

FCC 47 CFR PART 15 SUBPART C INDUSTRY (ISED) CANADA RSS-247 ISSUE 1

BLUETOOTH LOW ENERGY CERTIFICATION TEST REPORT

FOR

NFC/ BLE CAPABLE ELECTRONIC DOOR-MOUNTED ACCESS CONTROL PRODUCT

MODEL NUMBER: M1

FCC ID: 2AK5B-M1 IC: 22134-M1

REPORT NUMBER: R11464238-E1

ISSUE DATE: 2017-01-03

Prepared for LATCHABLE, INC. 450 WEST 33RD STREET, 12TH FLOOR NEW YORK, NY 10001, USA

Prepared by UL LLC 12 LABORATORY DR. RESEARCH TRIANGLE PARK, NC 27709 USA TEL: (919) 549-1400

NVLAP LAB CODE 200246-0

Revision History

Ver.	lssue Date	Revisions	Revised By
1	2016-11-29	Initial Issue	Brian Kiewra
2	2016-12-22	Corrected FCC-ID to 2AK5B-M1	Brian Kiewra
3	2017-01-03	Added "Note: Pre-scan plot taken at 1MHz/30kHz (RBW/VBW). Final measurements taken at 1MHz/3MHz (RBW/VBW)." to L/M/H radiated plots in 1-18GHz range. Corrected operating range on p. 7 to 2401.86 – 2479.87.	Brian Kiewra

