

CFR 47 FCC PART 15 SUBPART C(DTS) TEST REPORT

For

Smart Temperature & Humidity Sensor

MODEL NUMBER: H1-E

REPORT NUMBER: E04A24020286F00101

ISSUE DATE: March 22, 2024

FCC ID: 2AK7XH1-E

Prepared for

Shenzhen Heiman Technology Co.,Ltd.

101, No.4 Dafu Industrial Park, Kukeng Community, Guanlan Street, Longhua District, Shenzhen, Guangdong, China

Prepared by

Guangdong Global Testing Technology Co., Ltd.

Room 101-105, 203-210, Building 1, No.2, Keji 8 Road, Songshan Lake Park, Dongguan city, Guangdong, People's Republic of China, 523808

This report shall not be reproduced, except in full, without the written approval of Guangdong Global Testing Technology Co., Ltd.

TRF No.: 04-E001-1A TRF Originator: GTG TRF Date: 2022-06-29 Web: www.gtggroup.com E-mail: info@gtggroup.com Tel.: 86-400 755 8988

REPORT NO.: E04A24020286F00101 Page 1 of 33

		Revision History	
Rev.	Issue Date	Revisions	Revised By
V0	March 22, 2024	Initial Issue	

Summary of Test Results				
Test Item Clause		Limit/Requirement	Result	
Antenna Requirement	N/A	FCC Part 15.203/15.247 (c)	Pass	
AC Power Line Conducted Emission	ANSI C63.10-2013, Clause 6.2	FCC Part 15.207	N/A	
Conducted Output Power	ANSI C63.10-2013, Clause 11.9.1.3	FCC Part 15.247 (b)(3)	Pass	
6dB Bandwidth and 99% Occupied Bandwidth	ANSI C63.10-2013, Clause 11.8.1	FCC Part 15.247 (a)(2)	Pass	
Power Spectral Density	ANSI C63.10-2013, Clause 11.10.2	FCC Part 15.247 (e)	Pass	
Conducted Band edge and spurious emission	ANSI C63.10-2013, Clause 11.11	FCC Part 15.247(d)	Pass	
Radiated Band edge and Spurious Emission	ANSI C63.10-2013, Clause 11.11 & Clause 11.12	FCC Part 15.205/15.209	Pass	
Duty Cycle	ANSI C63.10-2013, Clause 11.6	None; for reporting purposes only.	Pass	

^{*}The measurement result for the sample received is <Pass> according to <CFR 47 FCC PART 15 SUBPART C(DTS)> when <Accuracy Method> decision rule is applied.

CONTENTS

1. ATTE	ESTATION OF TEST RESULTS	4
2. TEST	METHODOLOGY	5
3. FACI	LITIES AND ACCREDITATION	5
4. CALI	BRATION AND UNCERTAINTY	6
4.1.	MEASURING INSTRUMENT CALIBRATION	6
4.2.	MEASUREMENT UNCERTAINTY	
5. EQU	IPMENT UNDER TEST	7
5.1.	DESCRIPTION OF EUT	7
5.2.	CHANNEL LIST	7
5.3.	MAXIMUM AVERAGE EIRP	8
5.4.	TEST CHANNEL CONFIGURATION	8
5.5.	THE WORSE CASE POWER SETTING PARAMETER	8
5.6.	DESCRIPTION OF AVAILABLE ANTENNAS	8
5.7.	SUPPORT UNITS FOR SYSTEM TEST	ε
5.8.	SETUP DIAGRAM	9
6. MEA	SURING EQUIPMENT AND SOFTWARE USED	10
7. ANTI	ENNA PORT TEST RESULTS	12
7.1.	Conducted Output Power	12
7.2.	6dB Bandwidth	13
7.3.	Power Spectral Density	14
7.4.	Conducted Band edge and spurious emission	15
7.5.	Duty Cycle	17
8. RAD	IATED TEST RESULTS	18
9. Ante	nna Requirement	23
10.	AC Power Line Conducted Emission	24
11.	TEST DATA	25
12.	PHOTOGRAPHS OF TEST CONFIGURATION	26
13	PHOTOGRAPHS OF THE FUT	27

REPORT NO.: E04A24020286F00101

Page 4 of 33

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: Shenzhen Heiman Technology Co.,Ltd.

Address: 101, No.4 Dafu Industrial Park, Kukeng Community, Guanlan

Street, Longhua District, Shenzhen, Guangdong, China

Manufacturer Information

Company Name: Shenzhen Heiman Technology Co.,Ltd.

