4	Power Supply	
	3.4.1 Power Supply Pins	
	3.4.2 Reference Design for Power Supply	
	3.4.3 VDD_EXT	
3.5	Turn On	
3.6	Turn Off	
	3.6.1 Turn off with PWRKEY	
	3.6.2 Turn off with AT Command	
3.7	Reset	
4 APPLI	ICATION INTERFACES	
4.1	USB Interface	
4.2	USB_BOOT Interface	
4.3	USIM Interfaces	
4.4	UART Interfaces	

4.5	Analog Audio Interfaces	
	4.5.1 Audio Interfaces Design Considerations	
	4.5.2 Microphone Interface Design	
	4.5.3 Loudspeaker Interface Design	
4.6	PCM Interface*	
4.7	I2C Interface	
4.8	Camera Interface	
4.9	LCD Interface	
4.10	SPI Interface	
4.11	Matrix Keypad Interface*	49
4.12	ADC Interfaces	
4.13	Indication Signals	
	4.13.1 Operating Status Indications	
	4.13.2 Network Status Indications	
4.14	GPIO Interfaces	
5 RF SPF	CIFICATIONS	54
5 KI 51 I		
5.1	Pin Definition	
5.2	Operating Frequency	
5.3	Reference Design	
5.4	Tx Power	
5.5	Rx Sensitivity	
5.6	Antenna Design Requirement	59
5.7	Recommended RF Soldering	59
6 ELECT	FRICAL CHARACTERISTICS AND RELIABILITY	60
61	Absolute Maximum Ratings	60
6.2	Power Supply Ratings	
6.3	Power Consumption	
6.J	Digital Logic Level Characteristics	
6.5	FSD	
6.5	Operating and Storage Temperatures	
0.0	Operating and Storage Temperatures	
7 MECH	ANICAL INFORMATION	64
7.1	Mechanical Dimensions	
7.2	Recommended Footprint	
8 STOR	AGE, MANUFACTURING AND PACKAGING	
0 1	Starage Conditions	(7
ð.1 0 0	Storage Conditions	
ð.2	Prelocing Specifications	
8.3	Packaging Specifications	
9 APPEN	DIX REFERENCES	

Figure Index

Figure 2-1: Top View and Bottom View of the Module (Unit: mm)	
Figure 2-2: Functional Diagram	
Figure 2-3: MDM01 Pin Assignment (Top View)	17
Figure 3-1: Sleep Mode Application via UART	
Figure 3-2: Sleep Mode Application via USB	
Figure 3-3: Star Structure of the Power Supply	
Figure 3-4: Turing on the Module Using Driving Circuit	
Figure 3-5: Turing on the Module Using Button	30
Figure 3-6: Power-up Timing	30
Figure 3-7: Power-down Timing	32
Figure 3-8: Reference Circuit of RESET_N by Using Driving Circuit	33
Figure 3-9: Reference Circuit of RESET_N with Button	
Figure 3-10: Reset Timing	
Figure 4-1: Reference Circuit of USB Application	
Figure 4-2: Reference Circuit of USB_BOOT Interface	
Figure 4-3: Timing Sequence for Entering Emergency Download Mode	
Figure 4-4: Reference Circuit of USIM Interface	
Figure 4-5: Reference Circuit with Translator Chip	41
Figure 4-6: Reference Circuit with Transistor Circuit	41
Figure 4-7: Reference Design for Microphone Interface	43
Figure 4-8: Reference Design for Loudspeaker Interface	44
Figure 4-9: Reference Circuit of Audio Amplifier (external) Output	44
Figure 4-10: Reference Circuit of I2C Application	45
Figure 4-11: Reference Circuit of SPI Application	48
Figure 4-12: Reference Circuit of Operating Status Indication	52
Figure 4-13: Reference Circuit of Network Status Indication	52
Figure 7-1: Module Top and Side Dimensions	
Figure 7-2: Module Bottom Dimensions (Bottom View)	65
Figure 7-3: Recommended Footprint (Top View)	
Figure 8-1: Recommended Reflow Soldering Thermal Profile	68
Figure 8-2: Carrier Tape Dimension Drawing	69
Figure 8-3: Plastic Reel Dimension Drawing (Unit: mm)	69

Table Index

Table 2-1: Basic Information	12
Table 2-2: Key Features of MDM01	14
Table 2-3: I/O Parameters Definition	18
Table 2-4: Pin Description	18
Table 3-1: Overview of Operating Modes	24
Table 3-2: AT+CFUN Parameter Description	27
Table 3-3: Pin Definition of Power Supply	28
Table 3-4: Pin Definition of PWRKEY	29
Table 3-5: Pin Definition of RESET	33
Table 4-1: Pin Definition of USB Interface	35
Table 4-2: Pin Definition of USB_BOOT Interface	36
Table 4-3: Pin Definition of USIM Interfaces	38
Table 4-4: UART Information	40
Table 4-5: Pin Definition of UART Interface	40
Table 4-6: Pin Definition of Audio Interfaces	42
Table 4-7: Pin Definition of PCM Interface	45
Table 4-8: Pin Definition of I2C Interface	45
Table 4-9: Pin Definition of Camera Interface	46
Table 4-10: Pin Definition of LCM Interface	47
Table 4-11: Pin Definition of SPI Interface	48
Table 4-12: Pin Definition of Matrix Keypad Interface	49
Table 4-13: Pin Definition of ADC Interfaces	50
Table 4-14: Characteristics of ADC Interfaces	50
Table 4-15: Pin Definition of Indication Signals	51
Table 4-16: Working State of Operation Status Indication	51
Table 4-17: Working State of Network Connection Status/Activity Indication	52
Table 4-18: Pin Definition of GPIO Interfaces	53
Table 5-1: Pin Definition of Antennas	54
Table 5-2: MDM01 Operating Frequencies	54
Table 6-1: Absolute Maximum Ratings	60
Table 6-2: Module Power Supply Ratings	60
Table 8-1: Carrier Tape Dimension Table (Unit: mm)	69
Table 9-1: Related Documents	70
Table 9-2: Terms and Abbreviations	70

1 Introduction

This document defines the MDM01 module and describes its air interface and hardware interface which are connected with your applications.

With this document, you can quickly understand module interface specifications, electrical and mechanical details, as well as other related information of the module. The document, coupled with application notes and user guides, makes it easy to design and set up wireless applications with the module.

1.1 Safety Information

The following safety precautions must be observed during all phases of operation, such as usage, service or repair of any cellular terminal or mobile incorporating the module. Manufacturers of the cellular terminal should notify users and operating personnel of the following safety information by incorporating these guidelines into all manuals of the product. Otherwise, we assumes no liability for customers' failure to comply with these precautions.

In locations with explosive or potentially explosive atmospheres, obey all posted signs and turn off wireless devices such as mobile phone or other cellular terminals. Areas with explosive or potentially explosive atmospheres include fueling areas, below decks on boats, fuel or chemical transfer or storage facilities, and areas where the air contains chemicals or particles such as grain, dust or metal powders.

2 Product Overview

MDM01 is an LTE-FDD wireless communication module, which provides data connectivity on LTE-FDD networks. It also provides voice functionality for your specific applications.

With a compact profile of 21.9 mm \times 22.9 mm \times 2.3 mm, LCC+LGA package, small and thin appearance, can meet the needs of terminal equipment for small-size module products. The product has the advantages of full Netcom, network optimization, hard encryption, etc., and is the best choice for cloud speakers, public network intercom, PDA phones, tablet computers, mobile POS, smart wearables, shared payment, smart home appliances, smart security, smart agriculture, smart metering and other scenarios.

MDM01	
Package	LCC+LGA
PINs	100
Dimensions	$(21.9\pm0.15) \text{ mm} \times (22.9\pm0.15) \text{ mm} \times (2.3\pm0.2) \text{ mm}$
Weight	Approx. 2.2g
Mode	FDD LTE: Band2, Band4, Band5, Band12, Band17, Band66

Table 2-1: Basic Information

2.1 Product Diagram

The following diagram shows the top and bottom views of the MDM01 module, for authentic appearance and label, please refer to the module received.