Page 2 of 43

TABLE OF CONTENTS

1. AT	TESTATION OF TEST RESULTS4
2. TE	ST METHODOLOGY
3. FA	CILITIES AND ACCREDITATION
4. CA	LIBRATION AND UNCERTAINTY
4.1.	MEASURING INSTRUMENT CALIBRATION5
4.2.	SAMPLE CALCULATION
4.3.	MEASUREMENT UNCERTAINTY6
5. EG	UIPMENT UNDER TEST7
5.1.	DESCRIPTION OF EUT7
5.2.	MAXIMUM OUTPUT POWER7
5.3.	DESCRIPTION OF AVAILABLE ANTENNAS7
5.4.	SOFTWARE AND FIRMWARE7
5.5.	WORST-CASE CONFIGURATION AND MODE8
5.6.	DESCRIPTION OF TEST SETUP8
6. TE	ST AND MEASUREMENT EQUIPMENT10
7. ME	ASUREMENT METHODS12
7. ME 8. AN	EASUREMENT METHODS
 7. ME 8. AN 8. 1. 	ASUREMENT METHODS 12 ITENNA PORT TEST RESULTS 13 ON TIME, DUTY CYCLE AND MEASUREMENT METHODS 13
 7. ME 8. AN 8. 1. 8.2. 	ASUREMENT METHODS 12 ITENNA PORT TEST RESULTS 13 ON TIME, DUTY CYCLE AND MEASUREMENT METHODS 13 6 dB BANDWIDTH 14
 7. ME 8. AN 8.1. 8.2. 8.3. 	ASUREMENT METHODS 12 ITENNA PORT TEST RESULTS 13 ON TIME, DUTY CYCLE AND MEASUREMENT METHODS 13 6 dB BANDWIDTH 14 99% BANDWIDTH 17
 7. ME 8. AN 8. 1. 8. 2. 8. 3. 8. 4. 	ASUREMENT METHODS12ITENNA PORT TEST RESULTS13ON TIME, DUTY CYCLE AND MEASUREMENT METHODS136 dB BANDWIDTH1499% BANDWIDTH17OUTPUT POWER20
 7. ME 8. AN 8. 1. 8. 2. 8. 3. 8. 4. 8. 5. 	ASUREMENT METHODS12ITENNA PORT TEST RESULTS13ON TIME, DUTY CYCLE AND MEASUREMENT METHODS136 dB BANDWIDTH1499% BANDWIDTH17OUTPUT POWER20AVERAGE POWER21
 7. ME 8. AN 8. 1. 8. 2. 8. 3. 8. 4. 8. 5. 8. 6. 	ASUREMENT METHODS12ITENNA PORT TEST RESULTS13ON TIME, DUTY CYCLE AND MEASUREMENT METHODS136 dB BANDWIDTH1499% BANDWIDTH17OUTPUT POWER20AVERAGE POWER21POWER SPECTRAL DENSITY22
 7. ME 8. AN 8. 1. 8. 2. 8. 3. 8. 4. 8. 5. 8. 6. 8. 7. 	EASUREMENT METHODS12ITENNA PORT TEST RESULTS13ON TIME, DUTY CYCLE AND MEASUREMENT METHODS136 dB BANDWIDTH1499% BANDWIDTH17OUTPUT POWER20AVERAGE POWER21POWER SPECTRAL DENSITY22CONDUCTED SPURIOUS EMISSIONS25
 7. ME 8. AN 8. 1. 8. 2. 8. 3. 8. 4. 8. 5. 8. 6. 8. 7. 9. RA 	EASUREMENT METHODS12ITENNA PORT TEST RESULTS13ON TIME, DUTY CYCLE AND MEASUREMENT METHODS136 dB BANDWIDTH1499% BANDWIDTH17OUTPUT POWER20AVERAGE POWER21POWER SPECTRAL DENSITY22CONDUCTED SPURIOUS EMISSIONS25NDIATED TEST RESULTS29
 7. ME 8. AN 8. 1. 8. 2. 8. 3. 8. 4. 8. 5. 8. 6. 8. 7. 9. RA 9. 1. 	EASUREMENT METHODS12ITENNA PORT TEST RESULTS13ON TIME, DUTY CYCLE AND MEASUREMENT METHODS136 dB BANDWIDTH1499% BANDWIDTH17OUTPUT POWER20AVERAGE POWER21POWER SPECTRAL DENSITY22CONDUCTED SPURIOUS EMISSIONS25ADIATED TEST RESULTS29LIMITS AND PROCEDURE29
 7. ME 8. AN 8.1. 8.2. 8.3. 8.4. 8.5. 8.6. 8.7. 9. A 9.1. 9.2. 	EASUREMENT METHODS12ITENNA PORT TEST RESULTS13ON TIME, DUTY CYCLE AND MEASUREMENT METHODS136 dB BANDWIDTH1499% BANDWIDTH17OUTPUT POWER20AVERAGE POWER21POWER SPECTRAL DENSITY22CONDUCTED SPURIOUS EMISSIONS25DIATED TEST RESULTS29LIMITS AND PROCEDURE29TX 1-18 GHz FOR BLUETOOTH LOW ENERGY MODE IN THE 2.4 GHz BAND30
 7. ME 8. AN 8.1. 8.2. 8.3. 8.4. 8.5. 8.6. 8.7. 9. RA 9.1. 9.2. 9.3. 	EASUREMENT METHODS12ITENNA PORT TEST RESULTS13ON TIME, DUTY CYCLE AND MEASUREMENT METHODS136 dB BANDWIDTH1499% BANDWIDTH17OUTPUT POWER20AVERAGE POWER21POWER SPECTRAL DENSITY22CONDUCTED SPURIOUS EMISSIONS25NDIATED TEST RESULTS29LIMITS AND PROCEDURE29TX 1-18 GHz FOR BLUETOOTH LOW ENERGY MODE IN THE 2.4 GHz BAND30WORST-CASE ABOVE 18GHz37
 7. ME 8. AN 8.1. 8.2. 8.3. 8.4. 8.5. 8.6. 8.7. 9.1. 9.2. 9.3. 9.4. 	ASUREMENT METHODS 12 ITENNA PORT TEST RESULTS 13 ON TIME, DUTY CYCLE AND MEASUREMENT METHODS 13 6 dB BANDWIDTH 14 99% BANDWIDTH 17 OUTPUT POWER 20 AVERAGE POWER 21 POWER SPECTRAL DENSITY 22 CONDUCTED SPURIOUS EMISSIONS 25 NDATED TEST RESULTS 29 LIMITS AND PROCEDURE 29 TX 1-18 GHz FOR BLUETOOTH LOW ENERGY MODE IN THE 2.4 GHz BAND 30 WORST-CASE ABOVE 18GHz 37 WORST-CASE BELOW 1 GHz 38
 7. ME 8. AN 8.1. 8.2. 8.3. 8.4. 8.5. 8.6. 8.7. 9. RA 9.1. 9.2. 9.3. 9.4. 10. 	EASUREMENT METHODS12ITENNA PORT TEST RESULTS13ON TIME, DUTY CYCLE AND MEASUREMENT METHODS136 dB BANDWIDTH1499% BANDWIDTH17OUTPUT POWER20AVERAGE POWER21POWER SPECTRAL DENSITY22CONDUCTED SPURIOUS EMISSIONS25ADIATED TEST RESULTS29LIMITS AND PROCEDURE29TX 1-18 GHz FOR BLUETOOTH LOW ENERGY MODE IN THE 2.4 GHz BAND30WORST-CASE BELOW 1 GHz37WORST-CASE BELOW 1 GHz38SETUP PHOTOS40Page 3 of 4321