Address: 101, No.4 Dafu Industrial Park, Kukeng Community, Guanlan

Street, Longhua District, Shenzhen, Guangdong, China

EUT Information

EUT Name: Smart Temperature & Humidity Sensor

Model: H1-E Brand: N/A

Sample Received Date: February 27, 2024

Sample Status: Normal

Sample ID: A24020286 002, A24020286 003

Date of Tested: February 29, 2024 to March 4, 2024

Hardware version: V1.0 Software version: V1.0

APPLICABLE STANDARDS		
STANDARD TEST RESULT		
CFR 47 FCC PART 15 SUBPART C(DTS)	Pass	

Prepared By:

Checked By:

Joson Peng

Project Engineer

Approved By:

Shawn Wen

TRF No.:

Laboratory Manager

04-E001-1A

Alan He

Manager

lan 1 6

REPORT NO.: E04A24020286F00101 Page 5 of 33

2. TEST METHODOLOGY

All tests were performed in accordance with the standard CFR 47 FCC PART 15 SUBPART C(DTS).

3. FACILITIES AND ACCREDITATION

CHADILITIES AND ASSINEDITATION		
	A2LA (Certificate No.: 6947.01)	
	Guangdong Global Testing Technology Co., Ltd.	
	has been assessed and proved to be in compliance with A2LA.	
	FCC (FCC Designation No.: CN1343)	
	Guangdong Global Testing Technology Co., Ltd.	
	has been recognized to perform compliance testing on equipment	
Accreditation Certificate	subject to Supplier's Declaration of Conformity (SDoC) and	
	Certification rules	
	ISED (Company No.: 30714)	
	Guangdong Global Testing Technology Co., Ltd.	
	has been registered and fully described in a report filed with ISED.	
	The Company Number is 30714 and the test lab Conformity	
	Assessment Body Identifier (CABID) is CN0148.	

Note: All tests measurement facilities use to collect the measurement data are located at Room 101-105, 203-210, Building 1, No.2, Keji 8 Road, Songshan Lake Park, Dongguan city, Guangdong, People's Republic of China, 523808

REPORT NO.: E04A24020286F00101 Page 6 of 33

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Items	k	Uncertainty
DTS Bandwidth	1.96	±9.2 PPM
20dB Emission Bandwidth	1.96	±9.2 PPM
Carrier Frequency Separation	1.96	±9.2 PPM
Time of Occupancy	1.96	±0.57%
Conducted Output Power	1.96	±1.5 dB
Power Spectral Density Level	1.96	±1.9 dB
		9 kHz-30 MHz: ± 0.95 dB
Conducted Spurious Emission	1.96	30 MHz-1 GHz: ± 1.5 dB
Conducted Spanous Emission	1.90	1GHz-12.75GHz: ± 1.8 dB
		12.75 GHz-26.5 GHz: ± 2.1dB

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Test Item	Measurement Frequency Range	К	U(dB)
Conducted emissions from the AC mains power ports (AMN)	150 kHz ~ 30 MHz	2	3.37
Radiated emissions	9 kHz ~ 30 MHz	2	4.16
Radiated emissions	30 MHz ~ 1 GHz	2	3.79
Radiated emissions	1 GHz ~ 18 GHz	2	5.62
Radiated emissions	18 GHz ~ 40 GHz	2	5.54

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

REPORT NO.: E04A24020286F00101 Page 7 of 33

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	Smart Temperature & Humidity Sensor	
Model	H1-E	
Ratings	DC 3V	
Test Power Supply	DC 3V	

Frequency Band:	2400 MHz to 2483.5 MHz
Frequency Range:	2405 MHz to 2480 MHz
Mode:	Zigbee
Type of Modulation:	O-QPSK
Number of Channels:	16
Channel Separation:	5 MHz
Maximum Peak Power:	6.5dBm
Antenna Type:	PCB Antenna
Antenna Gain:	-1.52dBi

5.2. CHANNEL LIST

Channel	Frequency (MHz)	Channel	Frequency (MHz)
11	2405	22	2460
12	2410	23	2465
13	2415	24	2470
14	2420	25	2475
15	2425	26	2480
16	2430	/	1
17	2435	/	/
18	2440	/	/
19	2445	1	/
20	2450	1	/
21	2455	1	/

REPORT NO.: E04A24020286F00101

Page 8 of 33

5.3. MAXIMUM PEAK EIRP

IEEE Std. 802.11	Frequency (MHz)	Channel Number	Maximum Conducted Peak Output Power (dBm)
Zigbee	2405 ~ 2480	11-26	6.5

