

Report No.: TB-FCC151604 Page: 1 of 38

FCC Radio Test Report FCC ID: 2AK80-S100

Report No.		TB-FCC151604
Applicant	:	Shenzhen Qianyan Intelligent Technology Electric Vehicle Co., LTD.
Equipment Unde	r To	est (EUT)
EUT Name	:	Wireless Four Wheel Electric Scooter
Model No.	:	S100
Serial No.	-	Please see the page of 3
Brand Name	:	FS.FCM
Receipt Date	:	2017-02-07
Test Date		2017-02-08 to 2017-02-23
Issue Date		2017-02-24
Standards		FCC Part 15, Subpart C (15.249: 2016)
Test Method		ANSI C63.10: 2013
Conclusions		PASS
		In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC requirements

Test/Witness Engineer

Approved& Authorized

WROU SU fug toi.

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Contents

CONT	FENTS	2
1.	GENERAL INFORMATION ABOUT EUT	3
	1.1 Client Information	3
	1.2 General Description of EUT (Equipment Under Test)	3
	1.3 Block Diagram Showing the Configuration of System Tested	4
	1.4 Description of Support Units	
	1.5 Description of Test Mode	
	1.6 Description of Test Software Setting	
	1.7 Measurement Uncertainty	
	1.8 Test Facility	
2.	TEST SUMMARY	
3.	TEST EQUIPMENT	
4.	CONDUCTED EMISSION TEST	
	4.1 Test Standard and Limit	10
	4.2 Test Setup	
	4.3 Test Procedure	
	4.4 EUT Operating Mode	
	4.5 Test Data	
5.	RADIATED EMISSION TEST	
	5.1 Test Standard and Limit	
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 EUT Operating Condition	
	5.5 Test Data	
6.	BANDWIDTH TEST	
	6.1 Test Setup	
	6.2 Test Procedure	
	6.3 EUT Operating Condition	
120	6.4 Test Data	
7.	ANTENNA REQUIREMENT	
	7.1 Standard Requirement	
	7.2 Antenna Connected Construction	
	7.3 Result	38

1. General Information about EUT

1.1 Client Information

Applicant	:	Shenzhen Qianyan Intelligent Technology Electric Vehicle Co., LTD.	
Address	:	,8Building,Jinfanghua Electric Business Industrial Park,Zhongxing pad,Buji New District,Shenzhen City, China	
Manufacturer	:	Shenzhen Qianyan Intelligent Technology Electric Vehicle Co., LTD.	
Address	:	5F,8Building,Jinfanghua Electric Business Industrial Park,Zhongxing Road,Buji New District,Shenzhen City, China	

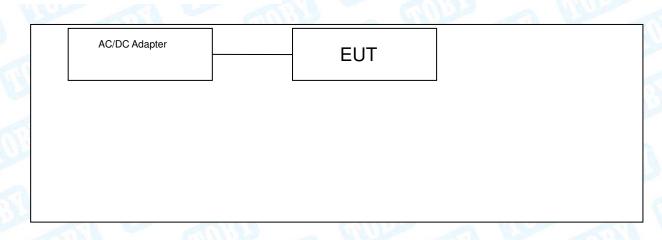
1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	Wireless Four Wheel Elec	ctric Scooter	
Models No.	:	S100, SL100, S200, SL200, S300, SL300, SL400, SL500, SP400, SP300, SP200, SP100, SY100, S400, S500		
Model Difference	••	All these models are identical in the same PCB, layout and electrical circuit, the only difference is model name for commercial.		
		Operation Frequency:240	2~2478 MHz	
		Number of Channels:	77 Channels	
Product Description		Out Power:	78.64 dBuV/m@3m Peak 74.65 dBuV/m@3m Avg	
		Antenna Gain:	0 dBi PCB Antenna	
0052		Modulation Type:	GFSK	
Power Supply	:	DC power by USB cable. DC power by Li-ion batter		
Power Rating	•	DC 5V by USB Cable.		
		DC 3.7V by 400mAh Li-io	n Battery	
Connecting I/O Port(S)		Please refer to the User's	Manual	

Note:

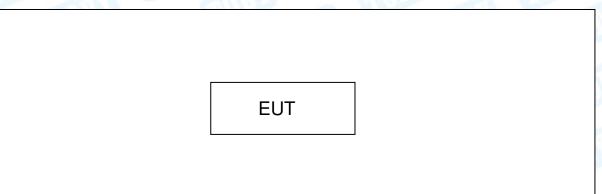
- (1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (2) Channel List:

	Channel List					
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
00	2402	27	2429	54	2456	
01	2403	28	2430	55	2457	
02	2404	29	2431	56	2458	
03	2405	30	2432	57	2459	


Report No.: TB-FCC151604 Page: 4 of 38

04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452		
24	2426	51	2453		W.
25	2427	52	2454		
26	2428	53	2455	NUS	

1.3 Block Diagram Showing the Configuration of System Tested


Mode 1: USB Charging+TX Mode

TOBY

Mode 2: TX Mode

1.4 Description of Support Units

Equipment Information					
Name	Model	FCC ID/VOC	Manufacturer	Used "√"	
AC/DC Adapter	TEKA012	VOC	TEKA	1000	
AC/DC Adapter:	AC/DC Adapter: Input:100~240V, 50/60Hz, 0.2A. Output: 5V, 1A				
		Cable Information			
Number	Shielded Type	Ferrite Core	Length	Note	
Cable 1	YES	YES	0.6M		

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test		
Final Test Mode	Description	
Mode 1	USB Charging with TX Mode	

For Radiated Test		
Final Test Mode	Description	
Mode 2	TX Mode(CH00/CH40/CH76)	

Note:

For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

(1)According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels.