Figure 2-1: Top View and Bottom View of the Module (Unit: mm)

2.2 Key Features

Features	Details			
Power Supply	Supply voltage range: 3.4–4.5 V			
i ower Suppry	• Typical supply voltage: 3.8 V			
	• Text and PDU modes			
SMS	• Point-to-point MO and MT			
	• SMS storage: USIM card			
USIM Interface	• Supports 2 external USIM/SIM cards: 1.8/3.0 V			
USIM Interface	• Support card 2-channel built-in eSIM: 1.8/3.0V			
	• Compliant with USB 2.0 specification (slave only); with maximum			
	transmission rates up to 480 Mbps			
	• Used for AT command communication, data transmission, software			
USB Interface	debugging and firmware upgrade			
	• Supports USB serial drivers for: Windows 7/8/8.1/10, Linux 2.6-5.14,			
	Android 4.x-11.x, etc.			
	Main UART:			
	• Used for AT command communication and data transmission			
	• Baud rate: 115200 bps by default			
UART Interfaces	• Supports RTS and CTS hardware flow control			
	Debug UART:			
	• Used for the output of partial logs			
	• Baud rate: 115200 bps			
And: a Fastures	• Supports one digital audio interface: PCM interface			
Audio reatures	• Supports one analog audio input and one analog audio output			
PCM Interface*	Used for audio function with external codec			
SPI Interface	• Supports only master mode			
	• Provides one camera interface supporting cameras up to 0.3 MP; I/O pins			
Camera Interface	only support 1.8 V			
	• Supports the 2-data-line transmission of SPI			
	• Supports LCD display modules with a maximum resolution of 240 x 320			
LCD Interface	• Support SPI data transmission such as 4-wire, 1-channel, etc.			
	• Supports RGB565 format output			
Matrix Keypad Interface *	Supports 5 x 5 matrix keypad			
	NET_STATUS indicates network connectivity status			
Indications	• STATUS indicates module's operation status			
AT Commands	Compliant with 3GPP TS 27.007, 27.005 and enhanced AT commands			
Antenna Interfaces	• Main antenna interface (ANT_MAIN)			

Table 2-2: Key Features of MDM01

MDM01 Hardware Design

•	50 Ω impedance			
Position Fixing •	Supports Wi-Fi Scan			
Transmitting Power •	Class 3 (23 dBm ±2 dB) for LTE-FDD bands			
•	Supports up to Cat.1 FDD			
LTE Features •	Supports 1.4/3/5/10/15/20 MHz RF bandwidth			
•	LTE-FDD: Max. 10 Mbps (DL), Max. 5 Mbps (UL)			
•	Supports			
Internet Protocol Features	TCP/UDP/PPP/NTP/NITZ/FTP/HTTP/PING/CMUX/FTPS/SSL/FILE/M			
Internet Frotocor Features	QTT protocols			
•	Supports PAP and CHAP for PPP connections			
•	Operating temperature range: -35 to +75 $^{\circ}C^{1}$			
Operating Temperature •	Extended temperature range: -40 to +85 $^{\circ}C^{2}$			
•	Storage temperature range: -40 to +85 °C			
Firmware Upgrade •	Via USB interface or DFOTA			

1. 1) Within operating temperature range, the module meets 3GPP specifications.

	2. 2) Within extended temperature range, the module remains the ability to establish and
	maintain functions such as voice, SMS, data transmission, etc., without any unrecoverable
Notes	malfunction. Radio spectrum and radio network are not influenced, while one or more
	specifications, such as Pout, may exceed the specified tolerances of 3GPP. When the
	temperature returns to the operating temperature range, the module meets 3GPP
	specifications again.

2.3 Functional Diagram

The following figure shows a block diagram of MDM01 and illustrates the major functional parts.

- Power management
- Baseband
- Memory
- Radio frequency
- Peripheral interfaces

Figure 2-2: Functional Diagram

2.4 Pin Assignment

MDM01 module is equipped with 100 pins, including 76 LCC pins and 24 LGA pins. The following figure shows the pin assignment of MDM01 module.

Figure 2-3: MDM01 Pin Assignment (Top View)

2.5 Pin Description

The following tables show the pin definition and description of MDM01 module.

Туре	Description
AI	Analog Input
AIO	Analog Input/Output
AO	Analog Output
DI	Digital Input
DIO	Digital Input/Output
DO	Digital Output
OD	Open Drain
PI	Power Input
РО	Power Output

Table 2-3: I/O Parameters Definition

Table 2-4: Pin Description

Power Supply Input					
Pin Name	Pin NO.	I/O	Description	DC Characteristics	Comment
VBAT_BB	29	PI	Power supply for module's baseband part	Vmax = 4.5V Vmin = 3.4V Vnorm = 3.8V	It must be provided with sufficient current up to 0.8 A.
VBAT_RF	36, 37	PI	Power supply for module's RF part	Vmax = 4.5V Vmin = 3.4V Vnorm = 3.8V	It must be provided with sufficient current up to 2.0 A.
GND	18, 30, 3	35、38、	41, 43~45, 47, 73,	77~92	
Power Supply Output	ıt				
Pin Name	Pin NO.	I/O	Description	DC Characteristics	Comment
VDD_EXT	76	РО	Provide 1.8 V for external circuit	Vnorm = 1.8V I max = 50mA	Power supply for external GPIO's pullup circuits. If unused, keep it open.
Turn on/off					
Pin Name	Pin NO.	I/O	Description	DC Characteristics	Comment
PWRKEY	74	DI	Turn on/off the module	VILmax = 0.5V Vnorm=VBAT_ BB	Pull down PWRKEY for a period of time to power on/off.
RESET_N	75	DI	Reset the module	VILmax = 0.5V Vnorm = 1.6V	Active Low. If unused, keep it open.
Status Indication					
Pin Name	Pin NO.	I/O	Description	DC Characteristics	Comment
NET_MODE	52	DO	Indicate the module's network registration mode	1.8V	If unused, keep it open.

			MDM01 Hardware Des	sign	
SLEEP_IND STATUS	53 54	DO DO	Indicate the module's sleep mode Indicate the module's operation		
NET_STATUS/ USB_BOOT	55	DO	status Indicates the module's network activity status		Reuse pins, NET_STATUS function after successfully startup. This pin cannot be pulled down to low level before the module is successfully startup if the emergency download mode is not necessary.
USB_BOOT Interfa	ice				
Pin Name	Pin NO.	I/O	Description	DC Characteristics	Comment
NET_STATUS/ USB_BOOT	55	DI	Force the module into emergency download mode	1.8V	Reuse pins, USB_BOOT function when startup. Active low. It is recommended to reserve test points.
USB Interface					
Pin Name	Pin NO.	I/O	Description	DC Characteristics	Comment
USB_DP	26	AIO	USB differential data (+)	(+)	USB 2.0 compliant. Requires differential
USB_DM	27	AIO	USB differential data (-)	(-)	impedance of 90 Ω . If unused, keep it open.
USB_VBUS	28	AI	USB connection detect	Vmax = 5.25 V Vmin = 3.0 V Vnom = 5.0 V	If unused, keep it open.
USIM 接口					
Pin Name	Pin NO.	I/O	Description	DC Characteristics	Comment
USIM_CLK	5	DO	USIM card clock		
USIM_DATA	6	DIO	USIM card data		If unused, keep it open.
USIM_RST	7	DO	USIM card reset		
USIM_VDD	8	РО	USIM card power supply	1.8/3.0V	Either 1.8 V or 3.0 V USIM card is supported and can be identified automatically by the module.
USIM_DET	9	DI	USIM card hot-plug detect	1.8V	If unused, keep it open.
USIM2_RST	145	DO	USIM2 card reset		
USIM2_DATA	146	DIO	USIM2 card data		If unused, keep it open.
USIM2_CLK	147	DO	USIM2 card clock		
USIM2_VDD	148	РО	USIM2 card power supply	1.8/3.0V	Either 1.8 V or 3.0 V USIM card is supported and can be identified automatically by the module.

