

FCC Test Report (Zigbee)

Report No.: RFBEIH-WTW-P21090617-7

FCC ID: 2AK5B-HB2

Test Model: HB2LW1NA1

Received Date: 2021/9/14

Test Date: 2021/9/29 ~ 2021/10/13

Issued Date: 2021/12/14

Applicant: Latch Systems, Inc.

Address: 508 West 26th Street Suite 6G New York, NY 10001 United States

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Lin Kou Laboratories

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan FCC Registration /

Designation Number: 198487 / TW2021

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specification, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

Table of Contents

R	Release Control Record4						
1	С	ertificate of Conformity	5				
2	S	ummary of Test Results	6				
	2.1	Measurement Uncertainty					
	2.2	Modification Record	6				
3	G	eneral Information	7				
	3.1	General Description of EUT	7				
	3.2	Description of Test Modes	8				
	3.2.1	Test Mode Applicability and Tested Channel Detail					
	3.3	Duty Cycle of Test Signal					
	3.4	Description of Support Units					
	3.4.1	Configuration of System under Test					
	3.5	General Description of Applied Standards and References					
4	Т	est Types and Results	13				
	4.1	Radiated Emission and Bandedge Measurement	13				
		Limits of Radiated Emission and Bandedge Measurement					
		Test Instruments					
		Test Procedures					
		Deviation from Test Standard					
		Test Setup					
		EUT Operating Conditions					
	4.1.7	Test Results Conducted Emission Measurement					
		Limits of Conducted Emission Measurement					
		Test Instruments					
		Test Procedures					
		Deviation from Test Standard					
		Test Setup					
	4.2.6	EUT Operating Conditions	25				
	4.2.7	Test Results	26				
	4.3	6dB Bandwidth Measurement					
		Limits of 6dB Bandwidth Measurement					
		Test Setup					
		Test Instruments					
		Test Procedure Deviation fromTest Standard					
		EUT Operating Conditions					
		Test Result					
	4.4	Conducted Output Power Measurement					
		Limits of Conducted Output Power Measurement					
		Test Setup					
	4.4.3	Test Instruments	30				
		Test Procedures					
		Deviation from Test Standard					
		EUT Operating Conditions					
		Test Results					
	4.5	Power Spectral Density Measurement					
	4.5.1	Limits of Power Spectral Density Measurement					
		Test Setup Test Instruments					
		Test Procedure					
		Deviation from Test Standard					

4.6.7 Test Results	
4.6.6 EUT Operating Condition	
4.6.5 Deviation from Test Standard	
4.6.3 Test Instruments4.6.4 Test Procedure	
4.6.2 Test Setup	
4.6.1 Limits of Conducted Out of Band Emission Measurement	
4.6 Conducted Out of Band Emission Measurement	
4.5.6 EUT Operating Condition4.5.7 Test Results	

Release Control Record

Issue No.	Description	Date Issued
RFBEIH-WTW-P21090617-7	Original release.	2021/12/14

1 Certificate of Conformity

Product:	Hub
Brand:	LATCH
Test Model:	HB2LW1NA1
Sample Status:	Engineering sample
Applicant:	Latch Systems, Inc.
Test Date:	2021/9/29 ~ 2021/10/13
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.247)
	ANSI C63.10: 2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by :

Annie	Chang	, Date:	2021/12/14

Annie Chang / Senior Specialist

Vem 1

Date:

2021/12/14

Approved by :

Jeremy Lin / Project Engineer

2 **Summary of Test Results**

47 CFR FCC Part 15, Subpart C (Section 15.247)							
FCC Clause	Test Item	Result	Remarks				
15.207	15.207 AC Power Conducted Emission		Meet the requirement of limit. Minimum passing margin is -18.35dB at 0.25938MHz.				
15.205 / 15.209 / 15.247(d)	Radiated Emissions and Band Edge Measurement	Pass	Meet the requirement of limit. Minimum passing margin is -0.76dB at 2483.50MHz.				
15.247(d)	Antenna Port Emission	Pass	Meet the requirement of limit.				
15.247(a)(2)	6dB bandwidth	Pass	Meet the requirement of limit.				
15.247(b)	Conducted power	Pass	Meet the requirement of limit.				
15.247(e)	Power Spectral Density	Pass	Meet the requirement of limit.				
15.203	Antenna Requirement	Pass	Antenna connector is I-PEX not a standard connector.				

Note:

1. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty. 2. For 2.4GHz band compliance with rule 15.247(d) of the band-edge items, the test plots were recorded in

Annex A. Test Procedures refer to report 4.1.3.

2.1 **Measurement Uncertainty**

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	3.00 dB
Conducted Emissions	9kHz ~ 40GHz	2.63 dB
Dedicted Emissions up to 1 CHz	9kHz ~ 30MHz	2.38 dB
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	5.70 dB
Radiated Emissions above 1 GHz	Above 1GHz	5.21 dB

2.2 **Modification Record**

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	Hub
	LATCH
Brand	
Test Model	HB2LW1NA1
Status of EUT	Engineering sample
Power Supply Rating	12Vdc from adapter or 7.5Vdc from battery
Modulation Type	OQPSK
Transfer Rate	250Kbps
Operating Frequency	2405 ~ 2480MHz
Number of Channel	16
Output Power	52.000mW
Antenna Type	Dipole Antenna with 3.4dBi gain
Antenna Connector	I-PEX
Accessory Device	Adapter
Data Cable Supplied	N/A

Note:

1. 2.4GHz & 5GHz WLAN technologies cannot transmit at same time.

WCDMA & LTE technologies cannot transmit at same time.

WLAN, WWAN, Bluetooth& Zigbee technologies can transmit at same time.

2. The EUT was pre-tested with the following modes:

♦ Operating Mode (EUT + Battery)

Operating + Charging Mode (EUT + Adapter)
 The worst emission level was found when the EUT tested under Operating + Charging Mode (EUT + Adapter), therefore, only its test data was recorded in this report.

