

Product : Smart Socket Adapter

Trade mark : VUDOINt

Model/Type reference : SA010KU

Serial Number : N/A

Report Number : EED32J00021801

FCC ID : 2AK7ELIH03

Date of Issue : May 09, 2017

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

VuPoint Solutions Inc 710 Nogales Street, City of Industry, CA91748

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

pproved b

Report Seal

Tested By:

Tom-chen

Tom chen (Test Project)

Reviewed by:

Date:

Kevin yang (Reviewer)

May 09, 2017

1 REOM TOWN

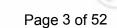
Kevin Lan (Project Engineer)

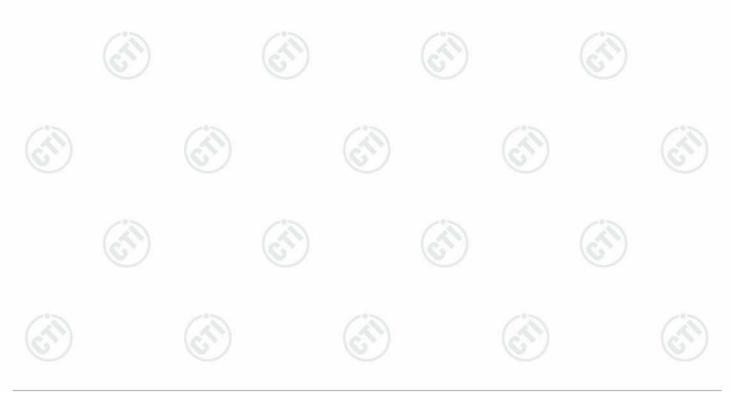
Sheek Luo (Lab supervisor)

Check No.: 2457567141

2 Version

Version No.	Date	Description	/
00	May 09, 2017	Original	
		23	/05





3 Test Summary

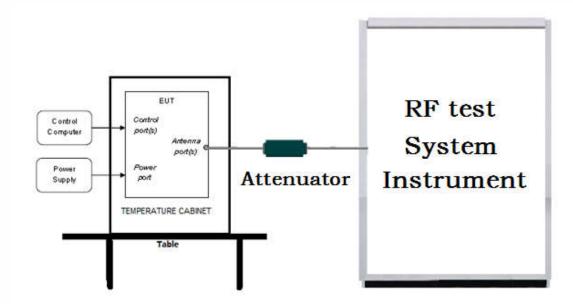
1 Cot Gairminary			
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Test according to ANSI C63.4-2014 & ANSI C63.10-2013. The tested sample and the sample information are provided by the client.

Page 4 of 52

4 Content

7.	400					
1 COVER	PAGE				•••••	1
2 VERSIC	ON	•••••			•••••	2
3 TEST S	UMMARY	•••••			•••••	3
4 CONTE	NT				•••••	4
5 TEST R	EQUIREMENT				••••	5
5.1.2 5.1.2 5.1.3 5.2 Tes	ST SETUP	setup sions test setup ssions test setup				
	AL INFORMATION					
6.2 GE 6.3 PR 6.4 DE 6.5 TES 6.6 DE 6.7 AB 6.8 OT	ENT INFORMATION NERAL DESCRIPTION OF DOUCT SPECIFICATION SCRIPTION OF SUPPOR ST LOCATION	SUBJECTIVE TO THE SUBJECTIVE TO THE T UNITS	S STANDARD			
7 EQUIP	MENT LIST				•••••	10
8 RADIO	TECHNICAL REQUI	REMENTS SPEC	FICATION		•••••	12
Appo Appo Appo Appo Appo Appo Appo	endix A): 6dB Occupi endix B): Conducted endix C): Band-edge endix D): RF Conduc endix E): Power Spec endix F): Antenna Re endix G): AC Power I endix H): Restricted I endix I): Radiated Sp	Peak Output Pow for RF Conducted ted Spurious Emise tral Density	erEmissionssions	y (Radiated)		
	IX 1 PHOTOGRAPH					
APPEND	IX 2 PHOTOGRAPH	S OF EUT			•••••	37



Report No. :EED32J00021801 Page 5 of 52

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

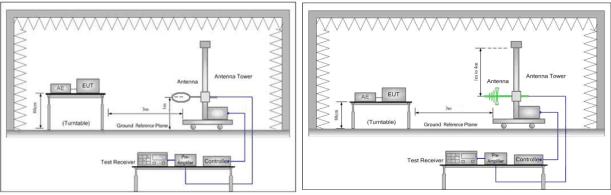
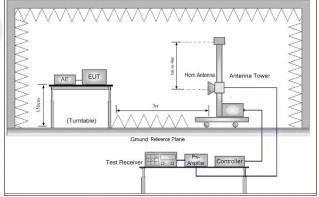
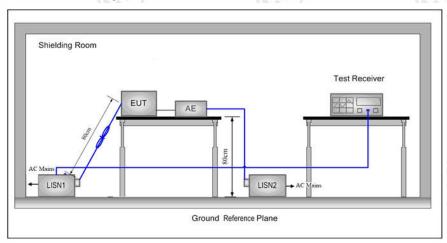


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz




Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:			(6)
Temperature:	24°C		
Humidity:	56% RH	2 240	
Atmospheric Pressure:	1010mbar		

5.3 Test Condition

Test channel:

Toot Made	Tv C		1,0		
Test Mode	Tx	Low(L) Middle(M) Hig		High(H)	
CECK	2402MHz ~2480 MHz	Channel 1 Channel		Channel 40	
GFSK	2402MH2 ~2480 MH2	2402MHz	2440MHz	2480MHz	
Transmitting mode:	The EUT transmitted the continuous modulation test signal at the specific channel(s).				

Report No. :EED32J00021801 Page 7 of 52

6 General Information

6.1 Client Information

Applicant:	VuPoint Solutions Inc.
Address of Applicant:	710 Nogales Street, City of Industry, CA91748
Manufacturer:	VuPoint Solutions Inc.
Address of Manufacturer:	710 Nogales Street, City of Industry, CA91748
Factory:	Sky Light Electronic (ShenZhen) Limited
Address of Factory:	No. 1, 5 and 6 Building, JinBi Industrial Area, HuangTian, BaoAn, Shenzhen, China.

