

Issued: 2017-08-21

TEST REPORT

Applicant Name & : Dong Guan Bright Yin Huey Lighting Co., Ltd.

Address Dong Guan Township, Humen Town, Da Ning Manage District, Da Pan Di

Indistrial Zone, DONG GUAN Guang Dong 523930, China

Sample Description

Product : 6 inches Bluetooth Speaker LED Downlight

FCC ID : 2AK53-6SLRD

Model No. : 6SLRD

Electrical Rating : 120Vac, 60Hz

Internal recharged battery: 3.7Vdc

Date Received : 05 June 2017

Date Test Conducted : 05 June 2017 –17 August 2017

Test standards : 47 CFR PART 15 Subpart C: 2016 section 15.249

Test Result : Pass

Conclusion : The submitted samples complied with the above rules/standards.

Remark : None.

Prepared and Checked By:

anvel. He

Approved By:

Daniel He

Project Engineer

Intertek Guangzhou

Team Leader

Intertek Guangzhou

21 August 2017 Date

Signature

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program. The test report only allows to be revised within three years from its original issued date unless further standard or the requirement was noticed.

Intertek Testing Services Shenzhen Ltd. Guangzhou Branch
Block E, No.7-2 Guang Dong Software Science Park, Caipin Road, Guangzhou Science City, GETDD Guangzhou, China
Tel / Fax: 86-20-8213 9688/86-20-3205 7538
© 2016 Intertek

FCC ID: 2AK53-6SLRD Page 1 of 38

Issued: 2017-08-21

CONTENT

FEST R	EPOR	Γ	1
CONTE			
1.0		nary of Test	
2.0		al Description	
	2.1	Product Description	4
	2.2	Related Submittal(s) Grants	5
	2.3	Test Methodology	5
	2.4	Test Facility	5
3.0	Syster	n Test Configuration	6
	3.1	Justification	6
	3.2	EUT Exercising Software	7
	3.3	Special Accessories	7
	3.4	Measurement Uncertainty	7
	3.5	Equipment Modification	7
	3.6	Support Equipment List and Description	8
4.0	Measi	rement Results	9
	4.1	Antenna Requirement:	9
	4.2	Occupied Bandwidth:	10
	4.7	Radiated Emission	14
	4.9	Conducted Emission Test	35
5.0	Test F	Equipment List	38

Issued: 2017-08-21

1.0 Summary of Test

TEST	TEST REQUIREMENT	TEST METHOD	RESULT	
Antenna Requirement	FCC PART 15 C	FCC PART 15 C	PASS	
Amenna Requirement	Section 15.203	Section 15.203	PASS	
Occupied Bandwidth	FCC PART 15 C	ANSI C63.10: Clause 6.9	PASS	
Occupied Bandwidth	section 15.215(c)	ANSI CO3.10. Clause 0.9	IASS	
	FCC PART 15 C	ANSI C63.10: Clause 6.4,	PASS	
Radiated Emission	section 15.249 (a), (d)	6.5 & 6.6		
Band Edges Measurement	FCC PART 15 C	ANSI C63.10: Clause 6.10	PASS	
Build Edges Wedstrement	section 15.249 (d)	ANSI COS.10. Clause 0.10	17155	
Conducted Emissions at Mains Terminals	FCC PART 15 C section 15.207	ANSI C63.10: Clause 6.2	PASS	

Remark:

N/A: not applicable. Refer to the relative section for the details. EUT: In this whole report EUT means Equipment Under Test.

Tx: In this whole report Tx (or tx) means Transmitter.

Rx: In this whole report Rx (or rx) means Receiver.

RF: In this whole report RF means Radio Frequency.

ANSI C63.10: the detail version is ANSI C63.10:2013 in the whole report.

FCC ID: 2AK53-6SLRD Page 3 of 38

Issued: 2017-08-21

2.0 General Description

2.1 Product Description

Operating Frequency 2404-2479MHz

Type of Modulation: GFSK

Number of Channels 16 Channel

Channel Separation: 5MHz

Antenna Type PCB Layout

Antenna gain: 0 dBi

Power Supply: 120Vac, 60Hz

Internal recharged battery: 3.7Vdc

EUT channels and frequencies list:

Test frequencies are lowest channel 0: 2404 MHz, middle channel 9: 2444 MHz and highest channel 15: 2479 MHz.

Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2404	14	2474
1	2409	15	2479
2	2414		
3	2419		
4	2424		
5	2429		
6	2434		
7	2439		
8	2444		
9	2449		
10	2454		
11	2459		
12	2464		
13	2469		

FCC ID: 2AK53-6SLRD Page 4 of 38

Issued: 2017-08-21

2.2 Related Submittal(s) Grants

This is an application for certification of: Part 15 Low Power Communications Device Transmitter

Remaining portions are subject to the following procedures:

Receiver portion of 2.4GHz: exempt from technical requirement of this Part.

Lighting mode: it was evaluated by FCC Part 15B

2.3 Test Methodology

Both AC mains line-conducted and radiated emission measurements were performed according to the procedures in ANSI C63.10:2013. Radiated emission measurement was performed in semi-anechoic chamber and conducted emission measurement was performed in shield room. For radiated emission measurement, preliminary scans and final tests were performed in the semi-anechoic chamber to determine the worst case modes. All radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise.

2.4 Test Facility

All tests were performed at:

 $Room 102/104, \, No \,\, 203, \, KeZhu \,\, Road, \, Science \,\, City, \, GETDD \,\, Guangzhou, \, China$

Except Conducted Emissions was performed at:

Block E, No.7-2 Guang Dong Software Science Park, Caipin Road, Guangzhou Science City, GETDD Guangzhou, China

A2LA Certificate Number 0078.10

Intertek Testing Services Shenzhen Ltd. Guangzhou Branch is accredited by A2LA and Listed in FCC website. FCC accredited test labs may perform both Certification testing under Parts 15 and 18 and Declaration of Conformity testing.

FCC ID: 2AK53-6SLRD Page 5 of 38

Issued: 2017-08-21

3.0 System Test Configuration

3.1 Justification

For emissions testing, the equipment under test (EUT) setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. It was powered by AC 120V/60Hz supply or powered by 3.7Vdc.

The signal is maximized through rotation and placement in the three orthogonal axes; the antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance.

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. The spurious emissions more than 20 dB below the permissible value are not reported.