- (2)During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a portable unit; it was pre-tested on the positioned of each 3 axis, X-plane, Y-plane and Z-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel & Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF mode.

Product SW/HW Version :	Out of	N/A	the mail
Radio SW/HW Version:		N/A	
Test Software Version		N/A	
Frequency	2402 MHz	2442MHz	2478 MHz
GFSK	DEF	DEF	DEF

TOBY

1.7 Measurement Uncertainty

The reported uncertainty of measurement y \pm U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
	Level Accuracy:	
Conducted Emission	9kHz~150kHz	±3.42 dB
	150kHz to 30MHz	±3.42 dB
Dedicted Englands	Level Accuracy:	
Radiated Emission	9kHz to 30 MHz	±4.60 dB
Dedicted Emission	Level Accuracy:	
Radiated Emission	30MHz to 1000 MHz	±4.40 dB
Dedicted Emission	Level Accuracy:	
Radiated Emission	Above 1000MHz	±4.20 dB

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

FCC List No.: (811562)

The Laboratory is listed in the United States of American Federal Communications Commission (FCC), and the registration number is 811562.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

2. Test Summary

FCC Part 15 Subpart C(15.249)			
Standard Section	Test Item	Judgment	Remark
15.203	Antenna Requirement	PASS	N/A
15.205	Restricted Bands	PASS	N/A
15.207	AC Power Conducted Emission	PASS	N/A
15.249 &15.209	Radiated Spurious Emission	PASS	N/A
15.215(C)	20dB Bandwidth	PASS	N/A

3. Test Equipment

AC Main Conducted Emission

Description	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due Date	
EMI Test	ROHDE&	ESCI	100321	Jul. 22, 2016	Jul. 21, 2017	
Receiver	SCHWARZ	2001	100321	501. 22, 2010	Jul. 21, 2017	
RF Switching	Compliance Direction	RSU-A4	34403	Jul. 22, 2016	Jul. 21, 2017	
Unit	Systems Inc	N30-A4	34403	Jul. 22, 2010	Jul. 21, 2017	
L.I.S.N	Rohde & Schwarz	ENV216	101131	Jul. 22, 2016	Jul. 21, 2017	
L.I.S.N	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 22, 2016	Jul. 21, 2017	

Radiation Spurious Emission

Description	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 22, 2016	Jul. 21, 2017
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 22, 2016	Jul. 21, 2017
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar. 20, 2016	Mar. 19, 2017
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar. 19, 2016	Mar. 18, 2017
Pre-amplifier	Sonoma	310N	185903	Mar. 20, 2016	Mar. 19, 2017
Pre-amplifier	HP	8447B	3008A00849	Mar. 26, 2016	Mar. 25, 2017
Loop Antenna	Laplace instrument	RF300	0701	Mar. 19, 2016	Mar. 18, 2017
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar. 26, 2016	Mar. 25, 2017
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A

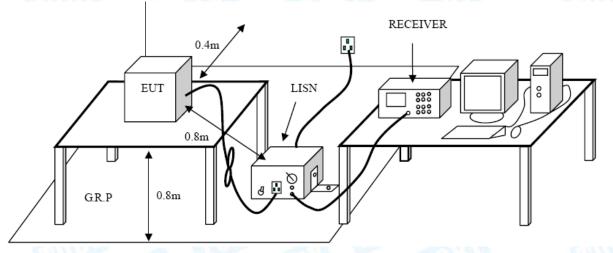
Antenna Conducted Emission

Description	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 22, 2016	Jul. 21, 2017
Spectrum Analyzer	Rohde & Schwarz	ESCI	100321	Jul. 22, 2016	Jul. 21, 2017

4. Conducted Emission Test

- 4.1 Test Standard and Limit
 - 4.1.1Test Standard FCC Part 15.207
 - 4.1.2 Test Limit

Fraguanay	Maximum RF Line Voltage (dBµV)				
Frequency	Quasi-peak Level	Average Level			
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *			
500kHz~5MHz	56	46			
5MHz~30MHz	60	50			


Notes:

(1) *Decreasing linearly with logarithm of the frequency.

(2) The lower limit shall apply at the transition frequencies.