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
Zigbee	CH 11(Low Channel), CH 18(MID Channel), CH 26(High Channel)	2405 MHz, 2440 MHz, 2480 MHz

5.5. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band					
Test Software Version sscom5.12.1					
Modulation	Transmit	Test Software setting value			
Туре	Antenna Number	CH 11 CH 18 CH 26			
O-QPSK	1	60	60	60	

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)
1	2405-2480	PCB	-1.52 dBi

Test Mode	Transmit and Receive Mode	Description
Zigbee	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.
Note: /		

5.7. SUPPORT UNITS FOR SYSTEM TEST

The EUT has been tested as an independent unit

Equipment	Manufacturer	Model No.
Test board	/	/
PC	Lenovo	T14

5.8. SETUP DIAGRAM

Radiated Emission:

RF conducted:

REPORT NO.: E04A24020286F00101 Page 10 of 33

6. MEASURING EQUIPMENT AND SOFTWARE USED

	Test Equipment of Conducted RF					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date	
Spectrum Analyzer	Rohde & Schwarz	FSV40	102257	2023/09/18	2024/09/17	
Spectrum Analyzer	KEYSIGHT	N9020A	MY51285127	2023/09/18	2024/09/17	
EXG Analog Signal Generator	KEYSIGHT	N5173B	MY61253075	2023/09/18	2024/09/17	
Vector Signal Generator	Rohde & Schwarz	SMM100A	101899	2023/09/18	2024/09/17	
RF Control box	MWRF-test	MW100-RFCB	MW220926GTG	2023/09/18	2024/09/17	
Wideband Radio Communication Tester	Rohde & Schwarz	CMW270	102792	2023/09/18	2024/09/17	
Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	103235	2023/09/18	2024/09/17	
temperature humidity chamber	Espec	SH-241	SH-241-2014	2023/09/18	2024/09/17	
RF Test Software	MWRF-test	MTS8310E (Ver. V2/0)	N/A	N/A	N/A	

Test Equipment of Radiated emissions below 1GHz					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
3m Semi-anechoic Chamber	ETS	9m*6m*6m	Q2146	2022/08/30	2025/08/29
EMI Test Receiver	Rohde & Schwarz	ESCI3	101409	2023/09/18	2024/09/17
Spectrum Analyzer	KEYSIGHT	N9020A	MY51283932	2023/09/18	2024/09/17
Pre-Amplifier	HzEMC	HPA-9K0130	HYPA21001	2023/09/18	2024/09/17
Biconilog Antenna	Schwarzbeck	VULB 9168	01315	2022/10/10	2025/10/09
Biconilog Antenna	ETS	3142E	00243646	2022/03/23	2025/03/22
Loop Antenna	ETS	6502	243668	2022/03/30	2025/03/29
Test Software	Farad	EZ-EMC (Ver.FA-03A2 RE)	N/A	N/A	N/A

	Test Equipment of Radiated emissions above 1GHz					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date	
3m Semi-anechoic Chamber	ETS	9m*6m*6m	Q2149	2022/08/30	2025/08/29	
Spectrum Analyzer	Rohde & Schwarz	FSV40	101413	2023/09/18	2024/09/17	
Spectrum Analyzer	KEYSIGHT	N9020A	MY51283932	2023/09/18	2024/09/17	
Pre-Amplifier	A-INFO	HPA-1G1850	HYPA21003	2023/09/18	2024/09/17	
Horn antenna	A-INFO	3117	246069	2022/03/11	2025/03/10	
Pre-Amplifier	ZKJC	HPA-184057	HYPA21004	2023/09/18	2024/09/17	

TRF No.: 04-E001-1A

REPORT NO.: E04A24020286F00101 Page 11 of 33

Horn antenna	ZKJC	3116C	246265	2022/03/29	2025/03/28
Test Software	Farad	EZ-EMC (Ver.FA-03A2 RE+)	N/A	N/A	N/A

Test Equipment of Conducted emissions					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
Shielded Room	CHENG YU	8m*5m*4m	N/A	2022/10/29	2025/10/28
EMI Test Receiver	Rohde & Schwarz	ESR3	102647	2023/09/18	2024/09/17
LISN/AMN	Rohde & Schwarz	ENV216	102843	2023/09/18	2024/09/17
NNLK 8129 RC	Schwarzbeck	NNLK 8129 RC	5046	2023/09/18	2024/09/17
Test Software	Farad	EZ-EMC (Ver. EMC-con-3A1 1+)	N/A	N/A	N/A

REPORT NO.: E04A24020286F00101 Page 12 of 33

7. ANTENNA PORT TEST RESULTS

7.1. CONDUCTED OUTPUT POWER

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C				
Section Test Item Limit Frequency Range (MHz)				
CFR 47 FCC 15.247(b)(3)	Peak Conduct Output Power	1 watt or 30 dBm	2400-2483.5	

TEST PROCEDURE

Connect the EUT to a low loss RF cable from the antenna port to the power sensor (video bandwidth is greater than the occupied bandwidth).

