Application for Certification For a Transmitter.

RedSeat Entertainment LLC 6440 South Wasatch Blvd., Suite 105 Holladay, UT 84121

Home DSP

M/N: 02018

FCC ID: 2AK7R-02018

REPORT # UT16086A-002

This report was prepared in accordance with the requirements of the FCC Rules and Regulations Part 2, Subpart J, 2.1033, Part 15.247, RSS-247 Issue 2, and other applicable sections of the rules as indicated herein.

Prepared By:

DNB Engineering, Inc. 1100 E Chalk Creek Road Coalville, UT 84017

16 Sep 2023

TABLE OF CONTENTS

Paragraph numbers in this report follow the application section numbers found in the FEDERAL COMMUNICATIONS COMMISSION Rules and Regulations, Part 2, Subpart J for Certification of electronic equipment.

TABL	E OF C	ONTENTS		2
	1.0 1.1 1.2 1.3 1.4 1.5	Certifications Measurement Test Equipmen Test Summary	ATIVE DATA and Qualifications Repeatability Information nt List Cross Reference Uncertainty	3 3 4 5
2.1033	(b,2)	FCC Identifier		7
2.1033	(b,3)	Installation and	d Operating Instructions	8
2.1033	(b,4)	Brief Descript	ion of Circuit Function	8
2.1033	(b,5)	Block Diagram	n	8
2.1033	(b,7)	Equipment Ph	otographs	8
2.1033	(b,6) 15.203 15.207 15.209 15.247 15.247 15.247 15.247 15.247 15.247 15.247	(b,2) (e) (d) (a,2) (d) (d)	surements	10 11 15 18 22 26 30 34 47
End of	Report	UT16086A-00	2	77

1.0 ADMINISTRATIVE DATA

1.1 Certifications and Qualifications

I certify that DNB Engineering, Inc conducted the tests performed in order to obtain the technical data presented in this application. Also, based on the results of the enclosed data, I have concluded that the equipment tested meets or exceeds the requirements of the Rules and Regulations governing this application.

1.2 Measurement Repeatability Information

The test data presented in this report has been acquired using the guidelines set forth in FCC Part 2.1031 through 2.1057, Part 15. The test results presented in this document are valid only for the equipment identified herein under the test conditions described. Repeatability of these test results will only be achieved with identical measurement conditions. These conditions include: The same test distance, EUT Height, Measurement Site Characteristics, and the same EUT System Components. The system must have the same Interconnecting Cables arranged in identical placement to that in the test set-up, with the system and/or EUT functioning in the identical mode of operation (i.e. software and so on) as on the date of the test. Any deviation from the test conditions and the environment on the date of the test may result in measurement repeatability difficulties.

All changes made to the EUT during the course of testing as identified in this test report must be incorporated into the EUT or identical models to ensure compliance with the FCC regulations.

Coffayne II

C. L. Payne III (Para. 1.1) Facility Manager Coalville Facility. DNB Engineering, Inc. Tel. (435) 336-4433 FAX (435) 336-4436

1.3 Test Equipment List

TEST EQUIPMENT LIST - CONDUCTED EMISSIONS										
Description	Manufacturer	Model No.	Asset #	Serial #	Cal Due					
LISN	Fisher Custom Communications	FCCLISN5032401	U-286	2020	03 Feb 2024					
Site 1 CE Cable	DNB	N/A	U-400B	N/A	01 Dec 2023					
Spectrum Analyzer	Rhode & Schwarz	FSV30	U-248	101367	27 Aug 2023					
TILE Software	ETS Lindgren	3.4.11.13	U-317	8112006	07 Mar 2024					

TEST EQUIPMENT LIST - RADIATED EMISSIONS										
Description	Manufacturer	Model No.	Asset #	Serial #	Cal Due					
Pre-Amplifier	Hewlett Packard	8447D	U-068	2727A06184	04 Aug 2023					
Pre-Amplifier	DNB	S-21G	U-095	U-095-1	03 Feb 2024					
Site 1 RE Cable	DNB	N/A	U-400B	N/A	01 Dec 2023					
High Freq Cable	TRU Corp	210	U-066	TRU-21B1111-080M	08 Feb 2024					
BiConiLog Antenna	ETS - Lindgren	3142E	U-255	154973	03 Sep 2023					
DRG Horn Antenna	AH Systems	SAS-571	U-071	417	11 Jul 2023					
Spectrum Analyzer	Rhode & Schwarz	FSV30	U-248	101367	27 Aug 2023					
TILE Software	ETS- Lindgren	3.4.11.13	U-317	8112006	07 Mar 2024					

TEST EQUIPMENT LIST - ANTENNA CONDUCTED									
Description	Manufacturer	Model No.	Asset #	Serial #	Cal Due				
Spectrum Analyzer	Rhode & Schwarz	FSV30	U-248	101367	27 Aug 2024				

1.4 Test Summary Cross Reference

Test Item	FCC Requirement	IC Requirement	Test Method	Result
Antenna Requirement	15.203/15.247	RSS-Gen 6.8		Pass
Conducted Emissions (General Provisions)	15.207	RSS-Gen 8.8	ANSI C63.10-2013	Pass
Radiated Emissions (General Provisions)	15.209	RSS-Gen 8.9	ANSI C63.10-2013	Pass
Output Power (FHSS)	15.247 (b,3)	RSS-247 5.4 d)	ANSI C63.10-2013 Clause 11.9.1.1	Pass
Power Spectral Densisty	15.247 (e)	RSS-247 5.2 b)	ANSI C63.10-2013 Clause 11.10.2	Pass
Band-edge RF Conducted	15.247 (d)	RSS-247 5.5	ANSI C63.10-2013 Clause 11.13.2	Pass
DTS Bandwidth	15.247 (a,2)	RSS-247 5.2 a)	ANSI C63.10-2013 Clause 11.8.1	Pass
Conducted Spurious	15.247 (d)	RSS-247 5.5	ANSI C63.10-2013 Clause 11.11.3	Pass
Radiated Spurious Emissions	15.247 (d)	RSS-247 5.5	ANSI C63.10-2013Clause 11.12.2.7	Pass
Restricted Bands	15.247 (d)	RSS-Gen 8.10	ANSI C63.10-2013 Clause 11.12.2	Pass

RSS-GEN	Issue 5	Mar 2021
RSS-247	Issue 2	Feb 2017

Preliminary scans were performed to determine worst case modulation, packet length, and data rates. Only worst case data has been recorded within the body of the test report.

Requirements for FCC Part B Class B and for ICES-003 Class B have been performed as SdoC.