For an intentional radiator, the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to at least the frequency shown in the following table:

Frequency range of radiated emission measurements

Lowest frequency generated in the device	Upper frequency range of measurement
9 kHz to below 10 GHz	10th harmonic of highest fundamental frequency or to 40 GHz, whichever is lower
At or above 10 GHz to below 30	5th harmonic of highest fundamental frequency or to 100
GHz	GHz, whichever is lower
At or above 30 GHz	5th harmonic of highest fundamental frequency or to 200 GHz, whichever is lower, unless otherwise specified

Number of fundamental frequencies to be tested in EUT transmit band

Frequency range in which	Number of	Location in frequency
device operates	frequencies	range of operation
1 MHz or less	1	Middle
1 MHz to 10 MHz	2	1 near top and 1 near bottom
More than 10 MHz	3	1 near top, 1 near middle and 1 near bottom

FCC ID: 2AK53-6SLRD Page 6 of 38

Issued: 2017-08-21

3.2 EUT Exercising Software

No special exercising software

3.3 Special Accessories

No special accessories used.

3.4 Measurement Uncertainty

No.	Item	Measurement Uncertainty
1	Occupied Channel Bandwidth	2.3%
		4.7 dB (25 MHz-1 GHz)
2	Spurious Emission (TX)-Radiated	4.8 dB (1 GHz-18 GHz)
3	Temperature	0.5 °C
4	Conducted Emissions at Mains Terminals	2.58dB
5	Humidity	0.4 %
6	Time	1.2%

When determining of the test conclusion, the Measurement Uncertainty of test has been considered.

Uncertainty and Compliance – Unless the standard specifically states that measured values are to be extended by the measurement uncertainty in determining compliance, all compliance determinations are based on the actual measured value.

3.5 Equipment Modification

Any modifications installed previous to testing by Dong Guan Bright Yin Huey Lighting Co., Ltd. will be incorporated in each production model sold / leased in the United States.

No modifications were installed by Intertek Testing Services Shenzhen Ltd. Guangzhou Branch.

FCC ID: 2AK53-6SLRD Page 7 of 38

Issued: 2017-08-21

3.6 Support Equipment List and Description

The client make a continuous transmit sample for test, in actual use will with duty cycle (detail information can refer to page 12)

Metal Housing: in order to make the EUT connect with earth.

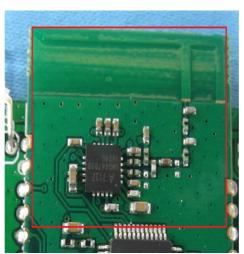
Remark: EUT should be sold without Metal housing.

FCC ID: 2AK53-6SLRD Page 8 of 38

Issued: 2017-08-21

4.0 Measurement Results

4.1 Antenna Requirement:


Standard requirement

15.203 requirement:

For intentional device. According to 15.203, an intentional radiator shall be designed to Ensure that no antenna other than that furnished by the responsible party shall be used with the device.

EUT Antenna

The antenna is an integral antenna and no consideration of replacement. The best case gain of the antenna is 0 dBi.

FCC ID: 2AK53-6SLRD Page 9 of 38

Issued: 2017-08-21

4.2 Occupied Bandwidth:

Test Requirement: FCC PART 15 C section 15.215(c)

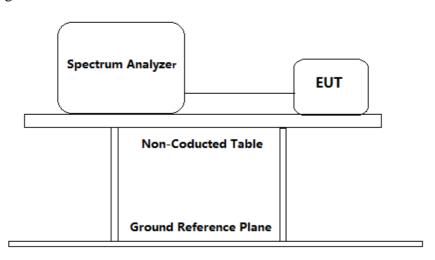
(c) Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth

that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is

operated

Test Method: ANSI C63.10: Clause 6.9

Test Status: Pre-Scan has been conducted to determine the worst-case mode


from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity

architecture).

Pre-test the EUT supplied by AC mode and B/O mode, find

worse case in AC mode.

Test Configuration:

Test Procedure:

The transmitter was operated at its maximum carrier power measured under normal test conditions.

- a) The instrument center frequency was set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer was between 1.5 times and 5.0 times the OBW(20 dB Bandwidth).
- b) The nominal IF filter bandwidth (3 dB RBW) was in the range of 1% to 5% of the OBW, and VBW was approximately three times the RBW.

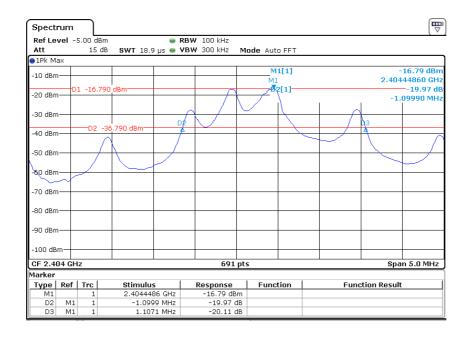
Issued: 2017-08-21

- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope was more than [10 log (OBW/RBW)] below the reference level.
- d) Step a) through step c) might require iteration to adjust within the specified range.
- e) The dynamic range of the instrument at the selected RBW was more than 10 dB below the target "-20 dB down" requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW was at least 30 dB below the reference value.
- f) Peak detection and max hold mode (until the trace stabilizes) was used.
- g) Used the 20dB bandwidth function of the instrument and reported the measured bandwidth.
- h) The occupied bandwidth was reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division was clearly labeled. Tabular data was reported in addition to the plot(s).