6.2 General Description of EUT

Product Name:	Smart Socket Adapter		(0,0)	
Model No.(EUT):	SA010KU			
Trade mark:	W point			
EUT Supports Radios application:	BT 4.0	(6)		0,
Power Supply:	AC 120V/60Hz			
Sample Received Date:	Feb. 17, 2017		75	
Sample tested Date:	Feb. 17, 2017 to May 08, 2017		(47)	

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz				
Bluetooth Version:	4.0		(10)		120
Modulation Type:	GFSK		(6)		(0,)
Hardware Version:	V01 (manufacturer declare)				
Software Version:	V09 (manufacturer declare)				
Test Power Grade:	N/A	13		130	
Test Software of EUT:	N/A	(6)		(6.52)	
Antenna Type:	Monopole Antenna				
Antenna Gain:	1.5dBi				
Test Voltage:	AC 120V/60Hz		705		~°>

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

Associated	equipment name	Manufacture	model	Serial number	Supplied by
AE1	Light	PHILIPS	40W E27	6923410762792	СТІ
AE2	Porch Camera	VuPoint Solutions Inc.	NA	NA	Client

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

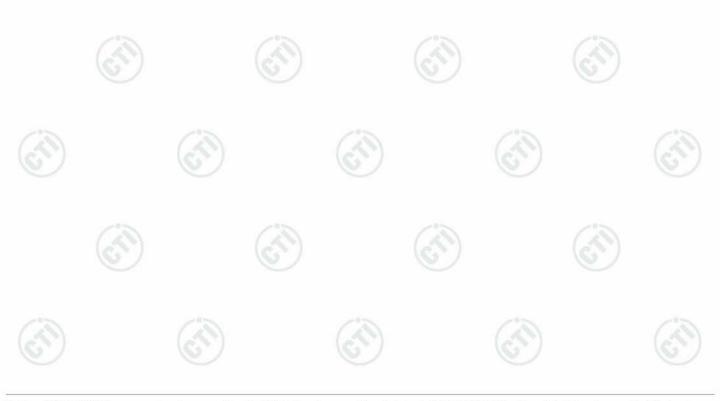
6.8 Other Information Requested by the Customer

None.

Report No. :EED32J00021801 Page 9 of 52

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nover conducted	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB (1GHz-18GHz)
2	Dedicated Courieurs amission test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
4	Conduction aminaian	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%



Report No. :EED32J00021801 Page 10 of 52

7 Equipment List

		RF test	system		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	03-14-2017	03-13-2018
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-14-2017	03-13-2018
Signal Generator	Keysight	N5182B	MY53051549	03-14-2017	03-13-2018
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002	TTF20120439	01-11-2017	01-10-2018
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	003	01-11-2017	01-10-2018
DC Power	Keysight	E3642A	MY54436035	03-14-2017	03-13-2018
BT&WI-FI Automatic control	R&S	OSP120	101374	03-14-2017	03-13-2018
RF control unit	JS Tonscend	JS0806-2	158060006	03-14-2017	03-13-2018

	Cor	nducted disturl	pance Test		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100009	06-16-2016	06-15-2017
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2017	04-26-2018
LISN	R&S	ENV216	100098	06-16-2016	06-15-2017
LISN	schwarzbeck	NNLK8121	8121-529	06-16-2016	06-15-2017
Current Probe	R&S	EZ17	100106	06-16-2016	06-15-2017
ISN	TESEQ GmbH	ISN T800	30297	02-23-2017	02-22-2018

	3M :	Semi/full-anech	oic Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3	TTE20130797	06-05-2016	06-05-2019
TRILOG Broadband Antenna	SCHWARZBEC K	VULB9163	9163-484	05-23-2016	05-22-2017
Microwave Preamplifier	Agilent	8449B	3008A02425	02-16-2017	02-15-2018
Horn Antenna	ETS-LINDGREN	3117	00057407	07-20-2015	07-18-2018
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017
Microwave Preamplifier	A.H.SYSTEMS	PAP-1840-60	6041.6042	06-30-2015	06-28-2018
Horn Antenna	A.H.SYSTEMS	SAS-574 374	374	06-30-2015	06-28-2018
Spectrum Analyzer	R&S	FSP40	100416	06-16-2016	06-15-2017
Receiver	R&S	ESCI	100435	06-16-2016	06-15-2017
LISN	schwarzbeck	NNBM8125	81251547	06-16-2016	06-15-2017
LISN	schwarzbeck	NNBM8125	81251548	06-16-2016	06-15-2017
Signal Generator	Agilent	E4438C	MY45095744	03-14-2017	03-13-2018
Signal Generator	Keysight	E8257D	MY53401106	03-14-2017	03-13-2018
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2017	04-26-2018
Cable line	Fulai(7M)	SF106	5219/6A	01-11-2017	01-10-2018
Cable line	Fulai(6M)	SF106	5220/6A	01-11-2017	01-10-2018
Cable line	Fulai(3M)	SF106	5216/6A	01-11-2017	01-10-2018
Cable line	Fulai(3M)	SF106	5217/6A	01-11-2017	01-10-2018
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002	TTF20120439	01-11-2017	01-10-2018
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	003	01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395-001	TTF20120434	01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393-001	TTF20120435	01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX02CA04 CL12-0396-002	TTF20120436	01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394-001	TTF20120437	01-11-2017	01-10-2018

Report No.: EED32J00021801 Page 12 of 52

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)



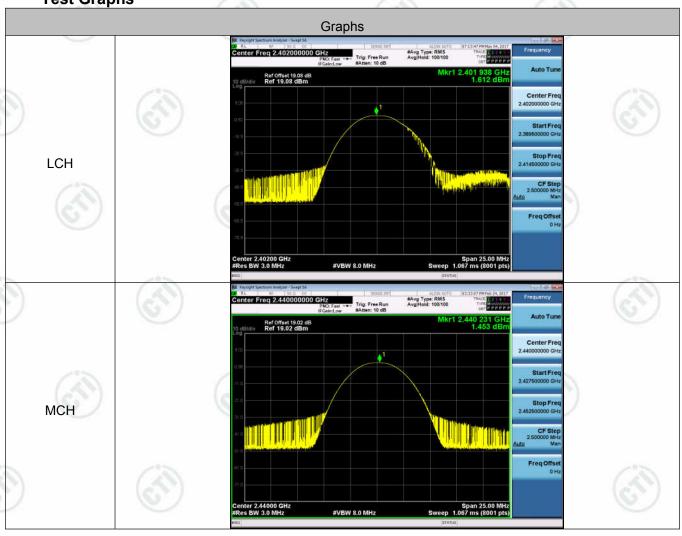
Appendix A): 6dB Occupied Bandwidth

Test Result

	Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict	Remark
5	BLE	LCH	0.7567	1.8481	PASS	CPS.
1	BLE	MCH	0.7455	1.4859	PASS	Peak
-	BLE	нсн	0.7298	1.4352	PASS	detector