1.5 Measurement Uncertainty

Measurement Type	Uncertainty
AC Conducted Emissions	\pm 1.67 dB
OATS - Radiated Emissions - Vertical Biconical (30-300MHz)	$\pm 4.17 \text{ dB}$
OATS - Radiated Emissions - Horizontal Biconical (30-300MHz)	$\pm 4.22 \text{ dB}$
OATS - Radiated Emissions - Vertical Log Periodic (300-100MHz)	$\pm 4.92 \text{ dB}$
OATS - Radiated Emissions - Horizontal Log Periodic (300-1000MHz)	± 4.79 dB
OATS - Radiated Emissions - Vertical DRG Horn (> 1GHz)	± 5.74 dB
OATS - Radiated Emissions - Horizontal DRG Horn (>1GHz)	$\pm 5.80 \text{ dB}$
Antenna Conducted Measurements	$\pm 1.96 \text{ dB}$

2.1033 (b) (1) Application for Certification

Name of Applicant:	RedSeat Entertainment LLC 6440 South Wasatch Blvd, Suite 105 Holladay, UT 84121
FRN Number:	0026273516
Name of Manufacturer :	RedSeat Entertainment LLC 6440 South Wasatch Blvd, Suite 105 Holladay, UT 84121
Description:	Home DSP
Model Number(s):	02018
Anticipated Production Quantity:	Multiple Units
Frequency Band:	2406 - 2474 MHz
Rated Power:	1.32 dBm (1.355 mW)
Type of Signal:	Digital Transmission System (DTS)
Modulation and data rate:	Proprietary baseband processing with shaped-8FSK modulation at a 2 MHz symbol rate using a rate-5/6 4D trellis coded modulation scheme to achieve a 5 Mbps raw data rate.
Antenna Type:	Internal - Chip - Monopole
Antenna Gain:	0.5dBi (derived from data sheet)

2.1033 (b,2) FCC Identifier

Label Material is Mylar and is imprinted with a Marking and Labeling System

Installation and Operating Instructions -	Supplied separately.
Brief Description of Circuit Function -	Supplied separately.
Block Diagram -	Supplied separately.
Equipment Photographs -	Supplied separately.
	Brief Description of Circuit Function - Block Diagram -

2.1033 (b,6) Report of Measurements

15.203 Antenna Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

Pass - Antenna gain is equal to or less than 0.5dBi

Pass - Antenna is an internal monopole chip antenna

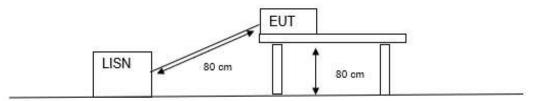
15.207 Conducted Emissions

Test Procedure: As specified in ANSI C63.10-2013

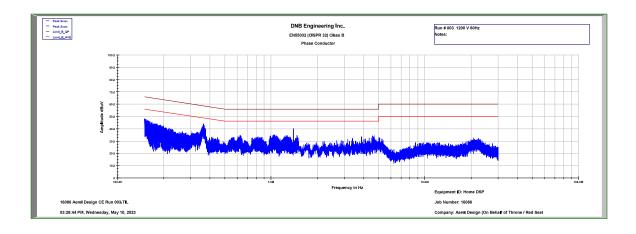
EUT has an indirect connection to the AC Mains through an AC Wall mount power supply was provided by the manufacturer which simulated worst case conditions. Conducted emissions were made in accordance with ANSI C63.10-2013 Clause 6.2.

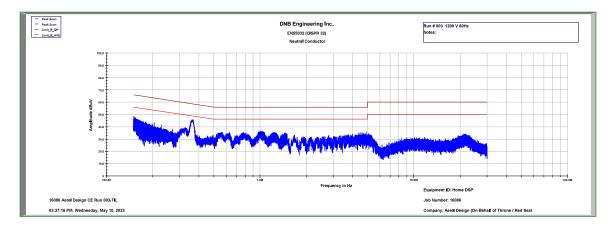
	Conducted limit (dBµV)				
Frequency of emission (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

*Decreases with the logarithm of the frequency.


The spectrum analyzer is setup to store the peak emissions over the range stated in the applicable standard. Cables are then adjusted to maximize emissions. The peak spectrum analyzer trace and limits are plotted onto graph paper. A receiver (with CISPR quasi peak and average capability) is used to identify the highest frequencies with respect to the limit. Ambient signals are noted on the graph along with emissions from the EUT. The highest levels are listed in the Conducted Emissions Summary Test Data. If the Peak readings are below the Average limits only the Peak have been recorded.

Example of Typical Calculation


Rohde and Schwarz reading @ 10 MHz	49.0	dBµV
LISN Factor	+7.5	dB
Cable Loss	+2.0	dB
Total Factors	9.5	dB
Voltage dBµV at LISN =	58.5	dBµv


SETUP DIAGRAM

NOTE: For FCC an 80cm table height

	CONDUCTED EMISSIONS											
Freq.	Meas'd	Atten. Factors	Amp Factors	LISN Factors	Cable Factors	Total Factors	Total	Limit	Delta	Limit Type	Line	Meas. Type AVE,
(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dB)	(dB)	(dBuV)	(dBuV)	(dB)	AVE,QP	L1 L2 L3 L4	51
0.150	38.55	9.51		0.25		9.76	48.30	56.00	-7.70	AVE	L1	Peak
0.364	34.43	9.53		0.10		9.63	44.06	50.00	-5.94	AVE	L1	Peak
0.369	32.55	9 .53		0.10		9.63	42.18	50.00	-7.82	AVE	L1	Peak
0.627	24.51	10.23		0.10		10.33	34.84	46.00	-11.16	AVE	L1	Peak
1.053	24.98	9.99		0.10	0.09	10.19	35.17	46.00	-10.83	AVE	L1	Peak
1.404	30.64	9 .57		0.10	0.06	9.73	40.37	46.00	-5.63	AVE	L1	Peak
0.151	38.71	9.51		0.20		9.71	48.42	56.00	-7.58	AVE	L2	Peak
0.205	33.67	9.51		0.20		9.71	43.38	54.00	-10.62	AVE	L2	Peak
0.227	31.54	9.51		0.20		9.71	41.25	54.00	-12.75	AVE	L2	Peak
0.360	39.09	9 .53		0.14		9.67	48.76	50.00	-1.24	AVE	L2	Peak
1.013	26.03	10.04		0.10	0.10	10.24	36.27	46.00	-9.73	AVE	L2	Peak
1.043	26.21	10.00		0.10	0.10	10.20	36.41	46.00	-9.59	AVE	L2	Peak

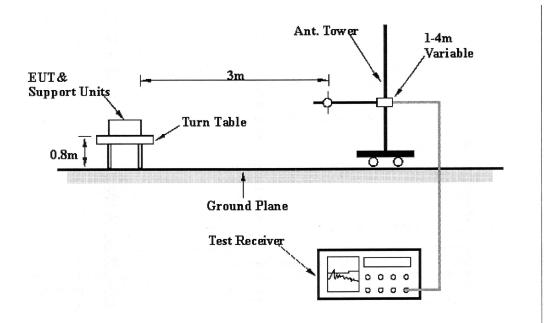
15.209 Radiated Emissions (General Provisions)

Test Procedure: ANSI C63.10-2013

The EUT was measured on an open area test site (OATS).

A measuring distance of at least 3 m shall be used for measurements at frequencies up to 1 GHz. For frequencies above 1 GHz, any suitable measuring distance may be used. The equipment size (excluding the antenna) shall be less than 20 % of the measuring distance.