Main UART Interfa	ice				
Pin Name	Pin NO.	I/O	Description	DC Characteristics	Comment
MAIN_RXD	31	DI	Main UART receive	_	
MAIN_TXD	32	DO	Main UART transmit	_	
MAIN_CTS	33	DO	Main UART clear to send	_	
MAIN_RTS	34	DI	Main UART request to send	1.8V	If unused, keep it open.
MAIN_DTR	39	DI	Main UART data terminal ready	_	
MAIN_RI	40	DO	Main UART ring indication	_	
MAIN_DCD	48	DO	Main UART data carrier detect		
Debug UART Inter	face				
Pin Name	Pin NO.	I/O	Description	DC Characteristics	Comment
DBG_TXD	71	DO	Debug UART transmit	- 1 8V	If unused keen it open
DBG_RXD	72	DI	Debug UART receive	1.0 V	n unused, keep it open.
ADC Interfaces					
Pin Name	Pin NO.	I/O	Description	DC Characteristics	Comment
ADC1	19	AI	General-purpose ADC interface	Voltage range:	If unused keen it open
ADC2	20	AI	General-purpose ADC interface	0~1.3 V	n unused, keep n open.
I2C Interface					
Pin Name	Pin NO.	I/O	Description	DC Characteristics	Comment
I2C_SDA	56	OD	I2C serial data	-	Pull each of them up to
I2C_SCL	57	OD	I2C serial clock	1.8V	resistor. If unused, keep it open.
PCM Interface					
Pin Name	Pin NO.	I/O	Description	DC Characteristics	Comment
PCM_SYNC	58	DO	PCM data frame sync	_	
PCM_DIN	59	DI	PCM data input	1.8V	If unused, keep it open.
PCM_DOUT	60	DO	PCM data output	-	
PCM_CLK	61	DO	PCM clock		
Analog Audio Inter	faces			2.2	
Pin Name	Pin NO.	I/O	Description	DC Characteristics	Comment
SPK_N	21	AO	Analog audio differential output (-)		The interface can drive 32Ω speaker with power rate at 37 mW.
SPK_P	22	AO	Analog audio differential output (+)		It can also be used to drive external power amplifier devices if the output power rate

					cannot meet the demand.	
			Mierophone englog		If unused, keep it open.	
MIC_N	23	AI	input (-)			
MIC_P	24	AI	Microphone analog input (+)		If unused, keep it open.	
MIC_BIAS	25	РО	Bias voltage output		-	
Camera Interface			for interoptione			
Pin Name	Pin NO.	I/O	Description	DC Characteristics	Comment	
CAM_MCLK	10	DO	Master clock of camera	_		
CAM_I2C_SCL	11	OD	I2C clock of camera	_		
CAM_I2C_SDA	12	OD	I2C data of camera	_		
CAM_SPI_CLK	13	DI	SPI clock of camera	1.8V	If unused, keep it open.	
CAM_SPI_DATA0	14	DI	SPI data0 of camera	_		
CAM_SPI_DATA1	15	DI	SPI data1 of camera	_		
CAM_PWDN	16	DO	Power down of camera			
CAM_VDD	17	РО	Analog power supply of camera	Vnom = 2.8 V	If unused, keep it open.	
CAM_VDDIO	68	DO	Digital power supply of camera	Vnom = 1.8 V	If unused, keep it open.	
LCD interface						
Pin Name	Pin NO.	I/O	Description	DC Characteristics	Comment	
LCD_TE	62	DI	LCD tearing effect			
LCD_SPI_RS	63	DO	LCD register select	_		
LCD_SPI_RST	64	DO	LCD reset	- 1 8V	If unused, keep it open.	
LCD_CS	65	DO	LCD chip select	1.0 v		
LCD_SPI_DOUT	66	DO	LCD data	_		
LCD_SPI_CLK	67	DO	LCD clock			
SPI Interface						
Pin Name	Pin NO.	I/O	Description	DC Characteristics	Comment	
SPI_CLK	1	DO	SPI clock	_		
SPI_RXD	2	DI	SPI master mode input	- 1 8V	If unused keep it open	
SPI_TXD	3	DO	SPI master mode output	1.0 V	n unused, keep n open.	
SPI_CS	4	DO	SPI chip select			
Antenna Interface						
Pin Name	Pin NO.	I/O	Description	DC Characteristics	Comment	
ANT_MAIN	46	AIO	Main antenna		50Ω impedance.	
Other Interfaces						
Pin Name	Pin NO.	I/O	Description	DC Characteristics	Comment	
WAKEUP_IN	49	DI	Wakes up the module		If unused, keep it open.	
			module	- 1.8V		

MDM01 Hardware Design						
W_DISABLE#	51	DI	Airplane mode control		Pull-up by default. In low voltage level, module can enter into airplane mode. If unused, keep it open.	
GPIO Interfaces						
Pin Name	Pin NO.	I/O	Description	DC Characteristics	Comment	
GPIO_00	109	DIO	General-purpose IO	_		
GPIO_01	110	DIO	General-purpose IO	1 917	If unused keep it open	
GPIO_70	111	DIO	General-purpose IO	1.0 V	n unused, keep it open.	
GPIO_69	112	DIO	General-purpose IO			
RESERVED PINS						
Pin Name	Pin NO.				Comment	
RESERVED	42, 69,	70			Keep these pins unconnected.	

	٠	(*) indicates that the function is under development, currently not supported.
NOTE	•	Keep RESERVED pins unconnected.
	•	Pins USB_BOOT cannot be pulled down before startup.

2.6 EVB

To help you develop applications with the module, we provide an evaluation board, USB to RS-232 converter cable, earphone, antenna and other peripherals to control or test the module.

For more details, see related documents such as SS207_ADP Instructions, SS201_KIT Instructions.

3 Operating Characteristics

3.1 Operating Modes

The following table briefly describes several typical operating modes of the module.

Modes	Details					
Normal Operation	Idle Software is active. The module remains registered on the network, and it is ready to send and receive data.					
Normal Operation	Talk/DataNetwork connection is ongoing. In this mode, the power consumption is decided by network setting and data transfer rate.					
Minimum	• AT+CFUN=0 can set the module to a minimum functionality mode without					
Functionality	removing the power supply.					
Mode	• In this case, both RF function and USIM card are invalid.					
	• AT+CFUN=4 can set the module to airplane mode.					
Airplane Mode	• In this case, RF function is invalid.					
Disable USIM	• AT+CFUN=5 can set the module disable the USIM cards.					
Mode	• In this case, USIM cards are invalid.					
	In this mode, the current consumption of the module is reduced to the minimal level.					
Sleep Mode	During this mode, the module can still receive paging message, SMS, voice call and TCP/UDP data from the network normally					
Power Down Mode	In this mode, the module's power supply is cut off by its power management IC. The software is inactive and the serial interfaces are not accessible, while the VBAT pins are still powered					

Table 3-1: Overview of Operating Modes

3.2 Sleep Mode

The module is able to reduce its current consumption to an ultra-low value in the sleep mode. The following chapters describe power saving procedures of the module.

3.2.1 UART Application Scenario

If the host communicates with the module via UART interface, the following preconditions can make the module enter the sleep mode.

- Execute AT+QSCLK=1 to enable sleep mode.
- Drive MAIN_DTR to high level.

The figure illustrates the connection between the module and the host.

Figure 3-1: Sleep Mode Application via UART

After the module enters sleep mode, it will not respond to AT commands, but URC will report when receiving data/text messages/calls. To wake up the module, the following methods can be used:

- Driving MAIN_DTR low with the host will wake up the module.
- AP_READY pin can indicate whether the host has been wake up.

3.2.2 USB Application Scenario

If the host communicates with the module via USB interface, the following three preconditions can make the module enter the sleep mode.

- Execute AT+QSCLK=1 to enable sleep mode.
- Ensure the MAIN_DTR is held at high level or keep it open.
- Disconnect USB_VBUS.

The following figure shows the connection between the module and the host.

Figure 3-2: Sleep Mode Application via USB

To wake up the module, the following methods can be used:

- Switching on the power switch to supply power to USB_VBUS.
- AP_READY pin can indicate whether the host has been wake up.

3.3 Airplane Mode

When the module enters airplane mode, the RF function will be disabled, and all AT commands related to it will be inaccessible. This mode can be set via the following ways.

• Hardware

The W DISABLE# is pulled up by default. Driving it low will set the module into airplane mode.

• Software

AT+CFUN=<fun> provides choices of the functionality level through setting <fun> into 0, 1, 4 or 5.

Parameter	Value details			
< fun>	0	Minimum functionality mode (disable RF function and USIM function)		
	1	Full functionality mode (default)		
	4	Airplane mode (disable RF function).		
	5	Disable USIM function		

Table 3-2: AT+CFUN Parameter Description

3.4 Power Supply

3.4.1 Power Supply Pins

The power supply pins of the module are used to connect an external power, supplying power to the RF and baseband circuits of the module. VBAT_RF pins are for RF part, VBAT_BB pins are for baseband part.

MDM01 module provides a VDD_EXT output pin, which can provide a voltage of 1.8V. Its maximum output current is 50mA.

The following table shows the pin definition of Power and GND.