(3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2 Test Setup

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

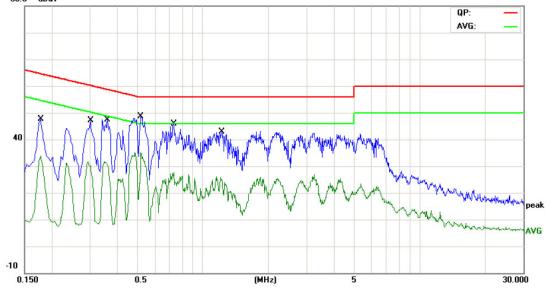
Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN is at least 80 cm from nearest part of EUT chassis.

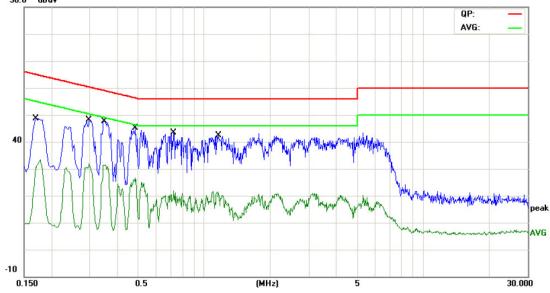
The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 EUT Operating Mode

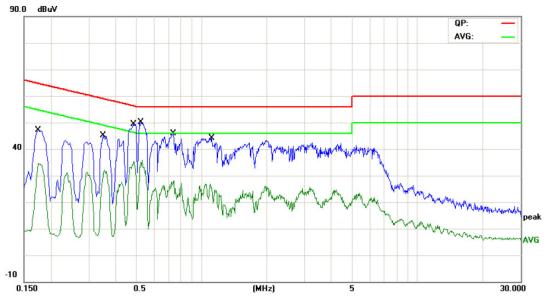

Please refer to the description of test mode.

4.5 Test Data

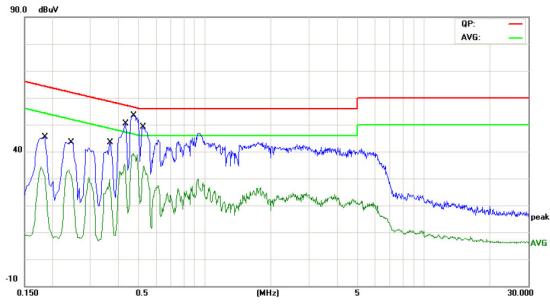
Test data please refer the following pages.


EUT:	Wireless Four Wheel Electric Scooter	Model Name :	S100			
Temperature:	25℃	Relative Humidity:	55%			
Test Voltage:	AC 120V/60 Hz		1100			
Terminal:	Line					
Test Mode:	Charging with TX Mode 2402 MH	łz	6			
Remark:	Only worse case is reported	2				
90.0 dBuV						

No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1780	34.11	9.98	44.09	64.57	-20.48	QP
2	0.1780	22.49	9.98	32.47	54.57	-22.10	AVG
3	0.3020	31.16	10.02	41.18	60.19	-19.01	QP
4	0.3020	19.69	10.02	29.71	50.19	-20.48	AVG
5	0.3620	30.96	10.02	40.98	58.68	-17.70	QP
6	0.3620	20.44	10.02	30.46	48.68	-18.22	AVG
7 *	0.5180	35.28	10.03	45.31	56.00	-10.69	QP
8	0.5180	22.88	10.03	32.91	46.00	-13.09	AVG
9	0.7340	30.80	10.11	40.91	56.00	-15.09	QP
10	0.7340	15.70	10.11	25.81	46.00	-20.19	AVG
11	1.2180	26.78	10.06	36.84	56.00	-19.16	QP
12	1.2180	14.02	10.06	24.08	46.00	-21.92	AVG


Temperature: 2			S100			
	5°C	Relative Humidity:	55%			
Test Voltage: A	C 120V/60 Hz	Can B				
Terminal: N	Neutral					
Test Mode: C	harging with TX Mode 2402 MI	Hz	Mr.			
Remark: O	only worse case is reported					

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1700	32.64	10.12	42.76	64.96	-22.20	QP
2		0.1700	16.03	10.12	26.15	54.96	-28.81	AVG
3		0.2980	33.98	10.09	44.07	60.30	-16.23	QP
4		0.2980	20.72	10.09	30.81	50.30	-19.49	AVG
5	*	0.3500	33.57	10.07	43.64	58.96	-15.32	QP
6		0.3500	20.32	10.07	30.39	48.96	-18.57	AVG
7		0.4860	30.38	10.02	40.40	56.24	-15.84	QP
8		0.4860	14.68	10.02	24.70	46.24	-21.54	AVG
9		0.7260	27.54	10.03	37.57	56.00	-18.43	QP
10		0.7260	9.24	10.03	19.27	46.00	-26.73	AVG
11		1.1620	25.83	10.14	35.97	56.00	-20.03	QP
12		1.1620	9.95	10.14	20.09	46.00	-25.91	AVG


EUT:	Wireless Four Wheel Electric Scooter	Model Name :	S100			
Temperature:	25℃	Relative Humidity:	55%			
Test Voltage:	AC 240V/60 Hz					
Terminal:	Line					
Test Mode:	Charging with TX Mode 2402 MHz					
Remark:	Only worse case is reported					