Test Graphs

Page 14 of 52

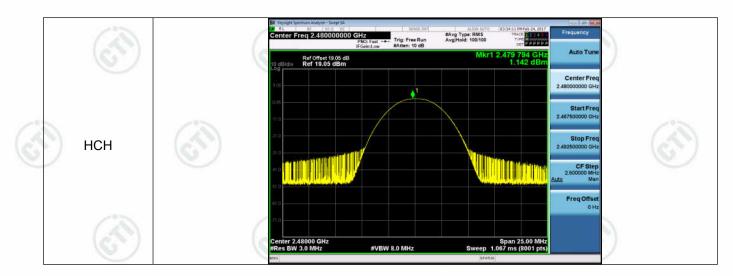


Appendix B): Conducted Peak Output Power

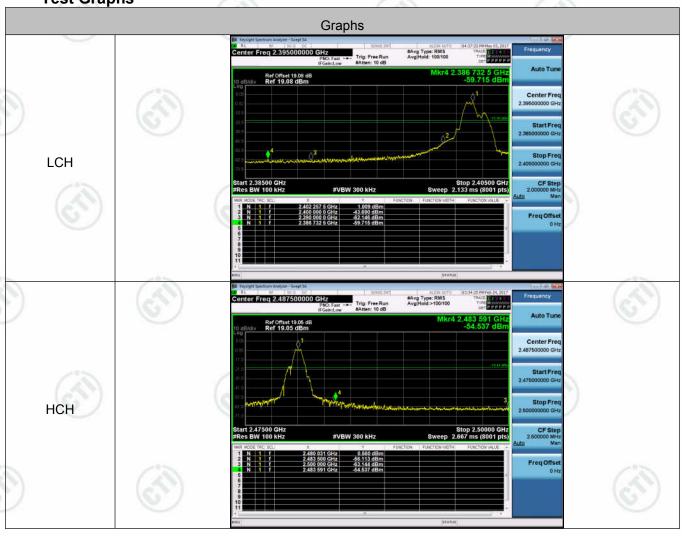
Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	1.612	PASS
BLE	MCH	1.453	PASS
BLE	HCH	1.142	PASS

Test Graphs



Page 16 of 52


Report No. :EED32J00021801 Page 17 of 52

Appendix C): Band-edge for RF Conducted Emissions

Result Table

	Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
5	BLE	LCH	1.009	-59.715	-18.99	PASS
4	BLE	НСН	0.560	-54.537	-19.44	PASS

Test Graphs

Report No. :EED32J00021801 Page 18 of 52

Appendix D): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	0.76	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	0.789	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	НСН	0.491	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graphs

Appendix E): Power Spectral Density

Result Table

Mode	Channel	PSD[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
BLE	LCH	-13.101	8	PASS
BLE	MCH	-13.181	8	PASS
BLE	нсн	-13.395	8	PASS

Test Graphs

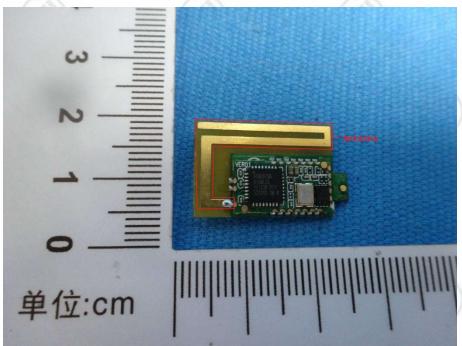


Page 22 of 52

Report No. :EED32J00021801 Page 23 of 52

Appendix F): Antenna Requirement

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

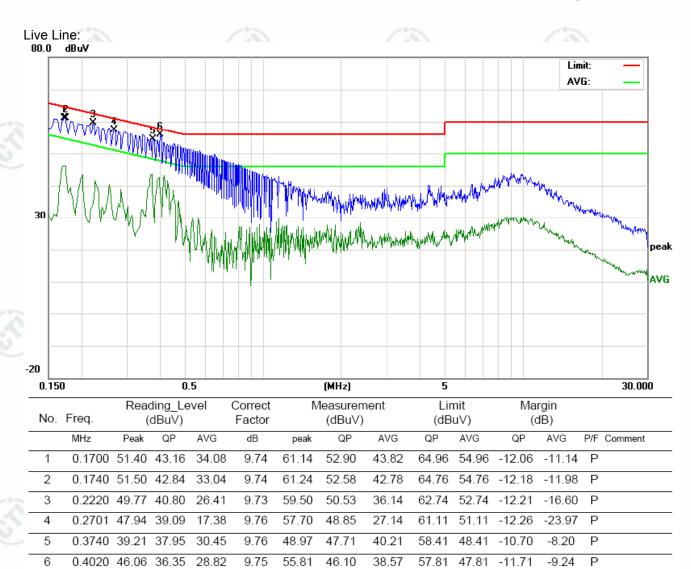
EUT Antenna:

The antenna is Monopole Antenna and no consideration of replacement. The best case gain of the antenna is 1.5dBi.

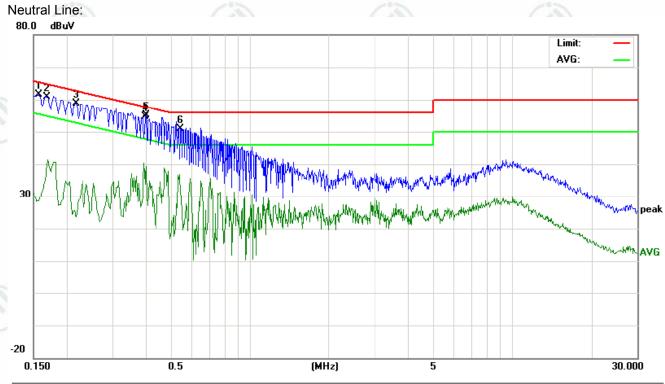
Appendix G): AC Power Line Conducted Emission