3. The EUT uses following adapter or battery.

Item	Adapter	Battery
Brand	APD	Simplo
Model	WB-24J12FU	NA50X
AC I/P Rating	100-240V, 50-60Hz, 0.7A	-
DC O/P Rating	12V, 2A	7.5V, 2500mAh, 18Wh
Power cord	AC 2 Pin, Non-shielded DC cable (1.5m)	-

4. The above Antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

5. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

16 channels are provided to this EUT:

CHANNEL	FREQUENCY	CHANNEL	FREQUENCY
11	2405MHz	19	2445MHz
12	2410MHz	20	2450MHz
13	2415MHz	21	2455MHz
14	2420MHz	22	2460MHz
15	2425MHz	23	2465MHz
16	2430MHz	24	2470MHz
17	2435MHz	25	2475MHz
18	2440MHz	26	2480MHz

3.2.1 Test Mode Applicability and Tested Channel Detail

	>1G			Description		
	-10	RE<1G	PLC	APCM	Descrij	ption
	V		\checkmark		Operating + Charging Mode	e (EUT + Adapter)
		ission above 1GHz iducted Emission	& Bandedg		RE<1G: Radiated Emission APCM: Antenna Port Condu	
adiated Emissio	n Test ((Above 1GHz):			ase was found when position	
	ole moo	dulations, data ı	ates and a	antenna ports	(if EUT with antenna of	
EUT Configure Mode		vailable Channel		ed Channel	Modulation Type	Data Rate (Kbps)
-		11 to 26	11,	18, 25, 26	OQPSK	250
adiated Emissio	een co	nducted to dete			ode from all possible o (if EUT with antenna o	
adiated Emissio Pre-Scan has b between availa architecture).	een co ble moc nel(s) w	nducted to dete dulations, data r	ates and a	antenna ports	(if EUT with antenna of	
 Radiated Emissio ☑ Pre-Scan has b between availa architecture). ☑ Following chan 	een co ble moc nel(s) w	nducted to dete dulations, data r vas (were) selec	ates and a	antenna ports e final test as	(if EUT with antenna d	diversity
 Radiated Emissio ☑ Pre-Scan has between availa architecture). ☑ Following chan EUT Configure Mode - Power Line Condu ☑ Pre-Scan has between a set to the set to t	een co ble moo nel(s) w An incted E een co ble moo	nducted to dete dulations, data i vas (were) select vailable Channel 11 to 26 Emission Test: nducted to dete dulations, data i	ates and a cted for the Test rmine the ates and a cted for the	antenna ports e final test as ed Channel 11 worst-case m antenna ports	(if EUT with antenna of listed below. <u>Modulation Type</u> OQPSK ode from all possible of (if EUT with antenna of	diversity Data Rate (Kbps) 250 combinations

Antenna Port Conducted Measurement:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Type	Data Rate (Kbps)
-	11 to 26	11, 18, 25, 26	OQPSK	250

Test Condition:

Applicable To	Environmental Conditions	Input Power	Tested By
RE≥1G	23deg. C, 53%RH	120Vac, 60Hz	Jed Wu
RE<1G	23deg. C, 53%RH	120Vac, 60Hz	Jed Wu
PLC	PLC 25deg. C, 76%RH		Dalen Dai
APCM	25deg. C, 60%RH	120Vac, 60Hz	Dalen Dai

3.3 Duty Cycle of Test Signal

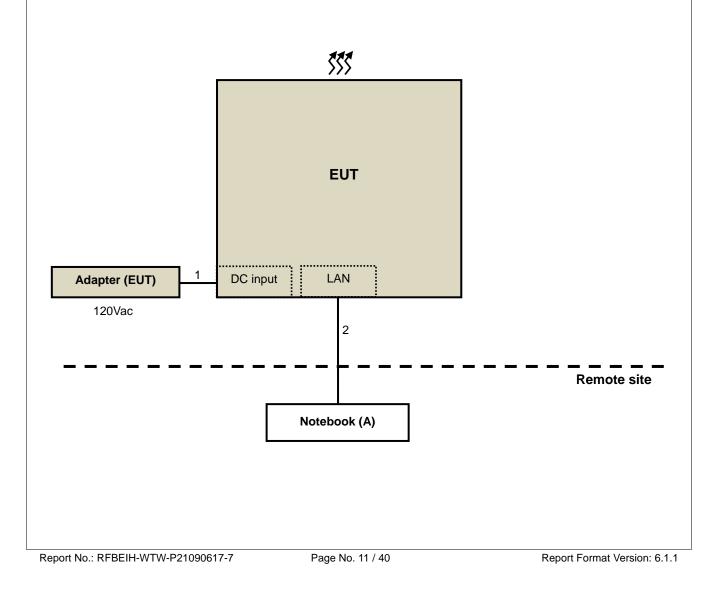
Duty cycle of test signal is 100%.

3.4 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	Notebook PC	Lenovo	81LG	PF1NF9V2	NA	Provided by Lab

Note:


1. All power cords of the above support units are non-shielded (1.8m).

2. Item A acted as communication partners to transfer data.

ID	Cable Descriptions	Qty.	Length (m)	Shielding (Yes/ No)	Cores (Qty.)	Remarks
1.	DC cable	1	1.5	Ν	0	Supplied by applicant
2.	LAN cable	1	10	Ν	0	Provided by Lab (RJ45, Cat.5e)

Note: The core(s) is(are) originally attached to the cable(s).