Measure peak emission level, the indicated level is the peak output power, after any corrections for external attenuators and cables.

TEST ENVIRONMENT

Temperature	22 ℃	Relative Humidity	56%
Atmosphere Pressure	101kPa		

TEST RESULTS

REPORT NO.: E04A24020286F00101 Page 13 of 33

7.2. 6DB BANDWIDTH

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C				
Section Test Item Limit Frequency Range (MHz)				
CFR 47 FCC 15.247(a)(2)	6 dB Bandwidth	≥ 500 kHz	2400-2483.5	

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.8 for DTS bandwidth and clause 6.9 for Occupied Bandwidth.

Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test	
Frequency Span	For 6 dB Bandwidth: Enough to capture all products of the modulation carrier emission	
Detector	Peak	
RBW	100 kHz	
VBW	≥3 × RBW	
Trace	Max hold	
Sweep	Auto couple	

- a) Use the 99 % power bandwidth function of the instrument, allow the trace to stabilize and report the measured bandwidth.
- b) Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

TEST ENVIRONMENT

Temperature	22 ℃	Relative Humidity	56%
Atmosphere Pressure	101kPa		

TEST RESULTS

REPORT NO.: E04A24020286F00101 Page 14 of 33

7.3. POWER SPECTRAL DENSITY

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C			
Section Test Item Limit Frequency Ra (MHz)			
CFR 47 FCC §15.247 (e) Power Spectral Density		8 dBm in any 3 kHz band	2400-2483.5

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.10.

Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	PEAK
RBW	3 kHz ≤ RBW ≤ 100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST ENVIRONMENT

Temperature	22 ℃	Relative Humidity	56%
Atmosphere Pressure	101kPa		

TEST RESULTS

REPORT NO.: E04A24020286F00101 Page 15 of 33

7.4. CONDUCTED BAND EDGE AND SPURIOUS EMISSION

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C			
Section Test Item Limit			
CFR 47 FCC §15.247 (d) Conducted Bandedge and Spurious Emissions Conducted at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power			

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.11 and 11.13.

Connect the EUT to the spectrum analyser and use the following settings for reference level measurement:

Center Frequency	The center frequency of the channel under test	
Detector	Peak	
RBW	100 kHz	
VBW	≥3 × RBW	
Span	1.5 x DTS bandwidth	
Trace	Max hold	
Sweep time	Auto couple.	

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level.

Change the settings for emission level measurement:

	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11.

REPORT NO.: E04A24020286F00101 Page 16 of 33

TEST ENVIRONMENT

Temperature	22 ℃	Relative Humidity	56%
Atmosphere Pressure	101kPa		

TEST RESULTS

REPORT NO.: E04A24020286F00101 Page 17 of 33

7.5. DUTY CYCLE

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.6 Zero – Span Spectrum Analyzer method.

TEST ENVIRONMENT

Temperature	22 ℃	Relative Humidity	56%
Atmosphere Pressure	101kPa		

TEST RESULTS

REPORT NO.: E04A24020286F00101 Page 18 of 33

8. RADIATED TEST RESULTS

LIMITS

Please refer to CFR 47 FCC §15.205 and §15.209.

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz ~ 1 GHz)

Emissions radiated outside of the specified frequency bands above 30 MHz			
Frequency Range	ringe Field Strength Limit (uV/m) at 3 m	Field Stren	gth Limit
(MHz)		(dBuV/m)	at 3 m
		Quasi-l	Peak
30 - 88	100	40	
88 - 216	150	43.	5
216 - 960	200	46	
Above 960	500	54	
Above 1000	500	Peak	Average
		74	54

FCC Emissions radiated outside of the specified frequency bands below 30 MHz			
Frequency (MHz) Field strength (microvolts/meter) Measurement distance (meters			
0.009-0.490	2400/F(kHz)	300	
0.490-1.705	24000/F(kHz)	30	
1.705-30.0	30	30	

FCC Restricted bands of operation refer to FCC §15.205 (a):

REPORT NO.: E04A24020286F00101 Page 19 of 33

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

TEST PROCEDURE

Below 30 MHz

The setting of the spectrum analyser

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.
- 2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 80 cm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.
- 5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz Radiated emission limits in these three bands are based on measurements employing an average detector.
- 6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.
- 7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

TRF No.: 04-E001-1A

REPORT NO.: E04A24020286F00101 Page 20 of 33

8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X KHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB.