Sufficient precautions shall be taken to ensure that reflections from extraneous objects adjacent to the site do not degrade the measurement results, in particular:


- no extraneous conducting objects having any dimension in excess of a quarter wavelength of the highest frequency tested shall be in the immediate vicinity of the site;

- all cables shall be as short as possible; as much of the cables as possible shall be on the ground plane or preferably below; and the low impedance cables shall be screened.

- EUT was positioned in three orthogonal axis - only the worst case data (X-Axis) has been recorded

The EUT shall be placed upon a non-conductive table (wooden for below 1GHz and styrene above 1GHz) 0.80 meters above the ground plane for frequencies from 30 to 1000MHz and 1.5 meters above the ground plane above 1 Ghz and shall be placed in the "worst case" transmitting mode. The EUT shall be rotated 360 degrees to find the azimuth maxima. The receive antenna shall then be raised and lowered between 1 to 4 meters to find the maximum signal emanating from the EUT. This signal strength is then recorded on the data sheets.

Frequency (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measurement Distance (meters)
.0009 - 0.490	2400/F(kHz)	20*(Log ₁₀ (2400/F(kHz))	300
0.490 - 1.705	24000/F(kHz)	20*(Log ₁₀ (24000/F(kHz))	30
1.705 - 30.0	30	29.5	30
30 - 88	100	40.0	3
88 - 216	150	43.5	3
216 - 960	200	46.0	3
Above 960	500	54.0	3

	NB	11	Coalvil (435	halk Cre le, UT) 336-44 (35) 336	433		Radia	nted E	Emiss	sions	(Genera	ıl)	
DNB Job	Number:	1608	36			Dat	e: 25	May 202	23	Spec	cification		
Customer	•	Red	Seat Ente	ertainme	nt LLC				L.V.	1 1 5 200	`		
Model Nu	umber:	020	18] 15.209 ANSI) C63.10-2	2013	
Descripti	on:	Hon	ne DSP						L**.		200110 1		
I.													
EU	T is in conf	ormance	with FC	C 15.209	2	X YES	X YES NO Signed Y Staples						
	Radiated Emissions												
FREQ	S/A		Correcti	on Facto	r		dBuV/m			Positions			
(Mhz)	Reading (dBuV)	Ant dB/m	Cbl dB	Amp dB	Distance dB		Lim ndBuV/m	Delta dB	Тур	Tbl	PI	Hgt	
170.240	19.68	14.35	2.05	25.75	10.46	20.79	40.00	-19.21	QP	0	Horz	3.17	
417.833	31.20	21.88	3.57	26.52	10.46	40.58	47.00	-6.42	QP	0	Horz	2.28	
466.987	32.68	22.37	3.77	26.87	10.46	42.41	47.00	-4.59	QP	33	Horz	1.18	
712.759	24.83	27.39	4.70	27.49	10.46	39.89	47.00	-7.11	QP	0	Horz	3.64	
31.435	23.96	19.47	0.76	26.60	10.46	28.05	40.00	-11.95	QP	40	Vert	1.00	
32.059	22.96	19.11	0.78	26.60	10.46	26.71	40.00	-13.29	QP	0	Vert	1.00	
144.024	21.00	12.64	1.44	25.62	10.46	19.92	40.00	-20.08	QP	0	Vert	1.00	
156.070	19.70	13.97	1.86	25.68	10.46	20.31	40.00	-19.69	QP	0	Vert	1.00	
169.354	20.00	14.35	2.05	25.75	10.46	21.11	40.00	-18.89	QP	0	Vert	1.00	
527.882	21.31	23.29	3.84	27.18	10.46	31.72	47.00	-15.28	QP	307	Vert	1.00	

EUT was tested at a test distance of 10meters and corrected to a 3 meter specification distance.

Reference Radiated Spurious Emissions section for frequencies above 1GHz.

11.9.1 Maximum peak conducted output power

11.9.1.1 RBW > DTS bandwidth

The following procedure shall be used when an instrument with a resolution bandwidth that is greater than the DTS bandwidth is available to perform the measurement:

- a) Set the RBW \geq DTS bandwidth.
- b) Set VBW $\geq [3 \times RBW]$.
- c) Set span $\geq [3 \times RBW]$.
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

Requirement: FCC Part 15.247 Clause (b,3)

- 15.247 Operation within the bands 902-928 MHz.
- (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following:
- (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

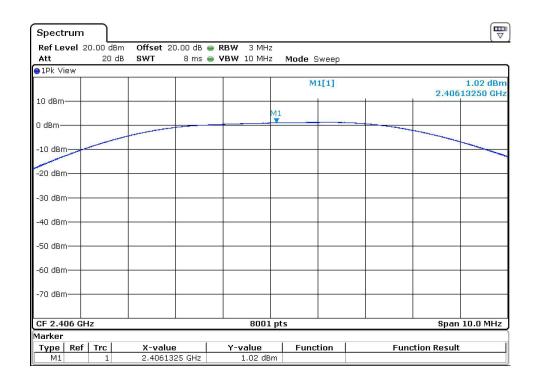
Limit : 1 watt or 30dBm

Date: 4 May 2023 DN

DNB Job: 16086

EUT: Home DSP

Model No: 02018


Requirement \leq 1 Watt or 30dBm

Low Channel: 2406 MHz

Power: 1.02 dBm

Tech: CL Payne

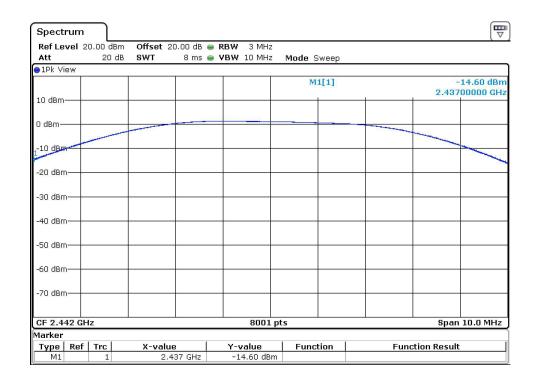
Result: Pass

Date: 4 May 2023 DN

DNB Job: 16086

EUT: Home DSP

Model No: 02018


Tech: CL Payne

 $Requirement \leq 1 Watt or 30 dBm$

Mid Channel: 2442 MHz

Power: 1.00 dBm

Result: Pass

Date: 4 May 2023 DN

DNB Job: 16086

EUT: Home DSP

Model No: 02018

Requirement \leq 1 Watt or 30dBm

High Channel: 2474 MHz

Power: 1.32dBm

Tech: CL Payne

Result: Pass

B Spectrum Ref Level 20.00 dBm Offset 20.00 dB 🖷 RBW 3 MHz 20 dB SWT 8 ms 👄 VBW 10 MHz Att Mode Sweep ●1Pk Max 1.32 dBm 2.47287760 GHz M1[1] 10 dBm-M1 0 dBm--10 dBm -20 dBm--30 dBm--40 dBm--50 dBm--60 dBm--70 dBm-CF 2.474 GHz 8001 pts Span 10.0 MHz Marker Type | Ref | Trc | X-value Y-value Function Function Result 2.4728776 GHz M1 1 1.32 dBm