3.4.1 Configuration of System under Test

3.5 General Description of Applied Standards and References

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and references:

Test standard: FCC Part 15, Subpart C (15.247) ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

References Test Guidance: KDB 558074 D01 15.247 Meas Guidance v05r02

All test items have been performed as a reference to the above KDB test guidance.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

1. The lower limit shall apply at the transition frequencies.

- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

Description & Manufacturer	Model no.	Serial No.	Calibrated Date	Calibrated Until
Test Receiver Agilent	N9038A	MY51210129	2021/3/12	2022/3/11
Software BVADT	ADT_Radiated_V8.7.0	NA	NA	NA
Software BVADT	ADT_RF Test Software V6.6.5.4	NA	NA	NA
Auto Control System(Antenna Tower, Table, Controller) ADT	SC100+AT100+TT100	0306	NA	NA
Pre_Amplifier EMCI	EMC001340	980269	2021/6/29	2022/6/28
LOOP ANTENNA EMCI	LPA600	270	2021/9/2	2023/9/1
RF Coaxial Cable Pacific	8D-FB	Cable-CH6-02	2021/7/13	2022/7/12
Pre_Amplifier HP	8447D	2432A03504	2021/2/18	2022/2/17
Bi-log Broadband Antenna Schwarzbeck	VULB9168	139	2020/11/6	2021/11/5
Attenuator Mini-Circuits	UNAT-5+	PAD-CH6-01	2021/7/13	2022/7/12
RF Coaxial Cable Pacific	8D-FB	Cable-CH6-02	2021/7/13	2022/7/12
Antenna(Horn) EMCO	3115	00028257	2020/11/22	2021/11/21
Test Receiver Agilent	N9038A	MY51210129	2021/3/12	2022/3/11
Pre-amplifier HP	8449B	3008A01201	2021/2/19	2022/2/18
RF Coaxial Cable HUBER SUHNER	SF-102	Cable-CH6-01	2021/7/8	2022/7/7
Highpass filter Wainwright Instruments	WHK 3.1/18G-10SS	SN 8	2021/5/28	2022/5/27
Fix tool for Boresight	BAF-01	5	NA	NA
Pre_Amplifier MITEQ	AMF-6F-260400-33-8P	892164	2021/2/19	2022/2/18
Antenna(Horn) Schwarzbeck	BBHA-9170	BBHA9170190	2020/11/22	2021/11/21
Spectrum Analyzer R&S	FSV40	101544	2021/5/24	2022/5/23
RF Coaxial Cable WOKEN	WC01	Cable-CH10-03	2021/7/8	2022/7/7
RF Coaxial Cable Rosnol	K1K50-UP0279- K1K50-3000	Cable- CH10(3m)-04	2021/7/8	2022/7/7
Highpass filter SUHNER	11SH10-7000/T18000- O/OP	SN 4	2021/5/28	2022/5/27

NOTE: 1. The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

2. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.

- 3. The test was performed in LK 966 chamber 1.
- 4. Tested Date: 2021/9/29

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

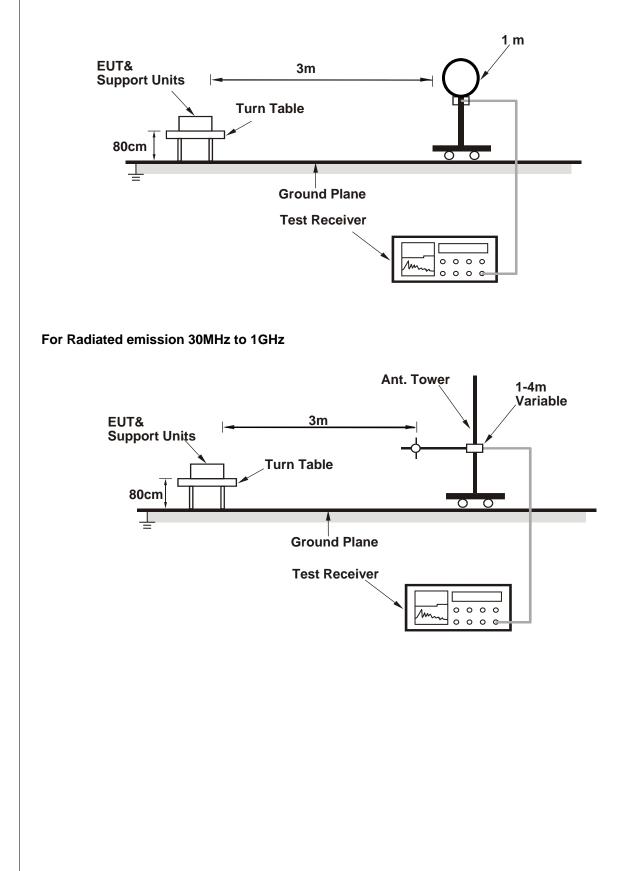
NOTE:

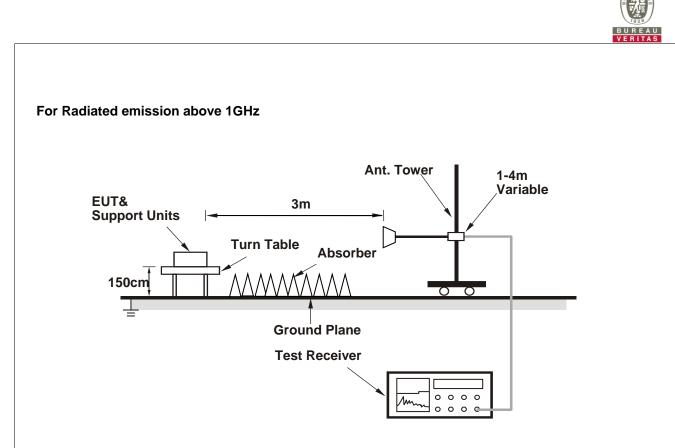
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:


- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasipeak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz. (RBW = 1MHz, VBW = 10Hz)
- 4. All modes of operation were investigated and the worst-case emissions are reported.
- 4.1.4 Deviation from Test Standard


No deviation.

4.1.5 Test Setup

For Radiated emission below 30MHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

- a. Placed the EUT on the testing table.
- b. Prepared notebook to act as communication partner and placed it outside of testing area.
- c. The communication partner connected with EUT via a RJ45 cable and ran a test program (provided by manufacturer) to enable EUT under transmission condition continuously at specific channel frequency.
- d. The necessary accessories enable the system in full functions.