est Procedure:	Test frequency range :150KHz-	30MHz							
	1)The mains terminal disturbance		conducted in a shielded	room.					
	2) The EUT was connected to AC power source through a LISN 1 (Line Impedance								
	Stabilization Network) which								
	power cables of all other units of the EUT were connected to a second LISN								
	which was bonded to the gro								
	the unit being measured. A								
	power cables to a single LIS exceeded.	N provided the ratir	ng of the LISN was not						
	3)The tabletop EUT was placed upon a non-metallic table 0.8m above the groun- reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,								
	4) The test was performed with a vertical ground reference plane. The rear of the EU								
	shall be 0.4 m from the	_	•						
	reference plane was bonded	_	-	-					
	•		•						
	was placed 0.8 m from the boundary of the unit under test and bonded to a groun reference plane for LISNs mounted on top of the ground reference plane. The								
	distance was between the closest points of the LISN 1 and the EUT. All other unit								
	of the EUT and associated equipment was at least 0.8 m from the LISN 2.								
	5) In order to find the maximum emission, the relative positions of equipment and all								
	the interface cables must be changed according to ANSI C63.10 on c								
	measurement.								
imit:	(6,2)	(6,	(6,1)						
imit:		Limit	(dBµV)						
	Frequency range (MHz)	Quasi-peak	Average						
	0.15-0.5	66 to 56*	56 to 46*						
	0.5-5	56	46						
	5-30	60	50						
	* The limit decreases linearly wi	th the logarithm of	the frequency in the rand	ae 0.15 l					
	to 0.50 MHz.	g							
15	NOTE : The lower limit is applic	able at the transitio	n frequency						
7 2 3		(25)	(242)						
acurament Data									
easurement Data									
	s performed on the live and neutra	al lines with peak de	tector.						
initial pre-scan was	·	•		mission v					
n initial pre-scan was uasi-Peak and Avera	s performed on the live and neutra	•		mission v					
n initial pre-scan was uasi-Peak and Avera	·	•		mission v					
i initial pre-scan was uasi-Peak and Avera	·	•		mission v					
n initial pre-scan was uasi-Peak and Avera	·	•		mission v					
n initial pre-scan was uasi-Peak and Avera	·	•		nission v					
n initial pre-scan was uasi-Peak and Avera	·	•		mission v					
•	·	•		nission v					
n initial pre-scan was uasi-Peak and Avera	·	•		nission v					
initial pre-scan was asi-Peak and Avera	·	•		mission v					

 $Hot line; 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: call: 0755-33681700 \\ Complaint E-mail: complaint call: 0755-33681700 \\ Complaint E-mail: 0755-33681700 \\ Complaint E-mail: 0755-33681700 \\ Complaint E-mail: 0755-33681700 \\ Com$



Page 25 of 52



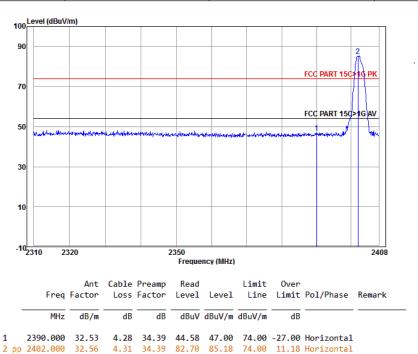
No.	Freq.		ding_Le	vel	Correct Factor	M	leasurem (dBuV)	nent	Lin (dBı			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1580	51.77	43.41	19.16	9.76	61.53	53.17	28.92	65.56	55.56	-12.39	-26.64	Р	
2	0.1700	50.92	43.03	30.29	9.74	60.66	52.77	40.03	64.96	54.96	-12.19	-14.93	Р	
3	0.2180	49.21	40.95	15.93	9.72	58.93	50.67	25.65	62.89	52.89	-12.22	-27.24	Р	
4	0.3940	38.39	36.95	25.82	9.75	48.14	46.70	35.57	57.98	47.98	-11.28	-12.41	Р	
5	0.4020	45.40	36.12	24.69	9.75	55.15	45.87	34.44	57.81	47.81	-11.94	-13.37	Р	
6	0.5420	31.89	33.04	23.83	9.73	41.62	42.77	33.56	56.00	46.00	-13.23	-12.44	Р	

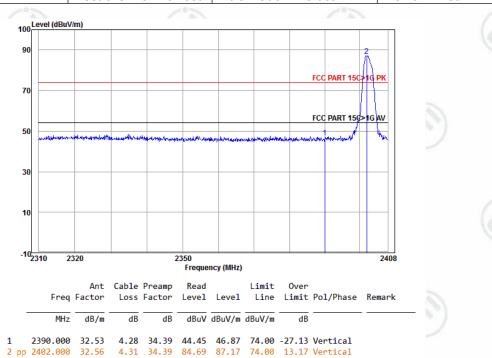
Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix H): Restricted bands around fundamental frequency (Radiated)