1. ATTESTATION OF TEST RESULTS

	STANDARD	TEST RESULTS
	APPLICABLE STAN	DARDS
DATE TESTED:	2016-11-01	
SERIAL NUMBER:	290021000f5135323537	73138
MODEL:	M1	
EUT DESCRIPTION:	NFC/ BLE Capable Elec Product	tronic Door-Mounted Access Control
COMPANY NAME:	Latchable, Inc. 450 W. 33 rd ST.,12 th Floo New York, NY 10001, U	or SA

CFR 47 Part 15 Subpart C	Pass
INDUSTRY (ISED) CANADA RSS-247 Issue 1	Pass
INDUSTRY (ISED) CANADA RSS-GEN Issue 4	Pass

UL LLC tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL LLC based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL LLC and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL LLC will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL LLC By: Prepared By:

M

Jeffrey Moser EMC Program Manager UL – Consumer Technology Division

Brian T. Kiewra EMC Engineer UL – Consumer Technology Division

Page 4 of 43

UL LLC FORM NO: 03-EM-F00858 12 Laboratory Dr., RTP, NC 27709 TEL: (919) 549-1400 This report shall not be reproduced except in full, without the written approval of UL LLC.

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, ANSI C63.10-2013, RSS-GEN Issue 4, RSS-247 Issue 1.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 12 Laboratory Dr., Research Triangle Park, NC 27709, USA and 2800 Suite B, Perimeter Park Drive, Morrisville, NC 27560.

12 Laboratory Dr., RTP, NC 27709
Chamber A
Chamber C

2800 Suite B Perimeter Park Dr.,			
Morrisville, NC 27560			
Chamber NORTH			
Chamber SOUTH			

The onsite chambers are covered under Industry (ISED) Canada company address code 2180C with site numbers 2180C -1 through 2180C-4, respectively.

UL LLC (RTP) is accredited by NVLAP, Laboratory Code 200246-0. The full scope of accreditation can be viewed at <u>http://www.nist.gov/nvlap/.</u>

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided: Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

Page 5 of 43

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
RF output power, conducted	±0.45 dB
Power Spectral Density, conducted	±1.50 dB
Unwanted Emissions, conducted	±2.94 dB
All emissions, radiated	±5.36 dB
Conducted Emissions (0.150 – 30MHz)	±3.65 dB
Temperature	±0.07 °C
Humidity	±2.26 %
DC and Low Frequency Voltages	±1.27 %

Uncertainty figures are valid to a confidence level of 95%.

Page 6 of 43

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is an electronic door-mounted access control product that contains BLE and NFC radios.

The radio module is manufactured by Texas Instruments.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency	Mode	Output Power	Output Power
Range		(dBm)	(mW)
(MHz)			
2401.86 - 2479.87	BLE	1.51	1.42

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a chip antenna, with a maximum gain of +1.69dBi.

5.4. SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was revision 1.7.0.1.

5.5. WORST-CASE CONFIGURATION AND MODE

Radiated emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

EUT is only intended to operate installed in a door, which is a fixed orientation; therefore, all final radiated testing was performed in this position.

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List						
Description Manufacturer Model Serial Number FCC ID						
Laptop	Apple	Macbook	NA	NA		

I/O CABLES

I/O Cable List						
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length (m)	Remarks
1	Antenna	1	SMA	RF	<1m	NA

TEST SETUP

The EUT is installed in as a standalone device. Test software exercised the radio card.

SETUP DIAGRAM FOR TESTS

Page 9 of 43

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment Used - Radiated Disturbance Emissions Test Equipment (Morrisville - South Chamber)

Equip. ID	Description	Manufacturer	Model Number	Last Cal.	Next Cal.
	0.009-30MHz	(Loop Ant.)			
AT0079	Active Loop Antenna	ETS-Lindgren	6502	2015-12-08	2016-12-31
	30-1000 MHz				
AT0074	Hybrid Broadband Antenna	Sunol Sciences Corp.	JB3	2016-06-07	2017-06-30
	1-18 GHz				
AT0069	Double-Ridged Waveguide Horn Antenna, 1 to 18 GHz	ETS Lindgren	3117	2016-03-07	2017-03-31
	18-26 GHz				
AT0076	Horn Antenna, 18- 26.5GHz	ARA	MWH-1826/B	2016-09-06	2017-09-06
	Gain-Loss Chains				
S-SAC01	Gain-loss string: 0.009- 30MHz	Various	Various	2016-10-04	2017-10-04
S-SAC02	Gain-loss string: 30- 1000MHz	Various	Various	2016-06-26	2017-06-30
S-SAC03	Gain-loss string: 1- 18GHz	Various	Various	2016-08-28	2017-08-28
S-SAC04	Gain-loss string: 18- 40GHz	Various	Various	2016-02-29	2017-02-28
	Receiver & Software				
SA0025	Spectrum Analyzer	Agilent	N9030A	2016-03-17	2017-03-31
SA0026 (18- 40GHz RSE)	Spectrum Analyzer	Agilent	N9030A	2016-02-24	2017-02-28
SOFTEMI	EMI Software	UL	Version 9.5	NA	NA
	Additional Equipment used				
139843	Temp/Humid/Pressure Meter	Control Co./Fisher	14-650-118	2016-02-19	2017-02-19