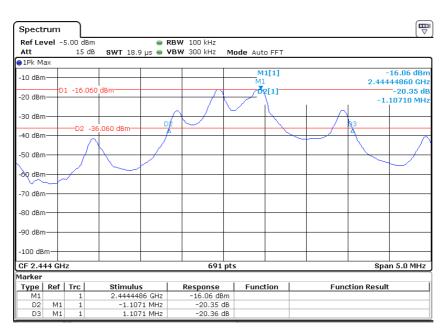
20 dB bandwidth:

Frequency	Measured 20 dB	Limit	Result
(MHz)	bandwidth (MHz)	(MHz)	Result
2404	2.206	/	Pass
2444	2.214	/	Pass
2479 2.236		/	Pass

FCC ID: 2AK53-6SLRD Page 11 of 38

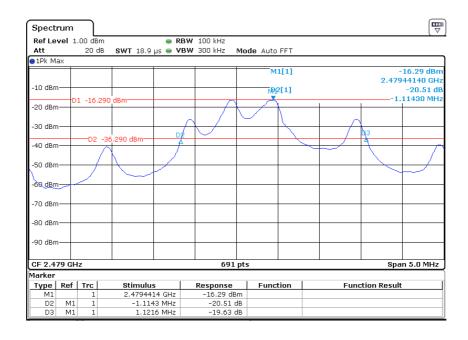


Issued: 2017-08-21


20dB bandwidth:

Result plot as follows:

2404MHz


2444MHz

Issued: 2017-08-21

2479MHz

Issued: 2017-08-21

4.7 Radiated Emission

Test Requirement: FCC PART 15 C section 15.249 (a), (d)

(a) Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental Frequency	Field Strength of Fundamental	Field Strength of Harmonics	
(MHz)	(dBµV/m @ 3m)	$(dB\mu V/m @ 3m)$	
902 to 928	94.0	54.0	
2400 to 2483.5	94.0	54.0	
5725 to 5875	94.0	54.0	

Note: The limits shown in the above table are based on measurements using an average detector, except for the fundamental emission in the frequency band 902-928 MHz, which is based on measurements using a CISPR quasi-peak detector.

(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is the lesser attenuation.

Test Method: ANSI C63.10: Clause 6.4, 6.5 and 6.6

Test Status: Pre-Scan has been conducted to determine the worst-case mode

from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity

architecture).

Pre-test the EUT supplied by AC mode and B/O mode, find worse

case in AC mode.

Test site: Measurement Distance: 3m (Semi-Anechoic Chamber)

Limit: The field strength of radiated emission outside of the specified

frequency bands, except for harmonics at a distance of 3 meters

shall not exceed the following values:

Frequency (MHz)	Field Strength
	(dBµV/m @ 3m)
30-88	40.0
88-216	43.5
216-960	46.0
Above 960	54.0

Detector: For Peak and Quasi-Peak value: 200 Hz for 9 kHz to 150 kHz

FCC ID: 2AK53-6SLRD Page 14 of 38

Issued: 2017-08-21

9 kHz for 150 kHz to 30 MHz 120 kHz for 30 MHz to 1GHz RBW = 1 MHz for $f \ge 1$ GHz

VBW ≥ RBW

Sweep = auto

Detector function = peak for $f \ge 1$ GHz, QP for f < 1 GHz

Trace = max hold

According 15.35(c), when the field strength (or envelope power) is not constant or it is in pulses, and an average detector is specified to be used, the value of field strength or power shall be determined by averaging over one complete pulse train, including blanking intervals within the pulse train, as long as the pulse train does not exceed 0.1 seconds. In cases where the pulse train exceeds 0.1 second, the average value of field strength or output power shall be determined during a 0.1 second interval during which the field strength or power is at its maximum value.

The average correction factor was computed by analyzing the on time in 100ms over one complete pulse train. Analysis of the remote transmitter on time in one complete pulse train, therefore the average value of fundamental frequency was: Average = Peak value + 20log (Duty cycle), where the duty factor is calculated from following formula:

2404MHz:

The duration of one cycle:1.942ms

Effective period of the cycle =0.391ms

DC =0.394/1.942=0.203 or 20.3%

Therefore, the averaging factor is found by 20lg0.203= -13.86

2444MHz:

The duration of one cycle:1.942ms

Effective period of the cycle =0.377ms

DC =0.377/1.942=0.194 or 19.4%

Therefore, the averaging factor is found by 20lg0.194= -14.24

2479MHz:

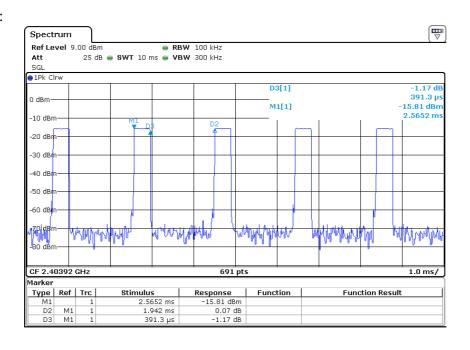
The duration of one cycle: 1.957ms

Effective period of the cycle =0.391ms

DC =0.391/1.957=0.199 or 19.9%

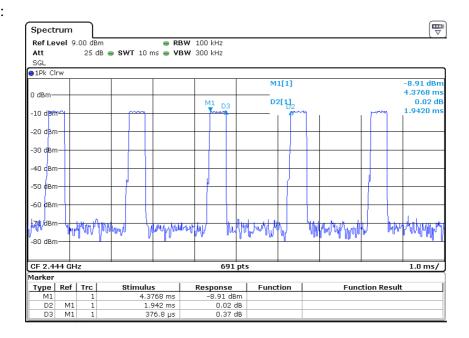
FCC ID: 2AK53-6SLRD Page 15 of 38

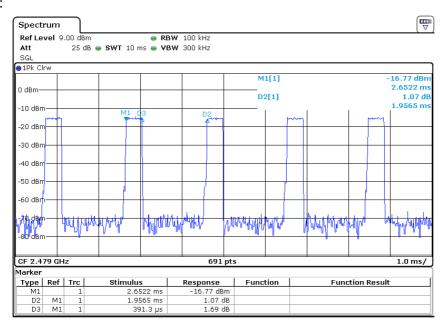
Issued: 2017-08-21


Therefore, the averaging factor is found by 20lg0.199= -13.99

Pre-test all button, the worst case is button "PAIR", and record the data

Please refer to below plots for more details.


2404MHz:



Issued: 2017-08-21

2444MHz:

2479MHz:

Issued: 2017-08-21

Field Strength Calculation:

Where:

The field strength is calculated by adding the reading on the Spectrum Analyzer to the factors associated with preamplifiers (if any), antennas, cables, pulse desensitization and average factors (when specified limit is in average and measurements are made with peak detectors). A sample calculation is included below:

FS = RA + AF + CF - AG + PD + AV

FS = RA + Correct Factor + AV

 $FS = Field Strength in dB\mu V/m$

RA = Receiver Amplitude (including preamplifier) in $dB\mu V$

AF = Antenna Factor in dB

CF = Cable Attenuation Factor in dB

AG = Amplifier Gain in dB

PD = Pulse Desensitization in dB

AV = Average Factor in -dB

Correct Factor = AF + CF - AG + PD

In the radiated emission table which follows, the reading shown on the data table may reflect the preamplifier gain. An example of the calculations, where the reading does not reflect the preamplifier gain, follows:

$$FS = RA + AF + CF - AG + PD + AV$$

Assume a receiver reading of $62.0~dB\mu V$ is obtained. The antenna factor of 7.4~dB and cable factor of 1.6~dB is added. The amplifier gain of 29~dB is subtracted. The pulse desensitization factor of the spectrum analyzer was 0~dB, and the resultant average factor was -10~dB. The net field strength for comparison to the appropriate emission limit is $32~dB\mu V/m$.

