

Test Report Serial Number:
Test Report Date:
Project Number:

45461783 R2.0 23 February 2023

1601

EMC Test Report - New Filing

Applicant:

(((\delta))) THE DETECTION GROUP®

The Detection Group 440 N. Wolfe Rd. E126 Sunnyvale, CA, 94085

USA

FCC ID:

2AK4V-DT-552

Product Model Number / HVIN

DT-552

The Detection Group 440 N. Wolfe Rd. E211 Sunnyvale, CA, 94085 USA

IC Registration Number

22517-DT552

Product Name / PMN

Wireless Sensor

In Accordance With:

FCC 47 CFR §15.247, Part 15 Subpart B

Intentional Radiators - Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz, Unintentional Radiators

RSS-GEN, RSS-247, ICES-003

Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices

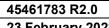
Approved By:

Ben Hewson, President

Celltech Labs Inc. 21-364 Lougheed Rd. Kelowna, BC, V1X 7R8

Canada

Industry Canada



FCC Registration: CA3874

Test Lab Certificate: 2470.01

IC Registration 3874A

This report shall not be reproduced in any form without the expressed written consent of Celltech Labs Inc.

Table of Contents

1.0 REVISION HISTORY	5
2.0 CLIENT AND DUT INFORMATION	6
3.0 SCOPE	7
4.0 TEST SUMMARY	8
5.0 NORMATIVE REFERENCES	10
6.0 FACILITIES AND ACCREDITATIONS	11
7.0 OCCUPIED BANDWIDTH	12
8.0 DTS BANDWIDTH	17
9.0 CONDUCTED CHANNEL POWER	22
10.0 POWER SPECTRAL DENSITY	28
11.0 CONDUCTED SPURIOUS EMISSIONS – BAND EDGE	33
12.0 CONDUCTED SPURIOUS EMISSIONS	37
13.0 RADIATED TX EMISSIONS – RESTRICTED BAND	43
14.0 RADIATED RX EMISSIONS	55
APPENDIX A – TEST SETUP DRAWINGS	65
APPENDIX B – EQUIPMENT LIST AND CALIBRATION	69
APPENDIX C – MEASUREMENT INSTRUMENT UNCERTAINTY	70
END OF REPORT	70
Table of Figures	
Figure A.1. Took Setup. Conducted Managements	
Figure A.1 – Test Setup – Conducted Measurements	
Figure A.3 – Test Setup Radiated Measurements 30MHz – 1GHz	
Figure A.4 – Test Setup Radiated Measurements 30MHz – 1GHz, Signal Substitution	
Figure A.5 – Test Setup Radiated Measurements 1 – 18GHz	

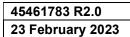
45461783 R2.0 23 February 2023

Table of Plots

Plot 7.1 – Occupied Bandwidth, 906MHz	13
Plot 7.2 – Occupied Bandwidth, 914MHz	14
Plot 7.3 – Occupied Bandwidth, 924MHz	15
Plot 8.1 – DTS Bandwidth, 906MHz	18
Plot 8.2 – DTS Bandwidth, 914MHz	19
Plot 8.3 – DTS Bandwidth, 924MHz	20
Plot 9.1 – Conducted Channel Power, 906 MHz	24
Plot 9.2 – Conducted Channel Power, 914 MHz	25
Plot 9.3 – Conducted Channel Power, 924 MHz	26
Plot 10.1 – Power Spectral Density, 906MHz	
Plot 10.2 – Power Spectral Density, 914MHz	
Plot 10.3 – Power Spectral Density, 924MHz	
Plot 11.1 – Spurious Emission Measurement, Lower Band Edge	
Plot 11.2 – Spurious Emission Measurement, Upper Band Edge	35
Plot 12.1 – Conducted Spurious Emissions, 928 – 1000MHz	
Plot 12.2 – Conducted Spurious Emissions, 1000 – 3000MHz	
Plot 12.3 – Conducted Spurious Emissions, 1848MHz	
Plot 12.4 – Conducted Spurious Emissions, 3 – 10GHz	
Plot 13.1 – Radiated Tx Emissions, 9kHz to 30MHz, Front	
Plot 13.2 – Radiated Tx Emissions, 9kHz to 30MHz, Side	
Plot 13.3 – Radiated Tx Emissions, 30 to 1000MHz, Horizontal	
Plot 13.4 – Radiated Tx Emissions, 30 to 1000MHz, Vertical	
Plot 13.5 – Radiated Tx Emissions, 1 to 3GHz, Horizontal	
Plot 13.6 – Radiated Tx Emissions, 1 to 3GHz, Vertical	
Plot 13.7 – Radiated Tx Emissions, 3 to 10GHz, Horizontal	
Plot 13.8 – Radiated Tx Emissions, 3 to 10GHz, Vertical	
Plot 13.9 – Radiated Tx Emissions, 2 nd Harmonic Vertical	
Plot 13.10 – Radiated Tx Emissions, 3 rd Harmonic Vertical	
Plot 14.1 – Radiated Rx Emissions, 9kHz to 30MHz, Front	
Plot 14.2 – Radiated Rx Emissions, 9kHz to 30MHz, Side	
Plot 14.3 – Radiated Rx Emissions, 30 to 1000MHz, Horizontal	
Plot 14.4 – Radiated Rx Emissions, 30 to 1000MHz, Vertical	
Plot 14.5 – Radiated Rx Emissions, 1 to 3GHz, Horizontal	
Plot 14.6 – Radiated Rx Emissions, 1 to 3GHz, Vertical	
Plot 14.7 – Radiated Rx Emissions, 3 to 10GHz, Horizontal	
Plot 14.8 – Radiated Rx Emissions, 3 to 10GHz, Vertical	63

45461783 R2.0 23 February 2023

Table of Tables


Table 7.1 – Summary of Occupied Bandwidth Measurements	16
Table 8.1 – Summary of DTS Bandwidth Measurements	
Table 9.1 – Summary of Conducted Channel Power Measurements	27
Table 10.1 – Summary of Power Spectral Density Measurements	32
Table 11.1 – Summary of Conducted Spurious Emissions (Band Edge) Measurements	36
Table 12.1 – Summary of Conducted Spurious Emissions Measurements	42
Table 13.1 – Summary of Radiated Tx Measurements	54
Table 14.1 – Summary of Radiated Rx Measurements	64
Table A.1 – Conducted Measurement Setup	65
Table A.2 – Radiated Emissions Measurement Equipment	66

45461783 R2.0 23 February 2023

1.0 REVISION HISTORY

Revision History						
Samples Tested By: Art Voss, P.Eng. Date(s) of Evaluation:		1 - 5 November 2022				
Rep	ort Prepared By:	Art Voss, P.Eng.	Report Reviewed By:		Ben Hewson	
Report	Report Description of Revision		Revised	Revised	Revision Date	
Revision	Desc	inpulon of Revision	Section	Ву	Revision Date	
1.0) Initial Release		n/a	Art Voss	20 December 2022	
2.0	2.0 revise PMN		n/a	Ben Hewson	23 February 2023	

2.0 CLIENT AND DUT INFORMATION

	Client Information			
Applicant Name (FCC)	The Detection Group			
	440 Wolfe Rd. E126			
Applicant Address (FCC)	Sunnyvale, CA, 94085			
	USA			
Applicant Name (ISED)	The Detection Group			
	440 Wolfe Rd. E211			
Applicant Address (ISED)	Sunnyvale, CA, 94085			
	USA			
	DUT Information			
Device Identifier(s):	FCC ID: 2AK4V-DT-552			
Device identifier(s).	IC ID: 22517-DT552			
Device Type:	Industrial Digital Transceiver			
Device Model(s) / HVIN:	DT-552			
Device Marketing Name / PMN:	Wireless Sensor			
Firmware Version ID Number / FVIN:	-			
Host Marketing Name / HMN:	-			
Test Sample Serial No.:	31129776 (Conducted), 31129794 (OTA)			
Equipment Class (FCC):	Digital Transmission System (DTS)			
Equipment Class (ISED):	Other			
Transmit Frequency Range:	906 - 924MHz			
Test Channels:	3 Channel			
Manuf. Max. Rated Output Power:	26dBm			
Manuf. Max. Rated BW/Data Rate:	n/a			
Antenna Make and Model:	Chip			
Antenna Type and Gain:	1.59dBi			
Modulation:	BPSK-40			
Mode:	Simplex			
Emission Designator:	See Section 8.0			
DUT Power Source:	6VDC Primary Lithium (non-rechargeable)			
DUT Dimensions [LxWxD]	95mm x 90mm x 30mm			
Deviation(s) from standard/procedure:	None			
Modification of DUT:	None			

45461783 R2.0 23 February 2023

3.0 SCOPE

Preface:

This Certification Report was prepared on behalf of:

The Detection Group

"(the 'Applicant"), in accordance with the applicable Federal Communications Commission (FCC) CFR 47 and Innovation, Scientific and Economic Development (ISED) Canada rules parts and regulations (the 'Rules'). The scope of this investigation was limited to only the equipment, devices and accessories (the 'Equipment') supplied by the Applicant. The tests and measurements performed on this Equipment were only those set forth in the applicable Rules and/or the Test and Measurement Standards they reference. The Rules applied and the Test and Measurement Standards used during this evaluation appear in the Normative References section of this report. The limits set forth in the technical requirements of the applicable Rules were applied to the measurement results obtained during this evaluation and "unless otherwise noted, these limits were used as the Pass/Fail criteria. The Pass/Fail statements made in this report apply to only the tests and measurements performed on only the Equipment tested during this evaluation. Where applicable and permissible, information including test and measurement data and/or results from previous evaluations of same or similar equipment, devices and/or accessories may be cited in this report.

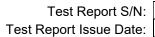
Device Description:

The HVIN: DT-552, PMN: Trident Water Sensor is a Class A Industrial remote water sensing controller with a low power 912MHz Transceiver. It is not made available to the general public and requires professional installation.

Application:

This is an application for a New Certification, Single.

Regulatory Requirement:


As per FCC 47 CFR 2 Subpart I and the Radiocommunication Regulations of Canada, Equipment Authorization is require for this *Equipment* by means of Certification in accordance with FCC 47 CFR §15.249 and ISED RSS-210.

Scope of Work:

The scope of this investigation is limited only to the evaluation of the DT-552 to determine compliance to the *Rules* identified herein.

RF Exposure:

As per FCC 47 CFR §2.1091 and Canada Health Safety Code 6, an RF Exposure (MPE) evaluation is required for this *Equipment* and the results of the RF Exposure (MPE) evaluation appear in a separate report.