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1740	34.61	9.97	44.58	64.76	-20.18	QP
2	0.1740	22.51	9.97	32.48	54.76	-22.28	AVG
3	0.3500	31.46	10.02	41.48	58.96	-17.48	QP
4	0.3500	20.70	10.02	30.72	48.96	-18.24	AVG
5	0.4820	36.69	10.02	46.71	56.30	-9.59	QP
6	0.4820	24.07	10.02	34.09	46.30	-12.21	AVG
7 *	0.5220	37.39	10.03	47.42	56.00	-8.58	QP
8	0.5220	24.20	10.03	34.23	46.00	-11.77	AVG
9	0.7420	31.96	10.11	42.07	56.00	-13.93	QP
10	0.7420	16.09	10.11	26.20	46.00	-19.80	AVG
11	1.1140	29.80	10.06	39.86	56.00	-16.14	QP
12	1.1140	14.65	10.06	24.71	46.00	-21.29	AVG

EUT:	Wireless Four Wheel Electric	S100					
	Scooter						
Temperature:	25℃	Relative Humidity: 5					
Test Voltage:	AC 240V/60 Hz						
Terminal:	Neutral	Neutral					
Test Mode:	Charging with TX Mode 2402 M	Charging with TX Mode 2402 MHz					
Remark:	Only worse case is reported						

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1860	30.38	9.99	40.37	64.21	-23.84	QP
2	0.1860	16.99	9.99	26.98	54.21	-27.23	AVG
3	0.2460	31.39	10.02	41.41	61.89	-20.48	QP
4	0.2460	19.25	10.02	29.27	51.89	-22.62	AVG
5	0.3700	22.31	10.02	32.33	58.50	-26.17	QP
6	0.3700	7.65	10.02	17.67	48.50	-30.83	AVG
7	0.4300	30.43	10.02	40.45	57.25	-16.80	QP
8	0.4300	17.24	10.02	27.26	47.25	-19.99	AVG
9 *	0.4740	41.10	10.02	51.12	56.44	-5.32	QP
10	0.4740	28.67	10.02	38.69	46.44	-7.75	AVG
11	0.5220	33.44	10.03	43.47	56.00	-12.53	QP
12	0.5220	21.10	10.03	31.13	46.00	-14.87	AVG

5. Radiated Emission Test

- 5.1 Test Standard and Limit
 - 5.1.1 Test Standard
 - FCC Part 15.209
 - 5.1.2 Test Limit

Radiated Emission Limit (9kHz~1000MHz)

Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Radiated Emission Limit (Above 1000MHz)

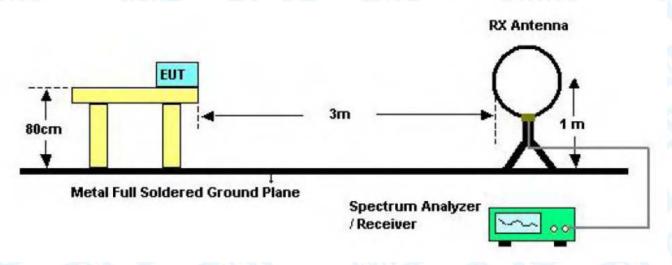
Frequency	Distance Meters (at 3m)				
(MHz)	Peak	Average			
Above 1000	74	54			

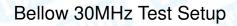
Note:

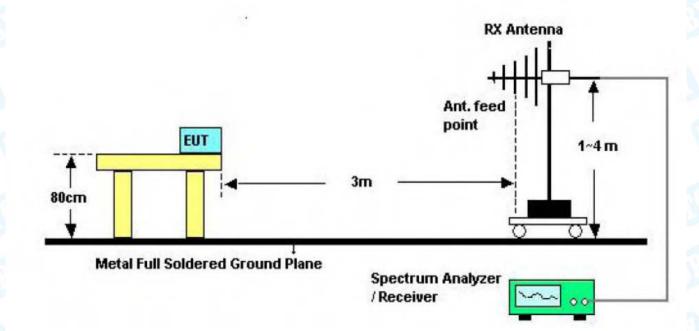
(1) The tighter limit applies at the band edges.

(2) Emission Level(dBuV/m)=20log Emission Level(Uv/m)

Limits of radiated emission measurement (15.249)

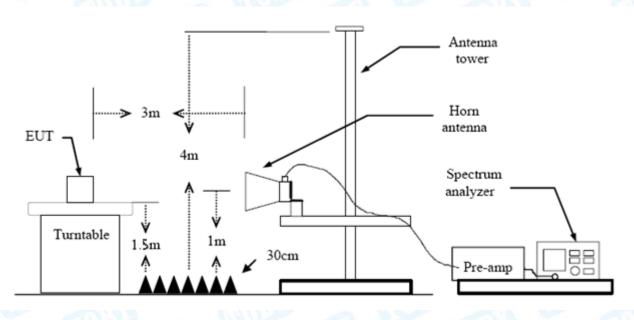

FCC Part 15 (15.249), Subpart C					
Limit	Frequency Range (MHz)				
Field strength of fundamental	2400~2483.5				
50000 μV/m (94 dBμV/m) @ 3 m	2400~2463.5				
Field strength of fundamental	Above 2483.5				
500 μV/m (94 dBμV/m) @ 3 m	ADUVE 2403.5				