15.247 (e) Power Spectral Density (PSD)

Clause 11.10.2 Method PKPSD (peak PSD)

The following procedure shall be used if the maximum peak conducted output power was used to determine compliance, and it is optional if the maximum conducted (average) output power was used to determine compliance:

- a) Set analyzer center frequency to DTS channel center frequency
- b) Set the span to 1.5 times the DTS bandwidth
- c) Set the RBW to $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$
- d) Set the VBW \geq [3 x RBW]
- e) Detector = peak
- f) Sweep time = auto couple
- g) Trace mode = max hold
- h) Allow trace to fully stabilize
- i) Use the peak marker function to determine the maximum amplitude level within the RBW
- j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat
- k) Submit plots

Requirement: FCC Part 15.247 Clause (e)

15.247 Power Spectral Density.

(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Date: 4 May 2023 DN

DNB Job: 16086

EUT: Home DSP

Model No: 02018

 $Requirement \leq 8 dBm$

Low Channel: 2406 MHz

Power: -2.19 dBm

Tech: CL Payne

Result: Pass

B Spectrum Ref Level 20.00 dBm Offset 20.00 dB 🖷 RBW 100 kHz 20 dB SWT 8 ms 👄 **VBW** 300 kHz Att Mode Sweep o1Pk View -2.19 dBm 2.406367270 GHz M1[1] 10 dBm-D1 8.000 dBm M1 0 dBm--10 dBm--20 dBm--30 dBm--40 dBm--50 dBm--60 dBm--70 dBm-CF 2.406 GHz 8001 pts Span 4.5 MHz Marker Type | Ref | Trc | X-value Y-value Function Function Result 2.40636727 GHz M1 1 -2.19 dBm

Date: 4 May 2023 DN

DNB Job: 16086

EUT: Home DSP

Model No: 02018

 $Requirement \leq 8 dBm$

Mid Channel: 2442 MHz

Power: -1.95 dBm

Tech: CL Payne

Result: Pass

B Spectrum Ref Level 20.00 dBm Offset 20.00 dB 🖷 RBW 100 kHz 20 dB SWT 8 ms 👄 **VBW** 300 kHz Att Mode Sweep ●1Pk Max -1.95 dBm 2.441721600 GHz M1[1] 10 dBm-D1 8.000 dBm M1 0 dBm--10 dBm--20 dBm -30 dBm--40 dBm--50 dBm--60 dBm--70 dBm-CF 2.442 GHz 8001 pts Span 4.5 MHz Marker Type | Ref | Trc | X-value Y-value Function Function Result 2.4417216 GHz M1 1 -1.95 dBm

Date: 4 May 2023 DN

EUT: Home DSP

Model No: 02018

DNB Job: 16086

 $Requirement \, \leq \, 8dBm$

High Channel: 2474 MHz

Power: -2.03 dBm

Tech: CL Payne

Result: Pass

B Spectrum Ref Level 20.00 dBm Offset 20.00 dB 🖷 RBW 100 kHz 20 dB SWT 8 ms 👄 VBW 300 kHz Att Mode Sweep o1Pk View -2.03 dBm 2.473727220 GHz M1[1] 10 dBm-D1 8.000 dBm M1 0 dBmall the work of the first states die. mullin -10 dBm-Tailing The work for the -20 dBm-Ward H -30 dBm -40 dBm--50 dBm--60 dBm--70 dBm-CF 2.474 GHz 8001 pts Span 4.5 MHz Marker Type | Ref | Trc | X-value Y-value Function Function Result 2.47372722 GHz M1 1 -2.03 dBm

15.247 (d) Band-edge RF Conducted

For band-edge measurements, use the band-edge procedure in 6.10. Band-edge measurements shall be tested both on single channels, and with the EUT hopping.

6.10 Band-edge testing

The following procedure shall be used when band-edge measurements are required.

6.10.1 Band-edge data reporting requirements

These reporting requirements are applicable to all devices for which band-edge measurements are required. On each operating frequency measured, band-edge emissions shall be reported by providing plots of the measuring instrument display. The axes, the scale units per division, and the limit shall be clearly labeled in the test report. Tabular data are not suitable for reporting band-edge emissions.

6.10.4 Authorized-band band-edge measurements (relative method)

These procedures are applicable for determining compliance at authorized-band band-edges where the requirements are expressed as a value relative to the in-band signal level.

For devices that support frequency hopping, this test sequence shall be performed twice: once with the hopping function turned OFF and then repeated with the hopping function turned ON.

- a) Connect the EMI receiver or spectrum analyzer to the EUT using an appropriate RF cable connected to the EUT output. Configure the spectrum analyzer settings as described in step e) (be sure to enter all losses between the unlicensed wireless device output and the spectrum analyzer).
- b) Set the EUT to the lowest frequency channel (for the hopping on test, the hopping sequence shall include the lowest frequency channel).
- c) Set the EUT to operate at maximum output power and 100% duty cycle, or equivalent "normal mode of operation".
- d) Blank
- e) Perform the test as follows:
 - 1) Span: Wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products that fall outside of the authorized band of operation.

15.247 (d) Band-edge RF Conducted (*continued*)

- 2) Reference level: As required to keep the signal from exceeding the maximum instrument input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
- 3) Attenuation: Auto (at least 10 dB preferred).
- 4) Sweep time: Coupled.
- 5) Resolution bandwidth: 100 kHz
- 6) Video bandwidth: 300 kHz
- 7) Detector: Peak.
- 8) Trace: Max hold.
- f) Allow the trace to stabilize. For the test with the hopping function turned ON, this can take several minutes to achieve a reasonable probability of intercepting any emissions due to oscillator overshoot.
- g) Set the marker on the emission at the band edge, or on the highest modulation product outside of the band, if this level is greater than that at the band edge. Enable the marker-delta function, and then use the marker-to-peak function to move the marker to the peak of the in-band emission.
- h) Repeat step c) through step e) for every applicable modulation.
- i) Set the EUT to the highest frequency channel (for the hopping on test, the hopping sequence shall include the highest frequency channel) and repeat step c) through step d).
- The band-edge measurement shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

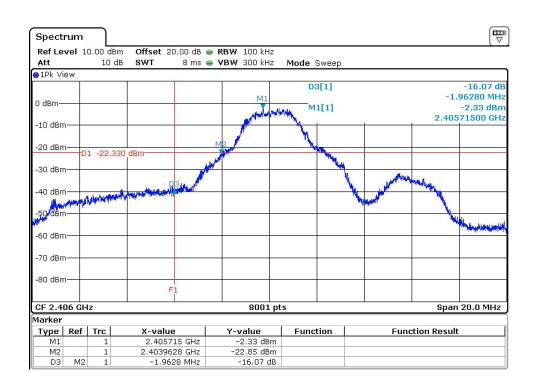
Requirement: FCC Part 15.247 Clause (d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

Date: 4 May 2023

DNB Job: 16086

EUT: Home DSP


Model No: 02018

Requirement: Band-Edge Compliance (DTS)