 $RA = 62.0 dB\mu V$

AF = 7.4 dB

CF = 1.6 dB

 $AG = 29.0 \, dB$

PD = 0 dB

AV = -10 dB

Correct Factor = 7.4 + 1.6 - 29.0 + 0 = -20 dB

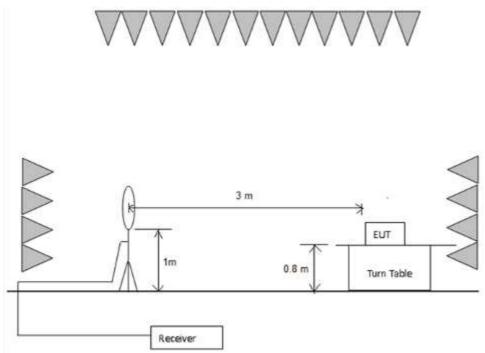
 $FS = 62 + (-20) + (-10) = 32 dB\mu V/m$

Remark: Above the 1GHz, spectrum used the RBW 1MHz(1/RBW=1us) for test, which is shorter than the width of one pulse, so PD=0dB

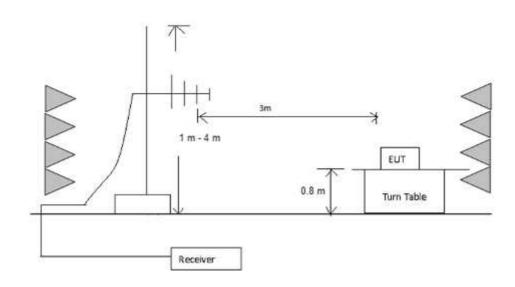
Issued: 2017-08-21

Section 15.205 Restricted bands of operation.

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423 16.69475 - 16.69525 16.80425 - 16.80475 25.5 - 25.67 37.5 - 38.25 73 - 74.6 74.8 - 75.2 108 - 121.94 123 - 138 149.9 - 150.05 156.52475 - 156.52525 156.7 - 156.9 162.0125 - 167.17 167.72 - 173.2 240 - 285 322 - 335.4	399.9 - 410 608 - 614 960 - 1240 1300 - 1427 1435 - 1626.5 1645.5 - 1646.5 1660 - 1710 1718.8 - 1722.2 2200 - 2300 2310 - 2390 2483.5 - 2500 2655 - 2900 3260 - 3267 3332 - 3339 3345.8 - 3358 3600 - 4400	4.5 - 5.15 5.35 - 5.46 7.25 - 7.75 8.025 - 8.5 9.0 - 9.2 9.3 - 9.5 10.6 - 12.7 13.25 - 13.4 14.47 - 14.5 15.35 - 16.2 17.7 - 21.4 22.01 - 23.12 23.6 - 24.0 31.2 - 31.8 36.43 - 36.5

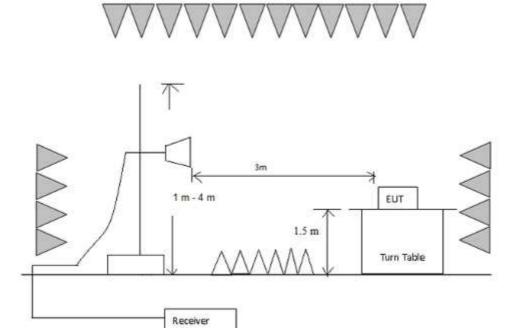

FCC ID: 2AK53-6SLRD Page 19 of 38

Issued: 2017-08-21


Test Configuration:

1) 9 kHz to 30 MHz emissions:

2) 30 MHz to 1 GHz emissions:



Issued: 2017-08-21

3) 1 GHz to 25 GHz emissions:

Test Procedure:

1) 9 kHz to 30 MHz emissions:

For testing performed with the loop antenna. The centre of the loop was positioned 1 m above the ground and positioned with its plane vertical at the special distance from the EUT. During testing the loop was rotated about its vertical axis for maximum response at each azimuth and also investigated with the loop positioned in the horizontal plane.

2) 30 MHz to 1 GHz emissions:

For testing performed with the bi-log type antenna. The measurement is performed with the EUT rotated 360°, the antenna height scanned between 1m and 4m, and the antenna rotated to repeat the measurement for both the horizontal and vertical antenna polarizations.

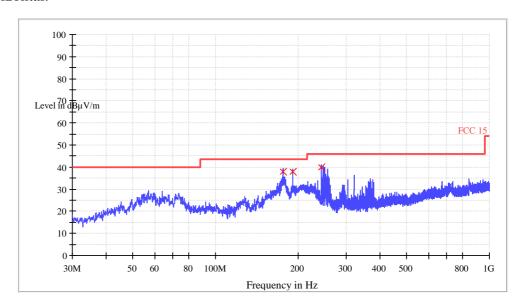
3) 1 GHz to 25 GHz emissions:

Test site with RF absorbing material covering the ground plane that met the site validation criterion called out in CISPR 16-1-4:2010 was used to perform radiated emission test above 1 GHz.

For testing performed with the horn antenna. The measurement is performed with the EUT rotated 360°, the antenna height scanned between 1m and 4m, and the antenna rotated to repeat the measurement for both the horizontal and vertical antenna polarizations.

4) The receiver was scanned from 9 kHz to 25 GHz. When an emission was found, the table was rotated to produce the maximum signal strength. An initial pre-scan was performed for in peak

Issued: 2017-08-21


detection mode using the receiver. The EUT was measured for both the Horizontal and Vertical polarities and performed a pre-test three orthogonal planes. For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. The worst case emissions were reported.

9 kHz~30 MHz Field Strength of Unwanted Emissions. Quasi-Peak Measurement The measurements with active loop antenna were greater than 20dB below the limit, so the test data were not recorded in the test report.