Below 1 GHz and above 30 MHz

The setting of the spectrum analyser

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 80 cm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

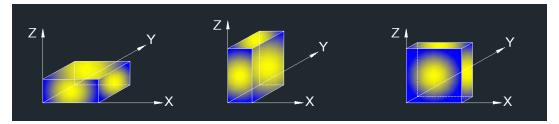
Above 1G

The setting of the spectrum analyser

RBW	1 MHz
IV/BW	PEAK: 3 MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 1.5 m above ground.

TRF No.: 04-E001-1A


REPORT NO.: E04A24020286F00101 Page 21 of 33

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

- 5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.
- 6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1.ON TIME AND DUTY CYCLE.

REPORT NO.: E04A24020286F00101 Page 22 of 33

X axis, Y axis, Z axis positions:

Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

TEST ENVIRONMENT

Temperature	21.9℃	Relative Humidity	55.7%
Atmosphere Pressure	101.5kPa		

TEST RESULTS

We tested all modes, The worst case Please refer to section "Test Data" - Appendix A

REPORT NO.: E04A24020286F00101 Page 23 of 33

9. Antenna Requirement

REQUIREMENT

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DESCRIPTION

Pass

TRF No.: 04-E001-1A

REPORT NO.: E04A24020286F00101 Page 24 of 33

10. AC Power Line Conducted Emission

LIMITS

Please refer to CFR 47 FCC §15.207 (a)

FREQUENCY (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

TEST PROCEDURE

The EUT is put on a table of non-conducting material that is 80 cm high. The vertical conducting wall of shielding is located 40 cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9 kHz.

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

TEST ENVIRONMENT

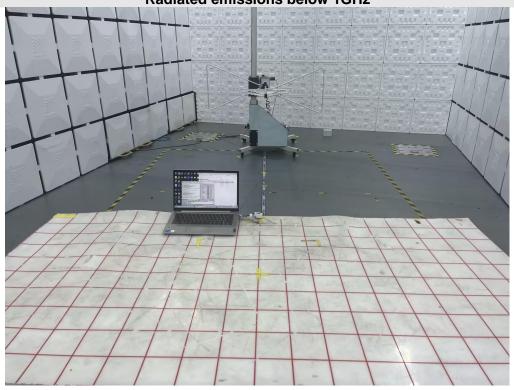
Temperature	$^{\circ}\mathrm{C}$	Relative Humidity	%
Atmosphere Pressure	kPa		

