

Test report No.: KES-RF-17T0118 Page (1) of (29)

TEST REPORT

Part 15 Subpart C 15.247

Equipment under test Smart Body Fat Analyzer

Model name QSCD-0A

FCC ID 2AKABQSCD-0A

Applicant QOOL SYSTEM Co.

Manufacturer QOOL SYSTEM Co.

Date of test(s) 2017.11.23 ~ 2017.11.25

Date of issue 2017.11.27

Issued to QOOL SYSTEM Co.

16, Yulgok-ro 13-gil, Jongno-gu, Seoul, South Korea Tel: +82-2-762-8977/ Fax: +82-2-741-7071

> Issued by KES Co., Ltd.

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea 473-21, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450

Test and report completed by :	Report approval by :
Lee	H C
Young-Jin Lee	Jeff Do
Test engineer	Technical manager

Test report No .: KES-RF-17T0118 Page (2) of (29)

Revision history

Revision	Date of issue	Test report No.	Description
-	2017.11.27	KES-RF-17T0118	Initial

Test report No .: KES-RF-17T0118 Page (3) of (29)

TABLE OF CONTENTS

1.	General	information	. 4
	1.1.	EUT description	. 4
	1.2.	Test configuration	. 4
	1.3.	Device modifications	. 4
	1.4.	Information about derivative model	. 4
	1.5.	Frequency/channel operations	. 5
	1.6.	Accessory information	. 5
2.	Summar	y of tests	. 6
3.	Test resu	lts	. 7
	3.1.	6 dB bandwidth	
	3.2.	Output power	. 9
	3.3.	Power spectral density	11
	3.4.	Radiated restricted band and emissions	13
	3.5	Conducted spurious emissions & band edge	26
App	endix A.	Measurement equipment	28
App	endix B.	Test setup photos	29

Pre-production

Engineering

1. General informationApplicant:QOOL SYSTEM Co.Applicant address:16, Yulgok-ro 13-gil, Jongno-gu, Seoul, South KoreaTest site:KES Co., Ltd.Test site address:C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, KoreaTest FacilityFCC Accreditation Designation No.: KR0100, Registration No.: 444148FCC rule part(s):15.247

1.1. EUT description

Test device serial No.:

FCC ID:

Equipment under test	Smart Body Fat Analyzer
Frequency range	2402 MHz ~ 2480 MHz
Model:	QSCD-0A
Modulation technique	GFSK
Number of channels	40
Antenna type	PCB antenna
Antenna gain	2.99 dBi
Power source	DC 3.0 V (Battery)

2AKABQSCD-0A

Production

1.2. Test configuration

The <u>QOOL SYSTEM Co. Smart Body Fat Analyzer FCC ID: 2AKABQSCD-0A</u> was tested per the guidance of KDB 558074 D01 v04. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing.

1.3. Device modifications

N/A

1.4. Information about derivative model

N/A

1.5. Frequency/channel operations

Ch.	Frequency (Mz)	Rate(Mbps)
00	2 402	1
·		
20	2 442	1
39	2 480	1

1.6. Accessory information

Equipment	Manufacturer	Model	Serial No.	Power source
-	-	-	-	-

Test report No .: KES-RF-17T0118 Page (6) of (29)

2. Summary of	tests	
Reference	Parameter	Test results
15.247(a)(2)	6 dB bandwidth	Pass
15.247(b)(3)	Peak output power	Pass
15.247(e)	Power spectral density	Pass
15.205 15.209	Radiated restricted band and emission	Pass
15.247(d)	Conducted spurious emission and band edge	Pass

Test report No.: KES-RF-17T0118 Page (7) of (29)

3. Test results

3.1. 6 dB bandwidth

Test procedure

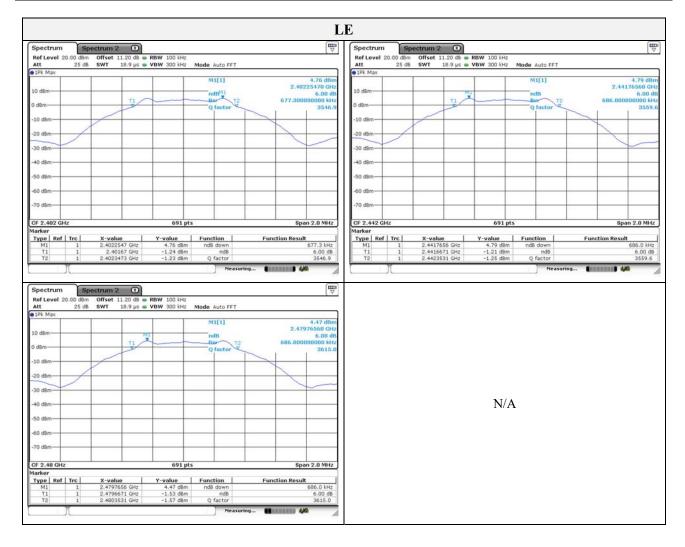
KDB 558074 D01 v04 - Section 8.1 or 8.2 Used test method is section 8.1.

Section 8.1

- 1. RBW = 100 kHz.
- 2. VBW \geq 3 × RBW.
- 3. Detector = peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Section 8.2

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, $VBW \ge 3 \times RBW$, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be $\ge 6 \text{ dB}$.