Test Equipment Used - Wireless Conducted Me	asurement Equipment
---	---------------------

Equipment ID	Description	Manufacturer	Model Number	Last Cal.	Next Cal.
	Conducted Room 1				
72822 (SA0019)	Spectrum Analyzer	Agilent Technologies	E4446A	2016-08-25	2017-08-25
PWM004	RF Power Meter	Keysight Technologies	Keysight N1911A echnologies E9323A echnologies E9323A		2017-06-22
PWS004	Peak and Avg Power Sensor, 50MHz to 6GHz	Keysight Technologies	E9323A	2016-06-22	2017-06-22
139843	Temp/Humid/Pressure Meter	Control Co./Fisher	14-650-118	2016-02-19	2017-02-19
76022	DC Regulated Power Supply	CircuitSpecialist s.Com	CSI3005X5	N/A	N/A
	Conducted Room 2				
SA0020	Spectrum Analyzer	Agilent Technologies	E4446A	2016-03-22	2017-03-31
PWM003	RF Power Meter	Keysight Technologies	N1911A	2016-06-21	2017-06-21
PWS003	Peak and Avg Power Sensor, 50MHz to 6GHz	Keysight Technologies	E9323A	2016-06-21	2017-06-21
1100502	Temp/Humid Chamber	Cincinnati Sub- Zero	ZPH-8-3.5-SCT/AC	2016-06-06	2017-06-06
139843	Temp/Humid/Pressure Meter	Control Co./Fisher	14-650-118	2016-02-19	2017-02-19
76021	DC Regulated Power Supply	CircuitSpecialist s.Com	CSI3005X5	N/A	N/A

Page 11 of 43

7. MEASUREMENT METHODS

On Time and Duty Cycle: KDB 558074, Section 6.0

<u>6 dB BW</u>: KDB 558074 D01 v03r05, Section 8.1.

<u>99% Bandwidth:</u> ANSI C63.10-2013, Sections 6.9.3

Output Power: KDB 558074 D01 v03r05, Section 9.1.2.

Power Spectral Density: KDB 558074 D01 v03r05, Section 10.2.

Out-of-band emissions in non-restricted bands: KDB 558074 D01 v03r05, Section 11.0.

Out-of-band emissions in restricted bands: KDB 558074 D01 v03r05, Section 12.1.

General Radiated Emissions: ANSI C63.10:2013 Sections 6.3-6.6

Page 12 of 43

8. ANTENNA PORT TEST RESULTS

8.1. ON TIME, DUTY CYCLE AND MEASUREMENT METHODS

<u>LIMITS</u>

None; for reporting purposes only.

PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method.

ON TIME AND DUTY CYCLE RESULTS

Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/B
	В		x	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
BLE	160.200	160.200	1.000	100.00%	0.00	0.010

DUTY CYCLE PLOTS

🗧 Agiler	nt 08:12:58	3 Nov 1, 2010	ò				L	Measure
Pv5.4(10 ef 20 dE Peak E	01216),40: 3m	882, Conducte #Atten 30 dE	d RM 2 }		▲ Mkr:	3 16 -0.01	0.2 ms .2 dB	Meas Of
og - 0 = B/ -	3R Ø					3		Channel Power
1.2 B								Occupied Bk
PAvg –								ACF
enter 2. es BW 8 Marker	439 864 0 MHz Trace	Hz # Type	VBW 50 MHz X Axis	Sweep	200 ms	Span (1001 Amplitu	0 Hz pts) de	Multi Carrier Power
1R 1∆ 3R 3∆	(1) Time (1) Time (1) Time (1) Time (1) Time		19.8 m 160.2 m 19.8 m 160.2 m	6 6 6 8	-3.57 -0.0 -3.57 -0.0			Power Stat CCDF
								More 1 of 2

Test Information

Tester: Jeff Cabrera Date: 2016-11-01

Page 13 of 43

8.2. 6 dB BANDWIDTH

LIMITS

FCC §15.247 (a) (2)

IC RSS-247 5.2 (1)

The minimum 6 dB bandwidth shall be at least 500 kHz.