4.0 TEST SUMMARY

	TEST SUMMARY						
Section	Description of Test	Procedure	Applicable Rule	Applicable Rule	Test	Result	
Section	Document of Tool	Reference	Part(s) FCC	Part(s) ISED	Date	Result	
7.0	Occupied Bandw idth	ANSI C63.10-2013	0-2013 §2.1049	RSS-Gen (6.7)	5 Nov 2022	Pass	
7.0	Occupied Baridw Idiii	KDB 558074 D01v05	32.1043	100-0011 (0.7)	31407 2022	1 433	
8.0	DTS Bandwidth	ANSI C63.10-2013	§15.247(a)(2)	RSS-Gen (6.7)	5 Nov 2022	Pass	
0.0	DIS Bandwidth	KDB 558074 D01v05	§13.247(a)(2)	RSS-247 (5.2)(a)	3 1107 2022	газэ	
9.0	Conducted Pow er (Fundamental)	ANSI C63.10-2013	§2.1046	RSS-Gen (6.12)	5 Nov 2022	Pass	
9.0	Conducted Fow et (Fundamental)	KDB 558074 D01v05	§15.247(b)(3)	RSS-247 (5.4)(d)	3 NOV 2022	газэ	
10.0	Pow er Spectral Density	ANSI C63.10-2013	§15.247(e)	RSS-247 (5.2)(b)	5 Nov 2022	Pass	
10.0	Fow er Spectral Density	KDB 558074 D01v05	§13.247(e)	100-247 (0.2)(b)		газэ	
11.0	Conducted Tx Spurious Emissions	ANSI C63.10-2013	§2.1051	RSS-Gen (6.13)	5 Nov 2022	Pass	
11.0	Band Edge	KDB 558074 D01v05	§15.247(d)	RSS-247 (5.5)	3 1107 2022	газэ	
12.0	Conducted Tx Spurious Emissions	ANSI C63.10-2013	§2.1051	RSS-Gen (6.13)	5 Nov 2022	Pass	
12.0	Conducted 1x Spurious Emissions	KDB 558074 D01v05	§15.247(d)	RSS-247 (5.5)	3 1107 2022	газэ	
13.0	Radiated Tx Spurious Emissions	ANSI C63.4-2014	§15.109		0. 0. Nov. 0000	Pass	
13.0	And Restricted Band	KDB 558074 D01v05	§15.247(d)	RSS-Gen (6.13)	2-3 Nov 2022	га55	
14.0	Radiated Rx Spurious Emissions	ANSI C63.4-2014	§15.109	RSS-Gen (7.4)	2-3 Nov 2022	2 Pass	
14.0	Tadiated IX Spurious Efficients	KDB 558074 D01v05	813.109	ICES-003(6.2)	Z-3 INOV ZUZZ	гаээ	

45461783 R2.0 23 February 2023

Test Station Day Log						
	Ambient Relative Barometric Test Tests					
Date	Temp	Humidity	Pressure	Station	Performed	
	(°C)	(%)	(kPa)		Section(s)	
2 Nov 2022	0.0	87	101.5	OATS	13, 14	
3 Nov 2022	-2.0	80	102.4	OATS	13, 14	
5 Nov 2022	21.6	17	101.8	EMC	7,8,9,10,11,12	

EMC - EMC Test Bench

SAC - Semi-Anechoic Chamber

OATS - Open Area Test Site

TC - Temperature Chamber

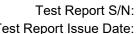
LISN - LISN Test Area

ESD - ESD Test Bench

IMM - Immunity Test Area

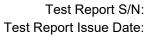
RI - Radiated Immunity Chamber

I attest that the data reported herein is true and accurate within the tolerance of the Measurement Instrument Uncertainty; that all tests and measurements were performed in accordance with accepted practices or procedures; and that all tests and measurements were performed by me or by trained personnel under my direct supervision. The results of this investigation are based solely on the test sample(s) provided by the client which were not adjusted, modified or altered in any manner whatsoever, except as required to carry out specific tests or measurements. This test report has been completed in accordance with ISO/IEC 17025.


Sull Vass

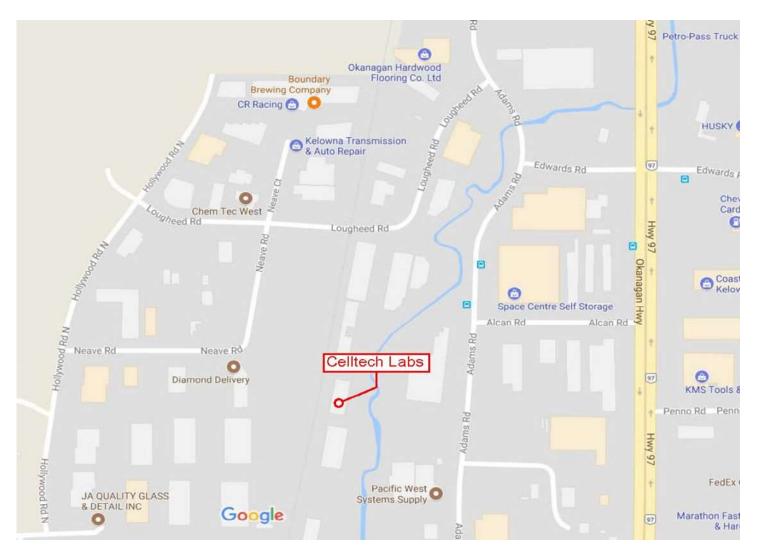
Art Voss, P.Eng. Technical Manager Celltech Labs Inc.

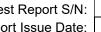
20 December 2022


Date

5.0 NORMATIVE REFERENCES

		Normative References
ISO/II	EC 17025:2017	General requirements for the competence of testing and calibration laboratories
ANSI	C63.4-2014	American National Standard of Procedures for Methods of Measurement of Radio-Noise
		Emissions from Low-Voltage Electric and Electronic Equipment in the Range of 9kHz to 40GHz
ANSI	C63.10-2013	American National Standard of Procedures for Compliance Testing of
		Unlicensed Wireless Devices
CFR		Code of Federal Regulations
	Title 47:	Telecommunication
	Part 2:	Frequency Allocations and Radio Treaty Matters; General Rules and Regulations
CFR		Code of Federal Regulations
	Title 47:	Telecommunication
	Part 15:	Radio Frequency Devices
	Subpart B:	Unintentional Radiators
CFR		Code of Federal Regulations
	Title 47:	Telecommunication
	Part 15:	Radio Frequency Devices
	Sub Part C (15.247)	Intentional Radiators
ISED		Innovation, Science and Economic Development Canada
	RSS-Gen Issue 5A1:	Spectrum Management and Telecommunications Radio Standards Specification
	March 2019	General Requirements and Information for the Certification of Radiocommunication Equipment
ISED		Innovation, Science and Economic Development Canada
		Spectrum Management and Telecommunications Radio Standards Specification
	ICES-003 Issue 6:	Information Technology Equipment (Including Digital Apparatus) —
	Jan 2016	Limits and Methods of Measurement
ISED		Innovation, Science and Economic Development Canada
		Spectrum Management and Telecommunications Radio Standards Specification
		Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs)
	February 2017	and Licensed-Exempt Local Area Network (LE_LAN) Devices
FCC I		OET Major Guidance Publications, Knowledge Data Base
	558074 D01v05r02	Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under Section 15.247

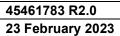



Celltech
Testing and Engineering Services Lab

6.0 FACILITIES AND ACCREDITATIONS

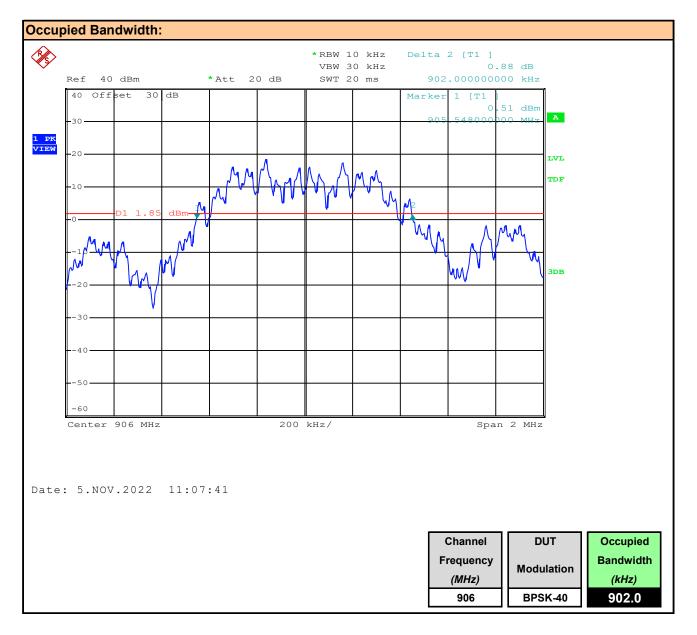
Facility and Accreditation:

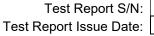
The facilities used to evaluate this device outlined in this report are located at 21-364 Lougheed Road, Kelowna, British Columbia, Canada V1X 7R8. The radiated emissions site (OATS) conforms to the requirements set forth in ANSI C63.4 and is filed and listed with the FCC under Test Firm Registration Number CA3874 and Innovation, Science and Economic Development Canada under Test Site File Number ISED 3874A. Celltech is accredited to ISO 17025, through accrediting body A2LA and with certificate 2470.01.