Limit

According to \$15.247(a)(2), systems using digital modulation techniques may operate $902 \sim 928$ Mb, $2400 \sim 2483.5$ Mb, and $5725 \sim 5850$ Mb bands. The minimum 6 dB bandwidth shall be at least 500 kb.

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0118 Page (8) of (29)

Frequency(Mz)	6 dB bandwidth(Mz)	Limit(Mbz)
2 402	0.677	
2 442	0.686	0.5
2 480	0.686	

Test report No.: KES-RF-17T0118 Page (9) of (29)

3.2. Output power

Test procedure KDB 558074 D01 v04 – section 9.1.1 and 9.2.3.2

Section 9.1.1

This procedure shall be used when the measurement instrument has available a resolution bandwidth that is gr eater than the DTS bandwidth.

- 1. Set the RBW \geq DTS bandwidth.
- 2. Set VBW \geq 3 × RBW.
- 3. Set span \geq 3 × RBW
- 4. Sweep time = auto couple
- 5. Detector = peak
- 6. Trace mode = max hold
- 7. Allow trace to fully stabilize
- 8. Use peak marker function to determine the peak amplitude level

Section 9.1.3

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS ba ndwidth and shall utilize a fast-responding diode detector.

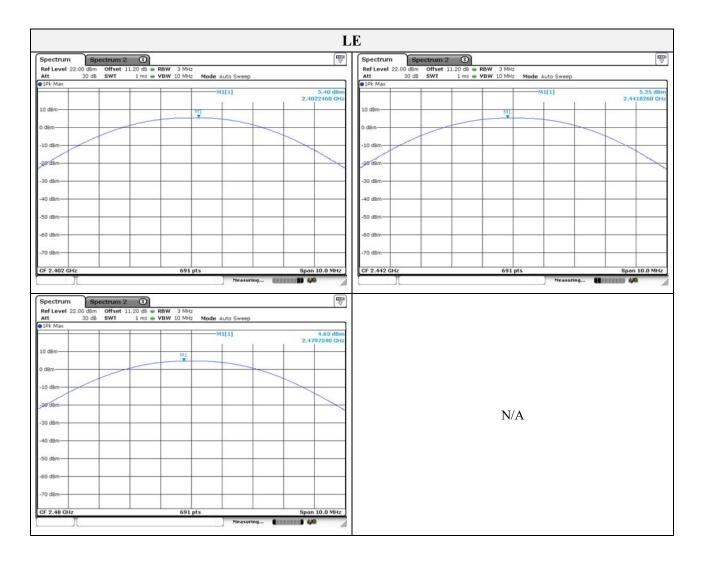
Section 9.2.3.2

Alternatively, measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since this measurement is made only during the ON time of the transmitter, no duty cycle correction is required.

Limit

According to \$15.247(b)(3), For systems using digital modulation in the 902~928 Mb, 2 400~2 483.5 Mb, and 5 725~5 850 Mb bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted out-put power. Maximum Conducted Out-put Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

According to \$15.247(b)(4), The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmit-ting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.


This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

Test report No.: KES-RF-17T0118 Page (10) of (29)

Test results

Enoquer ex(MB)	Measured output power (dBm)		Limit(dBm)
Frequency(Mz)	Peak	Average	Linni(dBin)
2 402	5.40	4.50	
2 442	5.25	4.33	30
2 480	4.63	3.97	

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

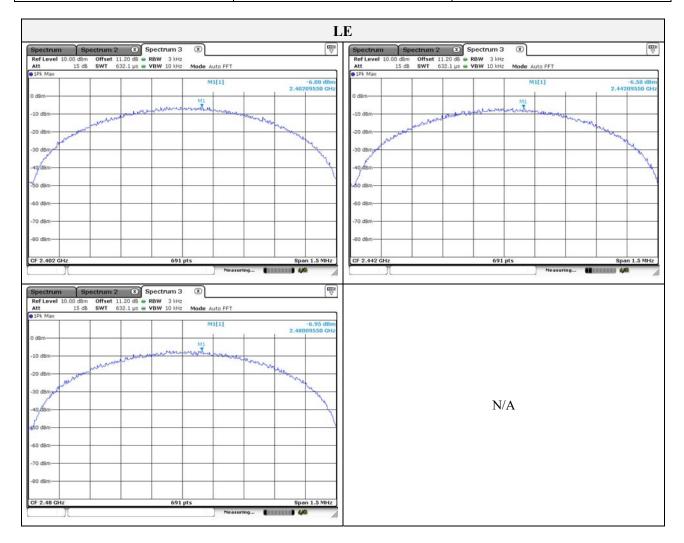
Test report No.: KES-RF-17T0118 Page (11) of (29)

3.3. Power spectral density

Test procedure KDB 558074 D01 v04– section 10.2

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW : 3 kHz \leq RBW \leq 100 kHz
- 4. Set the VBW \geq 3 × RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.