Pin NO.	Pin Name	I/O	Description	Min.	Тур.	Max.	Unit
36, 37	VBAT_RF	PI	Power supply for module's RF part	3.4	3.8	4.5	V
29	VBAT_BB	PI	Power supply for module's baseband part	3.4	3.8	4.5	V
76	VDD_EXT	РО	Provide 1.8 V for external circuit		1.8		V
18、30、35、38、 43~45、47、73、 77~92	GND		Ground	-	0	-	V

 Table 3-3: Pin Definition of Power Supply

3.4.2 Reference Design for Power Supply

The power supply range of MDM01 module is from 3.4 V to 4.5 V. Make sure the input voltage never drops below 3.4 V. To decrease the voltage drop, use bypass capacitors of about 100 μ F with low ESR (ESR = 0.7 Ω) and reserve a multi-layer ceramic chip (MLCC) capacitor array due to their ultra-low ESR. It is recommended to use three ceramic capacitors (100 nF, 33 pF, 10 pF) for composing the MLCC array, and place these capacitors close to the VBAT_BB and VBAT_RF pins. When the external power supply is connected to the module, VBAT_BB and VBAT_RF need to be routed in star structure. The width of the VBAT_RF trace should not be less than 2 mm. In principle, the longer the VBAT trace is, the wider it should be.

In addition, in order to ensure the stability of power source, it is suggested that a TVS diode of which reverse stand-off voltage is 4.7 V and peak pulse power is up to 2550 W should be used.

The following figure shows the star structure of the power supply.

Figure 3-3: Star Structure of the Power Supply

3.4.3 VDD_EXT

MDM01 module provides a VDD_EXT output pin, which can provide a voltage of 1.8V. Its maximum output current is 50mA.

After powering on, VDD_EXT automatically turns on, and still on when in sleep mode. If an external circuit is connected, it will affect the power consumption of the module in sleep mode.

It is recommended that VDD_EXT is only used for external GPIO's pull-up circuits or IO voltage-level shift circuits, and should not be used for other purposes. A TVS diode should be added when using it.

3.5 Turn On

Pin NO.	Pin Name	I/O	Description	Comment
74	PWRKEY	DI	Turn on/off the module	Pull down PWRKEY for a period of time to power on/off.

When the module is in power down mode, you can turn it on to normal mode by driving the PWRKEY pin low for at least 500 ms. It is recommended to use an open drain/collector driver to control the PWRKEY.A simple reference circuit is illustrated in the following figure.

Figure 3-4: Turing on the Module Using Driving Circuit

Another way to control the PWRKEY pin is using a button directly, a TVS component is indispensable to be placed nearby the button for ESD protection. A reference circuit is shown in the following figure.

Figure 3-5: Turing on the Module Using Button

PWRKEY can be pulled down directly to GND with a recommended 4.7 k Ω resistor if the module needs to be powered on automatically and shutdown is not needed.

The power-up scenario is illustrated in the following figure.

Figure 3-6: Power-up Timing

- Make sure that VBAT is stable before pulling down PWRKEY pin. It is recommended that the time difference between powering up VBAT and pulling down PWRKEY pin is no less than 30 ms.
- NOTE NET_STATUS/USB0OOT is a USB_BOOT reuse pin. This pin cannot be pulled down to low level before the module is successfully startup if the emergency download mode is not necessary. When pull down USB_BOOT to GND before start-up, the module will enter emergency download mode.

3.6 Turn Off

The following procedures can be used to turn off the module normally.

3.6.1 Turn off with PWRKEY

Drive the PWRKEY pin low for at least 650 ms, then the module will execute power-down procedure after the PWRKEY is released. The power-down scenario is illustrated in the following figure.

Figure 3-7: Power-down Timing

3.6.2 Turn off with AT Command

It is safe to use AT+QPOWD to turn off the module, which is equal to turn off the module via PWRKEY pin

To avoid corrupting the data in the internal flash, do not switch off the power supply when the module works normally. Only after turning off the module with PWRKEY or AT command can you cut off the power supply.
 When turning off module with AT command, keep PWRKEY at a high level after the execution of turn-off command. Otherwise, the module will be turned on again after being turned off.

3.7 Reset

The RESET_N pin can be used to reset the module. You can reset the module by driving RESET_N low for at least 300 ms and then releasing it.

Table 3-5: Pin Definition of RESET

Pin NO.	Pin Name	I/O	Description	Comment
75	RESET_N	DI	Reset the module	Active low. If unused, keep it open.

The recommended circuit is equal to the PWRKEY control circuit. An open drain/collector driver or button can be used to control the RESET N.

Figure 3-8: Reference Circuit of RESET_N by Using Driving Circuit

Figure 3-9: Reference Circuit of RESET_N with Button

The reset scenario is illustrated in the following figure.

Figure 3-10: Reset Timing

4 Application Interfaces

The following interfaces are described in detail in subsequent chapters:

- **USB** interface
- **USB_BOOT** interface
- USIM interfaces
- UART interfaces
- Analog audio interfaces
- PCM interface
- I2C interface
- **Camera interface**
- LCD interface
- SPI interface
- Matrix keypad interface*
- ADC interfaces
- Status indication
- **GPIO** interface

4.1 USB Interface

MDM01provides one integrated Universal Serial Bus (USB) interface which complies with the USB 2.0 specification and supports full-speed (12 Mbps) and high-speed (480 Mbps) modes. The USB interface can only serve in the slave mode. It is used for AT command communication, data transmission, software debugging and firmware upgrade.

The following table shows the pin definition of USB interface.

Pin NO.	Pin Name	I/O	Description	Comment
28	USB_VBUS	AI	USB connection detect	Typical: 5.0 V. If unused, keep it open.
26	USB_DP	AIO	USB differential data (+)	Requires differential impedance of 90 Ω. If unused, keep it open.
27	USB_DM	AIO	USB differential data (-)	Requires differential impedance of 90 Ω . If unused, keep it open.

Table 4-1: Pin Definition of USB Interface

It is recommended to reserve test points for debugging and firmware upgrading in your designs. The following figure shows a reference circuit of USB interface.

Figure 4-1: Reference Circuit of USB Application

A common mode choke L1 is recommended to be added in series between the module and MCU to suppress EMI spurious transmission. Meanwhile, the 0Ω resistors (R1 and R2) should be added in series between the module and the test points to facilitate debugging, and the resistors are not mounted by default. To ensure the signal integrity of USB data lines, L1, R1 and R2 must be placed close to the module, and resistors R1 and R2 should be placed close to each other. Keep the extra stubs of trace as short as possible.

NOTE The following principles should be complied with when designing the USB interface, to meet USB Specifications.
- It is important to route the USB signal traces as differential pairs with ground surrounded. The impedance of USB differential traces is 90 Ω .
- Do not route signal traces under crystals, oscillators, magnetic devices, PCIe and RF signal traces. It is important to route the USB differential traces at inner-layer of the PCB, and surround the traces with ground on that layer and with ground planes above and below.
- Pay attention to the selection of the ESD component on the USB data line. Its parasitic capacitance should not exceed 2 pF and should be placed as close as possible to the USB interface.

4.2 USB_BOOT Interface

MDM01 module provides a USB_BOOT pin. You can pull down NET_STATUS/USB_BOOT to GND before start-up, and the module will enter emergency download mode when it is powered on. In this mode, the module supports firmware upgrade over USB interface.

Table 4-2:	Pin	Definition	of USB	BOOT	Interface
			_		

Pin NO.	Pin Name	I/O	Description	Comment
55	NET_STATUS/ USB_BOOT	DI	Control pin for the module to enter download mode	Reuse pins, USB_BOOT function when startup. Active low. It is recommended to reserve test points.

The following figure shows a reference circuit of NET_STATUS/USB_BOOT interface.

Figure 4-2: Reference Circuit of USB_BOOT Interface

The following figures show a timing sequence for entering emergency download mode of USB_BOOT interface.

NOTE

- Make sure that VBAT is stable before pulling down PWRKEY pin. It is recommended that the time between powering up VBAT and pulling down PWRKEY pin is no less than 30 ms.
- When using MCU to control module to enter the emergency download mode, please follow the above timing sequence. Directly connect the test points as shown in Figure 4-2 can manually force the module to enter download mode.

4.3 USIM Interfaces

MDM01 module provides two USIM interfaces, Optional built-in 3 * 3 mm eSIM chip. The USIM interface circuitry meets ETSI and IMT-2000 requirements. Either 1.8 V or 3.0 V USIM card is supported.