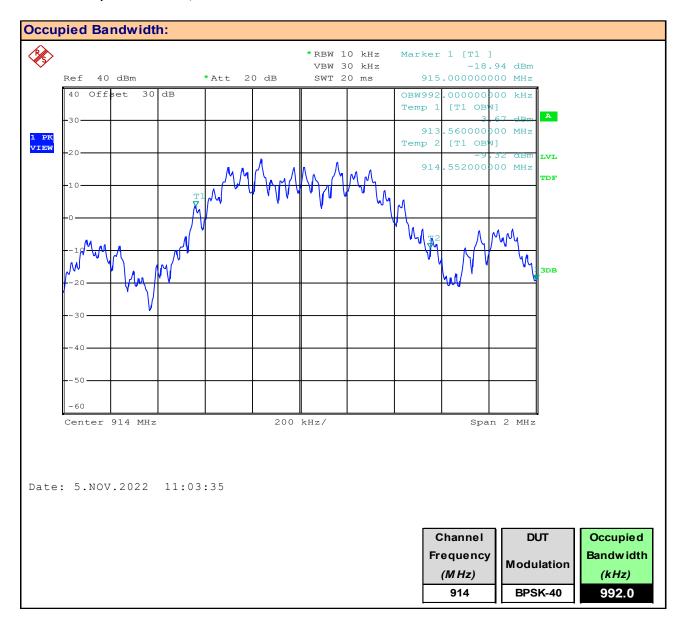


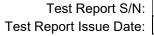
7.0 OCCUPIED BANDWIDTH

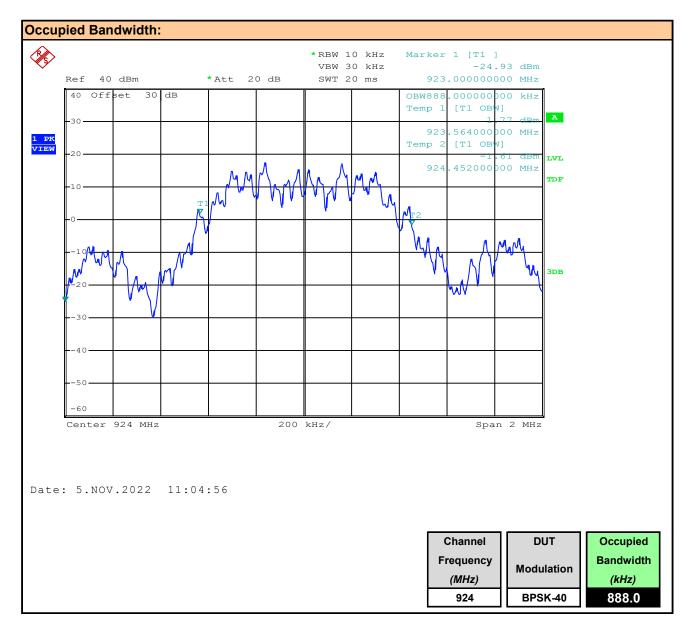
Test Procedure	Test Procedure					
Normative	FCC 47 CFR §2.1046, §15.247(b)(3), RSS-Gen (6.1.2), RSS-247 (5.4)(d),					
Reference	KDB 558074 (8.3.2.1), ANSI C63.10 (6.9.3)					
General Procedure	General Procedure					
KDB 558074 (8.3.2.1)	8.3.2.1 General					
	Section 15.247 permits the maximum conducted (average) output power to be measured as an alternative to the maximum peak conducted output power for demonstrating compliance to the limit. When this option is exercised, the measured power is to be referenced to the OBW rather than the DTS bandwidth.					
C63.10 (6.9.3)	6.9.3 Occupied bandwidth—power bandwidth (99%) measurement procedure					
	The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:					
	a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.					
	b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.					
	c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.					
	d) Step a) through step c) might require iteration to adjust within the specified range.					
	e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.					
	f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.					
Test Setup	Appendix A - Figure A.1					


Measurement Procedure

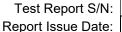

The DUT was connected to a Spectrum Analyzer (SA) via a 30dB attenuator connected to the DUT's antenna port. The SA was configured as described above using the 99% Occupied Bandwidth function. The output power of the DUT was set to the manufacturer's highest output power setting at the Low, Mid and High frequency channels as permitted by the device. The DUT was set to transmit at its maximum Duty Cycle. The 99% Occupied Bandwidth was measured and recorded and used for the basis for measuring the Conducted Output Power.


Plot 7.1 - Occupied Bandwidth, 906MHz




Plot 7.2 - Occupied Bandwidth, 914MHz

Plot 7.3 - Occupied Bandwidth, 924MHz

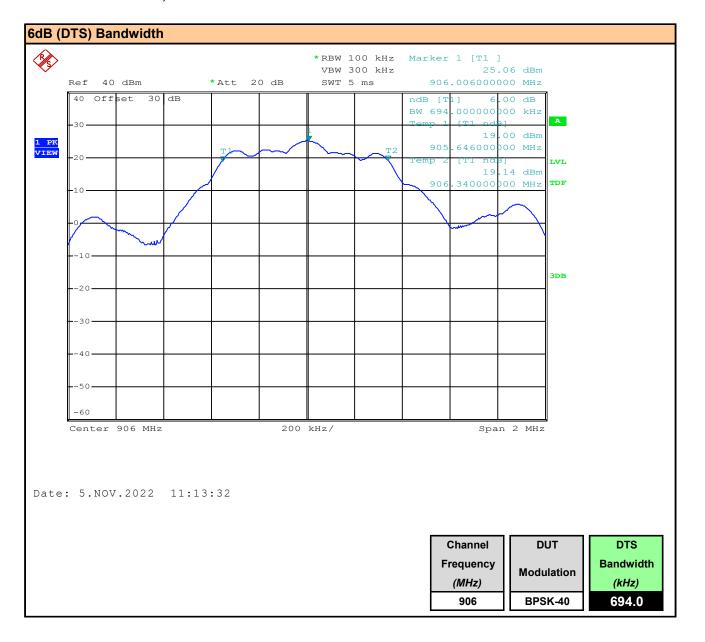


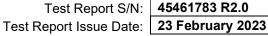
45461783 R2.0 23 February 2023

Table 7.1 – Summary of Occupied Bandwidth Measurements

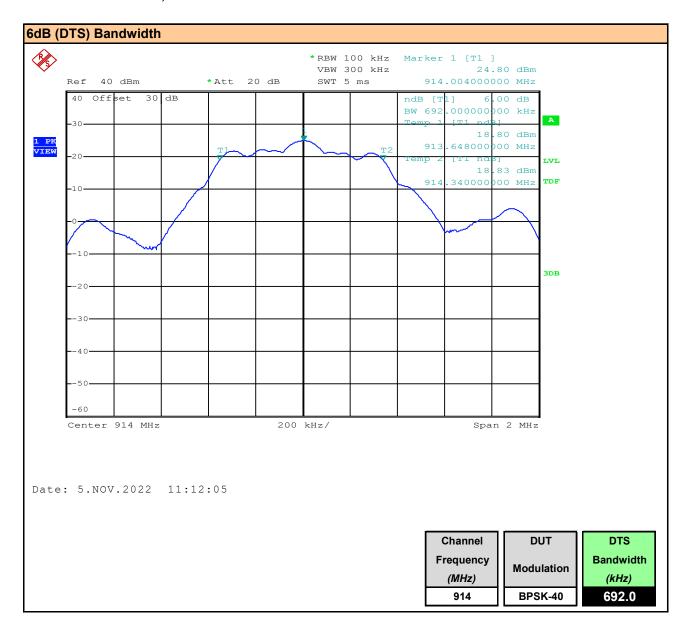
Occupied Bandwidth Results:				
Channel		Measured		
Frequency	Modulation	Occupied	Emission	
rrequericy	Wiodulation	Bandwidth	Designator	
(MHz)		(kHz)	Designator	
906.0		902.0	902KG1D	
914.0	BPSK-40	992.0	992KG1D	
924.0		888.0	888KG1D	
			Complies	

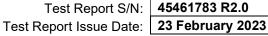
8.0 DTS BANDWIDTH

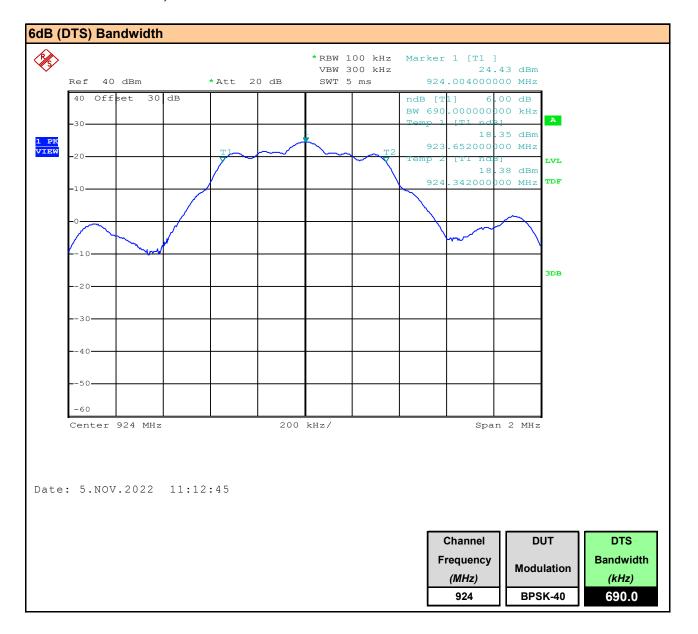

Test Procedure	Test Procedure				
Normative	FCC 47 CFR §2.1049, §15.247(a)(2), RSS-Gen (6.7), RSS-247 (5.2)(a),				
Reference	KDB 558074 (8.2), ANSI C63.10 (11.8.2)				
Limits					
47 CFR §15.247(a)(2)	(a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:				
	(2) Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.				
RSS-247 (5.2)(a)	5.2 Digital transmission systems				
	DTSs include systems that employ digital modulation techniques resulting in spectral characteristics similar to direct sequence systems. The following applies to the bands 902-928 MHz and 2400 - 2483.5 MHz:				
	a) The minimum 6 dB bandwidth shall be 500 kHz.				
General Procedure					
KDB 558074 (8.2)	11.8.2 Option 2				
C63.10 (11.8.2)	The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz , VBW $\geq 3 \text{ X RBW}$, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be $\geq 6 \text{ dB}$.				
Test Setup	Appendix A - Figure A.1				


Measurement Procedure

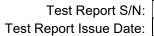
The DUT was connected to a Spectrum Analyzer (SA) via a 30dB attenuator connected to the DUT's antenna port. The SA was configured as above using the Automatic 6dB Cursor Bandwidth measurement. The output power of the DUT was set to the manufacturer's highest output power setting at the Low, Mid and High frequency channels as permitted by the device. The DUT was set to transmit at its maximum Duty Cycle.


Plot 8.1 - DTS Bandwidth, 906MHz




Plot 8.2 - DTS Bandwidth, 914MHz

Plot 8.3 - DTS Bandwidth, 924MHz



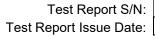
45461783 R2.0 23 February 2023

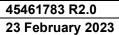
Table 8.1 - Summary of DTS Bandwidth Measurements

DTS Bandwidth Results:					
Channel		Measured	Minimun		
Frequency	Modulation	DTS Bandwidth	Limit	Margin	
(MHz)		(kHz)	(kHz)	(Hz)	
906.0		694.0		49.0	
914.0	BPSK-40	692.0	500.0	42.0	
924.0		690.0		45.0	
	Complies				

9.0 CONDUCTED CHANNEL POWER

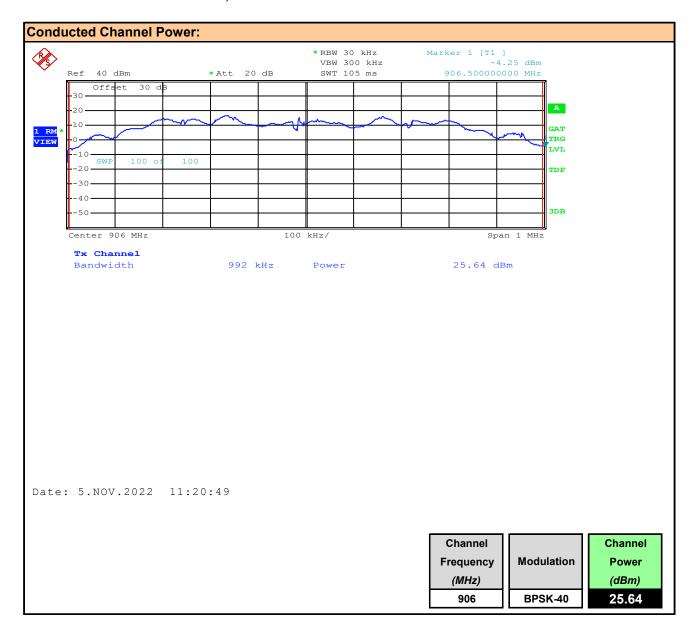
Test Procedure						
Normative	FCC 47 CFR §2.1046, §15.247(b)(3), RSS-Gen (6.1.2), RSS-247 (5.4)(d),					
Reference	KDB 558074 (8.3.2), ANSI C63.10 (11.9.2.2.2)					
Limits						
47 CFR §15.247(b)(3)	(b) The maximum peak conducted output power of the intentional radiator shall not exceed the following:					
	(3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power.					
RSS-247 (5.4)(d)	5.4 Transmitter output power and equivalent isotropically radiated power (e.i.r.p.)					
	Devices shall comply with the following requirements, where applicable:					
	d) For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1W. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e).					
	As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power.					