Restricted bands requirement for equipment operating in 2400MHz to 2483.5 MHz (15.249)



Restricted Frequency Band (MHz)	(dBuV/m)(at 3 M)
2310~2390	Attenuated by at least 50 dB below the level of the fundamental or to the general radiated
2483.5~2500	emission limits in 15.209, whichever is the lesser attenuation

5.2 Test Setup



Bellow 1000MHz Test Setup

Above 1GHz Test Setup

5.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

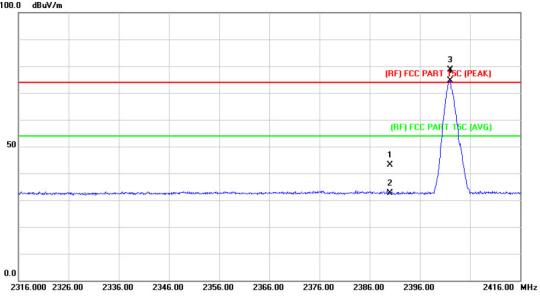
5.4 EUT Operating Condition

The EUT was set to Continual Transmitting in maximum power, and new batteries are used during testing.

5.5 Test Data

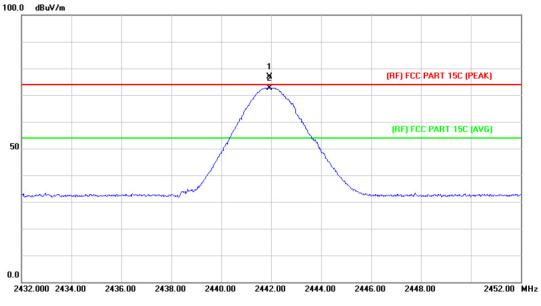
Please see the next page.

5.6.1 Field Strength of the Fundamental


:UT:	Wireless Four Wheel E Scooter	Model Name :	S100		
emperature:	25 ℃	Relative Humidity	: 55%		
est Voltage:	DC 3.7V				
Ant. Pol.	Horizontal				
est Mode:	TX 2402MHz		002		
Remark:					
100.0 dBuV/m					
		3 (RF) FCC PART X 50	(PEAK)		
		Ň			
		(RF) FCC PART 1	ic (AVG)		
50		1			
		×	{		
decourse of processing to obtain a second	un and a stand a	2 	formation		
			_		
0.0					

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	42.10	0.77	42.87	74.00	-31.13	peak
2		2390.000	31.39	0.77	32.16	54.00	-21.84	AVG
3	Х	2402.000	76.17	0.82	76.99	114.00	-37.01	peak
4	*	2402.000	72.02	0.82	72.84	94.00	-21.16	AVG

EUT:	Wireless Four Wheel Electric Scooter	Model Name :	S100
Temperature:	25 °C	Relative Humidity:	55%
Test Voltage:	DC 3.7V		11000
Ant. Pol.	Vertical	MUD -	NUR
Test Mode:	TX 2402MHz		6
Remark:		-	



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	42.34	0.77	43.11	74.00	-30.89	peak
2		2390.000	31.81	0.77	32.58	54.00	-21.42	AVG
3	Х	2402.000	77.82	0.82	78.64	114.00	-35.36	peak
4	*	2402.000	73.83	0.82	74.65	94.00	-19.35	AVG

EUT:	Wireless Four Wheel Electric Scooter	Model Name :	S100
Temperature:	25 °C	Relative Humidity:	55%
Test Voltage:	DC 3.7V		
Ant. Pol.	Horizontal		TUP
Test Mode:	TX 2442MHz	1003	5
Remark:			

100.0 dBuV/m

N	o. Mł	k. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	Х	2441.920	75.87	0.99	76.86	114.00	-37.14	peak
2	*	2441.920	71.76	0.99	72.75	94.00	-21.25	AVG

EUT:	Wireless Fo	ur Wheel Electric	Model Name :	S100
Temperature:	25 ℃	5	Relative Humidity:	55%
Test Voltage:	DC 3.7V	MUP		201
Ant. Pol.	Vertical		AND A	M. O.S.
Test Mode:	TX 2442MF	Iz		
Remark:	1 3 S	GIUD S		
		1 **	(RF) FCC PART 15C	
50			(RF) FCC PART 15	
0.0	2436.00 2438.00	2440.00 2442.00 24	144.00 2446.00 2448.00	2452.00 MI

No	o. Mk	. Freq.			Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	Х	2441.980	74.90	0.99	75.89	114.00	-38.11	peak
2	*	2441.980	70.39	0.99	71.38	94.00	-22.62	AVG