(Radiated)						
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak 1	120kHz	300kHz	Quasi-peak	
	Ab 21/2 401 le	Peak	1MHz	3MHz	Peak	100
	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:	a. The EUT was placed of at a 3 meter semi-aned determine the position. b. The EUT was set 3 me was mounted on the toto. c. The antenna height is determine the maximular polarizations of the antenna was tuned was turned from 0 deg. e. The test-receiver system Bandwidth with Maximular f. Place a marker at the frequency to show conbands. Save the spect	on the top of a rotate choic camber. The of the highest radiaters away from the poof a variable-heign varied from one may alue of the field tenna are set to may nission, the EUT was to heights from 1 rees to 360 degrees may set to Peak am Hold Mode. The pend of the restricter poliance. Also means of the restricter of	table wa ation. e interfere ght anter eter to fo d strength ake the management of the strength	ence-receinna tower. ur meters n. Both horneasurement ged to its 4 meters the maxin Function a	rs above the gas of the growing antenna above the growing antenna above the growing and the rotata and the rotata and specified the transmit is in the restricts.	o, which which which will be the white whi
	for lowest and highest		•		ower and mee	
	Above 1GHz test procedure g. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the let. The radiation measure Transmitting mode, an	channel ure as below: ve is the test site, on the change form to the meter and table in the ments are perform d found the X axis	change fr able 0.8 is 1.5 met e Highest ned in X, positioni	om Semi- meter to 1 er). channel Y, Z axis p	Anechoic Character About the Anechoic Character About the Anechoic Character Anechoic Cha	ambe ove
_imit:	Above 1GHz test proceding. Different between about to fully Anechoic Chammat 18GHz the distance is h. Test the EUT in the look. The radiation measure	channel ure as below: ve is the test site, on the change form to the meter and table in the ments are perform d found the X axis	change fr able 0.8 is 1.5 met e Highest ned in X, positioni ncies me	rom Semi- meter to 1 ter). channel Y, Z axis p ng which i	Anechoic Character About the Anechoic Character About the Anechoic Character Anechoic Cha	ambe ove
.imit:	Above 1GHz test proceding. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the look. The radiation measure Transmitting mode, an j. Repeat above procedure.	channel ure as below: ve is the test site, on the change form to the meter and table in the ments are perform d found the X axis tres until all frequent	change fr able 0.8 is 1.5 met e Highest ned in X, positioni ncies me	rom Semi- meter to 1 rer). channel Y, Z axis p ng which i easured wa	Anechoic Character (About 1995) Dositioning for the tis worse cases complete.	ambe
imit:	Above 1GHz test procede g. Different between above to fully Anechoic Cham 18GHz the distance is h. Test the EUT in the key in the radiation measure Transmitting mode, and j. Repeat above procedure. Frequency	channel ure as below: ve is the test site, conter change form to 1 meter and table is owest channel, the ments are performed found the X axis ares until all frequents.	change fr able 0.8 is 1.5 met e Highest ned in X, positioni ncies me	rom Semi- meter to 1 ter). channel Y, Z axis p ng which i easured wa	Anechoic Change of the control of th	ambe
imit:	Above 1GHz test proceding. Different between above to fully Anechoic Chammat 18GHz the distance is horizontal than the left in the radiation measure and the radiation measurement and the radiation measuremen	channel ure as below: ve is the test site, content change form to the test channel, the ments are performed found the X axis are until all frequents. Limit (dBµV/m 40.0	change fr able 0.8 is 1.5 met e Highest ned in X, positioni ncies me	rom Semi- meter to 1 fer). channel Y, Z axis p ng which i easured wa Rei Quasi-pe	Anechoic Character (About 15 meter (About 15 m	ambe
-imit:	Above 1GHz test proceding. Different between above to fully Anechoic Chammat 18GHz the distance is horizontal in the left. Test the EUT in the left. The radiation measure Transmitting mode, and journal in the left. Frequency 30MHz-88MHz 88MHz-216MHz	channel ure as below: ve is the test site, concerning form to the second table in th	change fr able 0.8 is 1.5 met e Highest ned in X, positioni ncies me	rom Semi- meter to 1 ter). channel Y, Z axis p ng which i asured wa Rer Quasi-pe Quasi-pe	Anechoic Change of the consistioning for the complete of the c	ambe
Limit:	Above 1GHz test procede g. Different between above to fully Anechoic Chammat 18GHz the distance is horizontal the EUT in the low in the radiation measure and the Transmitting mode, and in the radiation measure and the radiatio	channel ure as below: ve is the test site, conter change form to 1 meter and table is owest channel, the ments are performed found the X axis area until all frequents. Limit (dBµV/m 40.0 43.5 46.0	change fr able 0.8 is 1.5 met e Highest ned in X, positioni ncies me	om Semi- meter to 1 ter). channel Y, Z axis p ng which i easured wa Rei Quasi-pe Quasi-pe Quasi-pe Quasi-pe	Anechoic Change of the consistioning for the complete of the c	ambe

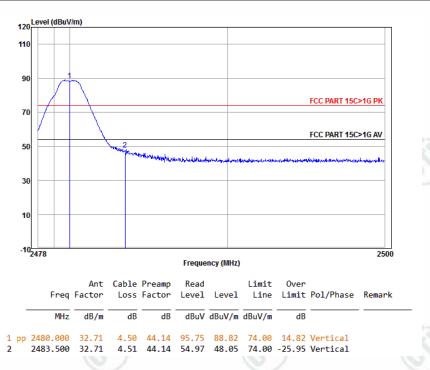


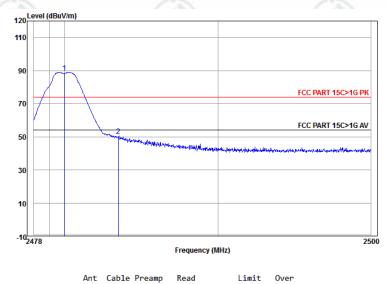

Page 28 of 52

Test plot as follows:

Worse case mode:	GFSK			
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak	

Worse case mode:	GFSK		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak





Page 29 of 52

Worse case mode:	GFSK		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

Worse case mode:	GFSK		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak

Freq Factor Loss Factor Level Level Line Limit Pol/Phase Remark

MHz dB/m dB dB dB dBuV/m dBuV/m dBuV/m dB

1 pp 2480.000 32.71 4.50 44.14 95.85 88.92 74.00 14.92 Vertical
2 2483.500 32.71 4.51 44.14 57.61 50.69 74.00 -23.31 Vertical

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix I): Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
6)	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
)	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
(32)	Above 1011-	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

I imit

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

Field strongth Limit

Measurement

Repeat above procedures until all frequencies measured was complete.

960MHz-1GHz

Above 1GHz

LIIIII(.	Fraguenay	Field strength	Limit	Remark	Measurement
	Frequency	(microvolt/meter)	(dBµV/m)	Remark	distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
	0.490MHz-1.705MHz	24000/F(kHz)	-	()	30
/	1.705MHz-30MHz	30	-		30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
			man, or will be a second or second o		Company of the Compan

500

500

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

54.0

54.0

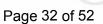
Quasi-peak

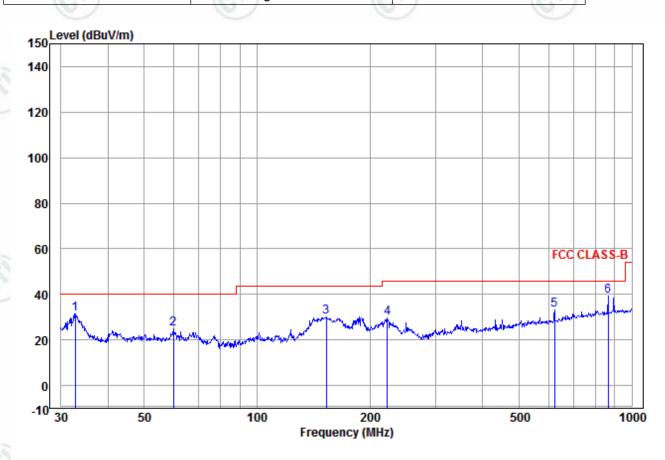
Average

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

30MHz~1GHz (QP)		
Test mode:	Transmitting	Horizontal

		Ant	Cable	Kead		Limit	Over		
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
	-								
_	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
		,							
1	34.156	13.27	0.89	5.01	19.17	40.00	-20.83	Horizontal	
2	60.704	13.54	1.43	8.24	23.21	40.00	-16.79	Horizontal	
3	114.114	12.06	1.57	13.29	26.92	43.50	-16.58	Horizontal	
4 pp	152.664	9.82	1.62	22.60	34.04	43.50	-9.46	Horizontal	
5	250.301	12.41	2.35	18.79	33.55	46.00	-12.45	Horizontal	
6	866.088	22.06	4.23	10.14	36.43	46.00	-9.57	Horizontal	