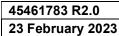



45461783 R2.0 23 February 2023

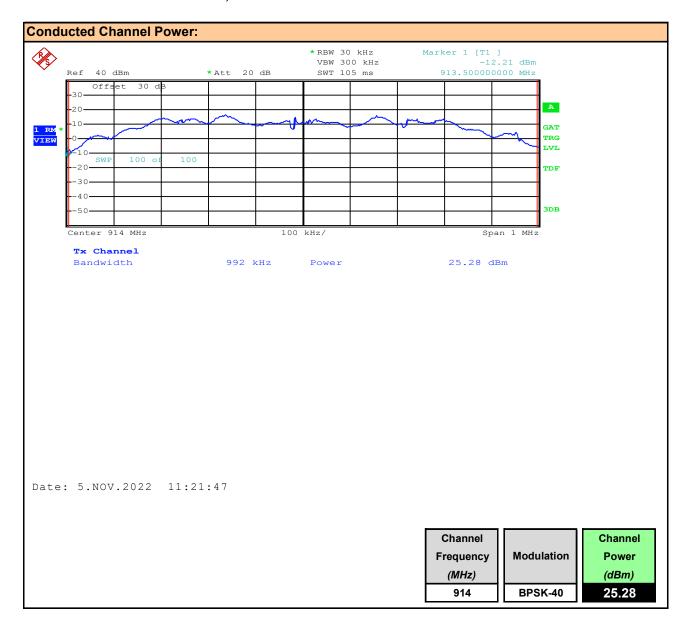
General Procedure	
KDB 558074 (8.3.2.1)	8.3.2.1 General
	Section 15.247 permits the maximum conducted (average) output power to be measured as an alternative to the maximum peak conducted output power for demonstrating compliance to the limit. When this option is exercised, the measured power is to be referenced to the OBW rather than the DTS bandwidth.
C63.10 (11.9.2.2.2)	Method AVGSA-1 (trace averaging with the EUT transmitting at full power throughout each
	a) Set span to at least 1.5 X OBW.
	b) Set RBW = 1 % to 5 % of the OBW, not to exceed 1 MHz.
	c) Set VBW ≥ 3 X RBW.
	d) Number of points in sweep ≥ 2 X span / RBW.
	e) Sweep time = auto.
	f) Detector = RMS
	g) If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle ≥ 98 %, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run".
	h) Trace average at least 100 traces in power averaging
	i) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with band limits set equal to the OBW band edges.
Test Setup	Appendix A - Figure A.1

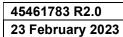
Measurement Procedure

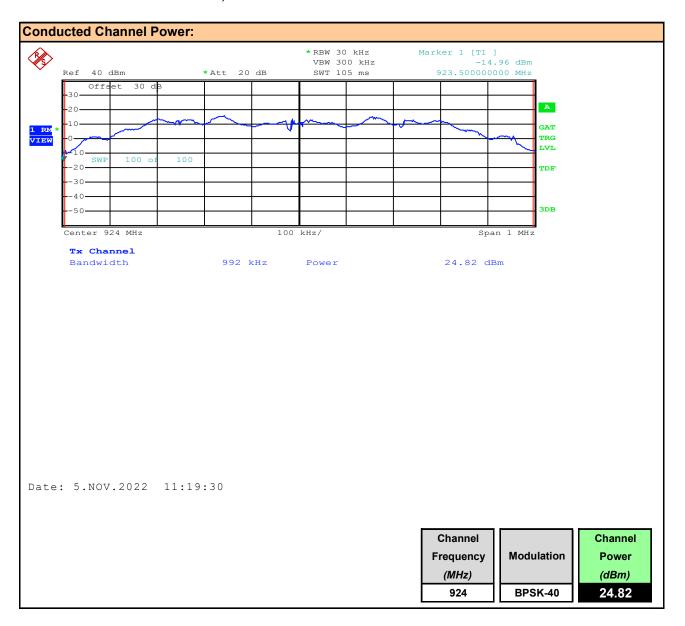

The DUT was connected to a Spectrum Analyzer (SA) via a 30dB attenuator connected to the DUT's antenna port. The SA was configured as described above. Number of Sweep Points \geq 2 X Span / RBW = 2 X (1.2MHz / 3kHz) = 800, the SA was configured for 1001 Points. The output power of the DUT was set to the manufacturer's highest output power setting at the Low, Mid and High frequency channels as permitted by the device. The DUT was set to transmit at 100% Duty Cycle. The Channel Bandwidth was set to the measured 99% Occupied Bandwidth (See Section 9.0). The Band Channel Power was measured and recorded.



Celltech
Testing and Engineering Services Lab


Plot 9.1 - Conducted Channel Power, 906 MHz



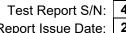

Plot 9.2 - Conducted Channel Power, 914 MHz

Plot 9.3 - Conducted Channel Power, 924 MHz

45461783 R2.0 23 February 2023

Table 9.1 - Summary of Conducted Channel Power Measurements

§15.247(b)(3), RSS-247 (5.4)(d) Channel Output Power (RMS)								
				Measured	Measured			
Frequency	BW	Modulation	Power	Power	Power	Limit	Margin	
			Setting ⁽¹⁾	[E _{Meas}]	[E _{Meas}]			
(MHz)	(kHz)		(dBm)	(dBm)	(W)	(W)	(dB)	
906.0				25.64	0.37		4.4	
914.0	549	BPSK-40	Max	25.28	0.34	1.0	4.7	
924.0				24.82	0.30]	5.2	
	Results: Complies							

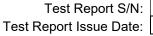

(1) The output power is factory set to maximum Margin = $10*Log(Limit / E_{meas})$

RSS-247 (5.4)(d) Channel EIRP (RMS)										
Frequency	вw	Modulation	tion $\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
(MHz)	(kHz)		(dBm)	(dBm)	(dBi)	(dB)	(dBm)	(W)	(W)	(dB)
906.0				25.64			27.73	0.59		8.3
914.0	549	BPSK-40	Max	25.28	1.59	0.5	27.37	0.55	4.0	8.7
924.0				24.82			26.91	0.49		9.1
	Results: Complies									

EIRP (dBm) = $E_{Meas} + G_T + L_C$ Margin = Limit - EIRP in dB

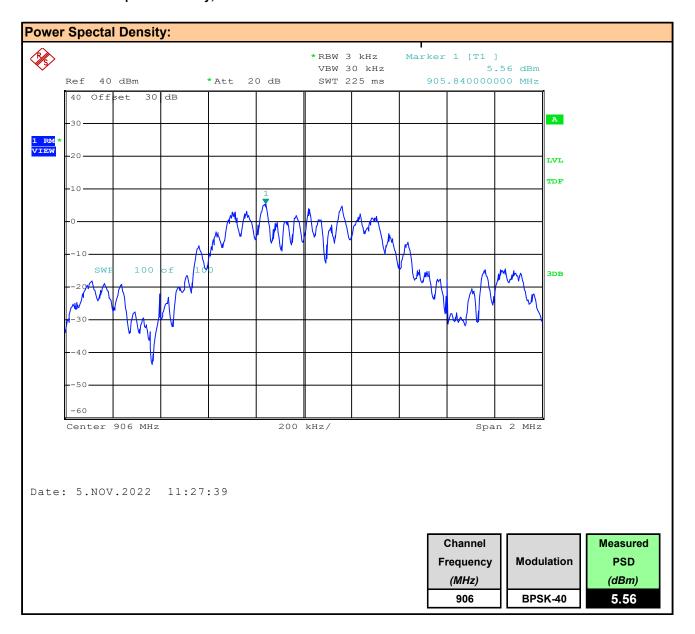
(1) The output power is factory set to maximum

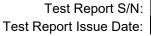
(2) Maximum permissible gain

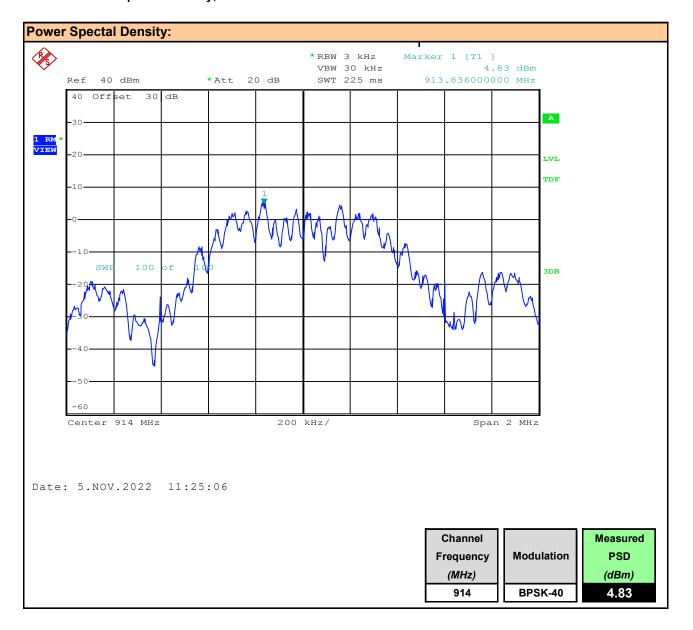

10.0 POWER SPECTRAL DENSITY

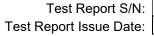
Test Procedure	
Normative	FCC 47 CFR §15.247(e), RSS-247 (5.2)(b),
Reference	KDB 558074 (8.4), ANSI C63.10 (11.10.3)
Limits	
47 CFR §15.247(e)	(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
RSS-247 (5.2)(b)	b) The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of section 5.4(d), (i.e. the power spectral density shall be determined using the same method as is used to determine the conducted output power).
General Procedure	
C63.10 (11.10.3)	Method AVGPSD-1 (trace averaging with EUT transmitting at full power throughout each
	This procedure may be used when the maximum (average) conducted output power was used to demonstrate compliance to the output power limit. This is the baseline method for determining the maximum (average) conducted PSD level. If the instrument has an RMS power averaging detector, it must be used; otherwise, use the sample detector. The EUT must be configured to transmit continuously (duty cycle ≥ 98 %); otherwise sweep triggering/signal gating must be implemented to ensure that measurements are made only when the EUT is transmitting at its maximum power control level (no transmitter off time is to be considered).
	a) Set instrument center frequency to DTS channel center frequency.
	b) Set span to at least 1.5 X OBW.
	c) Set RBW to: 3 kHz ≤ RBW ≤ 100 kHz.
	d) Set VBW ≥ 3 X RBW.
	e) Detector = RMS
	f) Ensure that the number of measurement points in the sweep ≥ 2 X span/RBW.
	g) Sweep time = auto couple.
	h) Employ trace averaging (RMS) mode over a minimum of 100 traces.
	i) Use the peak marker function to determine the maximum amplitude level.
	j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing the span in order to meet the minimum measurement point requirement as the RBW is reduced).