4.1.7 Test Results

ABOVE 1GHz DATA

RF Mode	TX Zigbee	Channel	CH 11:2405 MHz	
	1GHz ~ 25GHz	Detector Function	Peak (PK)	
Frequency Range		Detector Function	Average (AV)	

	Antenna Polarity & Test Distance : Horizontal at 3 m										
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	2390.00	57.42 PK	74.00	-16.58	1.47 H	127	59.70	-2.28			
2	2390.00	48.47 AV	54.00	-5.53	1.47 H	127	50.75	-2.28			
3	*2405.00	117.30 PK			1.47 H	127	119.51	-2.21			
4	*2405.00	114.30 AV			1.47 H	127	116.51	-2.21			
5	4810.00	50.19 PK	74.00	-23.81	2.33 H	105	44.53	5.66			
6	4810.00	41.29 AV	54.00	-12.71	2.33 H	105	35.63	5.66			
		Ante	enna Polarit	y & Test Di	stance : Ver	tical at 3 m					
	_	Emission			Antenna	Table	Raw	Correction			

No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Factor (dB/m)
1	2390.00	54.80 PK	74.00	-19.20	2.25 V	158	57.08	-2.28
2	2390.00	44.21 AV	54.00	-9.79	2.25 V	158	46.49	-2.28
3	*2405.00	110.70 PK			2.25 V	158	112.91	-2.21
4	*2405.00	107.68 AV			2.25 V	158	109.89	-2.21
5	4810.00	49.40 PK	74.00	-24.60	1.49 V	256	43.74	5.66
6	4810.00	39.39 AV	54.00	-14.61	1.49 V	256	33.73	5.66

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit.

RF Mode	TX Zigbee	Channel	CH 18:2440 MHz
Fragueney Benge	1GHz ~ 25GHz	Detector Function	Peak (PK)
Frequency Range		Delector Function	Average (AV)

	Antenna Polarity & Test Distance : Horizontal at 3 m											
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)				
1	*2440.00	116.96 PK			1.12 H	137	119.10	-2.14				
2	*2440.00	113.99 AV			1.12 H	137	116.13	-2.14				
3	4880.00	49.31 PK	74.00	-24.69	1.34 H	109	43.61	5.70				
4	4880.00	39.77 AV	54.00	-14.23	1.34 H	109	34.07	5.70				

	Antenna Polarity & Test Distance : Vertical at 3 m											
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)				
1	*2440.00	111.57 PK			1.03 V	3	113.71	-2.14				
2	*2440.00	108.52 AV			1.03 V	3	110.66	-2.14				
3	4880.00	49.63 PK	74.00	-24.37	2.53 V	25	43.93	5.70				
4	4880.00	40.46 AV	54.00	-13.54	2.53 V	25	34.76	5.70				

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

RF Mode	TX Zigbee	Channel	CH 25:2475 MHz	
Frequency Range	1GHz ~ 25GHz	Detector Function	Peak (PK)	
			Average (AV)	

	Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	*2475.00	117.13 PK			1.25 H	77	119.13	-2.00	
2	*2475.00	114.00 AV			1.25 H	77	116.00	-2.00	
3	2483.50	60.76 PK	74.00	-13.24	1.25 H	77	62.70	-1.94	
4	2483.50	51.41 AV	54.00	-2.59	1.25 H	77	53.35	-1.94	
5	4950.00	48.70 PK	74.00	-25.30	1.48 H	111	42.87	5.83	
6	4950.00	38.24 AV	54.00	-15.76	1.48 H	111	32.41	5.83	
		Ante	enna Polarit	y & Test Di	stance : Ver	tical at 3 m			

No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2475.00	113.14 PK			1.16 V	355	115.14	-2.00
2	*2475.00	110.15 AV			1.16 V	355	112.15	-2.00
3	2483.50	57.21 PK	74.00	-16.79	1.16 V	355	59.15	-1.94
4	2483.50	46.83 AV	54.00	-7.17	1.16 V	355	48.77	-1.94
5	4950.00	49.73 PK	74.00	-24.27	1.49 V	17	43.90	5.83
6	4950.00	39.93 AV	54.00	-14.07	1.49 V	17	34.10	5.83

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

RF Mode	TX Zigbee	Channel	CH 26:2480 MHz
Frequency Range	1GHz ~ 25GHz	Detector Function	Peak (PK)
Trequency Mange			Average (AV)

	Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	*2480.00	106.96 PK			1.73 H	72	108.92	-1.96	
2	*2480.00	103.96 AV			1.73 H	72	105.92	-1.96	
3	2483.50	65.11 PK	74.00	-8.89	1.73 H	72	67.05	-1.94	
4	2483.50	53.24 AV	54.00	-0.76	1.73 H	72	55.18	-1.94	
5	5 4960.00 45.45 PK 74.00 -28.55 1.58 H 124 39.59 5.86								
6	4960.00	35.30 AV	54.00	-18.70	1.58 H	124	29.44	5.86	
		Ante	enna Polarit	y & Test Di	stance : Ver	tical at 3 m			

No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2480.00	104.50 PK			1.50 V	354	106.46	-1.96
2	*2480.00	101.51 AV			1.50 V	354	103.47	-1.96
3	2483.50	60.94 PK	74.00	-13.06	1.50 V	354	62.88	-1.94
4	2483.50	51.10 AV	54.00	-2.90	1.50 V	354	53.04	-1.94
5	4960.00	47.92 PK	74.00	-26.08	1.09 V	23	42.06	5.86
6	4960.00	37.20 AV	54.00	-16.80	1.09 V	23	31.34	5.86

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

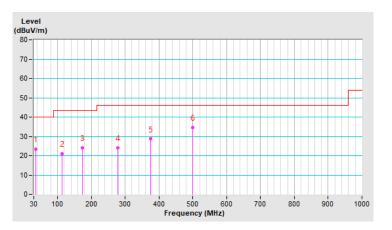
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

BELOW 1GHz WORST-CASE DATA

RF Mode	TX Zigbee	Channel	CH 11:2405 MHz
Frequency Range	9kHz ~ 1GHz	Detector Function	Quasi-Peak (QP)