<u>RESULTS</u>

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2401.860	0.7100	0.5
Middle	2439.864	0.6880	0.5
High	2479.870	0.7360	0.5

Page 14 of 43

6 dB BANDWIDTH

Page 15 of 43

<u>Test Information</u> Tester: Jeffrey Cabrera Date: 2016-11-01

Page 16 of 43

8.3. 99% **BANDWIDTH**

<u>LIMITS</u>

None; for reporting purposes only. Testing per RSS-Gen Clause 6.6.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 5% of the 99 % bandwidth and to 1% of the span. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2401.860	1.0487
Middle	2439.864	1.0526
High	2479.870	1.0619

Page 17 of 43

99% BANDWIDTH

Page 18 of 43

99% BANDWIDTH HIGH CH	1		0000100
Agilent 03.11.01 NUV 1, 2010	L		easure
Ch Freq 2.47987 GHz Occupied Bandwidth	Trig F Averages: 20	-ree	Meas Off
		Chan	nel Power
APv5.4(101216),40882, Conducted RM 2			
Ref 10 dBm #Htten 20 dB #Samp		0c	cupied Bl
10 dB/ Offst 11.2			ACI
dB Center 2.479 870 GHz	Span 2	MHz Mu	lti Carrie Powe
#Res BW 18 kHz #VBW 56	kHz #Sweep 100 ms (1001	pts)	<u>.</u>
Occupied Bandwidth 1 Ø619 MHz	Осс ВИ % Рыг 99.0 × dB –26.00	0 % P	ower Sta CCDF
Transmit Freq Error 4.854 kHz x dB Bandwidth 1.330 MHz*			More 1 of 3
Copyright 2000–2010 Agilent Techno	ologies		

<u>Test Information</u> Tester: Jeffrey Cabrera Date: 2016-11-01

Page 19 of 43

8.4. OUTPUT POWER

<u>LIMITS</u>

FCC §15.247 (b)

IC RSS-247 5.4 (4)

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

<u>RESULTS</u>

Channel	Frequency (MHz)	Peak Power Reading (dBm)	Limit (dBm)	Margin (dB)
Low	2401.860	1.510	30	-28.490
Middle	2439.864	1.230	30	-28.770
High	2479.870	1.320	30	-28.680

<u>Test Information</u> Tester: Jeffrey Cabrera Date: 2016-11-01

Page 20 of 43

8.5. AVERAGE POWER

LIMITS

None; for reporting purposes only.

RESULTS

The cable assembly insertion loss of 11.17 dB (including 10 dB pad and 1.17 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	AV power
	(MHz)	(dBm)
Low	2401.860	1.12
Middle	2439.864	1.00
High	2479.870	0.97

<u>Test Information</u> Tester: Jeffrey Cabrera Date: 2016-11-01

Page 21 of 43

8.6. POWER SPECTRAL DENSITY

LIMITS

FCC §15.247 (e)

IC RSS-247 5.2 (2)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

RESULTS

Channel	Frequency (MHz)	PSD (dBm)	Limit (dBm)	Margin (dB)
Low	2401.860	-15.06	8	-23.06
Middle	2439.864	-14.05	8	-22.05
High	2479.870	-13.84	8	-21.84

Page 22 of 43

POWER SPECTRAL DENSITY

Page 23 of 43

<u>Test Information</u> Tester: Jeffrey Cabrera Date: 2016-11-01

Page 24 of 43

8.7. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

IC RSS-247 5.5

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

RESULTS

SPURIOUS EMISSIONS, LOW CHANNEL

Page 25 of 43

SPURIOUS EMISSIONS, MID CHANNEL

Page 26 of 43

SPURIOUS EMISSIONS, HIGH CHANNEL

Page 27 of 43

<u>Test Information</u> Tester: Jeffrey Cabrera Date: 2016-11-01

Page 28 of 43

9. RADIATED TEST RESULTS

9.1. LIMITS AND PROCEDURE

<u>LIMITS</u>

FCC §15.205, §15.209, §15.247 (d) IC RSS-GEN Clause 8.9 (Transmitter)

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
0.009-0.490	2400/F(kHz) @ 300 m	-
0.490-1.705	24000/F(kHz) @ 30 m	-
1.705 - 30	30 @ 30m	-
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane for below 1GHz measurements and 1.5 m above the ground plane for above 1GHz measurements. The antenna to EUT distance is 3 meters.

For measurements below 1 GHz the resolution bandwidth is set to 120 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements for the 30-1000 MHz range, 9 kHz for peak detection measurements or 9 kHz for quasi-peak detection measurements for the 0.15-30 MHz range and 200 Hz for peak detection measurements or 200 Hz for quasi-peak detection measurements for the 9 to 150 kHz range. Peak detection is used unless otherwise noted as quasi-peak.