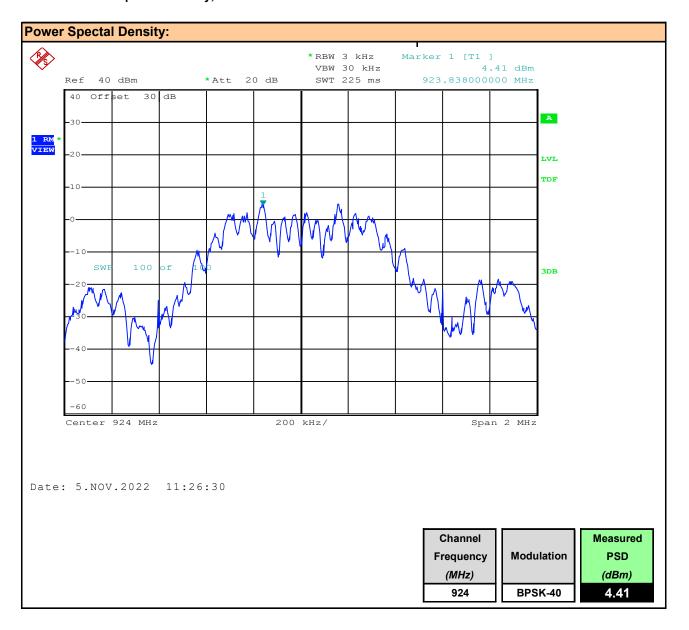
Test Setup Appendix A - Figure A.1


Measurement Procedure

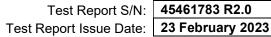

The DUT was connected to a Spectrum Analyzer (SA) via a 30dB attenuator connected to the DUT's antenna port. The SA was configured as described above. Number of Sweep Points ≥ 2 X Span / RBW = 2 X (1.5MHz / 3kHz) = 1000, the SA was configured for 1001 Points. The output power of the DUT was set to the manufacturer's highest output power setting at the Low, Mid and High frequency channels as permitted by the device. The DUT was set to transmit at 100% Duty Cycle. The Power Spectral Density was measured and recorded.


Plot 10.1 - Power Spectral Density, 906MHz




Plot 10.2 - Power Spectral Density, 914MHz

Plot 10.3 - Power Spectral Density, 924MHz

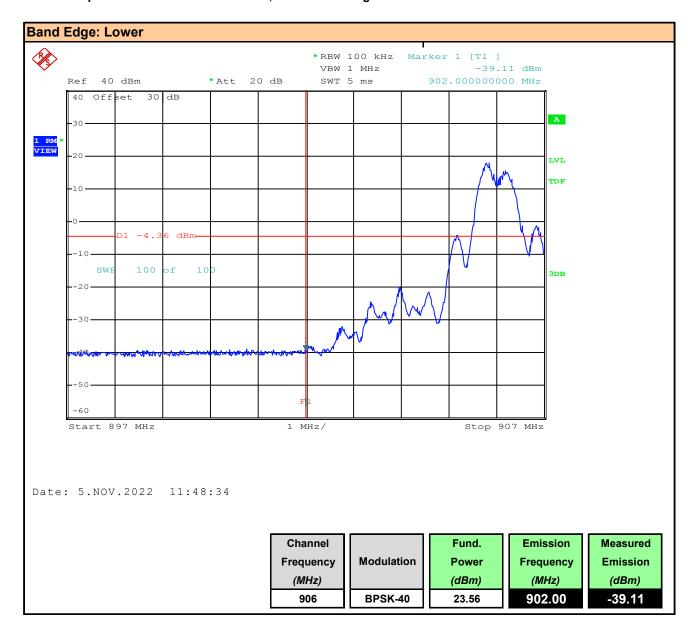


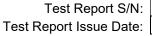
45461783 R2.0 23 February 2023

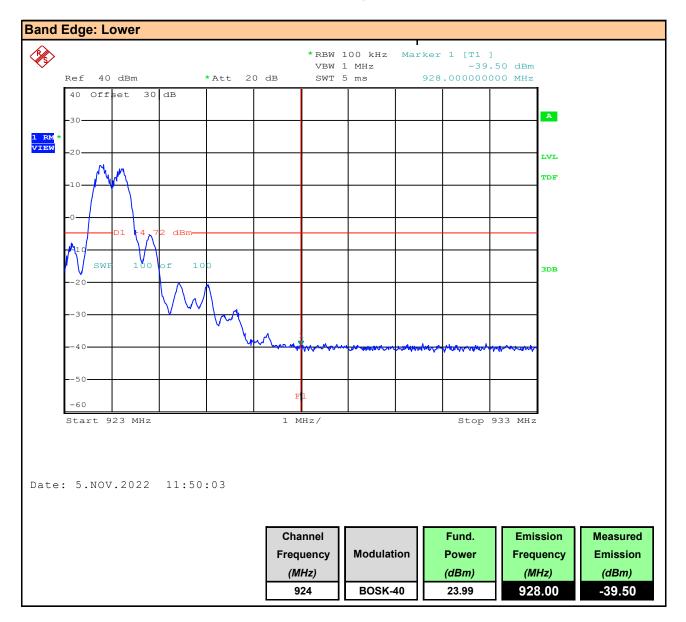
Table 10.1 – Summary of Power Spectral Density Measurements

Power Spectral Density Measurement Results: DTS								
		Measured	PSD	Conducted				
Frequency	Modulation	PSD [P _{Meas}]	Limit [P _{Lim}]	Margin				
(MHz)		(dBm)	(dBm)	(dB)				
906.0		5.56	8	2.4				
914.0	BPSK-40	4.83	8	3.2				
924.0		4.41	8	3.6				
	Result: Complies							

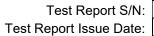
Margin = PSD Limit [P_{Limit}] - Measured PSD [P_{Meas}]


11.0 CONDUCTED SPURIOUS EMISSIONS - BAND EDGE


Test Procedure	
Normative	FCC 47 CFR §2.1051, §15.247(d), RSS-Gen (6.13), RSS-247 (5.5),
Reference	KDB 558074 (8.7), ANSI C63.10 (11.13.3.3)
Limits	
47 CFR §15.247(d)	(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.
RSS-247 (5.5)	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required. d) For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1W. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e). As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power.


Plot 11.1 – Spurious Emission Measurement, Lower Band Edge

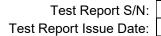
Plot 11.2 – Spurious Emission Measurement, Upper Band Edge

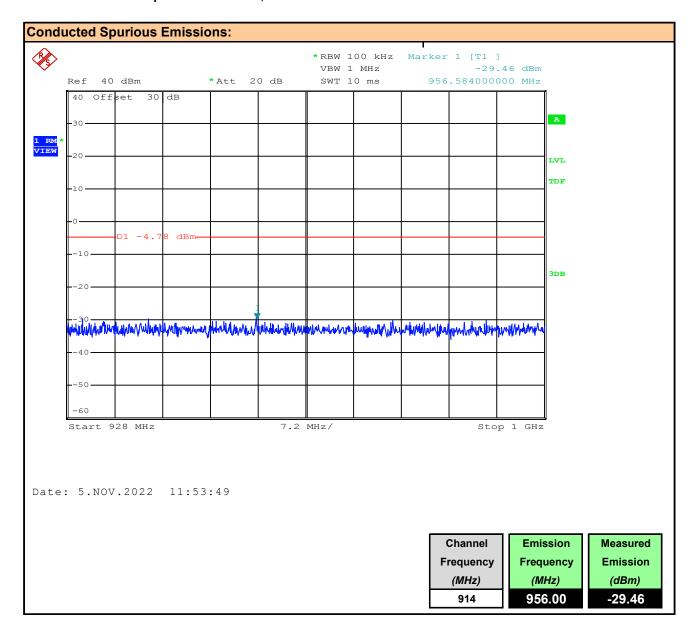


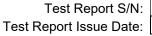
45461783 R2.0 23 February 2023

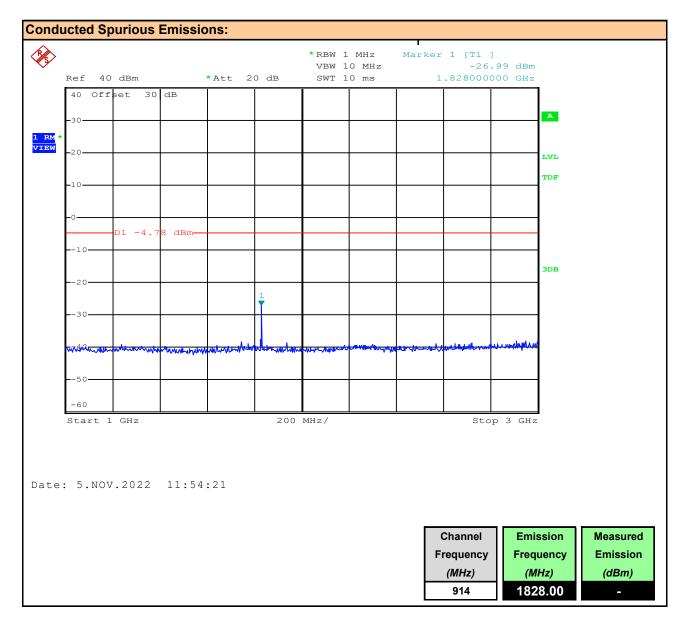
Table 11.1 – Summary of Conducted Spurious Emissions (Band Edge) Measurements

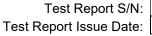
Unwanted Emissons Measurement Results: Band Edge									
Frequency		Fundamental Power	ower		Attenuation	Limit	Margin		
	Modulation	[P _{Fund}]	Frequency	Emission [P _{Meas}]	[Att]		J		
(MHz)		(dBm)	(MHz)	(dBm)	(dBm)	(dB)	(dB)		
906.0	BPSK-40	25.64	902.0	-39.11	64.75	30.0	34.8		
924.0	DI 311-40	24.82	928.0	-39.50	64.32	30.0	34.3		
Result:							Complies		