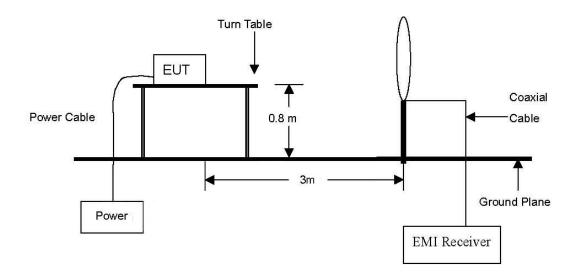
10. If measured value exceeds limit, reduce RBW(no less than 3 kHz) and repeat.

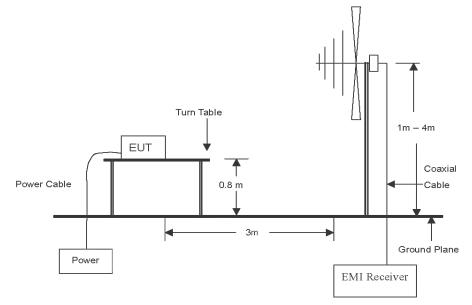

Limit

According to \$15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0118 Page (12) of (29)

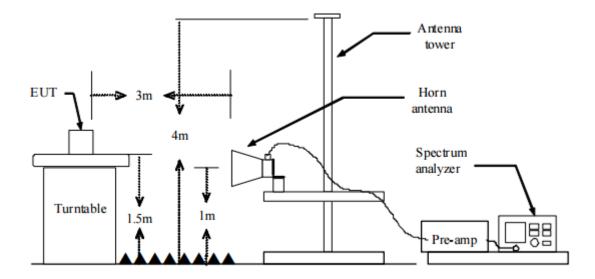
Frequency(Mz)	PSD (dBm)	Limit(dBm)
2 402	-6.08	
2 442	-6.58	8
2 480	-6.95	




3.4. Radiated restricted band and emissions

Test setup

The diagram below shows the test setup that is utilized to make the measurements for emission from 9 kHz to 30 MHz Emissions.



The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mz to 1 Gz emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 1 $\mathbb{G}\mathbb{Z}$ to the tenth harmonic of the highest fundamental frequency or to 40 $\mathbb{G}\mathbb{Z}$ emissions, whichever is lower.

Test procedure below 30 Mz

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel and perpendicular of the antenna are set to make the measurement.
- 3. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 4. The test-receiver system was set to average or quasi peak detect function and Specified Bandwidth with Maximum hold mode.

Test procedure above 30 MHz

- 1. Spectrum analyzer settings for f < 1 GHz:
 - (1) Span = wide enough to fully capture the emission being measured
 - 2 RBW = 100 kHz
 - (3) VBW \geq RBW
 - (4) Detector = quasi peak
 - \bigcirc Sweep time = auto
 - 6 Trace = max hold
- 2. Spectrum analyzer settings for $f \ge 1$ GHz: Peak
 - ① Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
 - 2 RBW = 1 Mz
 - ③ VBW ≥ 3 MHz
 - (4) Detector = peak
 - \bigcirc Sweep time = auto
 - \bigcirc Trace = max hold
 - \bigcirc Trace was allowed to stabilize

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

- 3. Spectrum analyzer settings for $f \ge 1$ GHz: Average
 - ① Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
 - 2 RBW = 1 M/z
 - ③ VBW \ge 3 × RBW
 - (4) Detector = RMS, if span/(# of points in sweep) \leq (RBW/2). Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied, then the detector mode shall be set to peak.
 - (5) Averaging type = power(i.e., RMS)
 - 1) As an alternative, the detector and averaging type may be set for linear voltage averaging.
 - 2) Some instruments require linear display mode in order to use linear voltage averaging. Log or dB averaging shall not be used.
 - 6 Sweep = auto
 - \bigcirc Trace = max hold
 - 8 Perform a trace average of at least 100 traces.
 - ④ A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:
 - 1) If power averaging (RMS) mode was used in step (5), then the applicable correction factor is $10 \log(1/x)$, where x is the duty cycle.
 - 2) If linear voltage averaging mode was used in step (5), then the applicable correction factor is 20 log(1/x), where x is the duty cycle.
 - If a specific emission is demonstrated to be continuous (≥ 98 percent duty cycle) rather than turning on and off with the transmit cycle, then no duty cycle correction is required for that emission.

Note.

1. f < 30 Mz, extrapolation factor of 40 dB/decade of distance. $F_d = 40\log(D_m/Ds)$

 $f \ge 30$ MHz, extrapolation factor of 20 dB/decade of distance. $F_d = 20log(D_m/Ds)$ Where:

- F_d = Distance factor in dB
- D_m = Measurement distance in meters
- D_s = Specification distance in meters
- 3. $CF(Correction factors(dB)) = Antenna factor(dB/m) + Cable loss(dB) + or Amp. gain(dB) + or F_d(dB)$
- 4. Field strength($dB\mu N/m$) = Level($dB\mu N$) + CF (dB) + or DCF(dB)
- 5. Margin(dB) = Limit(dB μ V/m) Field strength(dB μ V/m)
- 6. Emissions below 18 GHz were measured at a 3 meter test distance while emissions above 18 GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 7. The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z, it was determined that <u>Y orientation</u> was worst-case orientation; therefore, all final radiated testing was performed with the EUT in <u>Y orientation</u>.
- 8. The worst-case emissions are reported however emissions whose levels were not within 20 dB of respective limits were not reported.
- 9. According to exploratory test no any obvious emission were detected from 9klz to 30Mlz. Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