Low Channel: 2406 MHz

Tech: CL Payne

Result: Pass

Date: 4 May 2023

DNB Job: 16086

EUT: Home DSP

Model No: 02018

Requirement: Band-Edge Compliance (DTS)

High Channel: 2474 Mhz

Tech: CL Payne

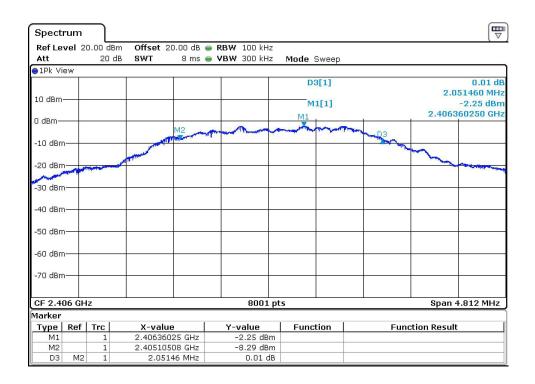
Result: Pass

Spect	um												(5
	7el 10	0.00 dBm			🖷 RBW 100 k								
Att		10 dB	SWT	8 ms	😑 VBW 300 k	Hz	Mode	Sweep					
⊖1Pk Vie	ew.		-								-		
							D	3[1]				0	-49.50 d 77200 MH
0 dBm—				1911			M	1[1]					-1.89 dBi
			1	planting				-1-1					72800 GH
-10 dBm	-				1	+			-		Ť		
			1		Mag								
-20 dBm	D	1 -21.890) dBm		25	-							
-30 dBm		100 M			MA								
1 1 A A		1			1								
-40 dBm						ALL	4						
io abiii	1						a data and date	- Although	MAN	and the state of t			
-50 dBm	-		-			_			10000	and a sump	The second		
											177	and the second state of the	
-60 dBm	-										-	and the second second	M. H. W. W. W. W.
-70 dBm						-							
00 40													
-80 dBm											F1		
											<u>ĺ</u>		
CF 2.47	76 G	Hz			800	1 pt :	5					Span	20.0 MHz
Marker													
Type M1	Ref	Trc 1	X-valu	1 e 728 GHz	<u>Y-value</u> -1.89 c	Due	Func	tion		Fi	unctio	n Result	
D2	M1	1	12-02-02-02-02-02-02-02-02-02-02-02-02-02	728 GHZ 172 MHz	-1.89 0								
D2	M1	1		72 MHz	-49.50								

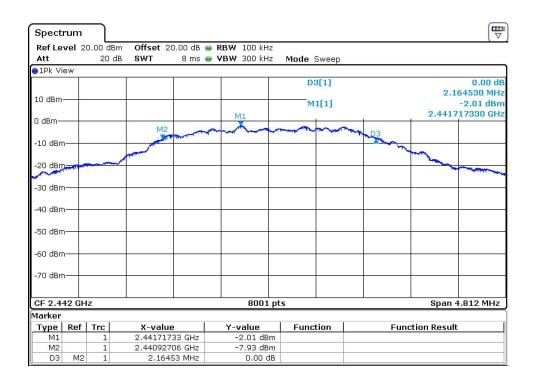
15.247 (a,2) DTS Bandwidth

DTS bandwidth measurement procedure

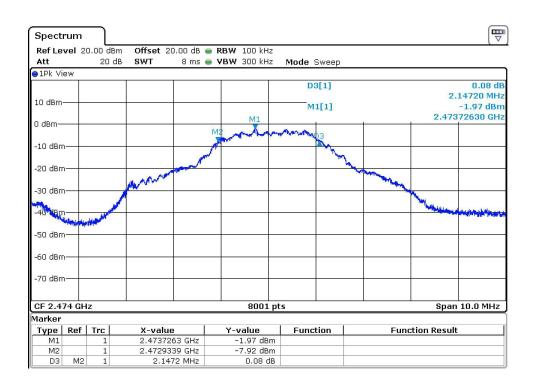
- a) Set RBW = 100 kHz
- b) Set the VBW \geq [3 x RBW]
- * per ANSI C63.10-2013 clause 6.9.2


Set the span to 2 to 5 times the OBW

- c) Detector = peak
- d) Trace mode = max hold
- e) Sweep = auto couple
- f) Allow trace to stabilize
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6dB relative to the maximum level measured in the fundamental emission.
- h) Submit this plot(s).


Requirement: FCC Part 15.247 Clause (a,2)

The 6 dB DTS bandwidth shall be greater than 500 kHz.


Client: RedSeat Entertainme	ent LLC	Date: 4 May 2023	DNB Job: 16086		
EUT: Home DSP		Model No: 02018			
Requirement: 6dB Bandwid	Tech: CL Payne				
Low Channel: 2406	6dB Bandwic	lth = 2051.46 kHz	Result: Pass		

Client: RedSeat Entertainme	ent LLC Date: 4 May 20	D23 DNB Job: 16086
EUT: Home DSP	Model No: 020)18
Requirement: 6dB Bandwid	Tech: CL Payne	
Mid Channel: 2442	6dB Bandwidth = 2164.53 kH	Iz Result: Pass

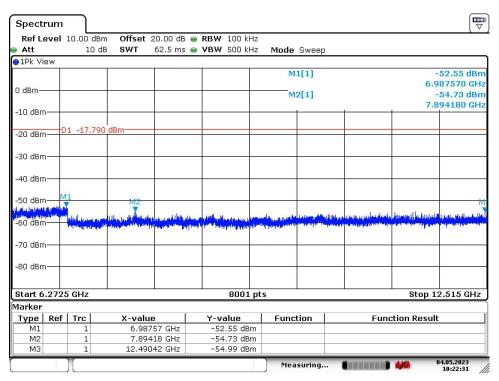
Client: RedSeat Entertainme	ent LLC	Date: 4 May 2023	DNB Job: 16086
EUT: Home DSP		Model No: 02018	
Requirement: 6dB Bandwidt	Tech: CL Payne		
High Channel: 2474	6dB Bandwic	lth = 2147.2 kHz	Result: Pass

15.247 (d) Conducted Spurious

Conducted spurious emissions shall be measured for the transmit frequency, per 5.5 and 5.6, and at the maximum transmit powers.

Connect the primary antenna port through an attenuator to the spectrum analyzer input; in the results, account for all losses between the unlicensed wireless device output and the spectrum analyzer. The instrument shall span 30 MHz to 10 times the operating frequency in GHz, with a resolution bandwidth of 100 kHz, video bandwidth of 300 kHz, and a coupled sweep time with a peak detector. The band 30 MHz to the highest frequency may be split into smaller spans, as long as the entire spectrum is covered.