Pin NO.	Pin Name	I/O	Description	Comment
8	USIM_VDD	PO	USIM card power supply	Either 1.8 V or 3.0 V USIM card is supported and can be identified automatically by the module.
7	USIM_RST	DO	USIM card reset	
6	USIM_DATA	ΙΟ	USIM card data	Need to pull up a 4.7K Ω resistor to the USIM_VDD power supply.
5	USIM_CLK	DO	USIM card clock	
9	USIM_DET	DI	USIM card hot-plug detect	1.8 V power domain. If unused, keep it open.
148	USIM2_VDD	РО	USIM2 card power supply	Either 1.8 V or 3.0 V USIM card is supported and can be identified automatically by the module.
147	USIM2_RST	DO	USIM2 card reset	
146	USIM2_DATA	ΙΟ	USIM2 card data	
145	USIM2_CLK	DO	USIM2 card clock	

Table 4-3: Pin Definition of USIM Interfaces

The built-in eSIM chip uses the USIM2 interface. When using the built-in eSIM, the external USIM2 interface cannot be used.

MDM01 supports USIM card hot-plug via the USIM_DET pin, and both high- and low-level detection are supported. The function is disabled by default, and see AT+QSIMDET in document [1] for more details.

The following figure shows a reference design for USIM card interface.

Figure 4-4: Reference Circuit of USIM Interface

If the function of USIM card hot-plug is not needed, please keep USIM_DET disconnected. Only USIM1 interface supports USIM card hot-plug, USIM2 interface not support.

To enhance the reliability and availability of the USIM card in application, follow the criteria below in USIM circuit design.

- Ensure the USIM_VDD has a bypass capacitor less than 1 µF, and the capacitor should be close to the USIM card connector
- To offer good ESD protection, add a TVS diode array of which the parasitic capacitance should be less than 15 pF. Add 0 Ω resistors in series between the module and the USIM card to facilitate debugging. The 33 pF capacitors in parallel on USIM_DATA, USIM_CLK and USIM_RST lines are used for filtering interference of EGSM900. Additionally, keep the USIM peripheral circuit close to the USIM card connector.
- The pull-up resistor on USIM_DATA can improve anti-jamming capability of the USIM card. If the USIM card traces are too long, or the interference source is relatively close, it is recommended to add a pull-up resistor near the USIM card connector.
 - Place the USIM card connector as close to the module as possible. Keep the trace length as short as possible, at most 200 mm.
 - Keep USIM card signals away from RF and VBAT traces.
 - To avoid cross-talk between USIM_DATA and USIM_CLK, keep them away from each other and shield them with surrounded ground
 - Ensure the ground between the module and the USIM card connector short and wide. Keep the trace width of ground and USIM_VDD no less than 0.5 mm to maintain the same electric potential.

4.4 UART Interfaces

MDM01 provides two UART interfaces and the following shows their features:

UART Types	Supported (bps)	Baud Ra	tes Default (bps)	Baud Rates	Functions
Main UART interface	300 、 1200 、 14400 、 192 38400 、 560 115200 、 128 460800 、 921 1125000 、 18	4800、9600 200、28800 000、57600 8000、230400 600、1000000 00000	115200		 Data transmission and AT command communication. supports RTS and CTS hardware flow control.
Debug UART Interface	115200		115200		log output

Table 4-4: U	ART Information
---------------------	------------------------

Pin definition of the UART interfaces is here as follows:

UART Types	Pin Name	PIN NO.	ΙΟ	Description
Main UART interface	MAIN_RXD	31	DI	Main UART receive
	MAIN_TXD	32	DO	Main UART transmit
	MAIN_CTS	33	DI	Main UART clear to send
	MAIN_RTS	34	DO	Main UART request to send
	MAIN_DTR	39	DO	Main UART data terminal ready
	MAIN_RI	40	DO	Main UART ring indication
	MAIN_DCD	48	DO	Main UART data carrier detects
Debug UART	DBG_TXD	71	DO	Debug UART transmit
Interface	DBG_RXD	72	DI	Debug UART receive

Table 4-5: Pin Definition of UART Interface

The MDM01 module provides a 1.8 V UART interface. Use a level shifter if the application is equipped with a 3.3 V UART interface. A level shifter TXS0108EPWR provided by Texas Instruments is recommended. The following figure shows a reference design.

Figure 4-5: Reference Circuit with Translator Chip

Another example with transistor circuit is shown as below. For the design of circuits shown in dotted lines, see that shown in solid lines, but pay attention to the direction of connection.

NOTE

• Transistor circuit solution is not suitable for applications with baud rates exceeding 460 kbps.

• Please note that the module CTS is connected to the host RTS, and the module RTS is connected to the host CTS.

4.5 Analog Audio Interfaces

The MDM01 module provides one analog input channel and one analog output channel. The pin definitions are shown in the following table.

Pin NO.	Pin Name	I/O	Description	Comment	
21	SPK_N	AO	Analog audio differential output (-)	The interface can drive 32 Ω speaker with power rate at 37 mW	
22	SPK_P	AO	Analog audio differential output (+)	If w. It can also be used to drive external power amplifier devices if the output power rate cannot meet the demand. If unused, keep it open.	
23	MIC_N	AI	Microphone analog input (-)		
24	MIC_P	AI	Microphone analog input (+)	If unused, keep it open.	
25	MIC_BIA S	РО	Bias voltage output for microphone	· · · · · · · · · · · · · · · · · · ·	

Table 4-6: Pin Definition of Audio Interfaces

AI channels are differential input channels, which can be applied to microphone input (usually an electret microphone is used).

AO channels are differential output channels, which can be used in receiver or loudspeaker (with an external audio power amplifier) output. This channel can support both voice output and ringtones.

You can use the AT+QMIC command to adjust the input gain of the microphone, or AT+CLVL command to adjust the volume gain output to the handset. The AT+QSIDET command is used to set the side tone gain. For details, please see document [2].

4.5.1 Audio Interfaces Design Considerations

It is recommended to use the electret microphone with dual built-in capacitors (e.g., 10 pF and 33 pF) for filtering out RF interference, thus reducing TDD noise. The 33pF capacitor is applied for filtering out RF interference when the module is transmitting at EGSM900. Without placing this capacitor, TDD noise could be heard. The 10pF capacitor here is used for filtering out RF interference at DCS1800. Note that the resonant frequency point of a capacitor largely depends on the material and production technique. Therefore, you would have to discuss with your capacitor vendors to choose the most suitable capacitor for filtering out high-frequency noises.

The filter capacitors on the PCB board should be placed as close to the audio devices or audio interfaces as possible, and the traces should be as short as possible. They should go through the filter capacitors before arriving at other connection points.

To reduce radio or other signal interference, RF antennas should be placed away from audio interfaces and audio traces. Power traces should not be parallel with and also should be far away from the audio traces.

The differential audio traces must be routed according to the differential signal layout rule.

4.5.2 Microphone Interface Design

The microphone channel reference circuit is shown in the following figure.

Figure 4-7: Reference Design for Microphone Interface

4.5.3 Loudspeaker Interface Design

Close to Earpiece GND 10 pF3 33 pF ESD Differential layout Module 32 Ω SPK_P Ð 10 pF 33 pF SPK_N Earpiece ESD 10 pF 33 pF GND -

The loudspeaker interface reference circuit is shown in the following figure.

Figure 4-8: Reference Design for Loudspeaker Interface

The loudspeaker interface reference circuit with the audio amplifier (external) Output is shown in the following figure.

Figure 4-9: Reference Circuit of Audio Amplifier (external) Output

4.6 PCM Interface*

The MDM01 module provides one pulse code modulation (PCM) interface for an external codec IC.

Pin NO.	Pin Name	I/O	Description	Comment	
58	PCM_SYNC	DO	PCM data frame sync		
59	PCM_DIN	DI	PCM data input	1.8 V power domain.	
60	PCM_DOUT	DO	PCM data output	If unused, keep it open.	
61	PCM_CLK	DO	PCM clock		
NOTE	OTE (*) indicates that the function is under development, currently not supported.				

Table 4-7: Pin Definition of PCM Interface

4.7 I2C Interface

The MDM01 module provides one I2C interface, which complies with the I2C bus protocol and does not support multi host mode.

Table 4-8:	Pin	Definition	of I2C	Interface
------------	-----	------------	--------	-----------

Pin NO.	Pin Name	I/O	Description	Comment
56	I2C_SDA	OD	I2C serial data	An external 1.8 V pull-
57	I2C_SCL	OD	I2C serial clock	Required. If unused, keep it open.