Limit

According to 15.209(a), for an intentional radiator devices, the general required of field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values :

Frequency (Mz)	Distance (Meters)	Radiated (µN/m)
$0.009 \sim 0.490$	300	2400/F(kHz)
0.490 ~ 1.705	30	24000/F(kHz)
1.705 ~ 30.0	30	30
30 ~ 88	3	100**
88~216	3	150**
216 ~ 960	3	200**
Above 960	3	500

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands $54 \sim 72$ Mz, $76 \sim 88$ Mz, $174 \sim 216$ Mz or $470 \sim 806$ Mz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

Duty cycle

Regarding to KDB 558074 D01_v04, 6.0, the maximum duty cycles of all modes were investigated and set the spectrum analyzer as below.

Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100.

Ton time	Period	Duty cycle	Duty cycle	Duty cycle correction factor
(MS)	(ms)	(Linear)	(%)	(dB)
100	100	1	100	0

Note.

- 1. Duty cycle (Linear) = T_{on} time/Period
- 2. Duty cycle (%) = (Tx on time / Tx on + off time) x 100
- 3. DCF(Duty cycle correction factor (dB)) = $10\log(1/duty cycle)$

	Spectrum	2 🛞				
Ref Level 20.00 Att SGL	dBm Offse 25 dB 🖷 SWT	t 11.20 dB 100 ms	RBW 1 MH			
1Pk Max	1					
10 dBm	_	_				_
0 dBm	_					_
-10 d8m					 	
-20 dBm	-	-			 	
-30 dBm		-	-		-	
-40 dBm					 	_
-50 d8m		-	-			
-60 dBm						
-70 dBm		-	-	-		_

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test results	(Below 30 M	z)					
Mode:	Distance of measurement: 3 meter 'hannel: 00 (Worst case) Crequency Level Ant. Pol. CF						
Distance of	measurement:	3 meter					
Channel:		00 (Worst	case)				
Frequency	Level	Ant. Pol.	CF	Fd	Field strength	Limit	Margin
(MHz)	(dBµN)	(H/V)	(dB)	(dB)	(dBµN/m)	$(dB\mu N/m)$	(dB)

No spurious emissions	were detected within 20	dB	of the limit
-----------------------	-------------------------	----	--------------