Requirement: FCC Part 15.247 Clause (d)


(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

Client: RedSeat Enter	rtainment LLC	Date: 4 May 2023	DNB Job: 16086			
EUT: Home DSP		Model No: 02018				
Requirement: Conduc	<20dB of peak	Tech: CL Payne				
Low Channel: 2406 M	Result: Pass					
Frequency range:	30MHz	to	6.2725GHz			

Refle	vel	10.00 dB	m Offset	20.00 dB	e RB	W 100 kHz					,
Att		10.00 Q.D 10 c				W 500 kHz	Mode	Sweep			
1Pk Vi	зw										
					M1		M	1[1]			2.21 dBr
0 dBm—					7						06140 GH
o ubiii							M	2[1]			45.45 dBr
-10 dBm			_							4.8	12330 GH
-20 dBm	D	1 -17.79	0 dBm								
-30 dBm	r———			_							
-40 dBm									M2		
-50 dBm									1		N
										J. T. T.	a submission and
4801665	dill in	L. Hayana		A DESCRIPTION OF THE PARTY OF T	n line al	البلالا بمتقلوم المسين	plating and the fi	la dente lle te	and the second second second second	and a second second	and the second second second
		Barren (ha)	and and a shirt of the shirt	and the particular the	a Barrista	A MAR DOUBLE OF THE		1 102 101	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
-70 dBm											
-80 dBm			-								
Start 3	0.0 M	IHz				8001 pt	s		1	Stop 6	.2725 GHz
Marker											
Type	Ref	Trc	X-val	ue	Y	-value	Func	tion	Func	tion Result	:
M1		1	2.40	0614 GHz		2.21 dBm					
M2		1		L233 GHz		45.45 dBm					
MЗ		1	6.24	168 GHz	-	-53.33 dBm					

Date: 4.MAY.2023 10:21:45

Client: RedSeat Ente	rtainment LLC	Date: 7 May 2023	DNB Job: 16086			
EUT: Home DSP		Model No: 02018				
Requirement: Condu	<20dB of peak	Tech: CL Payne				
Low Channel: 2406 M	Result: Pass					
Frequency range:	6.2725GHz to	12.515GHz				

Date: 4.MAY.2023 10:22:31

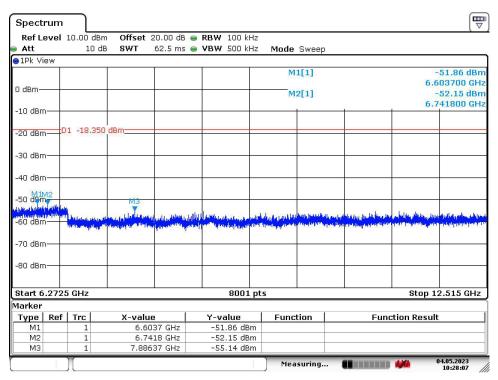
Client: RedSeat Enter	rtainment LLC	Date: 7 May 2023	DNB Job: 16086			
EUT: Home DSP		Model No: 02018				
Requirement: Conduc	<20dB of peak	Tech: CL Payne				
Low Channel: 2406 M	Result: Pass					
Frequency range:	12.515GHz to	18.7575GHz				

Spectru	Im											[₩
Ref Lev	el 1				🔵 RBW 100 k							
Att		10	db SWT	62.5 ms	🔵 VBW 500 k	Hz	Mode	Sweep	0			
∋1Pk Viev	V											
							M	1[1]				i1.26 dBr
0 dBm												4840 GH
o abiii							M	2[1]				i1.43 dBr
-10 dBm-											16.23	84670 GH
-20 dBm-	-D1	-17.7	90 dBm									
-30 dBm-												
-40 dBm-	_											
						M1	м	2		MB		
-50 dBm-	_							<u></u>				
and the state of t		1	فقصلها والعصار بل	dause building			in the second second	(head) (head) (head) The design of the second second	dala atla Ita kunang b Sergin ng pangangangangan	- Inderland	Holyster L.	and Louis July
LOU GILLING			The state of the state	N	a state of the second second	10000	esolation t		satio ad board stores		C. C	e annie anne anni 4 .
-70 dBm-						-					-	
-80 dBm-												
Start 12	515	GHz			800:	l pts	;			SI	top 18.7	7575 GHz
Marker												
Type I	Ref	Trc	X-va	lue l	Y-value	1	Func	tion		Function	Result	
M1		1		5484 GHz	-51.26 dB	3m		-				
M2		1	16.2	3467 GHz	-51.43 dB	3m						
MЗ		1	17.7	0616 GHz	-51.83 dE	3m						
		(1	suring.			04	.05.2023

Date: 4.MAY.2023 10:23:19

Client: RedSeat Enter	rtainment LLC	Date: 7 May 2023	DNB Job: 16086			
EUT: Home DSP		Model No: 02018				
Requirement: Conduc	<20dB of peak	Tech: CL Payne				
Low Channel: 2406 M	= -17.79 dBm	Result: Pass				
Frequency range:	18.7575GHz to	25GHz				

Pofic	uol	10.00 dE	m Offcot	20 00 de 4	• RBW 100 kHz					(V
Att	ever :	10.00 48			VBW 500 kHz		Sweep			
1Pk Vi	ЗW					mouo	0.000			
						M	1[1]			-49.73 dBr
0 dBm—										463200 GH
o abiii						M	2[1]			-50.32 dBr
-10 dBm									19.	900120 GH
			-							
-20 dBm	D	1 -17.79	90 dBm							
-30 dBm										
-40 dBm	-									
n n lin	M		12					MB		
-50 dBm	العارين وال	allash parts	and a start filmer	C	1.1.1		n 1	in a state of the	Andrew Market 11	a de la casa de la
-60 dBm	A DECK	and the second	The state of the later of the	and the second					to print a second from	and statisticate a party
-00 0011	0									
-70 dBm										
-80 dBm										
Start 1	8.757	5 GHz			8001 p	ts			Sto	p 25.0 GHz
larker										
Type	Ref	Trc	X-val	ue I	Y-value	Func	tion	Fur	nction Resul	t
M1		1		632 GHz	-49.73 dBm					007
M2		1		012 GHz	-50.32 dBm					
M3		1	23.34	633 GHz	-52.43 dBm					


Date: 4.MAY.2023 10:24:07

Client: RedSeat Enter	rtainment LLC		Date: 7 May 2023	DNB Job: 16086			
EUT: Home DSP			Model No: 02018				
Requirement: Conduc	t: Conducted spurious emission <20dB of peak Tech: CL Payne						
Mid Channel: 2442 M	IHz Requir	rement =	= -18.35 dBm	Result: Pass			
Frequency range:	30MHz	to	6.2725GHz				