The following figure shows a reference design of I2C interface.

Figure 4-10: Reference Circuit of I2C Application

4.8 Camera Interface

The MDM01 module provides one camera interface supporting camera up to 0.3 MP and the 1-data-line or 2-data-line transmission of SPI.

Pin NO.	Pin Name	I/O	Description	Comment
10	CAM_MCLK	DO	Master clock of camera	
11	CAM_I2C_SCL	OD	I2C clock of camera	
12	CAM_I2C_SDA	OD	I2C data of camera	
13	CAM_SPI_CLK	DI	SPI clock of camera	If unused keep it
14	CAM_SPI_DATA0	DI	SPI data0 of camera	open.
15	CAM_SPI_DATA1	DI	SPI data1 of camera	
16	CAM_PWDN	DO	Power down of camera	
17	CAM_VDD	РО	Analog power supply of camera	
68	CAM_VDDIO	DO	Digital power supply of camera	

Table 4-9: Pin Definition of Camera Interface

The reference design for CAMERA interface, please see document [3] for more details.

4.9 LCD Interface

The LCD interface of the MDM01 module supports the LCD display with a maximum resolution of 320×240 , 4-wire 1-channel SPI data transmission, as well as 16-bit RGB565 formats.

Table 4-10: Pin Definition of LCM Interface

Pin NO.	Pin Name	I/O	Description	Comment
62	LCD_TE	DI	LCD tearing effect	
63	LCD_SPI_RS	DO	LCD register select	
64	LCD_SPI_RST	DO	LCD reset	1.8 V power domain.
65	LCD_CS	DO	LCD chip select	If unused, keep it open.
66	LCD_SPI_DOUT	DO	LCD data	
67	LCD_SPI_CLK	DO	LCD clock	

The reference design for LCD interface, please see document [3] for more details.

4.10 SPI Interface

The MDM01 module provides one SPI interface that only supports master mode. It has a working voltage of 1.8 V and a maximum clock frequency of 52 MHz.

Pin NO.	Pin Name	I/O	Description	Comment
1	SPI_CLK	DO	SPI clock	
2	SPI_RXD	DI	SPI master mode input	1.8 V power domain.
3	SPI_TXD	DO	SPI master mode output	If unused, keep it open.
4	SPI_CS	DO	SPI chip selects	

Table 4-11: Pin Definition of SPI Interface

The following figure shows a reference design of SPI interface.

Figure 4-11: Reference Circuit of SPI Application

• The module provides a 1.8 V SPI. A voltage-level translator between the module and the host should be used if the application is equipped with a 3.3 V processor or device interface.

4.11 Matrix Keypad Interface*

The MDM01 module supports a 5 \times 5 matrix keypad interface.

Pin No.	Pin Name	Keypad Signal	I/O	Description	Comment
48	MAIN_DCD	KP_MKIN[1]	DI	Matrix keypad input 1	
49	WAKEUP_IN	KP_MKOUT[1]	DO	Matrix keypad output 1	
50	AP_READY	KP_MKIN[2]	DI	Matrix keypad input 2	
51	W_DISABLE#	KP_MKOUT[2]	DO	Matrix keypad output 2	1.8 V power
52	NET_MODE	KP_MKIN[3]	DI	Matrix keypad input 3	domain.
53	SLEEP_IND	KP_MKOUT[3]	DO	Matrix keypad output 3	If unused, keep it
54	STATUS	KP_MKIN[4]	DI	Matrix keypad input 4	open.
55	NET_STATUS/USB_B OOT	KP_MKOUT[4]	DO	Matrix keypad output 4	
57	I2C_SCL	KP_MKIN[5]	DI	Matrix keypad input 5	
56	I2C_SDA	KP_MKOUT[5]	DO	Matrix keypad output 5	

NOTE (*) indicates that the function is under development, currently not supported.

ADC Interfaces 4.12

The MDM01 module provides two analog-to-digital converter (ADC) interfaces. You can use AT+QADC to read the voltage value on ADC, See document [1] for more details.

To improve the accuracy of ADC, the trace of ADC interfaces should be surrounded by ground.

Table 4-13: Pin Definition of ADC Interfaces

Pin No.	Pin Name	Description	Comment
19	ADC1	General-purpose ADC interface	If unused leasn it open
20	ADC2	General-purpose ADC interface	n unused, keep it open.

The following table describes the characteristic of the ADC interfaces.

Table 4-14: Characteristics of ADC Interfaces

Name	Min.	Тур.	Max.	Unit
Voltage Range	0	-	1.3	V
ADC Resolution	-	-	12	bits

- - It is prohibited to supply any voltage to ADC pin when VBAT is removed.
- NOTE
- The input voltage of ADC should not exceed its corresponding voltage range. It is recommended to use resistor divider circuit for ADC application.

4.13 Indication Signals

The MDM01 module provides two indication signals, the operating status indications and the network status indications.

Pin NO.	Pin Name	I/O	Description	Comment
52	NET_MODE	DO	Indicate the module's network registration mode	1.8 V power domain. If unused, keep it open.
55	NET_STATUS/U SB_BOOT	DO	Indicate the module's network activity status	Reuse pins, NET_STATUS function after successfully startup. This pin cannot be pulled down to low level before the module is successfully startup if the emergency download mode is not necessary.
53	SLEEP_IND	DO	Indicate the module's sleep mode	1.8 V power domain.
54	STATUS	DO	Indicate the module's operation status	If unused, keep it open.

Table 4-15: Pin Definition of Indication Signals

4.13.1 Operating Status Indications

The operating indication pins can be used to drive operation status indication LEDs. The module provides two operating indication pins: SLEEP_IND and STATUS. The following table describes logic level changes in different operating status.

Table 4-16: Working State of Operation Status Indication

Pin Name	Status	Description	
CLEED IND	Always High	Module is on normal mode	
SLEEF_IND	Always Low	Module is on sleep mode	
STATIC	Always High	Module is Power on	
SIATUS	Always Low	Module is power off	

A reference circuit is shown in the following figure.

Figure 4-12: Reference Circuit of Operating Status Indication

4.13.2 Network Status Indications

The network indication pins can be used to drive network status indication LEDs. The module provides two network indication pins: NET_MODE and NET_STATUS/USB_BOOT. The following table describes logic level changes in different network status.

Table 4-17:	Working	State of Netw	ork Connec	tion Status/A	Activity]	Indication
			0111 0011100			

Pin Name	Status	Description
NET MODE	Always High	Registered on LTE network
NEI_WODE	Always Low	Other
	Flicker slowly (200 ms high/1800 ms low)	Network searching
NET_STATUS/	Flicker slowly (1800 ms high/200 ms low)	Idle
USB_BOOT	Flicker quickly (125 ms high/125 ms low)	Data transfer is ongoing
	Always High	Voice calling

A reference circuit is shown in the following figures. The NET_STATUS/USB_BOOT pin needs to be controlled by an external NMOS transistor with Vgs (th) ≤ 1 V.

Figure 4-13: Reference Circuit of Network Status Indication

NOTE The NET_STATUS/USB_BOOT pin defaults to outputting a high level. If a transistor is used, the pin level will be pulled low, and the module will enter emergency download mode and cannot start up successfully.

4.14 GPIO Interfaces

The MDM01 module provides four GPIO interfaces.

Table 4-18: Pin Definition of GPIO Interfaces

Pin No.	Pin Name	Description	
109	GPIO_00		
110	GPIO_01	1.8 V power domain.	
111	GPIO_70	If unused, keep it open.	
112	GPIO_69		

5 RF Specifications

5.1 Pin Definition

The MDM01 module provides a main antenna interface. The impedance of antenna port is 50 Ω

Table 5-1: Pin Definition of Antennas

Pin Name	Pin No.	Description
ANT_MAIN	46	Main antenna interface
GND	25,26,28,29	Ground

NOTE Wi-Fi Scan and the main antenna share the same antenna interface, and the two functions cannot be used simultaneously.

5.2 Operating Frequency

Table 5-2: MDM01 Operating Frequencies

3GPP Band	Receive	Transmit
LTE-FDD Band 2	1850~1910MHz	1930~1990MHz
LTE-FDD Band 4	1710~1755MHz	2110~2155MHz
LTE-FDD Band 5	824~849MHz	869~894MHz
LTE-FDD Band 12	699~716MHz	729~746MHz
LTE-FDD Band 17	704~716MHz	734~746MHz
LTE-FDD Band 66	1710~1780MHz	2110~2200MHz

5.3 Reference Design

A reference design of ANT_MAIN antenna is shown as below. A π -type matching circuit should be reserved for better RF performance, and be placed as close to the antenna as possible. The capacitors are not mounted by default.