For peak measurements above 1 GHz, the resolution bandwidth is set to 1 MHz and the video bandwidth is set to 3 MHz. For average measurements above 1GHz, the resolution bandwidth and video bandwidth are set as described in ANSI C63.10:2013 for the applicable measurement. For this evaluation, RMS Power Averaging was used and the resolution/video bandwidth settings were 1MHz/3MHz.

The spectrum from 9kHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

9.2. TX 1-18 GHz FOR BLE MODE IN THE 2.4 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL HORIZONTAL)

Marker	Frequency (GHz)	Meter Reading	Det	AF AT0069	Amp/Cbl/Fltr/Pad (dB)	DC Corr	Corrected Reading	Average Limit	Margin (dB)	Peak Limit (dBuV/m)	PK Margin	Azimuth (Degs)	Height (cm)	Polarity
	()	(dBuV)		(dB/m)	()	(dB)	(dBuV/m)	(dBuV/m)	((,,	(dB)	(= -8-7	(,	
1	* 2.39	35.55	Pk	32.2	-24.1	0	43.65	-	-	74	-30.35	89	207	Н
2	* 2.389	37.27	Pk	32.2	-24.1	0	45.37	-	-	74	-28.63	89	207	Н
3	* 2.39	25.11	RMS	32.2	-24.1	0	33.21	54	-20.79	-	-	89	207	Н
4	* 2.388	25.19	RMS	32.2	-24.1	0	33.29	54	-20.71	-	-	89	207	Н

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

RMS - RMS detection

Page 30 of 43

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

Marker	Frequency	Meter	Det	AF	Amp/Cbl/Fltr/Pad	DC	Corrected	Average	Margin	Peak Limit	PK	Azimuth	Height	Polarity
	(GHz)	Reading		AT0069	(dB)	Corr	Reading	Limit	(dB)	(dBuV/m)	Margin	(Degs)	(cm)	
		(dBuV)		(dB/m)		(dB)	(dBuV/m)	(dBuV/m)			(dB)			
1	* 2.39	34.81	Pk	32.2	-24.1	0	42.91	-	-	74	-31.09	30	215	V
2	* 2.342	38.25	Pk	31.8	-23.8	0	46.25	-	-	74	-27.75	30	215	V
3	* 2.39	24.99	RMS	32.2	-24.1	0	33.09	54	-20.91	-	-	30	215	V
4	* 2,379	25.32	RMS	32.1	-24	0	33.42	54	-20.58	-	-	30	215	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

RMS - RMS detection

Page 31 of 43

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

Marker	Frequency	Meter	Det	AF	Amp/Cbl/Fltr/Pad	DC	Corrected	Average	Margin	Peak Limit	РК	Azimuth	Height	Polarity
	(GHz)	Reading		AT0069	(dB)	Corr	Reading	Limit	(dB)	(dBuV/m)	Margin	(Degs)	(cm)	
		(dBuV)		(dB/m)		(dB)	(dBuV/m)	(dBuV/m)			(dB)			
1	* 2.484	39.67	Pk	32.4	-24.6	0	47.47	-	-	74	-26.53	1	386	Н
2	* 2.484	40.95	Pk	32.4	-24.6	0	48.75	-	-	74	-25.25	1	386	Н
3	* 2.484	26.54	RMS	32.4	-24.6	0	34.34	54	-19.66	-	-	1	386	Н
4	* 2.484	26.82	RMS	32.4	-24.6	0	34.62	54	-19.38	-	-	1	386	Н

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector RMS - RMS detection

Page 32 of 43

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

Marker	Frequency	Meter	Det	AF	Amp/Cbl/Fltr/Pad	DC	Corrected	Average	Margin	Peak Limit	РК	Azimuth	Height	Polarity
	(GHz)	Reading		AT0069	(dB)	Corr	Reading	Limit	(dB)	(dBuV/m)	Margin	(Degs)	(cm)	
		(dBuV)		(dB/m)		(dB)	(dBuV/m)	(dBuV/m)			(dB)			
1	* 2.484	37.13	Pk	32.4	-24.6	0	44.93	-	-	74	-29.07	19	195	V
2	* 2.484	38.7	Pk	32.4	-24.6	0	46.5	-	-	74	-27.5	19	195	V
3	* 2.484	26.39	RMS	32.4	-24.6	0	34.19	54	-19.81	-	-	19	195	V
4	* 2.484	26.23	RMS	32.4	-24.6	0	34.03	54	-19.97	-	-	19	195	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

RMS - RMS detection

Page 33 of 43

HARMONICS AND SPURIOUS EMISSIONS

Note: Pre-scan plot taken at 1MHz/30kHz (RBW/VBW). Final measurements taken at 1MHz/3MHz (RBW/VBW).