	Horizontal		Vertical					
Spectrum Spectrum 2	8	E III	Spectrum Spectrum 2	3				
Ref Level 57.00 d8μV Att 0 d8 SWT 13 IPk Max 0	RBW (CISPR) 200 Hz A ms VBW SkHz Mode Auto FF	т	Ref Level 57.00 d8μV Att 0 dB SWT 13 1Pk Max 0 0 dB SWT 13	RBW (CISPR) 200 Hz A ms VBW S kHz Mode A				
50 dBµV			50 d8µV					
40 d8µV			40 d8µV					
30 d8µV			30 d8µV	· · · · · · · · · · · · · · · · · · ·				
20 dBµV			20 dBµV		· · · · ·			
10 dBµV			10 dBµV					
O deur	unsharrinership winnershipsaral		O dew	molecular and a second and a second	and the state of t			
-10 dBµV	and another manufactor when and and the	and an and the second of the	-10 dBµV		and a second			
-20 d8µV			-20 d8µV					
-30 dBµV			-30 dBµV					
			-40 dBµV					
-40 dBµV-	691 pts Measuring	Stop 150.0 kHz	Start 9.0 kHz	691 pts	Stop 150.0 kHz			
Spectrum Spectrum 2 Ref Level 67.00 dbµ/ Att 0 db SWT 2.1 r		Z. ()	Spectrum Spectrum 2 Ref Level 67.00 dBµV Att 0 dB SWT 2.1	RBW (CISPR) 9 kHz	asuring An an an			
Start 9.0 kHz Spectrum Spectrum 2 Ref Level 67.00 dBµV	RBW (CISPR) 9 kHz	···· (*******) 4/4	Spectrum Spectrum 2 Ref Level 67.00 dBµV	RBW (CISPR) 9 kHz	asuring An an an			
Stort 9.0 kHz Spectrum Spectrum 2 Ref Level 67.00 dBµV Att 0 dB SWT 2.1 r	RBW (CISPR) 9 kHz	···· (*******) 4/4	Spectrum Spectrum 2 Ref Level 67.00 dBµV Att 0 dB SWT 2.1	RBW (CISPR) 9 kHz	asuring An an an			
Stort 9.0 kHz Spectrum Spectrum 2 Ref Level 67.00 dbµ/ Att 0 db SWT 2.1 r 91Pk Max	RBW (CISPR) 9 kHz	···· (*******) 4/4	Spectrum Spectrum 2 Ref Level 67.00 dbµV 4tt 0 dB SWT 2.1 91Pk Max 4tt	RBW (CISPR) 9 kHz	asuring Anna 40			
Stort 9.0 kHz Spectrum Spectrum 2 Ref Level 67.00 dBµV 0 d8 SWT 2.1 r 0 JPK Max 60 dBµV	RBW (CISPR) 9 kHz	···· (*******) 4/4	Spectrum Spectrum 2 Ref Level 67.00 dbµV 0 db swT 2.1 0 1Pk Max 60 dbµV	RBW (CISPR) 9 kHz	asuring Anna 40			
Spectrum Spectrum 2 Ref Level 67.00 dbµ/ Att 0 db 60 dbµ/ 60 dbµ/ 60 dbµ/ 50 dbµ/	RBW (CISPR) 9 kHz	···· (*******) 4/4	Spectrum Spectrum 2 Ref Level 67.00 d8µV 0.88 swt 2.1 #1PK Max 0.88 swt 2.1 60 d8µV 50 d8µV	RBW (CISPR) 9 kHz	asuring Anna 40			
Spectrum Spectrum 2 Ref Level 67.00 dBµV 0 dB swT 2.1 r 0 JPk Max 60 dBµV 50 dBµV 90 dBµV 40 dBµV 90 dBµV	RBW (CISPR) 9 kHz	···· (*******) 4/4	Spectrum Spectrum 2 Ref Level 67.00 dBµV Att 0 dB swr 2:1 91Pk Max 60 dBµV 50 dBµV 50 dBµV 50 dBµV 40 dBµV 50 dBµV 50 dBµV	RBW (CISPR) 9 kHz	asuring An an an			
Stort 9.0 kHz Spectrum Spectrum 2 Ref Level 67.00 dBµV 0 db SWT 2.1 r Att 0 db SWT 2.1 r 60 dBµV 0 db SWT 2.1 r 50 dBµV 0 db SWT 2.1 r 90 dBµV 0 db SWT 2.1 r 90 dBµV 0 db SWT 2.1 r 90 dBµV 0 dBµV 30 dBµV 0 dBµV 10 dBµV 10 dBµV	Reavering Reavering Reavering Reavering Second State Reavering Second State		Spectrum Spectrum 2 Ref Level 67.00 dbµ/ Att. 0 db swf 2.1 0 IPk Max 0 db swf 2.1 60 dbµ/- 40 dbµ/- 30 dbµ/- 20 dbµ/- 10 dbµ/- 10 dbµ/-	RBW (CISPR) 9 kH2 ms = VBW 100 kH2 Mode Auto	souring 1			
Stort 9.0 kHz Spectrum Spectrum 2 Ref Level 67.00 dBµV 0 db SWT 2.1 r 60 dBµV 0 db SWT 2.1 r 50 dBµV 0 db SWT 2.1 r 90 dBµV 0 dBµV 90 dBµV 0 dBµV 90 dBµV 10 dBµV	RBW (CISPR) 9 kHz		Spectrum Spectrum 2 Ref Level 67.00 dbµ/ Att. 0 db swf 2.1 0 IPk Max 0 db swf 2.1 60 dbµ/- 40 dbµ/- 30 dbµ/- 20 dbµ/- 10 dbµ/- 10 dbµ/-	RBW (CISPR) 9 kHz	souring 1			
Stort 9.0 kHz Spectrum Spectrum 2 Ref Level 67.00 dbµ/ 0 db Att 0 db 919k Max 60 dbµ/ 50 dbµ/ 0 40 dbµ/ 0 30 dbµ/ 0 10 dbµ/ 0	Reavering Reavering Reavering Reavering Second State Reavering Second State		Spectrum Spectrum 2 Ref Level 67.00 dbµ/ Att. 0 db swf 2.1 0 IPk Max 0 db swf 2.1 60 dbµ/- 40 dbµ/- 30 dbµ/- 20 dbµ/- 10 dbµ/- 10 dbµ/-	RBW (CISPR) 9 kH2 ms = VBW 100 kH2 Mode Auto	souring 1			
Stort 9.0 kHz Spectrum Spectrum 2 Ref Level 67.00 dBµV 0 db SWT 2.1 r 0 db SWT 2.1 r 0 db SWT 2.1 r 60 dBµV 0 db SWT 2.1 r 90 dBµV 0 db SWT 2.1 r 90 dBµV 0 db SWT 2.1 r 90 dBµV 0 dBµV 90 dBµV 0 dBµV 10 dBµV 0 dBµV 10 dBµV 0 dBµV	Reavering Reavering Reavering Reavering Second State Reavering Second State		Spectrum Spectrum 2 Ref Level 67.00 dbµ/ Att 0 db Swr 2.1 0 1Pk Max 0 db Swr 2.1 60 dbµ/ 50 dbµ/ So dbµ/ 30 dbµ/ 30 dbµ/ So dbµ/ 10 dbµ/ So dbµ/ So dbµ/ 10 dbµ/ So dbµ/ So dbµ/ 20 dbµ/ So dbµ/ So dbµ/	RBW (CISPR) 9 kH2 ms = VBW 100 kH2 Mode Auto	souring 1			
Spectrum Spectrum 2 Ref Level 67.00 dbµV 0 db Att 0 db 91Pk Max 0 db 60 dbµV 0 db 50 dbµV 0 db 30 dbµV 0 db 10 dbµV 0 db 10 dbµV 0 dbµV 10 dbµV 0 dbµV	Reavering Reavering Reavering Reavering Second State Reavering Second State		Spectrum Spectrum 2 Ref Level 67.00 dbµV Att 0 db SWT 2.1 0 1Pk Max 0 db SWT 2.1 60 dbµV 50 dbµV 30 dbµV 20 dbµV 10 dbµV 10 dbµV 10 dbµV 10 dbµV 10 dbµV 10 dbµV	RBW (CISPR) 9 kH2 ms = VBW 100 kH2 Mode Auto	souring 1			