	Antenna Polarity & Test Distance : Horizontal at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	35.09	23.50 QP	40.00	-16.50	2.30 H	258	31.93	-8.43		
2	113.52	21.15 QP	43.50	-22.35	2.06 H	254	30.60	-9.45		
3	173.75	24.15 QP	43.50	-19.35	1.87 H	136	30.77	-6.62		
4	278.66	24.02 QP	46.00	-21.98	1.69 H	93	28.75	-4.73		
5	374.98	28.72 QP	46.00	-17.28	2.41 H	205	31.26	-2.54		
6	500.01	34.55 QP	46.00	-11.45	2.85 H	229	34.55	0.00		

Remarks:

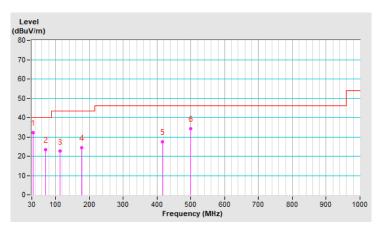
1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

RF Mode	TX Zigbee	Channel	CH 11:2405 MHz
Frequency Range	9kHz ~ 1GHz	Detector Function	Quasi-Peak (QP)

	Antenna Polarity & Test Distance : Vertical at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	34.70	32.30 QP	40.00	-7.70	1.26 V	161	40.76	-8.46		
2	71.13	23.42 QP	40.00	-16.58	1.34 V	334	32.52	-9.10		
3	112.64	22.58 QP	43.50	-20.92	1.75 V	284	32.09	-9.51		
4	176.76	24.37 QP	43.50	-19.13	1.96 V	53	31.34	-6.97		
5	415.43	27.42 QP	46.00	-18.58	1.03 V	274	29.17	-1.75		
6	500.01	34.39 QP	46.00	-11.61	2.87 V	183	34.39	0.00		


1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.

5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

	Conducted Limit (dBuV)			
Frequency (MHz)	Quasi-peak	Average		
0.15 - 0.5	66 - 56	56 - 46		
0.50 - 5.0	56	46		
5.0 - 30.0	60	50		

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.2 Test Instruments

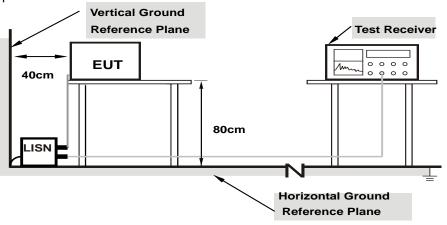
Description & Manufacturer	Model no.	Serial No.	Calibrated Date	Calibrated Until
Test Receiver R & S	ESCS 30	838251/021	2020/11/3	2021/11/2
LISN R&S	ENV216	101197	2021/6/23	2022/6/22
LISN R&S	ENV216	101195	2021/5/25	2022/5/24
LISN SCHWARZBECK	NNLK8129	8129229	2021/5/20	2022/5/19
DC LISN SCHWARZBECK	NNLK 8121	8121-808	2021/4/18	2022/4/17
LISN SCHWARZBECK	NNLK 8121	8121-731	2021/4/28	2022/4/27
LISN R&S	ENV216	101196	2021/4/26	2022/4/25
LISN EMCO	3825/2	9504-2359	2021/7/27	2022/7/26
LISN R&S	ESH3-Z6	844950/018	2021/7/25	2022/7/24
LISN EMCO	3825/2	9204-1964	2021/5/19	2022/5/18
DC LISN R&S	ESH3-Z6	100219	2021/7/25	2022/7/24
Coupling/Dcoupling Network SCHWARZBECK	CDNE-M2	00097	2021/5/6	2022/5/5
Coupling/Dcoupling Network SCHWARZBECK	CDNE-M3	00091	2021/5/6	2022/5/5
Coupling/Dcoupling Network TESEQ	CDN A201A	44601	2020/12/27	2021/12/26
RF Coaxial Cable Commate	5D-FB	Cable-CO3-01	2021/9/15	2022/9/14
Attenuator STI	STI02-2200-10	NO.3	2020/10/23	2021/10/22
50 ohms Terminator LYNICS	0900510	E1-01-300	2021/1/27	2022/1/26
50 ohms Terminator LYNICS	0900510	E1-01-301	2021/1/27	2022/1/26
Isolation Transformer Erika Fiedler	D-65396	017	2021/9/9	2022/9/8
Software BVADT	Cond_V7.3.7.4	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in Linkou Conduction03

3. The VCCI Site Registration No. C-10274.

4. Tested Date: 2021/10/12



4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.
- **NOTE:** The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.
- 4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

Same as Item 4.1.6.


4.2.7 Test Results

RF Mode	TX Zigbee	Channel	CH 11:2405 MHz
Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz

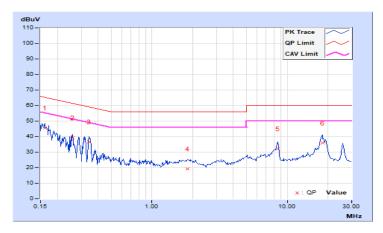
			Р	hase Of I	Power : L	ine (L)				
No	Frequency	Correction Factor		g Value uV)		on Level uV)		nit uV)	Maı (d	rgin B)
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	9.84	35.90	23.95	45.74	33.79	66.00	56.00	-20.26	-22.21
2	0.25547	9.85	26.18	18.23	36.03	28.08	61.58	51.58	-25.55	-23.50
3	0.34531	9.88	20.79	11.39	30.67	21.27	59.07	49.07	-28.40	-27.80
4	1.74219	10.03	10.49	2.46	20.52	12.49	56.00	46.00	-35.48	-33.51
5	8.50781	10.23	22.35	15.49	32.58	25.72	60.00	50.00	-27.42	-24.28
6	18.08203	10.32	25.72	17.18	36.04	27.50	60.00	50.00	-23.96	-22.50

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

RF Mode	TX Zigbee	Channel	CH 11:2405 MHz
Frequency Range	1150687~300/187	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz

			Pha	ase Of Po	ower : Ne	utral (N)				
No	Frequency	Correction Factor		g Value uV)		on Level uV)		nit uV)	Mar (d	-
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.16172	9.82	35.71	22.83	45.53	32.65	65.38	55.38	-19.85	-22.73
2	0.25938	9.83	29.41	23.27	39.24	33.10	61.45	51.45	-22.21	-18.35
3	0.34141	9.83	26.81	17.23	36.64	27.06	59.17	49.17	-22.53	-22.11
4	1.84375	10.00	9.31	2.71	19.31	12.71	56.00	46.00	-36.69	-33.29
5	8.49609	10.21	22.08	14.70	32.29	24.91	60.00	50.00	-27.71	-25.09
6	18.22266	10.33	25.53	17.57	35.86	27.90	60.00	50.00	-24.14	-22.10


1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

3. Margin value = Emission level – Limit value

4. Correction factor = Insertion loss + Cable loss

5. Emission Level = Correction Factor + Reading Value

4.3 6dB Bandwidth Measurement

4.3.1 Limits of 6dB Bandwidth Measurement

The minimum of 6dB Bandwidth Measurement is 0.5 MHz.

4.3.2 Test Setup

4.3.3 Test Instruments

Description & Manufacturer	Model no.	Serial No.	Calibrated Date	Calibrated Until
Spectrum Analyzer R&S	FSV40	101042	2021/9/9	2022/9/8

NOTE: 1. The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

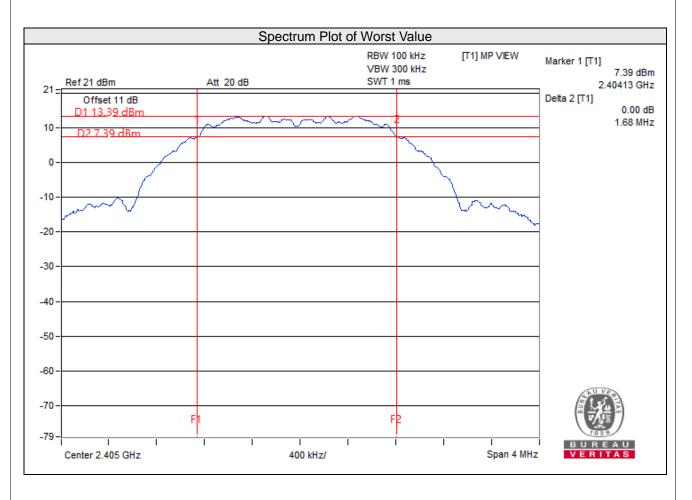
- 2. The test was performed in LK Oven
- 3. Tested Date: 2021/10/13

4.3.4 Test Procedure

- a. Set resolution bandwidth (RBW) = 100kHz
- b. Set the video bandwidth (VBW) \ge 3 x RBW, Detector = Peak.
- c. Trace mode = max hold.
- d. Sweep = auto couple.
- e. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission

4.3.5 Deviation fromTest Standard

No deviation.


4.3.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.3.7 Test Result

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (MHz)	Pass / Fail
11	2405	1.68	0.5	Pass
18	2440	1.70	0.5	Pass
25	2475	1.68	0.5	Pass
26	2480	1.68	0.5	Pass

4.4 Conducted Output Power Measurement

4.4.1 Limits of Conducted Output Power Measurement

For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30dBm)

4.4.2 Test Setup

4.4.3 Test Instruments

Description & Manufacturer	Model no.	Serial No.	Calibrated Date	Calibrated Until
Pulse Power Sensor Anritsu	MA2411B	0738404	2021/4/15	2022/4/14
Peak Power meter Anritsu	ML2495A	0842014	2021/4/15	2022/4/14

NOTE: 1. The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in LK Oven
- 3. Tested Date: 2021/10/13

4.4.4 Test Procedures

A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

Average power sensor was used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

4.4.5 Deviation from Test Standard

No deviation.

4.4.6 EUT Operating Conditions

Same as Item 4.3.6.

4.4.7 Test Results

FOR PEAK POWER

Channel	Frequency (MHz)	Peak Power (mW)	Peak Power (dBm)	Limit (dBm)	Pass/Fail
11	2405	51.523	17.12	30	Pass
18	2440	52.000	17.16	30	Pass
25	2475	51.523	17.12	30	Pass
26	2480	7.816	8.93	30	Pass

FOR AVERAGE POWER

Channel	Frequency (MHz)	Average Power (mW)	Average Power (dBm)
11	2405	51.404	17.11
18	2440	51.642	17.13
25	2475	51.404	17.11
26	2480	7.745	8.89

4.5 **Power Spectral Density Measurement**

4.5.1 Limits of Power Spectral Density Measurement

The Maximum of Power Spectral Density Measurement is 8dBm in any 3 kHz.

4.5.2 Test Setup

4.5.3 Test Instruments

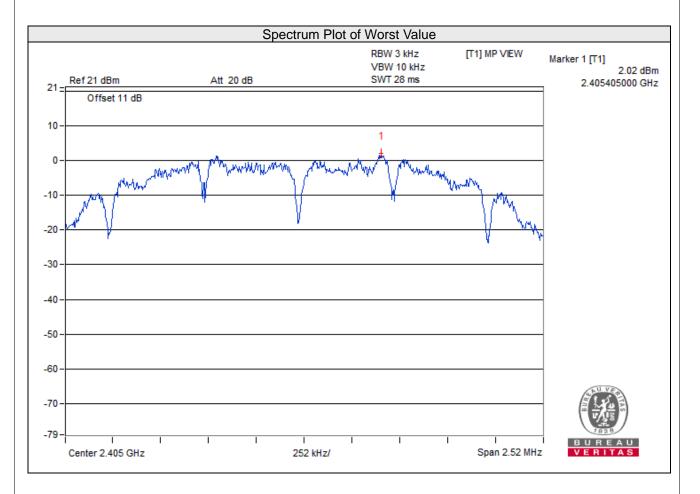
Refer to section 4.3.3 to get information of above instrument.