2404MHz:

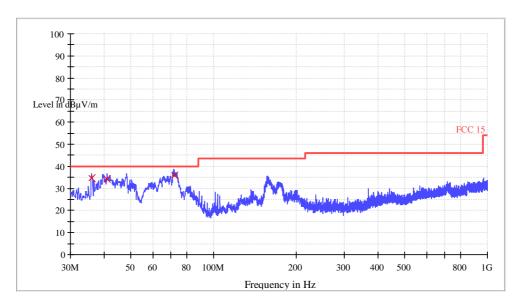
Radiated Emissions (Below 1GHz)

Test Curve and test data Horizontal:

Quasi-peak measurement:

Frequency (MHz)	Receiver Reading Level (dBµV)	Correction factors (dB/m)	Emission Level (dBµV/m)	Limit (dBµV/m)
176.00	27.6	10.5	38.1	43.5
191.88	26.0	11.9	37.9	43.5
244.08	26.1	13.9	40.0	46.0

Remark:


Final Test Level =Receiver Reading + Correction Factor Correction Factor = Antenna Factor + Cable Loss.

FCC ID: 2AK53-6SLRD Page 22 of 38

Issued: 2017-08-21

Vertical:

Quasi-peak measurement:

Frequency (MHz)	Receiver Reading Level (dBµV)	Correction factors (dB/m)	Emission Level (dBµV/m)	Limit (dBµV/m)
36.00	22.7	11.9	34.6	40.0
71.92	26.1	9.8	35.9	40.0
410.76	21.0	13.4	34.4	40.0

Remark:

Final Test Level =Receiver Reading + Correction Factor

Correction Factor = Antenna Factor + Cable Loss.

Issued: 2017-08-21

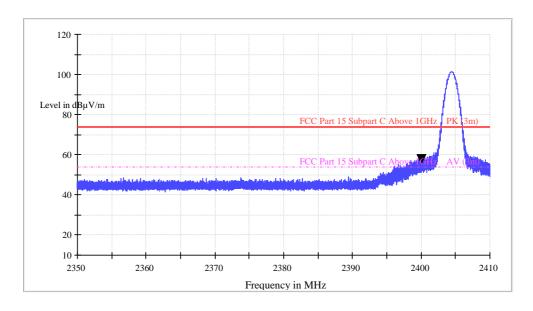
Radiated Emissions (Above 1GHz)

Polarization	Frequency (MHz)	Reading (dBµV)	Correction Factor (dB)	Net at 3m (dBµV/m)	Peak Limit at 3m (dBµV/m)	Margin (dB)
Horizontal	2404.000	110.7	-8.9	101.8	114.0	-12.2
Horizontal	4809.060	44.8	-0.5	44.3	74.0	-29.7
Horizontal	9739.594	43.4	6.3	49.7	74.0	-24.3
Vertical	2404.000	112.6	-8.9	103.7	114.0	-10.3
Vertical	4809.060	46.0	-0.5	45.5	74.0	-28.5
Vertical	9739.594	47.4	6.3	53.7	74.0	-20.3

Polarization	Frequency	Peak	Average	Net	Average Limit	Margin
	(MHz)	Value	Factor	at 3m	at 3m	(dB)
		(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	
Horizontal	2404.000	101.8	-13.9	87.9	94.0	-6.1
Horizontal	4809.060	44.3	-13.9	30.4	54.0	-23.6
Horizontal	9739.594	49.7	-13.9	35.8	54.0	-18.2
Vertical	2404.000	103.7	-13.9	89.8	94.0	-4.2
Vertical	4809.060	45.5	-13.9	31.6	54.0	-22.4
Vertical	9739.594	53.7	-13.9	39.8	54.0	-14.2

Notes:

- 1. AT frequencies equal to or less than 1000MHz, quasi-peak detector was used, above 1000MHz, Peak detector was used.
- 2. All measurements were made at 3 meter.
- 3. Horn antenna is used for the emission over 1000MHz.
- 4. Final Test Level =Receiver Reading + Correction Factor


 Correction Factor = Antenna Factor + Cable Loss -Preamplifier Factor.
- 5. Harmonic Emissions was tested with filter (Product name: MICRO-TRONICS, model name: BRM50702), other radiated emissions were found below the reference noise level
- 6. Final Test Level (AV) =PK + Average Factor
- 7. When Peak emission level was below AV limit, the AV emission level did not be recorded.

FCC ID: 2AK53-6SLRD Page 24 of 38

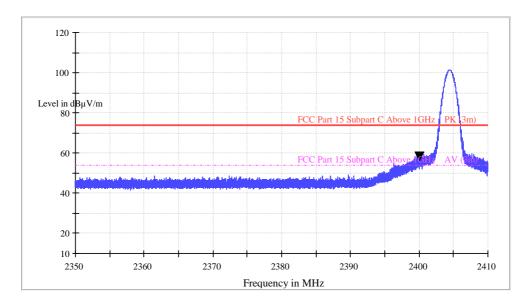
Issued: 2017-08-21

Band Edge test: Horizontal

Frequency (MHz)	PK Reading Level (dBµV/m)	Correction factors (dB/m)	PK Emission Level (dBµV/m)	Limit (dBµV/m)
2400.00	58.6	-2.3	56.3	74.0

Frequency (MHz)	AV Emission Level (dBµV/m)	Correction factors (dB/m)	AV Emission Level (dBµV/m)	Limit (dBµV/m)
2400.00	48.7	-2.3	46.4	54.0

Remark:


Final Test Level =Receiver Reading + Correction Factor

 $Correction\ Factor = Antenna\ Factor + Cable\ Loss\ - Preamplifier\ Factor.$

Issued: 2017-08-21

Vertical

	PK	Correction	PK	
Frequency	Reading	factors	Emission	Limit
(MHz)	Level	(dB/m)	Level	(dBµV/m)
	$(dB\mu V/m)$		$(dB\mu V/m)$	
2400.00	58.7	-2.3	56.4	74.0

Frequency (MHz)	AV Emission Level (dBµV/m)	Correction factors (dB/m)	AV Emission Level (dBµV/m)	Limit (dBµV/m)
2400.00	48.8	-2.3	46.5	54.0

Remark:

Final Test Level =Receiver Reading + Correction Factor

Correction Factor = Antenna Factor + Cable Loss - Preamplifier Factor.