For user's PCB, the characteristic impedance of all RF traces should be controlled to 50 Ω . The impedance of the RF traces is usually determined by the trace width (W), the materials' dielectric constant, height from the reference ground to the signal layer (H), and the space between RF traces and grounds (S). Microstrip or coplanar waveguide is typically used in RF layout to control characteristic impedance. The following are reference designs of microstrip or coplanar waveguide with different PCB structures.

1. Microstrip Design

Figure 5-2: Microstrip Design on a 2-layer PCB

2. Coplanar Waveguide Design

Coplanar Waveguide Design on a 4-layer PCB (Layer 3 as Reference Ground)

Figure 5-3: Coplanar Waveguide Design

To ensure RF performance and reliability, follow the principles below in RF layout design:

1. Use an impedance simulation tool to accurately control the characteristic impedance of RF traces to 50 Ω .

2. The GND pins adjacent to RF pins should not be designed as thermal relief pads, and should be fully

connected to ground.

3.The distance between the RF pins and the RF connector should be as short as possible and all the right-angle traces should be changed to curved ones. The recommended trace angle is 135°.

4. There should be clearance under the signal pin of the antenna connector or solder joint. The reference ground of RF traces should be complete. Meanwhile, adding some ground vias around RF traces and the reference ground could help to improve RF performance. The distance between the ground vias and RF traces should be no less than two times the width of RF signal traces ($2 \times W$).

5.Keep RF traces away from interference sources, and avoid intersection and paralleling between traces on adjacent layers.

5.4 Tx Power

Table 5-3: MDM01 RF Output Power

Frequency Bands	Max. RF Output Power	Min. RF Output Power
Band 2	23dBm ±2dB	<-40dBm
Band 4	23dBm ±2dB	<-40dBm
Band 5	23dBm ±2dB	<-40dBm
Band 12	23dBm ±2dB	<-40dBm
Band 17	23dBm ±2dB	<-40dBm
Band 66	23 dBm ± 2 dB	<-40dBm

5.5 Rx Sensitivity

Table 5-4: MDM01 Conducted RF Receiving Sensitivity

Frequency Bands	Primary	Diversity	Primary + Diversity	3GPP
Band 2(10MHz)	-98.5 dBm	N/A	N/A	-92 dBm
Band 4(10MHz)	-98.5 dBm	N/A	N/A	-94 dBm
Band 5(10MHz)	-98 dBm	N/A	N/A	-92.5 dBm
Band 12(10MHz)	-98 dBm	N/A	N/A	-91 dBm
Band 17(10MHz)	-98 dBm	N/A	N/A	-91 dBm
Band 66(10MHz)	-98.5 dBm	N/A	N/A	-93.5 dBm

5.6 Antenna Design Requirement

Table 5-5: Cable insertion loss Requirements

Frequency Bands	Requirements
FDD-B5/B12/B17	Insertion loss <0.4dB
FDD-B2/B4/B66	Insertion loss <0.6dB

Table 5-6: Antenna Requirements

Parameter	Requirements
Frequency Range	824~2675MHZ
VSWR	≤2
Gain(dBi)	≥1
Max. input power (W)	5
Input impedance (Ω)	50
Efficiency	≥30%

5.7 Recommended RF Soldering

If the RF connector connecting the external antenna is connected to the module through soldering, please pay attention to the stripping and soldering methods of the connecting wires. It must be fully grounded and operated according to the correct soldering method to avoid increased line loss caused by poor soldering.

6 Electrical Characteristics and Reliability

6.1 Absolute Maximum Ratings

Absolute maximum ratings for power supply and voltage on digital and analog pins of the module are listed in the following table

Table 6-1: Absolute Maximum Ratings

Parameter	Min.	Max.	Unit
VBAT_BB	-0.3	6	V
VBAT_RF	-0.3	5.5	V
USB_VBUS	-0.3	5.5	V
Voltage on Digital Pins	-0.3	2.3	V
Voltage at ADC	-	1.8	V

6.2 Power Supply Ratings

Table 6-2: Module Power Supply Ratings

Parameter	Description	Min.	Тур.	Max.	Unit
VBAT_BB	Power supply for module's baseband part	3.4	3.8	4.5	V
VBAT_RF	Power supply for module's RF part	3.4	3.8	4.5	V
USB_VBUS	USB connection detection	3.0	5.0	5.25	V
Peak supply current (during transmission slot)	Maximum power control level	-	1.5	2	А

6.3 Power Consumption

The power consumption of the MDM01 module in various operating modes is shown in the table below, with VBAT power supply of 3.8V.

Description	Conditions	Typ. (3.8V)	Unit
OFF state	Power down	10	uA
	AT+CFUN=0(USB disconnected)	1.1	mA
	AT+CFUN=4(USB disconnected)	1.15	mA
Slaan stata	LTE-FDD @ PF = 32 (USB disconnected)	1.85	mA
Sleep state	LTE-FDD @ $PF = 64$ (USB disconnected)	1.49	mA
	LTE-FDD @ PF = 128 (USB disconnected)	1.32	mA
	LTE-FDD @ PF = 256 (USB disconnected)	1.23	mA
Idle state	LTE-FDD @ $PF = 64$ (USB disconnected)	18.5	mA
	LTE-FDD Band2	516	mA
	LTE-FDD Band4	550	mA
ITE data transfor	LTE-FDD Band5	548	mA
LIE data transfer	LTE-FDD Band12	529	mA
	LTE-FDD Band17	530	mA
	LTE-FDD Band66	542	mA

Table 6-3: MDM01 Current Consumption

NOTE	 All power consumption data were obtained in a laboratory environment, with a VABT power supply of 3.8V and connected to an RF CMU testing. Due to the influence of network parameters in the current network environment, there may be some differences between the power consumption data of the current
	network and the laboratory

6.4 Digital Logic Level Characteristics

Table 6-4: 1.8V I/O Voltage Level Requirements

Parameter	Description	Min.	Max.	Unit
VIH	Input High Level Voltage Value	1.2	2.0	V
VIL	Input Low Level Voltage Value	-0.3	0.6	V
VOH	Output High Level Voltage Value	1.35	1.8	V
VOL	Output Low Level Voltage Value	-0.3	0.45	V

Table 6-5: USIM 1.8V I/O Voltage Level Requirements

Parameter	Description	Min.	Max.	Unit
USIM_VDD	USIM Power Supply	1.7	1.9	V
VIH	Input High Level Voltage Value	1.2	2.0	V
VIL	Input Low Level Voltage Value	-0.3	0.6	V
VOH	Output High Level Voltage Value	1.35	1.8	V
VOL	Output Low Level Voltage Value	-0.3	0.45	V

Table 6-6: USIM 3.0V I/O Voltage Level Requirements

Parameter	Description	Min.	Max.	Unit
USIM_VDD	USIM Power Supply	2.7	3.05	V
VIH	Input High Level Voltage Value	1.95	3.05	V
VIL	Input Low Level Voltage Value	-0.3	1.0	V
VOH	Output High Level Voltage Value	2.55	3.0	V
VOL	Output Low Level Voltage Value	-0.3	0.45	V

6.5 ESD

If the static electricity generated by various ways discharges to the module, the module maybe damaged to a certain extent. Thus, please take proper ESD countermeasures and handling methods. For example, wearing antistatic gloves during the development, production, assembly and testing of the module; adding ESD protective components to the ESD sensitive interfaces and points in the product design.

The following table shows electrostatics discharge characteristics of the module.

Table 6-7: Electrostatics Discharge Characteristics (25 °C, 45 % Relative Humidity)

Tested Interface	Contact Discharge	Air Discharge	Unit
VBAT,GND	±5	±10	kV
Antenna Interface	±5	±10	kV
Other Interface	±0.5	±1	kV

6.6 Operating and Storage Temperatures

Table 6-8: Operating and Storage Temperatures

Parameter	Min.	Тур.	Max.	Unit
Operating Temperature Range	-35	25	+75	°C
Extended Temperature Range	-40	-	+85	°C
Storage Temperature Range	-40	-	+85	°C

• Within operating temperature range, the module is 3GPP compliant.