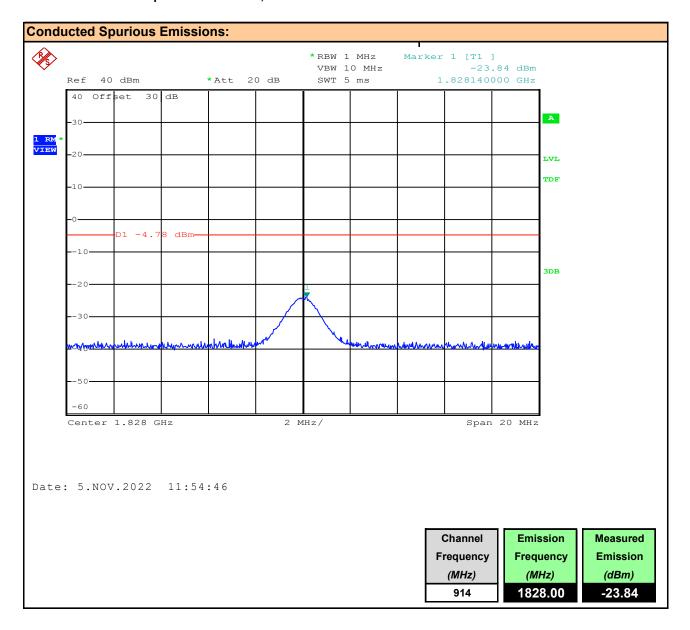

Attenuation $[A_{tt}]$ = Fundamental Power $[P_{Fund}]$ - Measured Emission $[P_{Meas}]$ Margin = Attenuation $[A_{tt}]$ - Limit

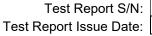

12.0 CONDUCTED SPURIOUS EMISSIONS

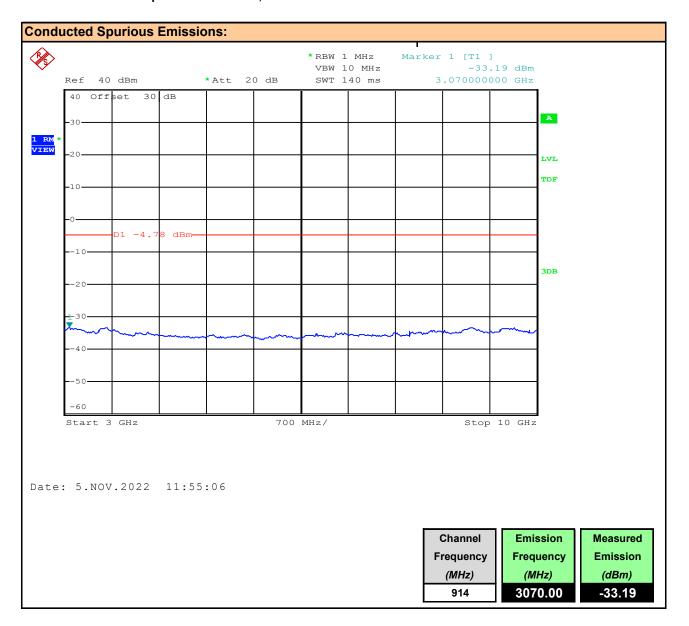

Test Procedure	
Normative	FCC 47 CFR §2.1051, §15.247(d), RSS-Gen (6.13), RSS-247 (5.5),
Reference	KDB 558074 (8.7), ANSI C63.10 (11.13.3.3)
Limits	
47 CFR §15.247(d)	(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.
RSS-247 (5.5)	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required. d) For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1W. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e). As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power.


Plot 12.1 - Conducted Spurious Emissions, 928 - 1000MHz

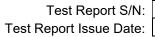



Plot 12.2 - Conducted Spurious Emissions, 1000 - 3000MHz




Plot 12.3 - Conducted Spurious Emissions, 1848MHz

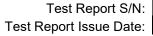
Plot 12.4 - Conducted Spurious Emissions, 3 - 10GHz

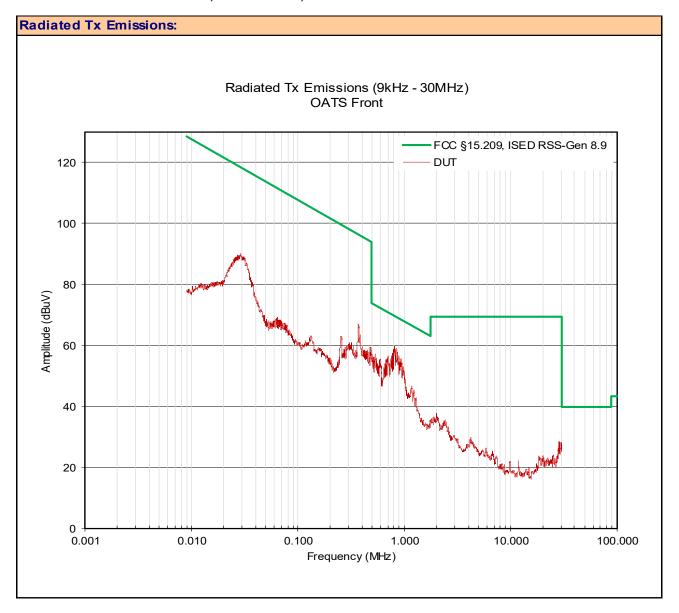

Test Report S/N: Test Report Issue Date:

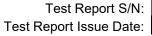
45461783 R2.0 23 February 2023

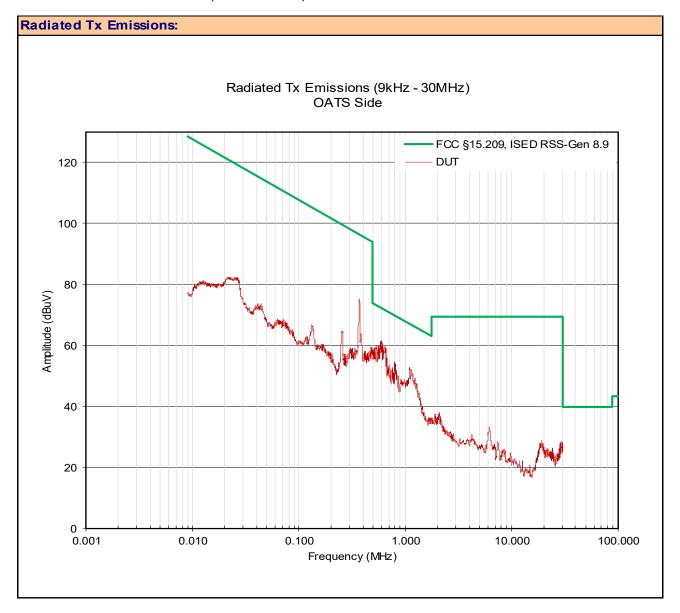
Table 12.1 – Summary of Conducted Spurious Emissions Measurements

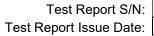
Conducted Spurious Emissons Measurement Results:							
Fundamental	Fundamental	Emission Measured		Attenuation			
Eroguenov	Power	Eroguenov	Emission	Attenuation	Limit	Margin	
Frequency	[P _{Fund}]	Frequency	[P _{Meas}]	[A _{tt}]			
(MHz)	(dBm)	(MHz)	(dBm)	(dBm)	(dB)	(dB)	
	14.0 25.28	956.0	-29.46	54.74		24.7	
914.0		1828.0	-23.84	49.12	30.0	19.1	
		3070.0	-33.19	58.47		28.5	
		·				Complies	

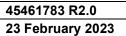

Attenuation $[A_{tt}]$ = Fundamental Power $[P_{Fund}]$ - Measured Emission $[P_{Meas}]$ Margin = Attenuation $[A_{tt}]$ - Limit


13.0 RADIATED TX EMISSIONS - RESTRICTED BAND

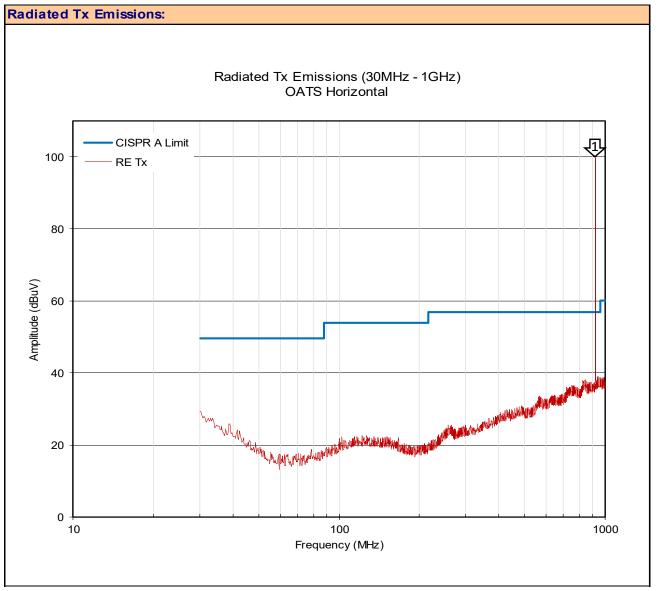

Test Procedure							
Normative Reference	FCC 47 CFR §2.1051, §	15.247(d), §15.205(a), §15.205(c), §15.209(a)					
Normative Reference	KDB 558074 (8.6), ANSI	C63.10 (11.12)					
Limits	Limits						
47 CFR §15.247(d)	(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitte under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).						
47 CFR §15.209(a)	(a) Except as provided e	sion limits; general requirements. Isewhere in this subpart, the emissions from an intentional radiator of strength levels specified in the following table:					
	Frequency (MHz)	Field Strength (microvolts/meter)					
	0.009 - 0.490	2400/F (kHz) @300m					
	0.490 - 1.705	24000/F (kHz) @30m					
	1.705 - 30	30 @ 30m					
	30 - 88 100 @3m						
	88 - 216	150 @3m					
	216 - 960	200 @3m					
	Above 960	500 @3m					