Marker	Frequency	Meter	Det	AF	Amp/Cbl/Fltr/Pad	DC	Corrected	Avg Limit	Margin	Peak Limit	РК	Azimuth	Height	Polarity
	(GHz)	Reading		AT0069	(dB)	Corr	Reading	(dBuV/m)	(dB)	(dBuV/m)	Margin	(Degs)	(cm)	
		(dBuV)		(dB/m)		(dB)	(dBuV/m)				(dB)			
1	* 4.804	50.49	PK2	34	-31.1	0	53.39	-	-	74	-20.61	154	190	Н
	* 4.803	45.22	MAv1	34	-31.1	0	48.12	54	-5.88	-	-	154	190	Н
5	* 12.008	39.92	PK2	38.9	-24.3	0	54.52	-	-	74	-19.48	248	206	Н
	* 12.01	32.04	MAv1	38.9	-24.3	0	46.64	54	-7.36	-	-	248	206	Н
2	* 4.804	50.51	PK2	34	-31.1	0	53.41	-	-	74	-20.59	236	266	V
	* 4.803	45.21	MAv1	34	-31.1	0	48.11	54	-5.89	-	-	236	266	V
6	* 12.011	36.36	PK2	38.9	-24.3	0	50.96	-	-	74	-23.04	224	102	V
	* 12.008	25.12	MAv1	38.9	-24.3	0	39.72	54	-14.28	-	-	224	102	V
3	7.205	43.32	Pk	35.6	-28.3	0	50.62	-	-	-	-	0-360	101	Н
4	7.206	43.55	Pk	35.6	-28.3	0	50.85	-	-	-	-	0-360	101	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

PK2 - Maximum Peak

MAv1 - Maximum RMS Average

Page 34 of 43

Mid Channel

Note: Pre-scan plot taken at 1MHz/30kHz (RBW/VBW). Final measurements taken at 1MHz/3MHz (RBW/VBW).

Marker	Frequency	Meter	Det	AF	Amp/Cbl/Fltr/Pad	DC	Corrected	Avg Limit	Margin	Peak Limit	РК	Azimuth	Height	Polarity
	(GHz)	Reading		AT0069	(dB)	Corr	Reading	(dBuV/m)	(dB)	(dBuV/m)	Margin	(Degs)	(cm)	
		(dBuV)		(dB/m)		(dB)	(dBuV/m)				(dB)			
1	* 1.541	38.22	PK2	28.1	-22.4	0	43.92	-	-	74	-30.08	205	139	Н
	* 1.54	28.93	MAv1	28.1	-22.4	0	34.63	54	-19.37	-	-	205	139	Н
3	* 4.88	50.48	PK2	34.1	-31	0	53.58	-	-	74	-20.42	177	218	Н
	* 4.88	45.62	MAv1	34.1	-31	0	48.72	54	-5.28	-	-	177	218	Н
5	* 7.319	46.1	PK2	35.5	-27.9	0	53.7	-	-	74	-20.3	281	287	Н
	* 7.32	40	MAv1	35.5	-27.9	0	47.6	54	-6.4	-	-	281	287	Н
6	* 12.198	39.5	PK2	39	-24.5	0	54	-	-	74	-20	241	174	Н
	* 12.198	31.07	MAv1	39	-24.5	0	45.57	54	-8.43	-	-	241	174	Н
2	* 4.879	46.85	PK2	34.1	-31	0	49.95	-	-	74	-24.05	261	127	V
	* 4.879	40.48	MAv1	34.1	-31	0	43.58	54	-10.42	-	-	261	127	V
4	* 7.319	44.53	PK2	35.5	-27.9	0	52.13	-	-	74	-21.87	238	108	V
	* 7.319	37.68	MAv1	35.5	-27.9	0	45.28	54	-8.72	-	-	238	108	V
7	* 12.2	36.95	PK2	39	-24.5	0	51.45	-	-	74	-22.55	230	112	V
	* 12.201	27.36	MAv1	39	-24.5	0	41.86	54	-12.14	-	-	230	112	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

PK2 - Maximum Peak

MAv1 - Maximum RMS Average

High Channel

Note: Pre-scan plot taken at 1MHz/30kHz (RBW/VBW). Final measurements taken at 1MHz/3MHz (RBW/VBW).