EUT:	Wireless Four Wheel Electric Scooter	Model Name :	S100			
Temperature:	25 °C	Relative Humidity:	55%			
Test Voltage:	DC 3.7V	1	201			
Ant. Pol.	Horizontal		AUC			
Test Mode:	TX 2478MHz					
Remark:						
100.0 dBuV/m		Image: state stat				

24	57 000 2477 00	2497.00	2497.00	2507.00	2517.00	2527.00	2537.00	2547.00	2567.00 МН-
0.0									

No	o. Mł	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	Х	2477.800	74.55	1.14	75.69	114.00	-38.31	peak
2	*	2477.900	71.06	1.14	72.20	94.00	-21.80	AVG
3		2483.500	44.59	1.17	45.76	74.00	-28.24	peak
4		2483.500	31.55	1.17	32.72	54.00	-21.28	AVG

EUT:	Wireless Four Wheel Electric Scooter	Model Name :	S100
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V	1	
Ant. Pol.	Vertical		NULS
Test Mode:	TX 2478MHz		
Remark:		2 11	
100.0 dBuV/m			

No	b. Mk	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	Х	2477.600	75.24	1.14	76.38	114.00	-37.62	peak
2	*	2477.600	71.28	1.14	72.42	94.00	-21.58	AVG
3		2483.500	41.61	1.17	42.78	74.00	-31.22	peak
4		2483.500	31.72	1.17	32.89	54.00	-21.11	AVG

5.6.2 Radiated Spurious Emission (9 KHz~30 MHz)

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

5.6.3 Radiated Spurious Emission (Below 1 GHz)

FUT .	Wireless Four W	heel Electric	Medel N		S100	
EUT:	Scooter		Model Na	ame :	5100	
Femperature:	25 ℃		Relative	Humidity:	55%	
fest Voltage:	DC 3.7V		6	132		
Ant. Pol.	Horizontal		A U		115	
est Mode:	TX 2402MHz	110	00			
Remark:	Only worse case	is reported	-01		1140	
80.0 dBu∀/m						
				(RF)FCC 15C 3M I	Radiation	
					largin -6 dB	
		r			1	
		r				
30						
				- 15	6 X	
				4 X	brach here had be with the the second	
×			3 X	X WWWWWWWWW		
Mary Mary Mary	in the second	in a solo march marker and	Although a start and a start and a start			
and the second sec	2 white the day of the start of the	the states				
20 30.000 40 50	60 70 80	0.00-2	300	400 500 60	0 700 1000.0	
30.000 40 50	60 70 80	(MHz)	300	400 500 60	0 700 1000.0	
	Reading	Correct	leasure-			
No. Mk.	Freq. Level	Factor	ment	Limit O	ver	
NO. IVIN.	Level	racior	ment			
	MHz dBuV	10/	dBu\//m	dBu\//m	dB Dotoct	

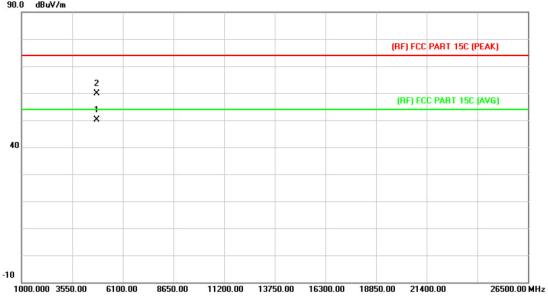
MHzdBuVdB/mdBuV/mdBuV/mdBDetector130.000026.64-14.1512.4940.00-27.51peak298.832627.94-21.955.9943.50-37.51peak3244.232129.40-17.9911.4146.00-34.59peak4389.354926.94-13.0513.8946.00-32.11peak5522.718027.72-9.7417.9846.00-28.02peak6*872.183229.50-4.7124.7946.00-21.21peak	INO	. IVIK	. Freq.	Level	Factor	ment	Linne	Over	
2 98.8326 27.94 -21.95 5.99 43.50 -37.51 peak 3 244.2321 29.40 -17.99 11.41 46.00 -34.59 peak 4 389.3549 26.94 -13.05 13.89 46.00 -32.11 peak 5 522.7180 27.72 -9.74 17.98 46.00 -28.02 peak			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
3 244.2321 29.40 -17.99 11.41 46.00 -34.59 peak 4 389.3549 26.94 -13.05 13.89 46.00 -32.11 peak 5 522.7180 27.72 -9.74 17.98 46.00 -28.02 peak	1		30.0000	26.64	-14.15	12.49	40.00	-27.51	peak
4 389.3549 26.94 -13.05 13.89 46.00 -32.11 peak 5 522.7180 27.72 -9.74 17.98 46.00 -28.02 peak	2		98.8326	27.94	-21.95	5.99	43.50	-37.51	peak
5 522.7180 27.72 -9.74 17.98 46.00 -28.02 peak	3		244.2321	29.40	-17.99	11.41	46.00	-34.59	peak
	4		389.3549	26.94	-13.05	13.89	46.00	-32.11	peak
6 * 872.1832 29.50 -4.71 24.79 46.00 -21.21 peak	5		522.7180	27.72	-9.74	17.98	46.00	-28.02	peak
	6	*	872.1832	29.50	-4.71	24.79	46.00	-21.21	peak