	Freq		Cable Loss					Pol/Phase	Remark
-	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	32.749	13.02	0.99	17.50	31.51	40.00	-8.49	Vertical	
2	59.859	13.82	1.43	9.80	25.05	40.00	-14.95	Vertical	
3	153.200	9.84	1.63	18.49	29.96	43.50	-13.54	Vertical	
4	222.950	11.99	2.28	15.36	29.63	46.00	-16.37	Vertical	
5	622.890	19.17	3.54	10.46	33.17	46.00	-12.83	Vertical	
6 pp		22.06				46.00		Vertical	

Page 33 of 52

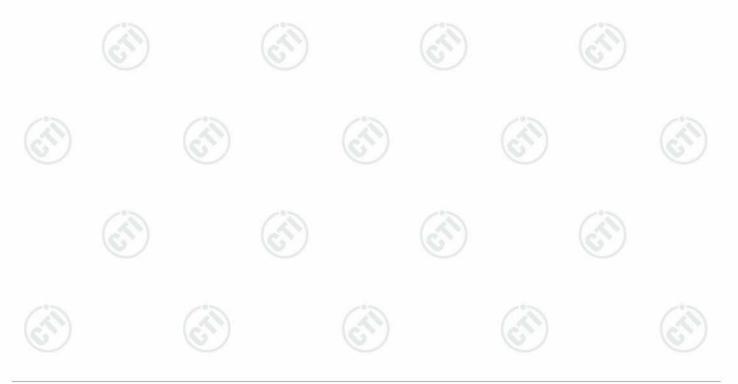
Transmitter Emission above 1GHz

Worse case mode:		GFSK		Test char	nnel:	Lowest	Remark: P	Remark: Peak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1502	30.87	2.60	44.00	48.97	38.44	74.00	-35.56	Pass	Н
2402	32.56	3.16	44.04	54.53	46.21	74.00	-27.79	Pass	Н
4804	34.69	6.72	44.60	51.04	47.85	74.00	-26.15	Pass	Н
7206	36.42	8.35	44.77	48.05	48.05	74.00	-25.95	Pass	Н
9608	37.88	7.67	45.58	44.62	44.59	74.00	-29.41	Pass	Н
12010	39.60	10.29	44.90	38.00	42.99	74.00	-31.01	Pass	Н
1502	30.87	2.60	44.00	48.09	37.56	74.00	-36.44	Pass	V
2402	32.56	3.16	44.04	47.36	39.04	74.00	-34.96	Pass	V
4804	34.69	6.72	44.60	50.49	47.30	74.00	-26.70	Pass	V
7206	36.42	8.35	44.77	48.96	48.96	74.00	-25.04	Pass	V
9608	37.88	7.67	45.58	48.63	48.60	74.00	-25.40	Pass	V
12010	39.60	10.29	44.90	47.87	52.86	74.00	-21.14	Pass	V

Worse case	mode:	GFSK		Test char	nnel:	Middle	Remark: P	Remark: Peak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1502	30.87	2.60	44.00	47.30	36.77	74.00	-37.23	Pass	/° #
2402	32.56	3.16	44.04	47.78	39.46	74.00	-34.54	Pass	(NH)
4804	34.69	6.72	44.60	52.79	49.60	74.00	-24.40	Pass	H
7206	36.42	8.35	44.77	52.17	52.17	74.00	-21.83	Pass	Н
9608	37.88	7.67	45.58	42.31	42.28	74.00	-31.72	Pass	Н
12010	39.60	10.29	44.90	45.98	50.97	74.00	-23.03	Pass	Н
1502	30.87	2.60	44.00	47.23	36.70	74.00	-37.30	Pass	V
2402	32.56	3.16	44.04	47.71	39.39	74.00	-34.61	Pass	V
4804	34.69	6.72	44.60	51.61	48.42	74.00	-25.58	Pass	V
7206	36.42	8.35	44.77	48.72	48.72	74.00	-25.28	Pass	V
9608	37.88	7.67	45.58	42.04	42.01	74.00	-31.99	Pass	V
12010	39.60	10.29	44.90	45.69	50.68	74.00	-23.32	Pass	V

Page 34 of 52

Worse case	Worse case mode:		GFSK		nel:	Highest	Remark: P	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1502	30.87	2.60	44.00	47.57	37.04	74.00	-36.96	Pass	~ H	
2402	32.56	3.16	44.04	48.32	40.00	74.00	-34.00	Pass	H	
4804	34.69	6.72	44.60	51.77	48.58	74.00	-25.42	Pass	H	
7206	36.42	8.35	44.77	46.56	46.56	74.00	-27.44	Pass	Н	
9608	37.88	7.67	45.58	42.28	42.25	74.00	-31.75	Pass	Н	
12010	39.60	10.29	44.90	45.36	50.35	74.00	-23.65	Pass	Н	
1502	30.87	2.60	44.00	47.63	37.10	74.00	-36.90	Pass	V	
2402	32.56	3.16	44.04	55.59	47.27	74.00	-26.73	Pass	V	
4804	34.69	6.72	44.60	52.14	48.95	74.00	-25.05	Pass	V	
7206	36.42	8.35	44.77	49.41	49.41	74.00	-24.59	Pass	V	
9608	37.88	7.67	45.58	40.35	40.32	74.00	-33.68	Pass	V	
12010	39.60	10.29	44.90	45.02	50.01	74.00	-23.99	Pass	V	

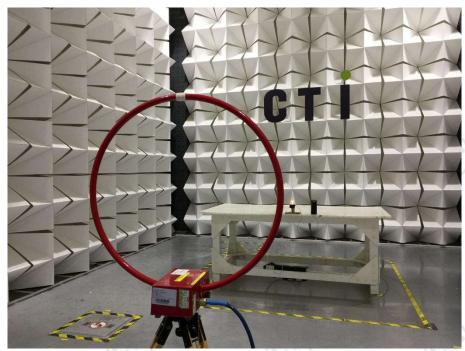

Note

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.