4.5.4 Test Procedure

- a. Set analyzer center frequency to DTS channel center frequency.
- b. Set the span to 1.5 times the DTS bandwidth.
- c. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d. Set the VBW \ge 3 × RBW.
- e. Detector = peak.
- f. Sweep time = auto couple.
- g. Trace mode = max hold.
- h. Allow trace to fully stabilize.
- i. Use the peak marker function to determine the maximum amplitude level within the RBW.

4.5.5 Deviation from Test Standard

No deviation.


4.5.6 EUT Operating Condition

Same as Item 4.3.6

4.5.7 Test Results

Channel	Freq. (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Pass /Fail
11	2405	2.02	8	Pass
18	2440	1.77	8	Pass
25	2475	1.58	8	Pass
26	2480	-8.52	8	Pass

4.6 Conducted Out of Band Emission Measurement

4.6.1 Limits of Conducted Out of Band Emission Measurement

Below -20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.6.2 Test Setup

4.6.3 Test Instruments

Refer to section 4.3.3 to get information of above instrument.

4.6.4 Test Procedure

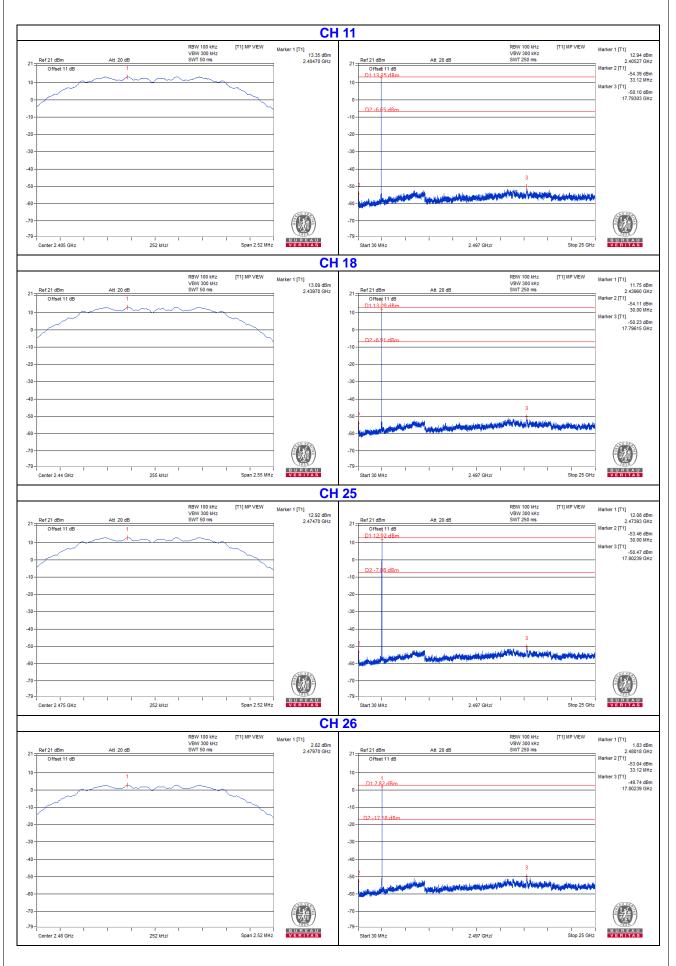
MEASUREMENT PROCEDURE REF

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW \ge 300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

MEASUREMENT PROCEDURE OOBE

- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep = auto couple.
- 5. Trace Mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum amplitude level.

4.6.5 Deviation from Test Standard No deviation.

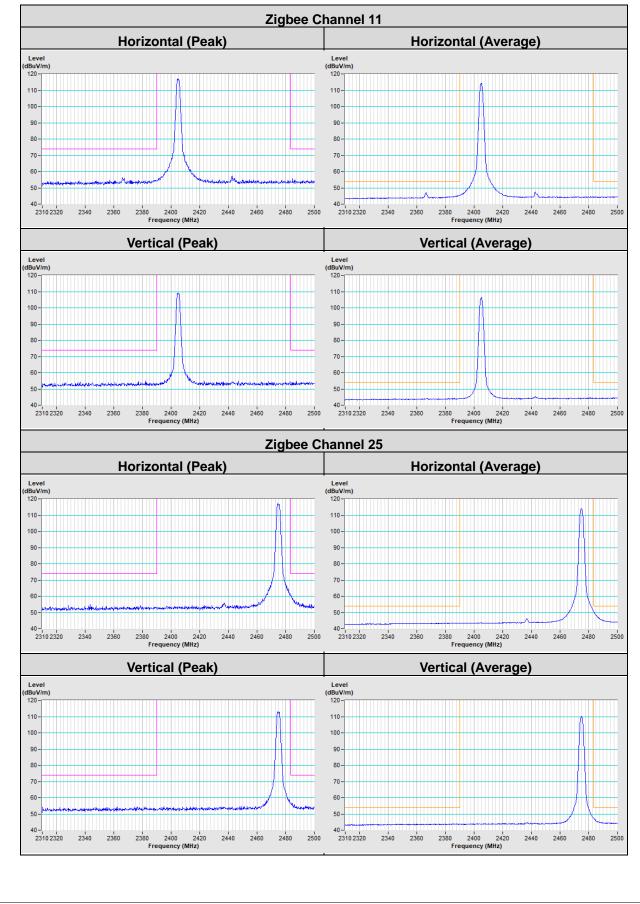

4.6.6 EUT Operating Condition

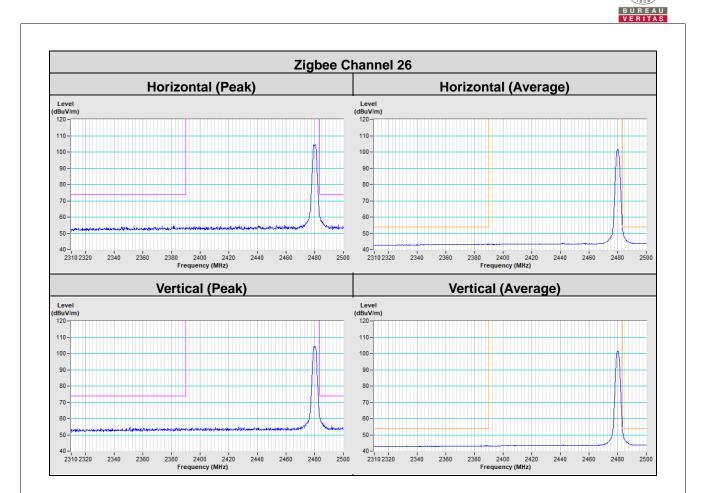
Same as Item 4.3.6

4.6.7 Test Results

The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.