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test report No.: KES-RF-17T0118 Page (19) of (29)

<FCC B MHz 3 m> Limit(QP)

<QSCD_0A>

1000.00 [MHz]

Test results (B	Below 1 000	Mtz) – Worst case			
Mode:		BLE			
Distance of me	easurement:	3 meter			
Channel:		00 (Worst case)			
KES SAC #4(10 m)			< <d (30="" -="" 000)="" 1="" mhz="" re="" test="">></d>		KES D-SAC #4(10 m) QSCD_0A.dat
Model Op. Mode Operator AC Power Remark1	QOOLSYSTEM_QSCC KES	A	Standard	: FCC Part. 15 Class B 3 m	2002.0 Cal
[dB(uV/m)] 100		1 1 1		CECC B MHz 3 m2	

Final Result

10 0 E.

100 walder marines

100.00

50.00

90

80 70 60

BVB

No.	Frequency	(P)	Reading QP	c.f	Result QP	Limit QP	Margin QP
	[MHz]		[dB(uV)]	[dB(1/m)]	[dB(uV/m)]	[dB(uV/m)]	[dB]
1	48.011	Н	53.6	-28.0	25.6	40.0	14.4
2	95.790	Н	55.2	-29.8	25.4	43.5	18.1
3	322.576	Н	48.7	-23.7	25.0	46.0	21.0
4	451.344	Н	39.3	-19.3	20.0	46.0	26.0
5	166.406	Н	44.6	-31.2	13.4	43.5	30.1
6	47.945	V	49.9	-28.0	21.9	40.0	18.1
7	95.960	V	48.9	-29.8	19.1	43.5	24.4
8	273.106	V	38.9	-25.3	13.6	46.0	32.4
9	451.829	V	42.9	-19.3	23.6	46.0	22.4
10	837.525	V	35.9	-11.9	24.0	46.0	22.0

500.00

MANANAN

Frequency

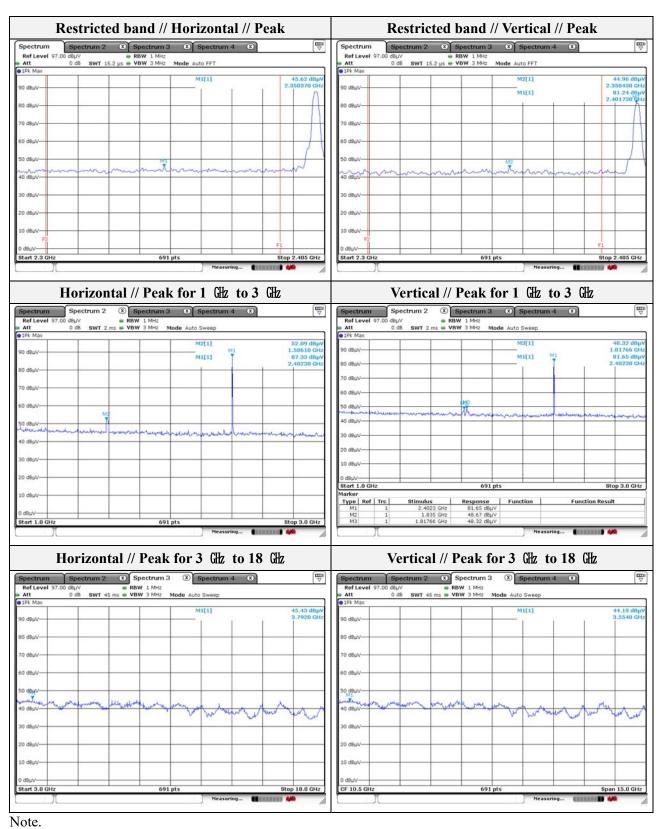
Note.

1. Average testing is performed if peak result is greater than quasi peak limit.

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test results (Above 1 000 Mz)Mode:BLEDistance of measurement:3 meter