APPENDIX 1 PHOTOGRAPHS OF TEST SETUP

Test Model No.: SA010KU

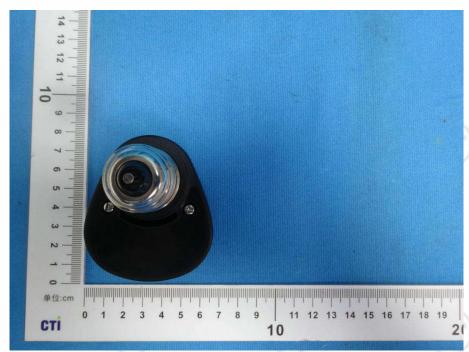
Radiated emission Test Setup-1(9kHz~30MHz)

Radiated spurious emission Test Setup-2 (30MHz~1GHz)

Page 36 of 52

Radiated spurious emission Test Setup-3(Above 1GHz)

Conducted Emissions



Page 37 of 52

APPENDIX 2 PHOTOGRAPHS OF EUT

Test model No.: SA010KU

View of Product-1

View of Product-2

Page 38 of 52

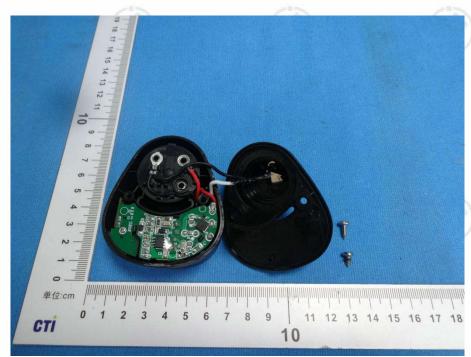
View of Product-3

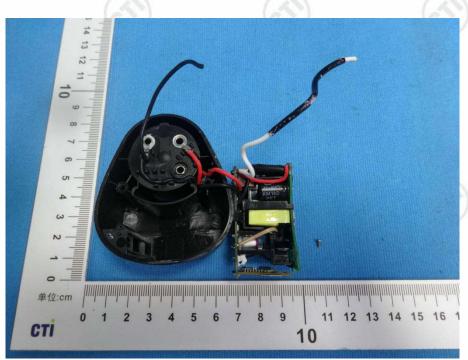
View of Product-4

Page 39 of 52

View of Product-5

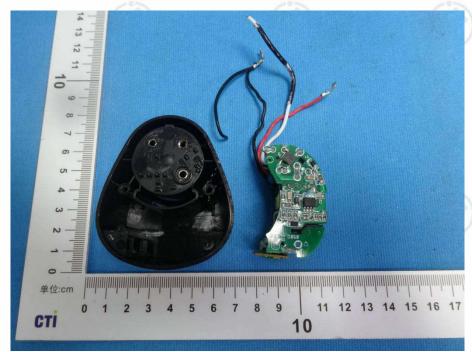
View of Product-6

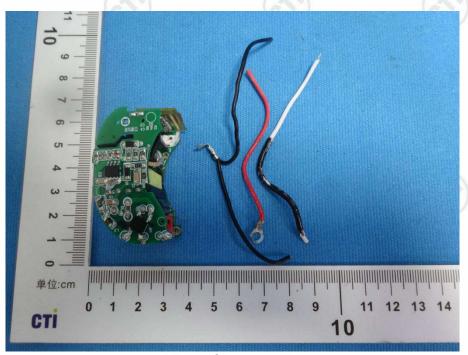




View of Product-7

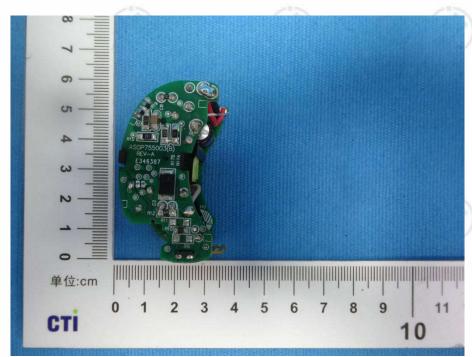
View of Product-8





View of Product-9

View of Product-10



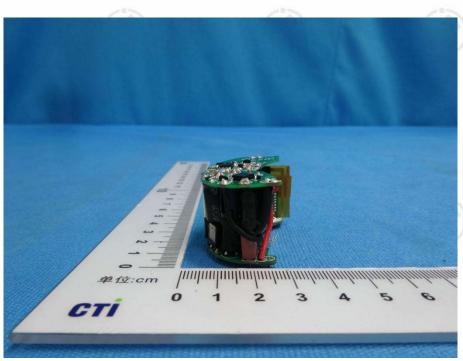


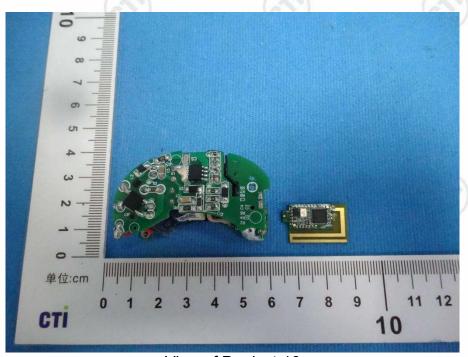
View of Product-11

View of Product-12

View of Product-13

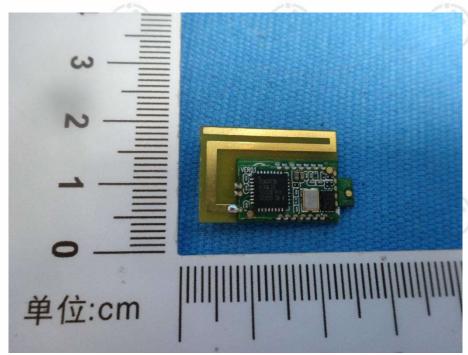