UT:	Wireless Scooter	Four Wheel Electric	Model Name :	S100			
emperature:	25 ℃		Relative Humidity:	55%			
est Voltage:	DC 3.7V	AUD -		-			
nt. Pol.	Vertical			AUS			
est Mode:	TX 2402M	ИНz					
emark:	Only wors	se case is reported					
80.0 dBuV/m							
30				rgin -6 dB			
1 ************************************	tral Marine Strategick Station of the State St	2 3 Autor Mar Marcus Marcula Marcula Marcula Marcula Marcus	mapanin holy hit and poly in the first				

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		35.6240	26.48	-17.61	8.87	40.00	-31.13	peak
2		101.2885	28.09	-21.85	6.24	43.50	-37.26	peak
3		219.0753	29.23	-19.16	10.07	46.00	-35.93	peak
4		359.1860	27.86	-14.10	13.76	46.00	-32.24	peak
5		475.4991	27.78	-11.11	16.67	46.00	-29.33	peak
6	*	813.1115	27.82	-5.14	22.68	46.00	-23.32	peak

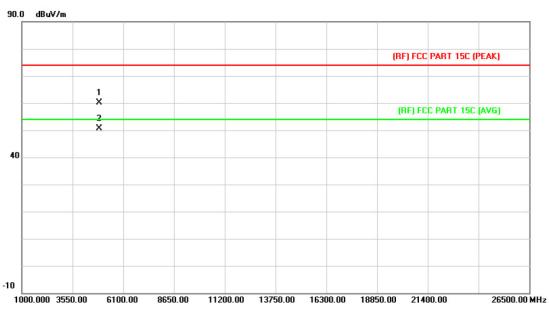
Emission Level= Read Level+ Correct Factor

5.6.4 Radiated Spurious Emission (Above 1 GHz)

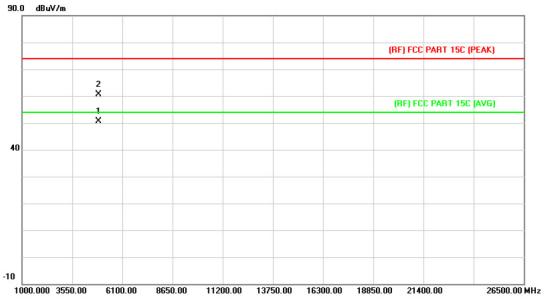

EU1	2	Wirele Scoote	ss Four Wheel Elect er	Model Name :	S100				
Tem	perature:	25 ℃		Relative Humidity:	55%				
Test	t Voltage:	DC 3.7	7V						
Ant	. Pol.	Horizo	ntal		100				
Test	t Mode:	TX 24	02MHz						
Ren	n ark :		oort for the emission ibed limit.	which more than 10 dB bel	ow the				
90.	0 dBuV/m								
				(RF) FCC PAR1	15C (PEAK)				
		1 ×							
		2 X		(RF) FCC PAR	T 15C (AVG)				
40		×							
10									
-10									

N	o. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4803.562	46.68	13.44	60.12	74.00	-13.88	peak
2	*	4805.470	36.58	13.45	50.03	54.00	-3.97	AVG

EUT:	Wireless Four Wheel Electric Scooter	Model Name :	S100			
Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V					
Ant. Pol.	Vertical	MUS -	RUE			
Test Mode:	TX 2402MHz		5			
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					

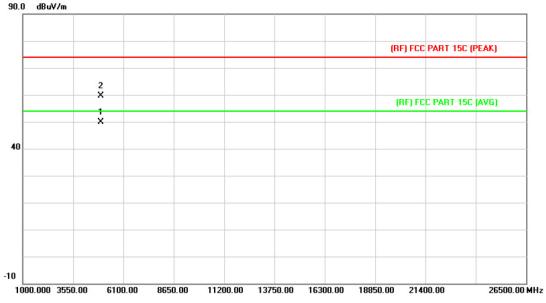

90.0 dBuV/m

N	o. Mk	. Freq.	-		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4804.981	36.69	13.44	50.13	54.00	-3.87	AVG
2		4805.086	46.52	13.45	59.97	74.00	-14.03	peak


EUT:	Wireless Four Wheel Electric Scooter	Model Name :	S100			
Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V	DC 3.7V				
Ant. Pol.	Horizontal	anis a	MUL-			
Test Mode:	TX 2442MHz		5			
Remark:	No report for the emission which prescribed limit.	No report for the emission which more than 10 dB below the prescribed limit.				