Defi	Inne	10.00 dE	offect	00.00 db	- 00	W 100 kHz					
Att	ever	10.00 ui 10				W 500 kHz	Mode	Sweep			
1Pk Vi	e W	10	ub oni	02.0 mb	- 10	N 300 KHZ	moue	Jweep			
					M1		M	1[1]			1.65 dBn
					TIMIT					2.	442030 GH
0 dBm—							M	2[1]			-47.05 dBr
-10 dBm										. 4.	884110 GH
-10 UBI											
-20 dBr		1 -18.35	50 dBm	_							
-20 000											
-30 dBm	γ <u> </u>			_							
-40 dBm	1		_	_							
									M2	<u>e</u>	
-50 dBm			_	-						_	M
dub later.				102 11			a state of the		فالمستعاد والمعار وعرية فالا	والالارديم وتبعد فللد بالبا	aller dagt aller parties bai Ny diamana diamana amin'ny diamana
-60 usu	1	Haddelah Maratan Haddelah Maratan	hinters training	ىلىرىم ئالىرى قىلىر. بەر يەلەر مىرىل		and a ball to a firm of the first of the fir	all departed by the	Max Carlo and	ale internet in a state	and the second secon	as the set of the set
			other life has seen a seen	and the second	10.00						
-70 dBm) — —										
-80 dBm											
-80 авп	1										
Start 3	0.0 M	Hz				8001 pt:	5			Stop 6	.2725 GHz
Marker											
Туре	Ref		X-valı	001000	Y	-value	Func	tion	Fur	nction Resul	t
M1		1		203 GHz		1.65 dBm					
M2 M3		1		411 GHz 097 GHz		47.05 dBm					
CIVI	_	1	0.19	U97 GHZ		-55,25 UBM					04.05.2023

Date: 4.MAY.2023 10:26:55

Client: RedSeat Ente	rtainment LLC	Date: 7 May 2023	DNB Job: 16086		
EUT: Home DSP		Model No: 02018			
Requirement: Condu	Conducted spurious emission <20dB of peak Tech: CL Payne				
Mid Channel: 2442 N	/Hz Requirement	= -18.35 dBm	Result: Pass		
Frequency range:	6.2725GHz to	12.515GHz			

Date: 4.MAY.2023 10:28:07

Client: RedSeat Enter	rtainment LLC	Date: 7 May 2023	DNB Job: 16086		
EUT: Home DSP		Model No: 02018			
Requirement: Conduc	rement: Conducted spurious emission <20dB of peak Tech: CL Payne				
Mid Channel: 2442 M	IHz Requirement =	= -18.35 dBm	Result: Pass		
Frequency range:	12.515GHz to	18.7575GHz			

	10.00 dB		B 👄 RBW 100 kHz				7]
Att	10.00 UB 10 c		IS S VBW 500 kHz	Mode Sw	een		
1Pk View	10 0	B BAT 02.5 II	5 - 10 N 300 KHZ	mode 3	сер		
2 K HON				M1[1	1		-50.84 dBi
						16.	193320 GH
) dBm				M2[1	1		-50.96 dBi
10 40-						15.	876560 GH
-10 dBm							
20 dBm-C	1 -18.35	0 dBm					
20 UBIII		Particular Control of					
30 dBm							
SU UDIII							
40 dBm							
TO GDIN							
50 dBm				M2 M1		M3	
STATE OF LAND	3101	 activity constrained dataset 	A STREET STREET STREET STREET	A Street Street Street	adaptall, sub presilientes of	in her and the state of the state of the	الم ومطالبة ال عادات والعا
Billing and a state of the		an a		a substant a state	Heldin contraction of a first for	and a stranger where the stranger of	appellan-support
		N 🗢 11 COU 11					
70 dBm							-
80 dBm —							
	5 CH2		8001 pt	<u>د</u>		Stop 19	7575 GHz
tart 12.51			0001 pt	3		5000 10	
Not a part of the second		X-value	Y-value	Function	. 1	Function Resul	+
arker	Tre			i anctior		r unccion Resul	
arker Type Ref			-50.84 dBm				
start 12.51 arker Type Ref M1 M2	Trc 1	16.19332 GHz 15.87656 GHz					

Date: 4.MAY.2023 10:29:36

Client: RedSeat Enter	rtainment LLC	Date: 7 May 2023	DNB Job: 16086
EUT: Home DSP		Model No: 02018	
Requirement: Conduc	cted spurious emission	<20dB of peak	Tech: CL Payne
Mid Channel: 2442 M	IHz Requirement =	= -18.35 dBm	Result: Pass
Frequency range:	18.7575GHz to	25GHz	

Reflev	el 10.00 d	Bm Offset	20.00 dB	RBW 100 k	Hz				
Att		db SWT		VBW 500 k		Iode Sweep	0		
1Pk View									
						M1[1]			-49.97 dBr
) dBm								19	.434340 GH
						M2[1]			-51.71 dB
10 dBm—								19	.927430 GH
10 0011									
20 dBm—	D1 -18.3	350 dBm		_					_
30 dBm—									
40 dBm—				_					
1.10	M1	M2							
50 d9m—	The state								
A PRIVATE AND A		and the still states in the states	J. Armenus	and discovered all the	Mandala	Lipple alberta la lita anna an	Line of the second states of the	I post hit of the state	and a state of the local
60 dBm—			and the second second second	a and Mildelin are presidentified as	ing last last	The Local State of Local States	the second second second second second	Sent on the state of the sector	
70 dBm—									_
80 dBm—									
start 18.	575 GHz			8001	pts	•		Ste	op 25.0 GHz
larker									
Type R	ef Trc	X-value	э	Y-value		Function	E E	unction Resu	ılt
M1	1	19.434		-49.97 dE					
5.40	1	19.927		-51.71 dE -52.00 dE					
M2 M3	1	19.070							

Date: 4.MAY.2023 10:31:21

Client: RedSeat Enter	tainment LLC	Date: 7 May 2023	DNB Job: 16086		
EUT: Home DSP		Model No: 02018			
Requirement: Conduc	nent: Conducted spurious emission <20dB of peak Tech: CL Payne				
High Channel: 2474 M	MHz Requireme	ent = -18.34 dBm	Result: Pass		
Frequency range:	30MHz to	6.2725GHz			

Refl	avel	10.00 dB	m Offset 20.00) dB 👄 RBW 1	00 kHz				
Att		10.00 02		ms 👄 VBW 5		Mode	Sweep		
1Pk Vi	ew								
				M1		M:	1[1]		1.80 dBr
D dBm-							2541		2.474020 GH
						IME	2[1]		-47.59 dBi 4.948090 GH
-10 dBn					_				4.946090 GH
-20 dBn	1-10	1 -18.34							
-30 dBn	1								
-40 dBn									
-40 UDII								M2	
-50 dBn	n——								M3
-		R 1				0.00.00	المتأوية باللرودي	the large of the state start	And the second s
-60 dBn	(****	al at he said	And the second second second second	A STATE OF A STATE OF A STATE			and a second second	Control of the second se	Annual States of the States of
-70 dBn	1								
-80 dBn	1								
Start 3	0.0 M	IHz		8	3001 pt:	5			Stop 6.2725 GHz
1arker									
Туре	Ref		X-value	Y-val		Funct	tion	Functio	on Result
M1		1	2.47402 G		0 dBm 9 dBm				
M2 M3		1	4.94809 G 6.07316 G		9 dBm 5 dBm				

Date: 4.MAY.2023 10:33:29

Client: RedSeat Enter	rtainment LLC	Date: 7 May 2023	DNB Job: 16086
EUT: Home DSP		Model No: 02018	
Requirement: Conduc	cted spurious emission	<20dB of peak	Tech: CL Payne
High Channel: 2474	MHz Requirement	= -18.34 dBm	Result: Pass
Frequency range:	6.2725GHz to	12.515GHz	