View of Product-14

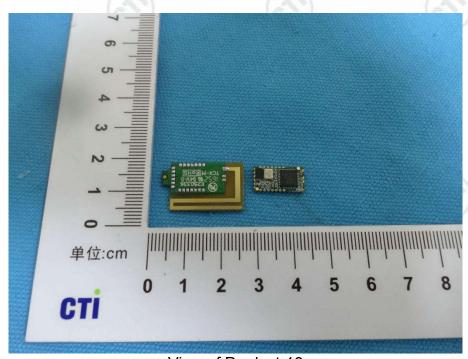




View of Product-15

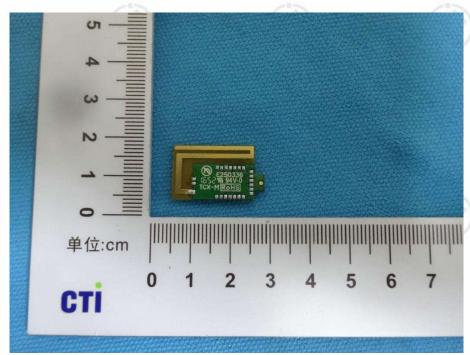
View of Product-16

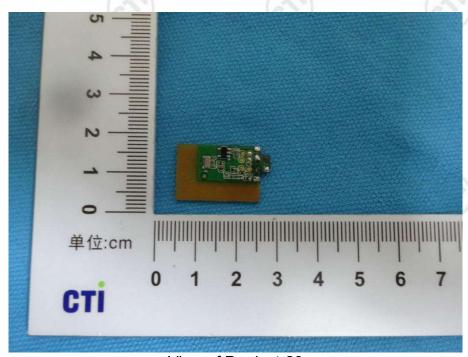




View of Product-17

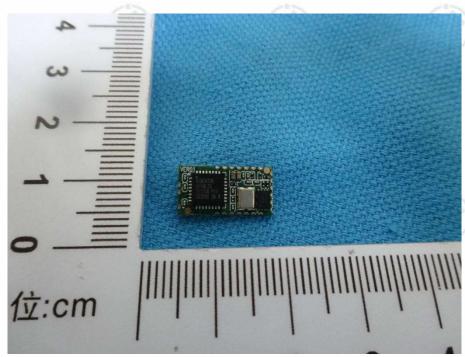
View of Product-18

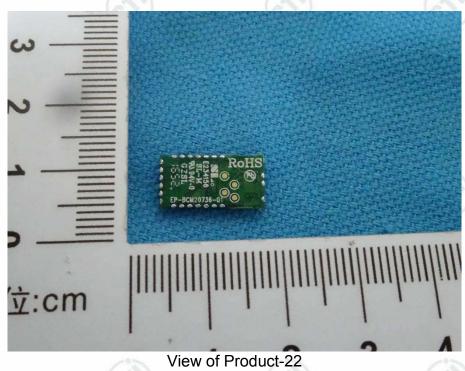




View of Product-19

View of Product-20



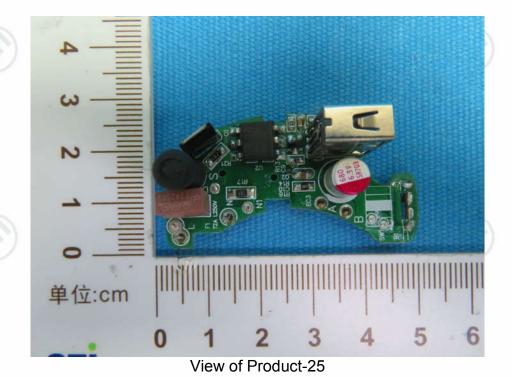


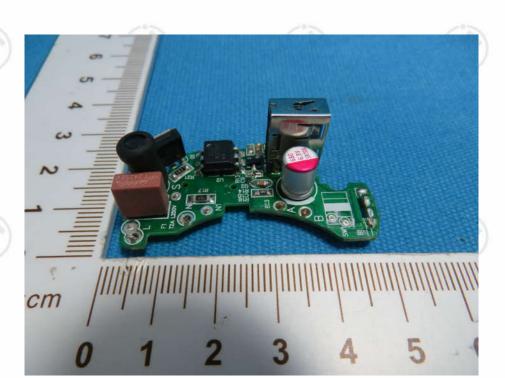
View of Product-21

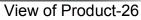
7 6 5 4 3 2 1 0 0 0 1 2 3 4 5 6 7 8 9 CTI

View of Product-23

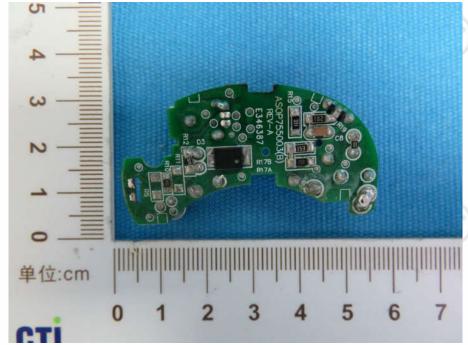
View of Product-24





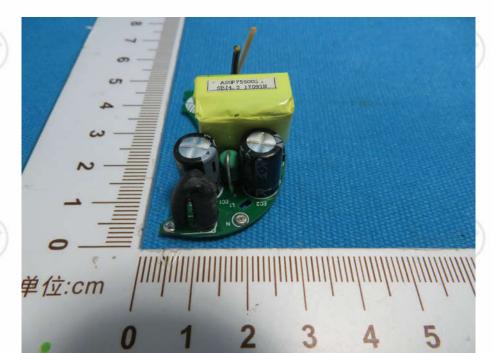


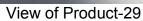
Page 49 of 52

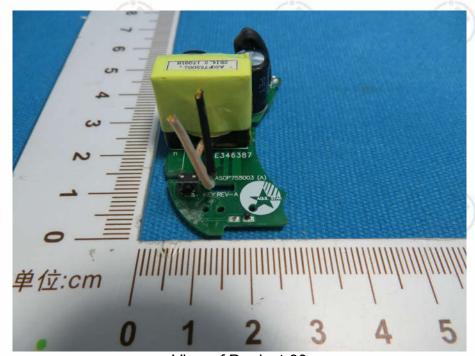


View of Product-27

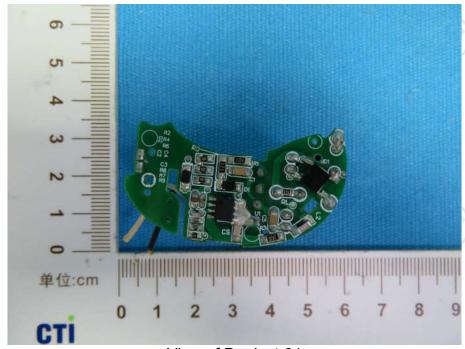
View of Product-28

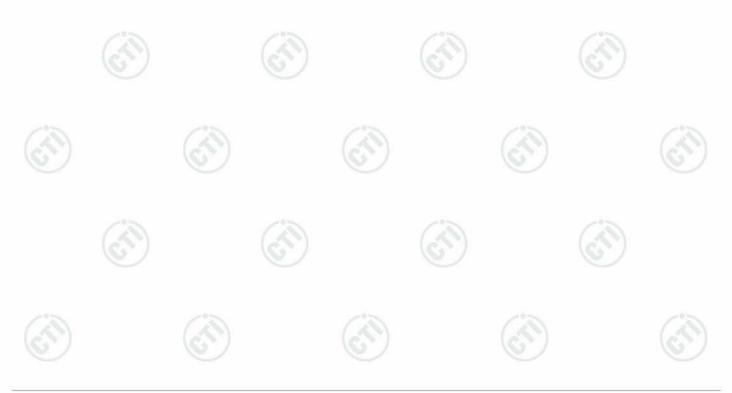






View of Product-30





View of Product-31

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