Marker	Frequency	Meter	Det	AF	Amp/Cbl/Fltr/Pad	DC	Corrected	Avg Limit	Margin	Peak Limit	РК	Azimuth	Height	Polarity
	(GHz)	Reading		AT0069	(dB)	Corr	Reading	(dBuV/m)	(dB)	(dBuV/m)	Margin	(Degs)	(cm)	
		(dBuV)		(dB/m)		(dB)	(dBuV/m)				(dB)			
1	* 1.025	39.79	PK2	27.4	-24.7	0	42.49	-	-	74	-31.51	352	106	Н
	* 1.025	32.76	MAv1	27.4	-24.7	0	35.46	54	-18.54	-	-	352	106	Н
3	* 4.959	51.68	PK2	34.1	-31.3	0	54.48	-	-	74	-19.52	4	227	Н
	* 4.96	46.67	MAv1	34.1	-31.3	0	49.47	54	-4.53	-	-	4	227	Н
5	* 12.398	40.36	PK2	39	-24.5	0	54.86	-	-	74	-19.14	69	196	Н
	* 12.398	32.31	MAv1	39	-24.5	0	46.81	54	-7.19	-	-	69	196	Н
2	* 1.025	38.25	PK2	27.4	-24.7	0	40.95	-	-	74	-33.05	223	209	V
	* 1.025	30.81	MAv1	27.4	-24.7	0	33.51	54	-20.49	-	-	223	209	V
4	* 4.96	44.44	PK2	34.1	-31.3	0	47.24	-	-	74	-26.76	83	114	V
	* 4.959	36.33	MAv1	34.1	-31.3	0	39.13	54	-14.87	-	-	83	114	V
6	* 12.398	38.53	PK2	39	-24.5	0	53.03	-	-	74	-20.97	70	118	V
	* 12.398	28.88	MAv1	39	-24.5	0	43.38	54	-10.62	-	-	70	118	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK2 - Maximum Peak

MAv1 - Maximum RMS Average

9.3. WORST-CASE ABOVE 18GHz

SPURIOUS EMISSIONS 18-26GHz (WORST-CASE CONFIGURATION)

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

PK2 - Maximum Peak

MAv1 - Maximum RMS Average

Page 37 of 43

9.4. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 9KHz TO 30 MHz (WORST-CASE CONFIGURATION)

Note: All measurements were made at a test distance of 3 m. The limits in the plots and tabular data are the FCC/IC limits extrapolated from the specification distance (300 m from 9-490 kHz and 30 m from 490 kHz – 30 MHz) to the measurement distance to clearly show the relative levels of fundamental and spurious emissions and demonstrate compliance with the requirement that the level of any spurious emissions be below the level of the intentionally transmitted signal. The extrapolation factor for the limits were 40*Log (specification distance / test distance).

Although these tests were performed at a test site other than an open area test site, adequate comparison measurements were confirmed against 30 m open area test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 937606.

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	AT0079 AF (dB/m)	Cbl (dB)	Corrected Reading dB(uVolts/meter)	FCC 15.209 (projected to 3m)	Margin (dB)	Azimuth (Degs)	Polarity
1	.00948	45.53	Pk	19.4	.1	65.03	128.07	-63.04	0-360	0°
2	.20369	43.2	Pk	11.9	.1	55.2	101.42	-46.22	0-360	0°
3	5.10095	19.07	Pk	11.3	.4	30.77	69.54	-38.77	0-360	0°
4	.01639	45.8	Pk	16.4	.1	62.3	123.31	-61.01	0-360	90°
5	.17983	46.81	Pk	11.9	.1	58.81	102.51	-43.7	0-360	90°
6	.74054	33.6	Pk	11.9	.1	45.6	70.21	-24.61	0-360	90°

Pk - Peak detector

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)

Marker	Frequency	Meter	Det	AT0074 AF	Amp/Cbl	Corrected	QPk Limit	Margin	Azimuth	Height	Polarity
	(MHz)	Reading		(dB/m)	(dB)	Reading	(dBuV/m)	(dB)	(Degs)	(cm)	
		(dBuV)				(dBuV/m)					
2	* 400	44.5	Pk	20.3	-29.2	35.6	46.02	-10.42	0-360	198	Н
3	* 400	38.28	Pk	20.3	-29.2	29.38	46.02	-16.64	0-360	201	V
1	350	40.88	Pk	19.2	-29.3	30.78	46.02	-15.24	0-360	101	Н
4	900	36.54	Pk	26.6	-27.1	36.04	46.02	-9.98	0-360	198	Н
5	950.1	35.22	Pk	27.5	-26.4	36.32	46.02	-9.7	0-360	198	Н
6	950.1	32.97	Pk	27.5	-26.4	34.07	46.02	-11.95	0-360	201	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

Page 39 of 43