 Within extended temperature range, the module remains the ability to establish and maintain functions such as voice, SMS, data transmission, etc., without any unrecoverable malfunction. Radio spectrum and radio network are not influenced, while one or more specifications, such as Pout, may exceed the specified tolerances of 3GPP. When the temperature returns to the operating temperature range, the module meets 3GPP specifications again.

7 Mechanical Information

This chapter describes the mechanical dimensions of the MDM01 module. All dimensions are measured in millimeter (mm), and the dimensional tolerances are ± 0.2 mm unless otherwise specified.

7.1 Mechanical Dimensions

Figure 7-1: Module Top and Side Dimensions

Figure 7-2: Module Bottom Dimensions (Bottom View)

7.2 Recommended Footprint

Figure 7-3: Recommended Footprint (Top View)

NOTE Keep at least 3 mm between the module and other components on the motherboard to improve soldering quality and maintenance convenience.

8 Storage, Manufacturing and Packaging

8.1 Storage Conditions

The MDM01 module is provided with vacuum-sealed packaging. MSL of the module is rated as 3. The storage requirements are shown below.

1. Recommended Storage Condition: The temperature should be below 40°C and the relative humidity should be less than 90 %. The storage life (in vacuum-sealed packaging) is 12 months in Recommended Storage Condition.

2. After the vacuum-sealed packaging is removed, if the following conditions are met, the module can process in reflow soldering or other high-temperature operations.

- The floor life of the module is 168 hours in a plant where the temperature is below 30 °C and relative humidity is below 60 %.
- The module should be stored in an environment where the relative humidity is less than 10 % (e.g., a drying cabinet).

3. The module should be pre-baked to avoid blistering, cracks and inner-layer separation in PCB under the following circumstances:

- The module is not stored in Recommended Storage Condition;
- Violation of the third requirement above occurs;
- Vacuum-sealed packaging is broken, or the packaging has been removed for over 24 hours;
- Before module repairing.
- 4. If needed, the pre-baking should follow the requirements below:
- The module should be baked for 48 hours at 120 ± 5 °C;
- All modules must be soldered to PCB within 24 hours after the baking, otherwise they should be put in a dry environment such as in a drying oven.
 - To avoid blistering, layer separation and other soldering issues, extended exposure of the module to the air is forbidden. It is recommended to start the solder reflow process within 24 hours after the package is removed if the temperature and moisture do not conform to, or are not sure to conform to IPC/JEDEC J-STD-033. And do not remove the packages of tremendous modules if they are not ready for soldering.
- Take out the module from the package and put it on high-temperature-resistant fixtures before baking. All modules must be soldered to PCB within 24 hours after the baking, otherwise put them in the drying oven. If shorter baking time is desired, see IPC/JEDEC J-STD-033 for the baking procedure.
 - Pay attention to ESD protection, such as wearing anti-static gloves, when touching the modules.

8.2 Manufacturing and Soldering

The MDM01 module is packaged in LCC+LGA, and suitable steel mesh needs to be made and a reasonable furnace temperature curve needs to be set during production. Reflow soldering is used for SMT welding.

Push the squeegee to apply the solder paste on the surface of stencil, thus making the paste fill the stencil openings and then penetrate to the PCB. Apply proper force on the squeegee to produce a clean stencil surface on a single pass. To guarantee module soldering quality, the thickness of stencil for the module is recommended to be 0.15-0.20 mm.

The peak reflow temperature should be 235–245 °C, with 245 °C as the absolute maximum reflow temperature. To avoid damage to the module caused by repeated heating, it is strongly recommended that the module should be mounted only after reflow soldering for the other side of PCB has been completed. The recommended reflow soldering thermal profile (lead-free reflow soldering) and related parameters are shown below.

Figure 8-1: Recommended Reflow Soldering Thermal Profile

The process parameter requirements are as follows

- Max slope: below 3°C/sec;
- Cooling down slope: -3~-1°C/sec;
- Soak Zone: 150-200°C; Soak Time: 60-120S;

- Reflow Zone: above 220°C; Reflow time: 60-90S;
- Peak temperature: 245 + 0/-5°C

8.3 Packaging Specifications

This chapter describes only the key parameters and process of packaging. All figures below are for reference only. The appearance and structure of the packaging materials are subject to the actual delivery.

The MDM01 module is packaged with the carrier tape in a Vacuum-sealed packaging. Each plastic reel contains 500 modules, with a tape diameter of 330 millimeters. The size chart is as follows:

Figure 8-2: Carrier Tape Dimension Drawing

Table 8-1: Carrier Tape Dimension Table (Unit: mm)

W	Р	P0	P2	A0	B 0	D 0	D1	F	E	Т	K0	K1
44	32	4	2	22.5	23.6	1.50	2	20.2	1.75	0.4 +0.05 -0.05	3	3.3
+0.30	+0.10	+0.10	+0.10	+0.10	+0.10	+0.10	+0.15	+0.10	+0.10		+0.10	+0.10
-0.30	-0.10	-0.10	-0.10	-0.10	-0.10	-0.00	-0.15	-0.10	-0.10		-0.10	-0.10

Figure 8-3: Plastic Reel Dimension Drawing (Unit: mm)

9 Appendix References

Table 9-1: Related Documents

No.	Document Name	Description
[1]	MDM01_Q-AT Commands	MDM01 Q-AT Commands
[2]	SS201_Audio Application Guide	SS201 Audio Application Guide
[3]	SS201_Hardware reference design	SS201 Hardware reference design

Table 9-2: Terms and Abbreviations

Abbreviation	Description
ADC	Analog to Digital Converter
bps	Bits per Second
СНАР	Challenge Handshake Authentication Protocol
СТЅ	Clear To Send
CFOTA	Firmware Over-the-Air
DCE	Data Communications Equipment
DL	Downlink
DTE	Data Terminal Equipment
DTR	Data Terminal Ready
DFOTA	Differential Firmware Over-the-Air
ESD	Electrostatic Discharge
ESR	Equivalent Series Resistance
ETSI	European Telecommunications Standards Institute
FDD	Frequency Division Duplexing
FTP	File Transfer Protocol
FTPS	FTP over SSL
GPIO	General-Purpose Input/Output
НТТР	Hyper Text Transfer Protocol
HTTPS	Hyper Text Transfer Protocol over Secure Socket Layer
I/O	Input/Output
kbps	Kilobit Per Second
LCC	Leadless Chip Carriers
LGA	Land Grid Array
LED	Light Emitting Diode
LTE	Long Term Evolution
Mbps	Million Bits Per Second

Abbreviation	Description
MMS	Multimedia Messaging Service
MQTT	Message Queuing Telemetry Transport
MSL	Moisture Sensitivity Levels
NITZ	Network Identity and Time Zone
NTP	Network Time Protocol
PA	Power Amplifier
РАР	Password Authentication Protocol
РСВ	Printed Circuit Board
РСМ	Pulse Code Modulation
PDU	Protocol Data Unit
PMIC	Power Management IC
PPP	Point-to-Point Protocol
PSK	Phase Shift Keying
RF	Radio Frequency
RTS	Require To Send
RX	Receive Direction
RXD	Receive Direction Data
SIM	Subscriber Identification Module
SMS	Short Message Service
SMTP	Simple Mail Transfer Protocol
SMTPS	Simple Mail Transfer Protocol Secure
SSL	Secure Sockets Layer
ТСР	Transmission Control Protocol
TDD	Time Division Duplexing
TE	Terminal Equipment
ТХ	Transmitting Direction
TXD	Transmitting Direction Data
UART	Universal Asynchronous Receiver & Transmitter
UDP	User Datagram Protocol
UL	Uplink
UMTS	Universal Mobile Telecommunications System
URC	Unsolicited Result Code
USB	Universal Serial Bus
USIM	Universal Subscriber Identity Module
Vmax	Maximum Voltage Value
Vnorm	Normal Voltage Value
Vmin	Minimum Voltage Value
VIHmax	Maximum Input High Level Voltage Value
VIHmin	Minimum Input High Level Voltage Value
VILmax	Maximum Input Low Level Voltage Value
Abbreviation	Description
--------------	---
VILmin	Minimum Input Low Level Voltage Value
VImax	Absolute Maximum Input Voltage Value
VImin	Absolute Minimum Input Voltage Value
VOHmax	Maximum Output High Level Voltage Value
VOHmin	Minimum Output High Level Voltage Value
VOLmax	Maximum Output Low Level Voltage Value
VOLmin	Minimum Output Low Level Voltage Value
VSWR	Voltage Standing Wave Ratio