Issued: 2017-08-21

2444MHz:

Radiated Emissions (Below 1GHz)

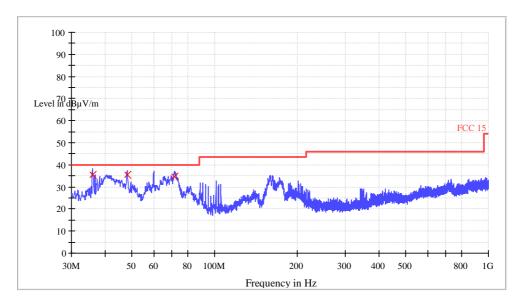
Test Curve and test data Horizontal:

Quasi-peak measurement:

Frequency (MHz)	Receiver Reading Level (dBµV)	Correction factors (dB/m)	Emission Level (dBµV/m)	Limit (dBµV/m)
176.00	24.2	10.5	34.7	43.5
235.44	19.8	13.7	33.5	46.0
319.92	18.6	15.8	34.4	46.0

Remark:

Final Test Level =Receiver Reading + Correction Factor


Correction Factor = Antenna Factor + Cable Loss.

FCC ID: 2AK53-6SLRD Page 27 of 38

Issued: 2017-08-21

Vertical:

Quasi-peak measurement:

Frequency (MHz)	Receiver Reading Level (dBµV)	Correction factors (dB/m)	Emission Level (dBµV/m)	Limit (dBµV/m)
35.92	23.7	11.9	35.6	40.0
47.96	21.2	14.1	35.3	40.0
71.60	24.7	9.8	34.5	40.0

Remark:

Final Test Level =Receiver Reading + Correction Factor

Correction Factor = Antenna Factor + Cable Loss.

Issued: 2017-08-21

Radiated Emissions (Above 1GHz)

Polarization	Frequency (MHz)	Reading (dBµV)	Correction Factor (dB)	Net at 3m (dBµV/m)	Peak Limit at 3m (dBµV/m)	Margin (dB)
Horizontal	2444.000	107.9	-7.2	100.7	114.0	-13.3
Horizontal	4888.750	42.0	-0.5	41.8	74.0	-32.2
Horizontal	9776.425	43.3	6.3	49.6	74.0	-24.4
Vertical	2444.000	109.3	-7.2	102.1	114.0	-11.9
Vertical	4888.750	45.6	-0.5	45.1	74.0	-28.9
Vertical	9776.425	46.3	6.3	52.6	74.0	-21.4

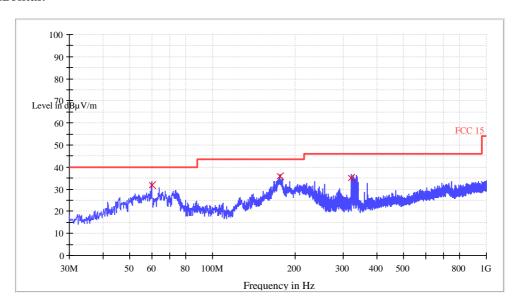
Polarization	Frequency (MHz)	Peak Value (dBµV)	Average Factor (dB)	Net at 3m (dBµV/m)	Average Limit at 3m (dBµV/m)	Margin (dB)
Horizontal	2444.000	100.7	-14.2	86.5	94.0	-7.5
Horizontal	4888.750	41.8	-14.2	27.6	54.0	-26.4
Horizontal	9776.425	49.6	-14.2	35.4	54.0	-18.6
Vertical	2444.000	102.1	-14.2	87.9	94.0	-6.1
Vertical	4888.750	45.1	-14.2	30.9	54.0	-23.1
Vertical	9776.425	52.6	-14.2	38.4	54.0	-15.6

Notes:

- 1. AT frequencies equal to or less than 1000MHz, quasi-peak detector was used, above 1000MHz. Peak detector was used.
- 2. All measurements were made at 3 meter.
- 3. Horn antenna is used for the emission over 1000MHz.
- 4. Final Test Level =Receiver Reading + Correction Factor

 Correction Factor = Antenna Factor + Cable Loss -Preamplifier Factor.
- 5. Harmonic Emissions was tested with filter (Product name: MICRO-TRONICS, model name: BRM50702), other radiated emissions were found below the reference noise level
- 6. Final Test Level (AV) =PK + Average Factor
- 7. When Peak emission level was below AV limit, the AV emission level did not be recorded.

FCC ID: 2AK53-6SLRD Page 29 of 38



Issued: 2017-08-21

2479MHz:

Radiated Emissions (Below 1GHz)

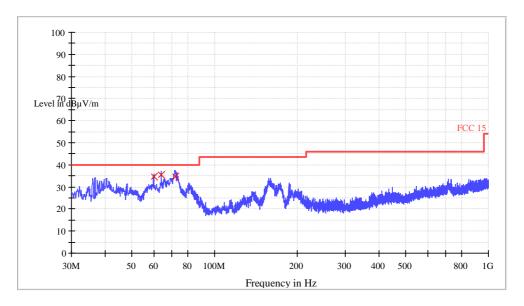
Test Curve and test data Horizontal:

Quasi-peak measurement:

Frequency (MHz)	Receiver Reading Level (dBµV)	Correction factors (dB/m)	Emission Level (dBµV/m)	Limit (dBµV/m)
59.96	19.1	12.8	31.9	40.0
176.00	25.3	10.5	35.8	43.5
321.08	19.3	15.9	35.2	46.0

Remark:

Final Test Level = Receiver Reading + Correction Factor


Correction Factor = Antenna Factor + Cable Loss.

FCC ID: 2AK53-6SLRD Page 30 of 38

Issued: 2017-08-21

Vertical:

Quasi-peak measurement:

Frequency (MHz)	Receiver Reading Level (dBµV)	Correction factors (dB/m)	Emission Level (dBµV/m)	Limit (dBµV/m)
60.08	21.9	12.8	34.7	40.0
63.96	23.9	11.7	35.6	40.0
72.00	25.0	9.8	34.8	40.0

Remark:

 $Final\ Test\ Level = Receiver\ Reading + Correction\ Factor$

Correction Factor = Antenna Factor + Cable Loss.