	CH 11 I	Band edg	е			CH 25 B	and edge	•	
Ref 21 dBm	Att 20 dB	RBW 100 kHz VBW 300 kHz SWT 1 ms	[T1] MP VIEW	Marker 1 [T1] 13.19 dBm 2.40460 GHz	Ref 21 dBm	Att 20 dB	RBW 100 kHz VBW 300 kHz SWT 1 ms	[T1] MP VIEW	Marker 1 [T1] 12.88 2.47440
Offset 11 dB D1 13 35 dBm			1	Marker 2 [T1] -42.79 dBm	21				Marker 2 [T1] -50.62
			- M	2.40000 GHz Marker 3 [T1] -41.70 dBm	10-				2.48350 Marker 3 [T1] -50.05
				2.39940 GHz Marker 4 [T1]	0				2.48350 Marker 4 [T1]
D2 -6.65 dBm				-57.60 dBm 2.39000 GHz Marker 5 [T1]	-10				-59.20
				-53.07 dBm 2.36680 GHz	-20-				_
				1	-30 -				4
			4	L .	-40				
		5			↓ 1				
		Aller	Jul .		-50-	www.turneys.net.Murrayhan	the have been see server -	an a second second second	
- Harris and the second second second	ajuta ya ana ana da fara ya ya kana ya kata ba	y may mary and an		NU YEA	-60	C. C	and the Adres and Annual Carlow	o to the set of the set of	AU VPA
			F2 F1		-70 - F1	F2			
Center 2.358 GHz	1 I I 10 MHz/	1 1	Span 100 MH		-79 - Center 2.5192 GHz	10 MHz/	1 1 1	I Span 100 MH	
001101 2:000 0112					001101 2.0102 012	10 11125			
		Donal oda							
	CH 26 I	Band edg							
Ref 21 dBm	CH 26 I	Band edg RBW 100 kHz VBW 300 kHz SWT 1 ms	C [T1] MP VIEW	Marker 1 [T1] 2.72 dBm 2 48040 GHz					
Ref 21 dBm Offset 11 dB		RBW 100 kHz VBW 300 kHz		2.72 dBm 2.48040 GHz Marker 2 [T1] -46.44 dBm					
Offset 11 dB		RBW 100 kHz VBW 300 kHz		2.72 dBm 2.48040 GHz Marker 2 [T1] -46.44 dBm 2.48350 GHz Marker 3 [T1]					
Offset 11 dB		RBW 100 kHz VBW 300 kHz		2.72 dBm 2.48040 GHz Marker 2 [T1] -46.44 dBm 2.48350 GHz Marker 3 [T1] -47.17 dBm 2.48350 GHz Marker 4 [T1]					
0ffset 11 dB 1 D1282 dBm		RBW 100 kHz VBW 300 kHz		2.72 dBm 2.48040 GHz Marker 2 [T1] -46.44 dBm 2.48350 GHz Marker 3 [T1] -47.17 dBm 2.48350 GHz					
Offset 11 dB		RBW 100 kHz VBW 300 kHz		2.72 dBm 2.46040 GHz -46.44 dBm 2.48350 GHz Marker 3 [T1] -47.17 dBm 2.48350 GHz Marker 4 [T1] -60.16 dBm					
Offset 11 dB 1 D1/2.82 dBm D2 - 17, 18 dBm		RBW 100 kHz VBW 300 kHz		2.72 dBm 2.46040 GHz -46.44 dBm 2.48350 GHz Marker 3 [T1] -47.17 dBm 2.48350 GHz Marker 4 [T1] -60.16 dBm					
Offset 11 dB 1 D12 82 dBm D2 - 17 18 dBm		RBW 100 kHz VBW 300 kHz		2.72 dBm 2.46040 GHz -46.44 dBm 2.48350 GHz Marker 3 [T1] -47.17 dBm 2.48350 GHz Marker 4 [T1] -60.16 dBm					
Offset 11 dB		RBW 100 kHz VBW 300 kHz		2.72 dBm 2.46040 GHz -46.44 dBm 2.48350 GHz Marker 3 [T1] -47.17 dBm 2.48350 GHz Marker 4 [T1] -60.16 dBm					
Offset 11 dB 1 D12 82 dBm D2 - 17 18 dBm	Att 20 dB	RBW 100 kHz VBW 300 kHz SWT 1 ms	[T1] MP VEW	2.72 dBm Mar 24.7040 GMz 4.66.44 dBm 2.48350 GHz Marker 3 (TT) 2.48350 GHz 4.48350 GHz 2.48350 GHz Marker 4 (TT) 2.50000 GHz					
Offset 11 dB		RBW 100 kHz VBW 300 kHz SWT 1 ms	[T1] MP VEW	2.72 dBm Mar 24.7040 GMz 4.66.44 dBm 2.48350 GHz Marker 3 (TT) 2.48350 GHz 4.48350 GHz 2.48350 GHz Marker 4 (TT) 2.50000 GHz					
Offset 11 dB	Att 20 dB	RBW 100 kHz VBW 300 kHz SWT 1 ms	[T1] MP VEW	2.72 dBm Mar 24.7040 GMz 4.66.44 dBm 2.48350 GHz Marker 3 (TT) 2.48350 GHz 4.48350 GHz 2.48350 GHz Marker 4 (TT) 2.50000 GHz					




5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Annex A- Band Edge Measurement

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab Tel: 886-2-26052180

Fax: 886-2-26052180

Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---