Refle	vel	10.00 de	m Offset 20.00 dB	🖷 RBW 100 kHz			(-
Att	VCI	10.00 42		● VBW 500 kHz	Mode Sweep	1	
1Pk Vie	W						
					M1[1]		-52.53 dBr
n dBm—							6.958700 GH
o abiii					M2[1]		-52.65 dBi
-10 dBm						1	6.726200 GH
-20 dBm		1 -18.34	IO dBm				
-30 dBm							
10 10							
-40 dBm							
Mo dBM	2 M1						
All KANK	-land			a a 20		16. 18	6166 N 8 65
-60 dBm		in the second	and the house of the deal of the state of the	alabata Milling and a second second	the surface of the test of the state of the	يون الفريعين ويواد فريا الماري. الألفان مارين من ويواد فريا المارين	a di la la la sudala para la sudala sudala di la sudala di la sudala di sudala di sudala di sudala di sudala di Na sudala di sudala sudala sudala sudala sudala di s
		a second diversion	All the local distances with the local distances of				
-70 dBm							
-80 dBm							
Start 6.	2725	GHz		8001 pt	s		Stop 12.515 GHz
1arker							
	Ref		X-value	Y-value	Function	Fun	ction Result
M1		1	6.9587 GHz	-52.53 dBm			
M2 M3		1	6.7262 GHz 6.39538 GHz	-52.65 dBm -52.70 dBm			
- Imo		-	0.39330 GHZ	JZ. TO UDIT			04.05.2023

Date: 4.MAY.2023 10:34:32

Client: RedSeat Enter	rtainment LLC	Date: 7 May 2023	DNB Job: 16086				
EUT: Home DSP		Model No: 02018					
Requirement: Conduc	cted spurious emission	<20dB of peak	Tech: CL Payne				
High Channel: 2474	MHz Requirement	= -18.34 dBm	Result: Pass				
Frequency range:	12.515GHz to	18.7575GHz					

Spectrum										
Ref Level	10.00	dBm Offset	20.00 dB	RBW 10	0 kHz					
Att	10	db SWT	62.5 ms	🔵 VBW 50	0 kHz	Mode	Sweep)		
∋1Pk View										
						M	1[1]			-51.23 dBn
0.dBm					_				1	6.142610 GH
o abiii						M	2[1]			-51.91 dBr 5.748600 GH
-10 dBm					_		1		1	5.748000 GH
-20 dBm	D1 -18.	340 dBm			_					
-30 dBm										
-40 dBm					_					
-50 dBm					M2	M1			MB	
	1.000000.00			Land L. Madeau	و سام الله و وا	My albert here	al al a dit man	AT LA POLI DA A ST LA POLIS	at the second states of	ale . I had a strang hilling
and a state	(Astal)	attijian hajijikadanta populari shiru daga sa	and the desidered	and being the strength	and a start of the	differences (day both	States and states	Married and State of Street, South	ales, 1 . Instantion and a spectrum
and whitehill, I	Providence of the		1. 18							
-70 dBm			_		_					
-80 dBm			_							
Start 12.51	5 GHz)01 pts				Ston	18.7575 GHz
Marker	U GITZ			0.	or pes				0.00	10.7070 4112
Type Ref	Trc	X-val	ue l	Y-valu	e 1	Func	tion		Function Res	ault
M1	1		261 GHz	-51.23	-	. and				
M2	1		486 GHz	-51.91						
	1	17.61	.019 GHz	-52.22	dBm					
MЗ										

Date: 4.MAY.2023 10:35:29

Client: RedSeat Enter	rtainment LLC	Date: 7 May 2023	DNB Job: 16086				
EUT: Home DSP		Model No: 02018					
Requirement: Conduc	cted spurious emission	<20dB of peak	Tech: CL Payne				
High Channel: 2474 I	MHz Requirement	= -18.34 dBm	Result: Pass				
Frequency range:	18.7575GHz to	25GHz					

	m											
Ref Lev	el 10				RBW 1							
Att		10 c	B SWT	62.5 ms	👄 VBW 5	00 kHz	Mode	Sweep				
∋1Pk Viev	i											
							M	1[1]				-49.21 dBr
0 dBm												457740 GH
o abiii							M	2[1]				-50.91 dBr
-10 dBm—									-		19.	921190 GH
-20 dBm—	_D1	-18.34	0 dBm		_	_			_			
-30 dBm—			_									-
-40 dBm—	_		-	-			,					-
	M1	МЗМ	2									
-50 dBm-	- L.			-								
Ball State Balling	al as			Margaret And a	AND IN AN ALCONG	head balles	tilles - delet	Real and party	"Han a police	al lithe and b	and a large station of a	illa destruction and
-60 dBm—			and the second se	and a second state of the	operated Michild Reports	a state of the second stat	ilait access to bala	a haranteeling	AND A PROPERTY.			
-70 dBm—	-			-								
-80 dBm—						_						
Start 18.	7575	GHz		-1		3001 pts	5				Sto	p 25.0 GHz
/larker												-
Type R	ef 1	Frc	X-valı	ie	Y-val	ie	Func	tion		Fund	tion Resu	lt
M1		1	19.45	774 GHz	-49.2	1 dBm						
M2		1		119 GHz		1 dBm						
MЗ		1	19.76	905 GHz	-50.9	8 dBm						

Date: 4.MAY.2023 10:36:03

15.247 (d) Radiated Spurious Emissions

An additional consideration when performing conducted measurements of restricted-band emissions is that unwanted emissions radiating from the EUT cabinet, control circuits, power leads, or intermediate circuit elements will likely go undetected in a conducted measurement configuration. To address this concern, a radiated test shall be performed to ensure that emissions emanating from the EUT cabinet (rather than from the antenna port) also comply with the applicable limits.

For these cabinet radiated spurious emission measurements, the EUT transmit antenna may be replaced with a termination matching the nominal impedance of the antenna. Procedures for performing radiated measurements are specified in 6.3, 6.5, and 6.6. All detected emissions shall comply with the applicable requirements.

This test is required for any spurious emission or modulation product that falls in an Unrestricted Band, as defined in Section 15.209. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Span	=	wide enough to fully capture the emission being measured
RBW	=	1 MHz for f 1 GHz, 100 kHz for f < 1 GHz
VBW	=	RBW
Sweep	=	auto
Detector function	=	peak
Trace	=	max hold

Follow the guidelines in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization, etc. A pre-amp and a high pass filter are required for this test, in order to provide the measuring system with sufficient sensitivity. Allow the trace to stabilize. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, which must comply with the limit specified in Section 15.35(b). Submit this data.

Now repeat the measurement using the average detector of the spectrum analyzer. Submit this data.

- Note 1:Limit listed is the general limit as specified in 15.209 in order to show compliance with the restricted bands of operation as well as the out of band limit in 15.247. No other identifiable signals were observed in the restricted bands as specified in 15.205.
- Note 2:Highest frequency investigated was the tenth harmonic of the fundamental, no radiated emissions were detected above the 1st harmonic.