Issued: 2017-08-21

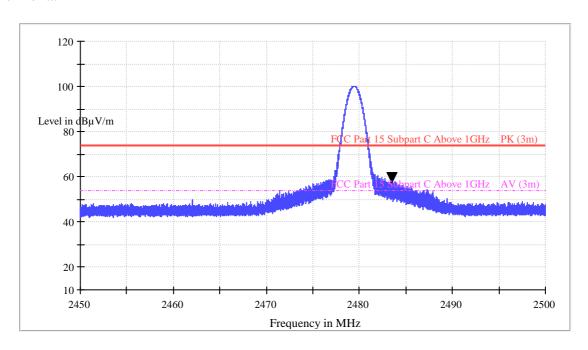
Radiated Emissions (Above 1GHz)

Polarization	Frequency (MHz)	Reading (dBµV)	Correction Factor (dB)	Net at 3m (dBµV/m)	Peak Limit at 3m (dBµV/m)	Margin (dB)
Horizontal	2479.000	109.4	-7.2	102.2	114.0	-11.8
Horizontal	4958.875	43.0	-0.5	42.5	74.0	-31.5
Horizontal	9916.739	45.1	7.3	52.4	74.0	-21.6
Vertical	2479.000	109.5	-7.2	102.3	114.0	-11.7
Vertical	4958.875	45.1	-0.5	44.6	74.0	-29.4
Vertical	9916.739	42.8	7.3	50.1	74.0	-23.9

Polarization	Frequency	Peak	Average	Net	Average Limit	Margin
	(MHz)	Value	Factor	at 3m	at 3m	(dB)
		(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	
Horizontal	2479.000	102.2	-14.0	88.2	94.0	-5.8
Horizontal	4958.875	42.5	-14.0	28.5	54.0	-25.5
Horizontal	9916.739	52.4	-14.0	38.4	54.0	-15.6
Vertical	2479.000	102.3	-14.0	88.3	94.0	-5.7
Vertical	4958.875	44.6	-14.0	30.6	54.0	-23.4
Vertical	9916.739	50.1	-14.0	36.1	54.0	-17.9

Notes:

- 1. AT frequencies equal to or less than 1000MHz, quasi-peak detector was used, above 1000MHz, Peak detector was used.
- 2. All measurements were made at 3 meter.
- 3. Horn antenna is used for the emission over 1000MHz.
- 4. Final Test Level =Receiver Reading + Correction Factor


 Correction Factor = Antenna Factor + Cable Loss -Preamplifier Factor.
- 5. Harmonic Emissions was tested with filter (Product name: MICRO-TRONICS, model name: BRM50702), other radiated emissions were found below the reference noise level
- 6. Final Test Level (AV) =PK + Average Factor
- 7. When Peak emission level was below AV limit, the AV emission level did not be recorded.

FCC ID: 2AK53-6SLRD Page 32 of 38

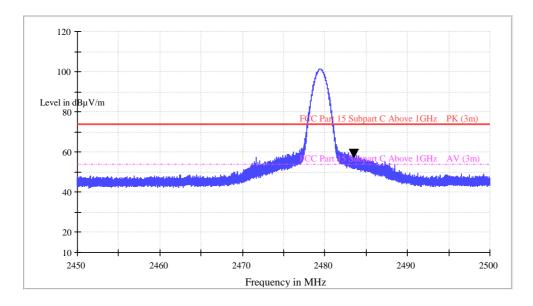
Issued: 2017-08-21

Band Edge test: Horizontal

	PK	Correction	PK	
Frequency	Reading	factors	Emission	Limit
(MHz)	Level	(dB/m)	Level	(dBµV/m)
	$(dB\mu V/m)$		$(dB\mu V/m)$	
2483.5	59.9	-2.1	57.8	74.0

Frequency (MHz)	AV Emission Level (dBµV/m)	Correction factors (dB/m)	AV Emission Level (dBµV/m)	Limit (dBµV/m)
2483.5	48.9	-2.1	46.8	54.0

Remark:


Final Test Level =Receiver Reading + Correction Factor

Correction Factor = Antenna Factor + Cable Loss - Preamplifier Factor.

Issued: 2017-08-21

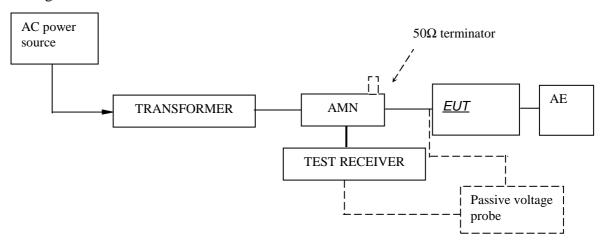
Vertical

	PK	Correction	PK	
Frequency	Reading	factors	Emission	Limit
(MHz)	Level	(dB/m)	Level	$(dB\mu V/m)$
	$(dB\mu V/m)$		$(dB\mu V/m)$	
2483.5	59.6	-2.1	57.5	74.0

Frequency (MHz)	AV Emission Level (dBµV/m)	Correction factors (dB/m)	AV Emission Level (dBµV/m)	Limit (dBµV/m)
2483.5	48.6	-2.1	46.5	54.0

Remark:

Final Test Level =Receiver Reading + Correction Factor


Correction Factor = Antenna Factor + Cable Loss - Preamplifier Factor.

Issued: 2017-08-21

4.9 Conducted Emission Test

Test Configuration:

Test Setup and Procedure

Test was performed according to ANSI C63.10 Clause 6.2. The EUT was set to achieve the maximum emission level. The mains terminal disturbance voltage was measured with the EUT in a shielded room. The EUT was connected to AC power source through an Artificial Mains Network which provides a 50Ω linear impedance Artificial hand is used if appropriate (for handheld apparatus). The load/control terminal disturbance voltage was measured with passive voltage probe if appropriate.

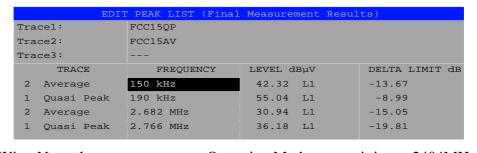
The table-top EUT was placed on a 0.8m high non-metallic table above earthed ground plane (Ground Reference Plane). And for floor standing EUT, was placed on a 0.1m high non-metallic supported on GRP. The EUT keeps a distance of at least 0.8m from any other of the metallic surface. The Artificial Mains Network is situated at a distance of 0.8m from the EUT.

During the test, mains lead of EUT excess 0.8m was folded back and forth parallel to the lead so as to form a horizontal bundle with a length between 0.3m and 0.4m.