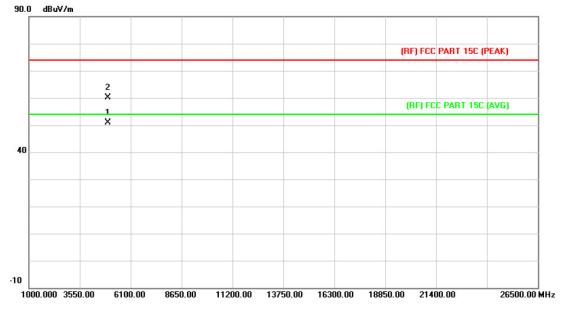
N	o. Mk	Freq.			Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4883.640	46.23	13.92	60.15	74.00	-13.85	peak
2	*	4883.868	36.71	13.92	50.63	54.00	-3.37	AVG

	Wireless Four Wheel Electric						
EUT:	Scooter Model Name :		S100				
Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V	DC 3.7V					
Ant. Pol.	Vertical	MILL A	(TUP)				
Test Mode:	TX 2442MHz						
Remark:	No report for the emission which more than 10 dB below the						
	prescribed limit.						



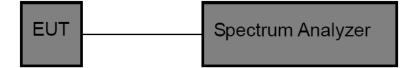
N	o. Mk	. Freq.			Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4883.823	36.83	13.92	50.75	54.00	-3.25	AVG
2		4883.889	46.82	13.92	60.74	74.00	-13.26	peak

EUT:	Wireless Four Wheel Electric Scooter	Model Name :	S100			
Temperature:	25 °C	Relative Humidity:	55%			
Test Voltage:	DC 3.7V	DC 3.7V				
Ant. Pol.	Horizontal	1000	MUL.			
Test Mode:	TX 2478MHz		5			
Remark:	No report for the emission which prescribed limit.	No report for the emission which more than 10 dB below the prescribed limit.				


90.0 dBuV/m

No	o. Mk	. Freq.	•	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4955.853	35.59	14.34	49.93	54.00	-4.07	AVG
2		4956.216	45.20	14.34	59.54	74.00	-14.46	peak

EUT:	Wireless Four Wheel Electric Scooter	Model Name :	S100		
Temperature:	25 ℃	Relative Humidity:	55%		
Test Voltage:	DC 3.7V				
Ant. Pol.	Vertical	and a	MUL-		
Test Mode:	TX 2478MHz				
Remark:	No report for the emission which more than 10 dB below the prescribed limit.				

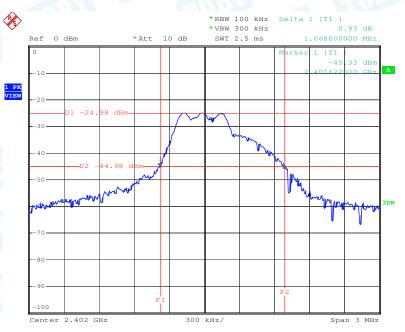


N	o. Mk	. Freq.			Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4955.814	36.58	14.34	50.92	54.00	-3.08	AVG
2		4955.844	45.82	14.34	60.16	74.00	-13.84	peak

6. Bandwidth Test

6.1 Test Setup

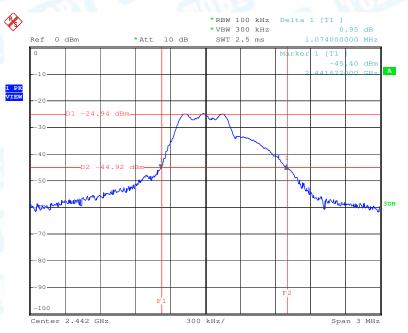
6.2 Test Procedure


- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:
 - Bandwidth: RBW=100 kHz, VBW=300kHz.
- (3) The bandwidth is measured at an amplitude level reduced 20dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
- 6.3 EUT Operating Condition

The EUT was set to continuously transmitting for the Bandwidth Test.

6.4 Test Data

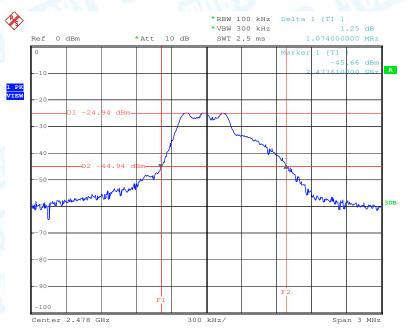
Low Channel Frequency (MHz)	20dB Bandwidth (MHz)		
2402	1.068		



2402 MHz

Date: 23.FEB.2017 13:09:50

MID Channel Frequency (MHz)	20dB Bandwidth (MHz)		
2442	1.074		



2442 MHz

Date: 23.FEB.2017 13:16:13

HIGH Channel Frequency (MHz)	20dB Bandwidth (MHz)
2478	1.074

2478 MHz

Date: 23.FEB.2017 13:13:44

7. Antenna Requirement

- 7.1 Standard Requirement
 - 7.1.1 Standard
 - FCC Part 15.203
 - 7.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

7.2 Antenna Connected Construction

The directional gains of the antenna used for transmitting is 0 dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

7.3 Result

The EUT antenna is a PCB Antenna. It complies with the standard requirement.

Antenna Type		
No.	✓ Permanent attached antenna	
LTD-	□ Unique connector antenna	
ang)	Professional installation antenna	

----END OF REPORT----