TEST RESULTS

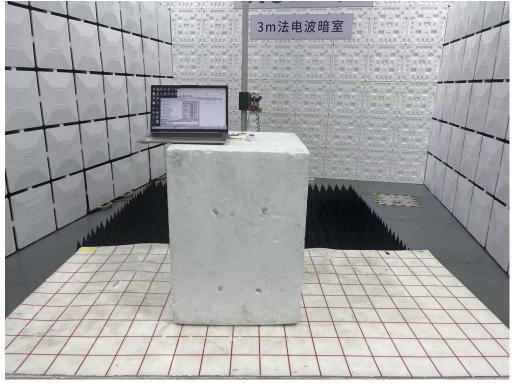
N/A

REPORT NO.: E04A24020286F00101 Page 25 of 33

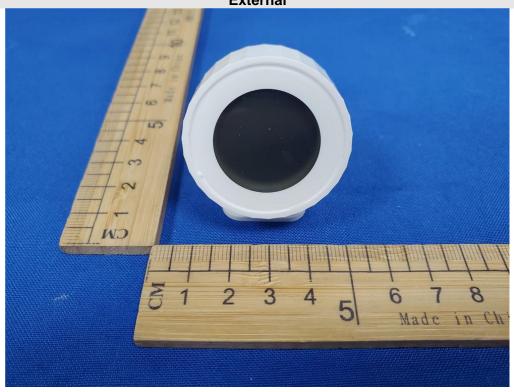
11. TEST DATA


Please refer to section "Test Data" - Appendix A

TRF No.: 04-E001-1A

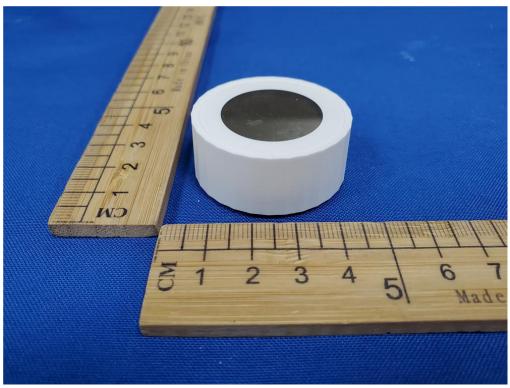

REPORT NO.: E04A24020286F00101 Page 26 of 33

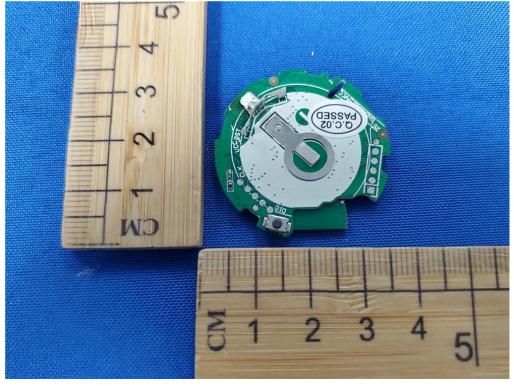
12. PHOTOGRAPHS OF TEST CONFIGURATION

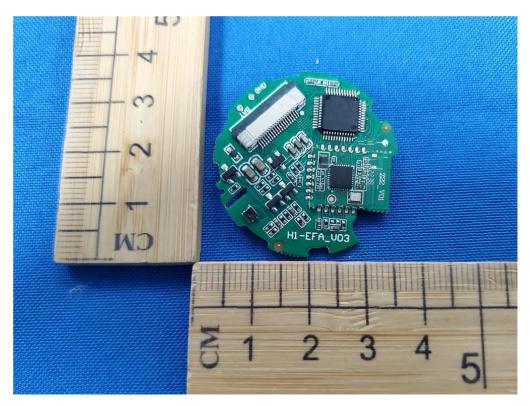


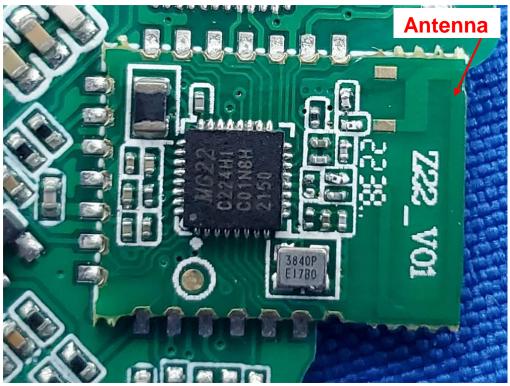
13. PHOTOGRAPHS OF THE EUT

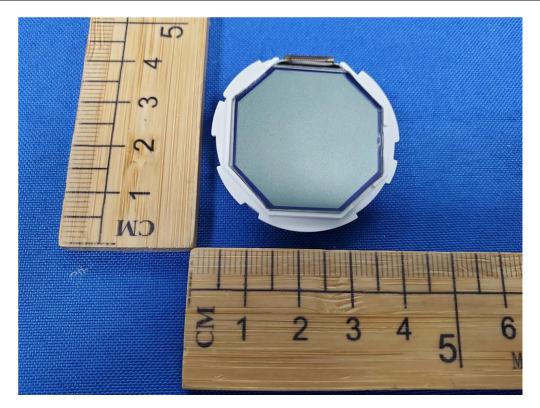


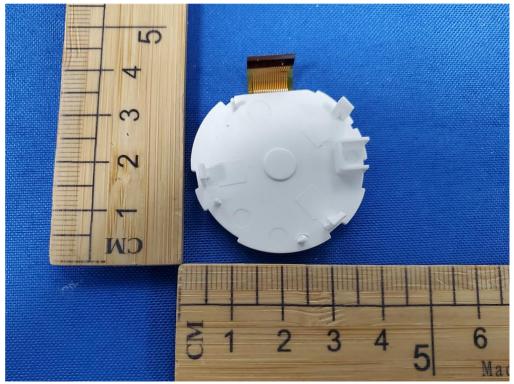












END OF REPORT