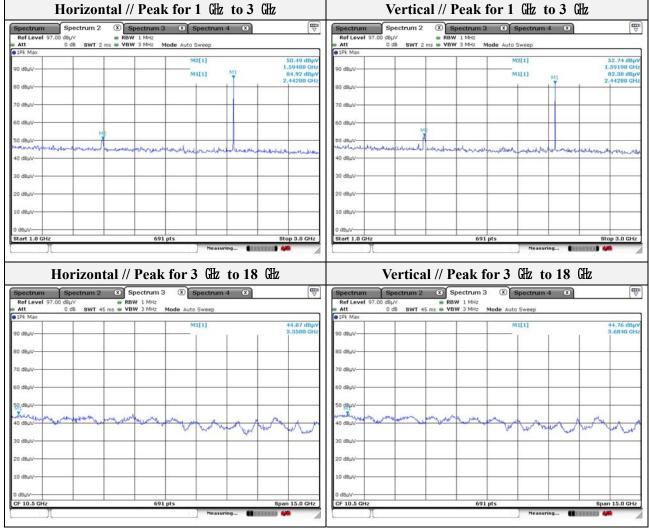
Channel: 00


- Spurio	us							
Frequency (胜)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
1586.10	52.09	Peak	Н	-5.12	-	46.97	74.00	27.03
3792.00	45.43	Peak	Н	3.12	-	48.55	74.00	25.45
1817.66	48.32	Peak	V	-2.89	-	45.43	74.00	28.57
1835.00	48.67	Peak	V	-2.71	-	45.96	74.00	28.04
3554.00	44.19	Peak	V	1.95	-	46.14	74.00	27.86

Band edge

Danu C	uge							
Frequency (Mz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
2350.37	45.62	Peak	Н	-0.29	-	45.33	74.00	28.67
2358.43	44.96	Peak	V	-0.28	-	44.68	74.00	29.32

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr


1. Average testing is performed if peak result is greater than average limit.

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0118 Page (22) of (29)

Mode:	BLE
Distance of measurement:	3 meter
Channel:	20

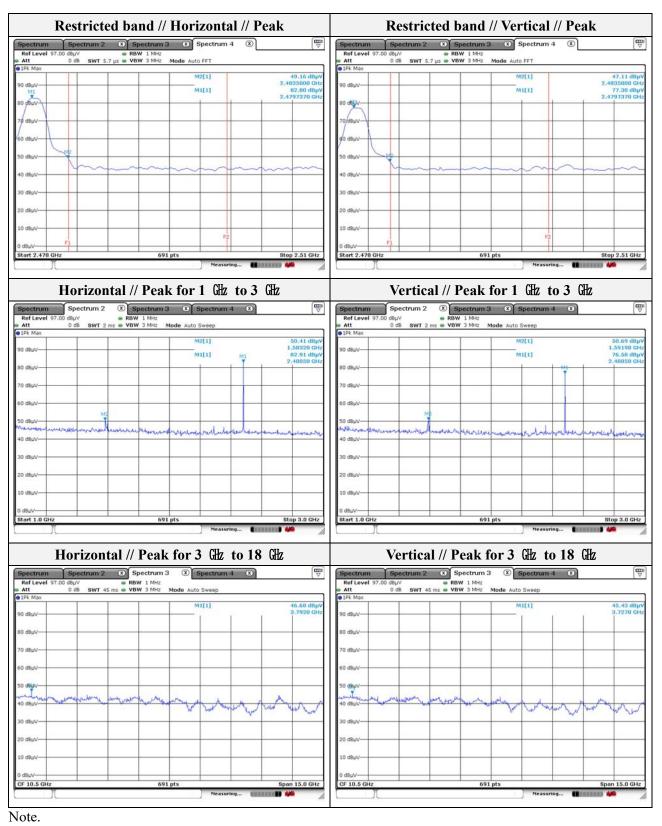
- Spurio	us							
Frequency (Mbz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµN/m)	Limit (dBµV/m)	Margin (dB)
1594.80	50.49	Peak	Н	-5.04	-	45.45	74.00	28.55
3358.00	44.87	Peak	Н	1.74	-	46.61	74.00	27.39
1591.90	52.74	Peak	V	-5.07	-	47.67	74.00	26.33
3684.00	44.76	Peak	V	2.58	-	47.34	74.00	26.66

Note.

1. Average testing is performed if peak result is greater than average limit.

Mode:	BLE
Distance of measurement:	3 meter
Channel:	39

Spurious _


Frequency (Mb)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
1583.20	50.41	Peak	Н	-5.15	-	45.26	74.00	28.74
3792.00	46.68	Peak	Н	3.12	-	49.80	74.00	24.20
1591.90	50.69	Peak	V	-5.07	-	45.62	74.00	28.38
3727.00	45.43	Peak	V	2.80	-	48.23	74.00	25.77

Band edge _

Frequency (Mz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµN/m)	Limit (dBµN/m)	Margin (dB)
2483.50	49.16	Peak	Н	-0.05	-	49.11	74.00	24.89
2483.50	47.11	Peak	V	-0.05	-	47.06	74.00	26.94

Test report No.: KES-RF-17T0118 Page (24) of (29)

1. Average testing is performed if peak result is greater than average limit.

Test report No .: KES-RF-17T0118 Page (25) of (29)

Test results (18 GHz to 30	(Hz) – Worst case
Mode:	BLE
Distance of measurement:	3 meter
Channel:	00 (Worst case)

Horizontal						Ve	rtical						
Spectrum Spectrum 2 Imm Ref Level 07.00 dbuV					Spectrum Spectrum 2 X Ref Level 07.00 dbuV 								
	dB SWT 48 ms . VBV		Sweep				ms 👄 VBW 3 MHz	Mode Auto	Sweep				
80 dBµV					80 dBµV								
70 dBµV					70 dBµV	_					-		
60 dBµV					60 dBµV	_							
50 dBµV					50 dBµV	_	_			_			
40 daµV					40 dBµV			-					
bo depayment	her the store down	a future and the second s	pol-annaparoted	and and my hearth	-addauxy-hug-nut	Marcadore Mar	and the same and the same	Harrow Jones	and the second marger of	all march who	- John webs of		
20 dBµV					20 dBµV					_	-		
10 d8µV					10 dBµV								
0 dBuV-					0 d8µV			-					
-10 dBµV		691 pts		Span 12.0 GHz	-10 dBµV	_		591 pts			12.0 GHz		
GF 24.0 GH2			asuring		Gr 24.0 GH2			the second s	isuring		12.0 GH2		

Note.