The bandwidth of test receiver was set at 9 kHz. The frequency range from 150 kHz to 30MHz was checked.

Pre-test in the three channels: 2404MHz, 2444MHz and 2479MHz and found the conducted emission on 2404MHz was the worst case, so below test data was for 2404MHz.

FCC ID: 2AK53-6SLRD Page 35 of 38

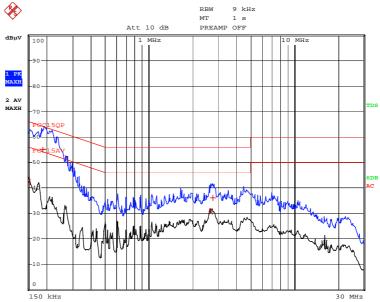

Page 36 of 38

Issued: 2017-08-21

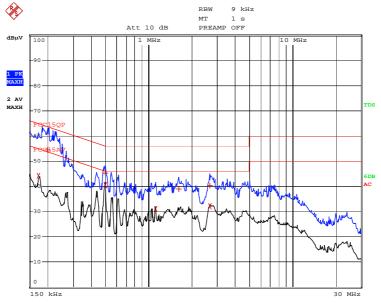
Test Data

At main terminal: Pass

Tested Wire: Live Operation Mode: transmitting at 2404MHz


Tested Wire: Neutral Operation Mode: transmitting at 2404MHz

EDIT	r PEAK LIST (Final	Measurement Resul	ts)
Tracel:	FCC15QP		
Trace2:	FCC15AV		
Trace3:			
TRACE	FREQUENCY	LEVEL dBµV	DELTA LIMIT dB
2 Average	174 kHz	44.16 L1	-10.60
1 Quasi Peak	202 kHz	54.37 L1	-9.15
1 Quasi Peak	498 kHz	45.31 L1	-10.72
2 Average	498 kHz	40.61 L1	-5.41
2 Average	1.114 MHz	30.99 L1	-15.00
1 Quasi Peak	1.618 MHz	38.90 L1	-17.09
1 Quasi Peak	2.674 MHz	40.17 L1	-15.82
2 Average	2.682 MHz	32.12 L1	-13.87



Issued: 2017-08-21

Emission Curve Tested Wire: Live

Tested Wire: Neutral

Issued: 2017-08-21

5.0 Test Equipment List

Radiated Emission/Radio

Equipment No.	Equipment	Model	Manufacturer	Cal. Due date (MM-DD-YYYY)	Calibration Interval
EM030-04	3m Semi-Anechoic Chamber	9×6×6 m ³	ETS•LINDGRE N	2018/5/1	1Y
EM031-02	EMI Test Receiver (9 kHz~7 GHz)	R&S ESR7	R&S	2018/3/27	1Y
EM031-03	Signal and Spectrum Analyzer (10 Hz~40 GHz)	R&S FSV40	R&S	2018/5/18	1Y
EM011-04	Loop antenna (9 kHz-30 MHz)	HFH2-Z2	R&S	2018/6/14	1Y
EM061-03	TRILOG Super Broadband test Antenna (30 MHz-1.5 GHz) (TX)	VULB 9161	SCHWARZBECK	2018/6/7	1Y
EM033-01	TRILOG Super Broadband test Antenna(30 MHz-3 GHz) (RX)	VULB 9163	SCHWARZBECK	2017/9/8	1Y
EM033-02	Bouble-Ridged Waveguide Horn Antenna (800 MHz-18 GHz)(RX)	R&S HF907	R&S	2018/6/7	1Y
EM033-03	High Frequency Antenna & preamplifier(18 GHz~26.5 GHz) (RX)	R&S SCU-26	R&S	2018/5/4	1Y
EM033-04	High Frequency Antenna & preamplifier (26 GHz-40 GHz)	R&S SCU-40	R&S	2018/5/4	1Y
EM031-02-01	Coaxial cable(9 kHz-1 GHz)	N/A	R&S	2018/5/18	1Y
EM033-02-02	Coaxial cable(1 GHz-18 GHz)	N/A	R&S	2018/5/18	1Y
EM033-04-02	Coaxial cable(18 GHz~40 GHz)	N/A	R&S	2018/5/25	1Y
EM031-01	Signal Generator (9 kHz~6 GHz)	SMB100A	R&S	2018/8/1	1Y
EM085-02	Signal Generator (10MHz-40GHz)	68369B	Wiltron	2018/5/31	1Y
EM040-01	Band Reject/Notch Filter	WRHFV	Wainwright	N/A	1Y
EM040-02	Band Reject/Notch Filter	WRCGV	Wainwright	N/A	1Y
EM040-03	Band Reject/Notch Filter	WRCGV	Wainwright	N/A	1Y
EM022-03	2.45 GHz Filter	BRM50702	Micro-Tronics	2018/5/9	1Y
SA016-16	Programmable Temperature & Humidity Test Chamber	MHU-800LJ	TERCHY	2017/10/21	1Y
SA016-22	Climatic Test Chamber	C7-1500	Vötsch	2017/10/21	1 Y
SA012-74	Digital Multimeter	FLUKE175	FLUKE	2017/10/13	1Y
EM010-01	Regulated DC Power supply	PAB-3003A	GUANHUA	N/A	1Y
SA040-22	Regulated DC Power supply	IT6721	ITECH	2017/9/18	1Y
EM084-06	Audio Analyzer	8903B	HP	2018/4/3	1Y
EM084-07	Modulation Analyzer	8901B	HP	2018/6/15	1Y
EM045-01-01	EMC32 software (RE/RS)	V10.01.00	R&S	N/A	N/A
EM045-01-09	EMC32 software (328/893)	V9.26.01	R&S	N/A	N/A

Conducted emission at the mains terminals

	* ************************************						
Equipment No.	Equipment	Model	Manufacturer	Cal. Due date	Calibration		
			1/Iuiiuiuoturei	(YYYY-MM-DD)	Interval		
EM080-05	EMI receiver	ESCI	R&S	2018/7/24	1Y		
EM006-05	LISN	ENV216	R&S	2018/6/4	1Y		
EM006-06	LISN	ENV216	R&S	2017/9/18	1Y		
EM006-06-01	Coaxial cable	/	R&S	2018/4/6	1Y		
EM004-04	EMC shield Room	8m×3m×3m	Zhongyu	2018/1/23	1Y		

FCC ID: 2AK53-6SLRD Page 38 of 38