1. No spurious emission were detected above 18 GHz.

Test report No.: KES-RF-17T0118 Page (26) of (29)

3.5 Conducted spurious emissions & band edge Test procedure

Band edge

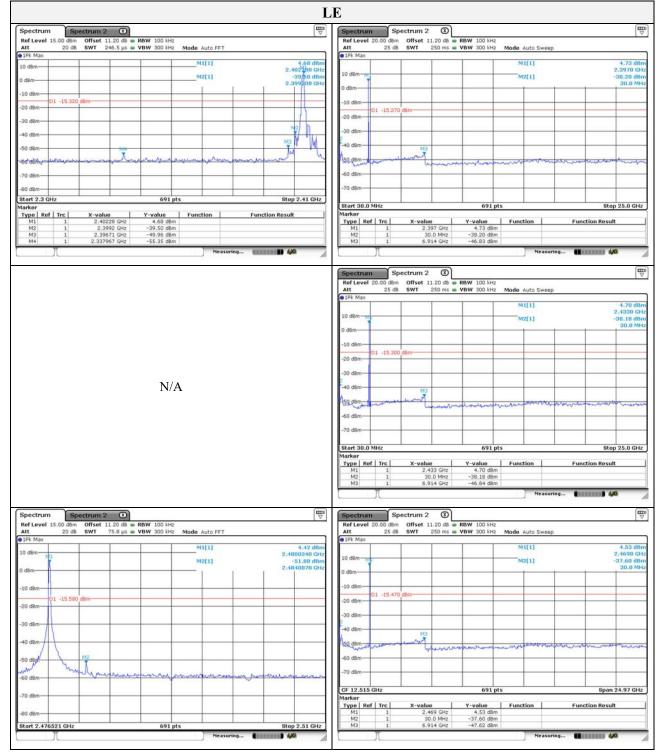
KDB 558074 D01 v04 - Section 11.3

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
 - 3. RBW = 100 kHz
- 4. VBW = 100 kHz
- 5. Detector = Peak
- 6. Trace mode = max hold
- 7. Sweep time = auto
- 8. The trace was allowed to stabilize

Out of band emissions

KDB 558074 D01 v04 - Section 11.3

- 1. Start frequency was set to 30 MHz and stop frequency was set to 25 GHz for 2.4 GHz frequencies and 40 GHz for 5 GHz frequencies
- 2. RBW = 100 kHz
- 3. VBW = 100 kHz
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize


Limit

According to 15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in section 15.209(a) is not required. In addition, radiated emission which in the restricted band, as define in section 15.205(a), must also comply the radiated emission limits specified in section 15.209(a) (see section 15.205(c))

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0118 Page (27) of (29)

Test results

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0118 Page (28) of (29)

Equipment	Manufacturer	Model	Serial No.	Calibration interval	Calibration due.
Spectrum Analyzer	R&S	FSV30	100736	1 year	2018.07.04
Spectrum Analyzer	R&S	FSV40	101002	1 year	2018.07.04
Power Meter	Anritsu	ML2495A	1438001	1 year	2018.01.23
Pulse Power Sensor	Anritsu	MA2411B	1339205	1 year	2018.01.23
8360B Series Swept Signal Generator	HP	83630B	3844A00786	1 year	2018.01.23
Attenuator	Agilent	8493C	51401	1 year	2018.07.04
Loop Antenna	Schwarzbeck	FMZB1513	225	2 years	2019.05.10
Trilog-broadband antenna	SCHWARZBECK	VULB 9163	9168-714	2 years	2018.11.28
Horn Antenna	A.H	SAS-571	414	2 years	2019.02.15
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170550	2 years	2019.02.15
High Pass Filter	Wainwright Instrument Gmbh	WHJS3000-10TT	1	1 year	2018.07.03
Low Pass Filter	Wainwright Instrument Gmbh	WLK1.0/18G-10TT	1	1 year	2018.07.03
Preamplifier	HP	8449B	3008A00538	1 year	2018.01.19
Preamplifier	AGILENT	8449B	3008A01729	1 year	2018.05.31
Broadband Amplifier	SCHWARZBECK	BBV-9721	PS9721-003	1 year	2018.01.23
EMI Test Receiver	R&S	ESR3	101781	1 year	2018.04.27
EMI Test Receiver	R&S	ESU26	100552	1 year	2018.04.19

Appendix A. Measurement equipment

Peripheral devices

Device	Device Manufacturer Model No.		Serial No.
Notebook Computer	LG Electronics.	LGS53	306QCZP560949
Test Board	N/A	N/A	N/A