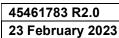

Plot 13.1 – Radiated Tx Emissions, 9kHz to 30MHz, Front



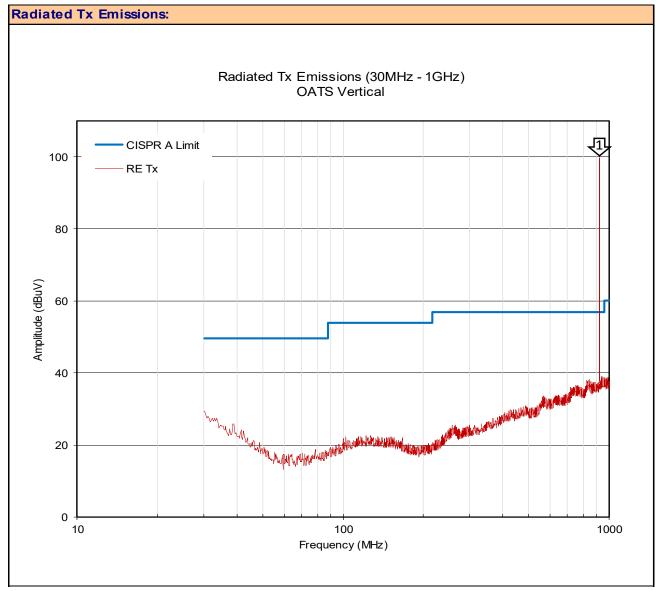


Plot 13.2 - Radiated Tx Emissions, 9kHz to 30MHz, Side

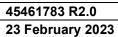




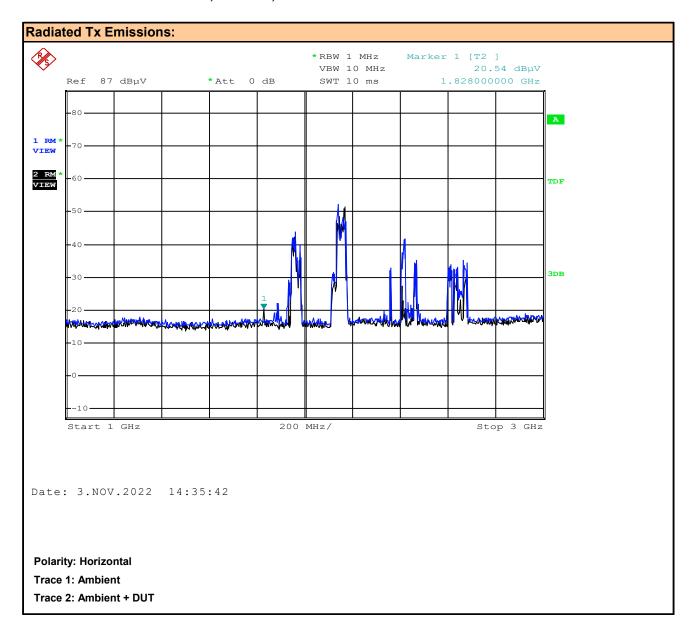
Plot 13.3 – Radiated Tx Emissions, 30 to 1000MHz, Horizontal



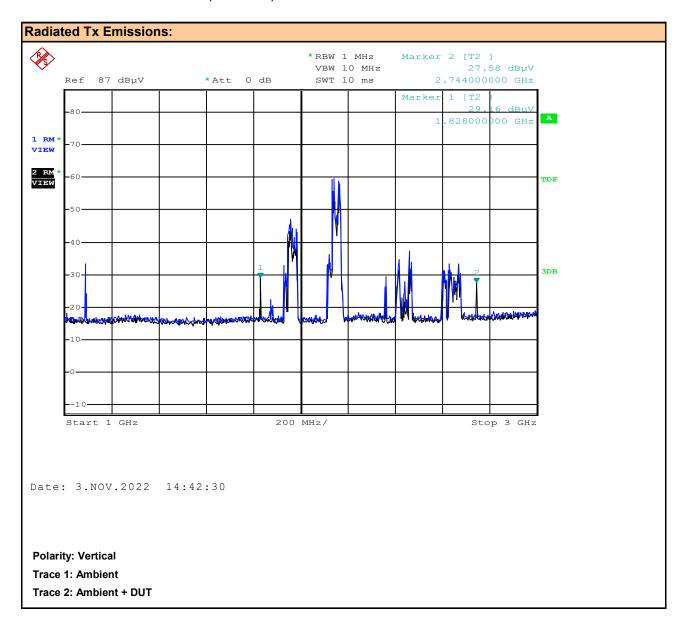
Marker 1 = Fundamental

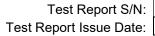


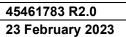
Plot 13.4 - Radiated Tx Emissions, 30 to 1000MHz, Vertical



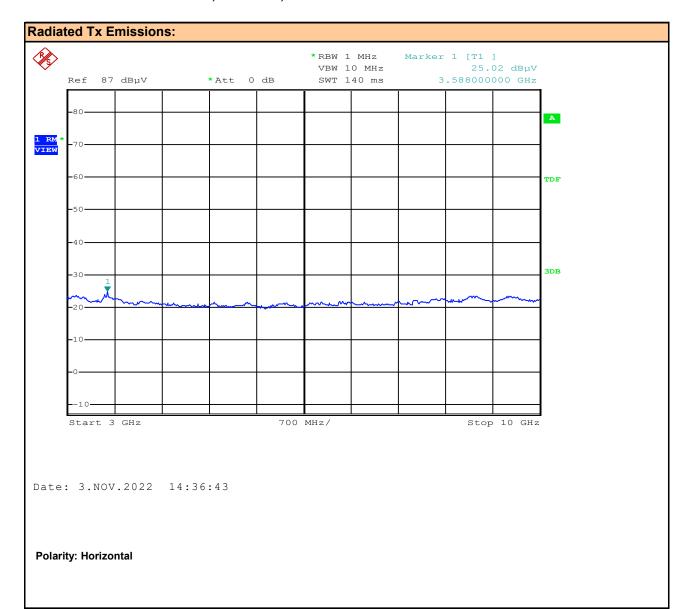
Marker 1 = Fundamental

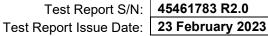


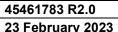

Plot 13.5 - Radiated Tx Emissions, 1 to 3GHz, Horizontal

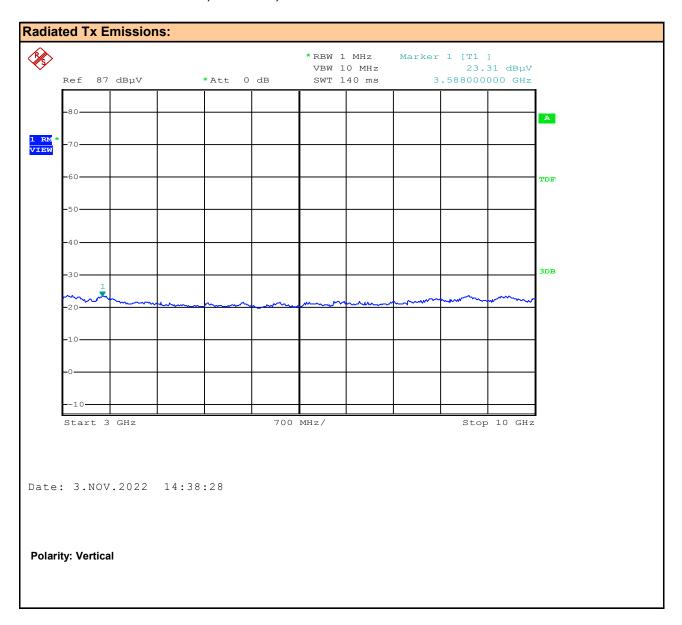


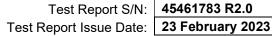
Plot 13.6 - Radiated Tx Emissions, 1 to 3GHz, Vertical



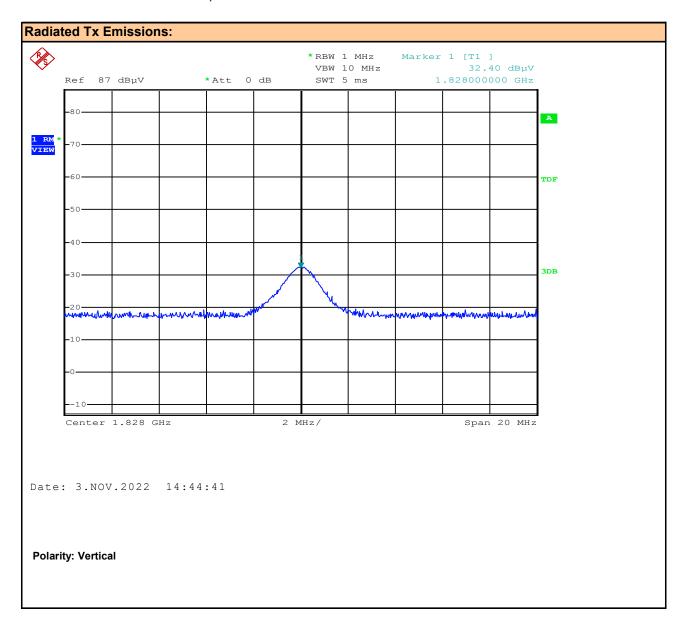


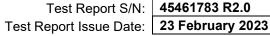



Plot 13.7 - Radiated Tx Emissions, 3 to 10GHz, Horizontal



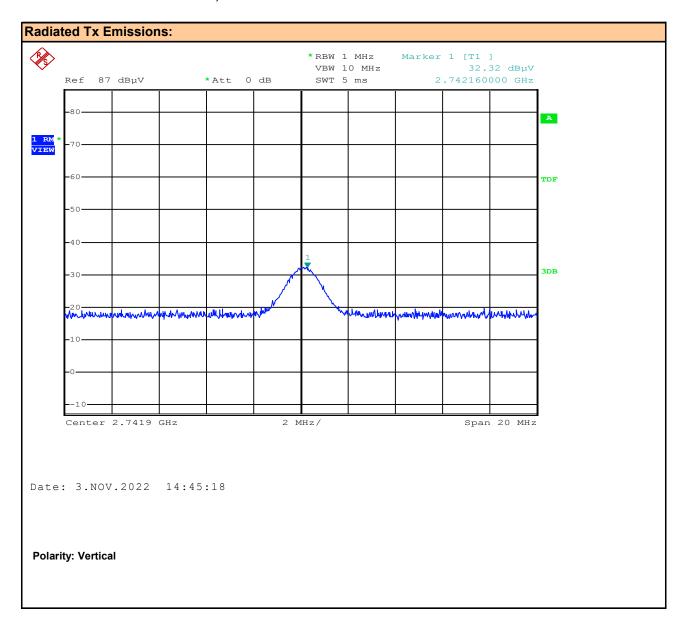
Plot 13.8 - Radiated Tx Emissions, 3 to 10GHz, Vertical





45461783 R2.0

Plot 13.9 – Radiated Tx Emissions, 2nd Harmonic Vertical



45461783 R2.0

Plot 13.10 - Radiated Tx Emissions, 3rd Harmonic Vertical

Test Report S/N: Test Report Issue Date:

45461783 R2.0 23 February 2023

Table 13.1 - Summary of Radiated Tx Measurements

Summary of	Summary of Radiated Tx Emissions												
Measured	Channel	Antenna	Emissio	n	Measu	red	Antenna	Cable	Amplifier	Correc	cted		
Frequency	Chamilei	Antenna	EIIIISSIO	'''	Emissi	on	ACF	Loss	Gain	Emiss	ion	Limit	Margin
Range	Frequency	Polarization	Frequen	су	[E _{Meas}	_s]	[ACF]	[L _c]	[G _A]	[E _{Co}	_{rr}]		
(MHz)	(MHz)				(dBu\	/)	(dB)	(dB)	(dB)	(dBuV	//m)	(dBuV)	(dB)
9kHz - 30MHz		Front	ND		ND	(1)	0.00	0.00	0.00 (3)	ND	(2)	n/a	n/a
9kHz - 30MHz		Side	ND		ND	(1)	0.00	0.00	0.00 (3)	ND	(2)	n/a	n/a
30-1000MHz		Horizontal	ND		ND	(1)	0.00	0.00	0.00 (3)	ND	(2)	n/a	n/a
30-1000MHz		Vertical	ND		ND	(1)	0.00	0.00	0.00 (3)	ND	(2)	n/a	n/a
1-3GHz	912.000	Horizontal	ND		ND	(1)	0.00	0.00	0.00 (3)	ND	(2)	n/a	n/a
1-3GHz		Vertical	1828	MHz	3.48		26.72	2.20	0.00 (3)	32.4	(2)	60.0	27.6
1-3GHz		Vertical	2742	MHz	1.16		28.66	2.50	0.00 (3)	32.3	(2)	60.0	27.7
3-10GHz		Horizontal	ND		ND	(1)	0.00	0.00	0.00 (3)	ND	(2)	n/a	n/a
3-10GHz		Vertical	ND		ND	(1)	0.00	0.00	0.00 (3)	ND	(2)	n/a	n/a
	_		<u> </u>							Res	ults:	Com	plies

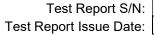
⁽¹⁾ No Emissions Detected (ND) above ambient or within 20dB of the limit

$$E_{Corr} = E_{Meas} + ACF^{E} + L_{C} - G_{A}$$

 $E_{Corr} = E_{Meas} + ACF^{E} + L_{C} - G_{A}$ Where ACF^{E} is the Electric Antenna Correction Factor

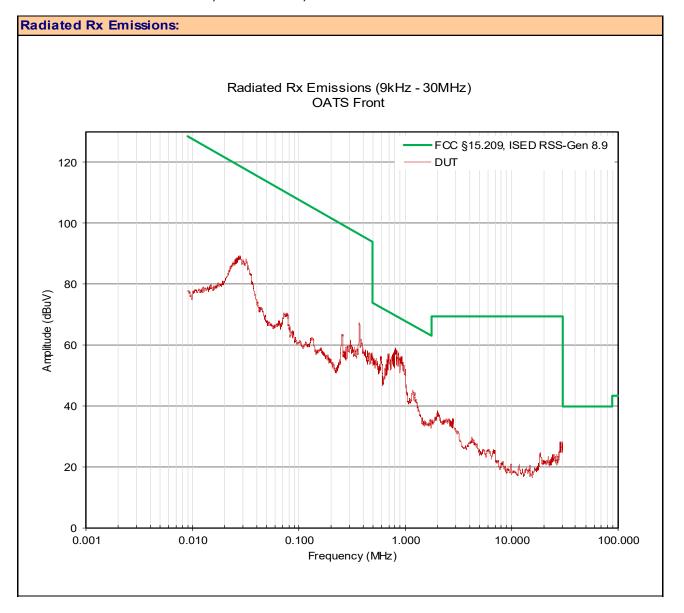
⁽²⁾ Antenna ACF, Cable Loss and Amplifier Gain corrected in Spectrum Analyzer Transducer Factor

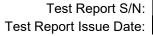
⁽³⁾ External Amplier not used

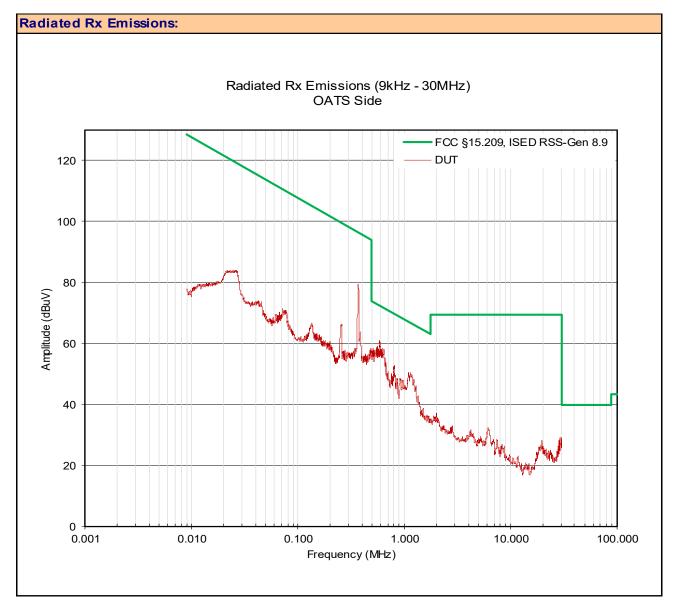


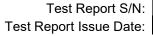
14.0 RADIATED RX EMISSIONS

Test Procedure	Test Procedure					
Normative Reference	FCC 47 CFR §15.109, ICES-003(6.2)					
Normative Reference	ANSI C63.4-2014					
Limits						
47 CFR §15.109	(b) The field strength of radiated emissions from a Class A digital device, as determined at a distance of 10 meters, shall not exceed the following:					
	30-88MHz: 39.1dBuV/m	30-88MHz: 49.6dBuV/m @ 3m				
	88-216MHz: 43.5dBuV/m	88-216MHz: 54.0dBuV/m @ 3m				
	216-960MHz: 46.4dBuV/m	216-960MHz: 56.9dBuV/m @ 3m				
	> 960MHz: 49.5dBuV/m	> 960MHz: 60.0dBuV/m @ 3m				
ICES-003(6.2.1)	6.2.1 - Radiated Emissions Limit	s Below 1 GHz				
		ditions for Class A operation defined in Section 2.2 shall dimits set out in Table 4 determined at a distance of 10				
	30-88MHz: 39.1dBuV/m	30-88MHz: 49.6dBuV/m @ 3m				
	88-216MHz: 43.5dBuV/m	88-216MHz: 54.0dBuV/m @ 3m				
	216-960MHz: 46.4dBuV/m	216-960MHz: 56.9dBuV/m @ 3m				
	> 960MHz: 49.5dBuV/m	> 960MHz: 60.0dBuV/m @ 3m				
Test Setup	Appendix A	Figure A.1				

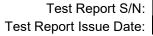

Measurement Procedure

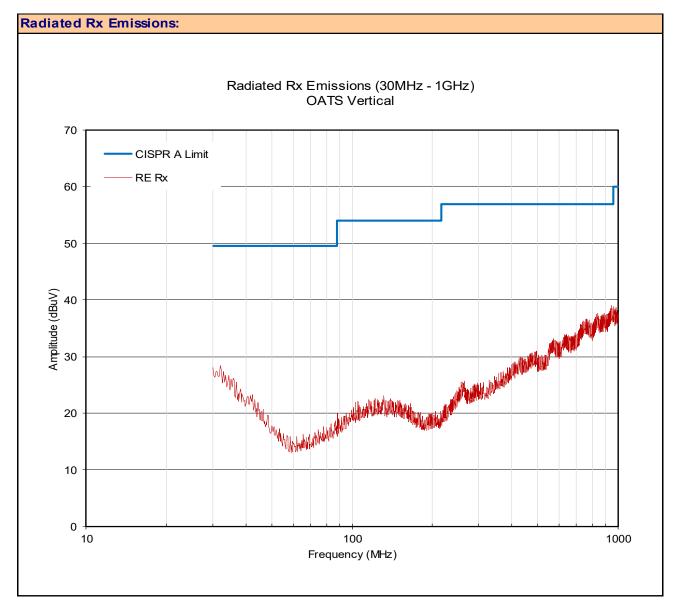

The DUT was set up as per ANSI C63.4:2014. Emissions were scanned between 30MHz and 1000MHz. The turntable was rotated 360 degrees and the antenna was elevated to 4m to optimize the measured emissions.

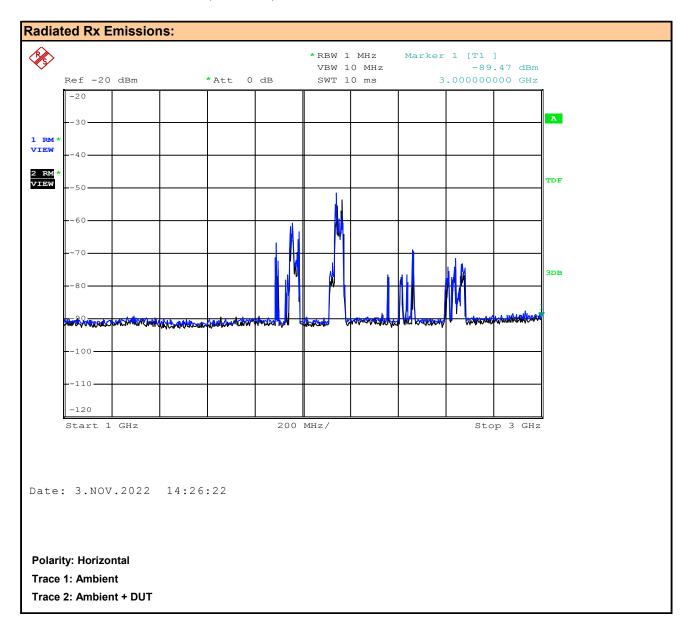

Plot 14.1 – Radiated Rx Emissions, 9kHz to 30MHz, Front



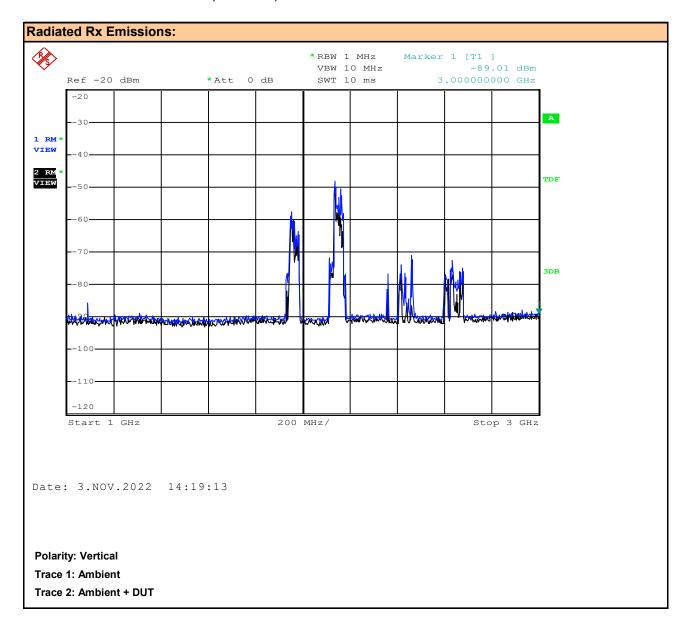

Plot 14.2 - Radiated Rx Emissions, 9kHz to 30MHz, Side

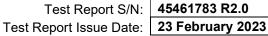



Plot 14.3 - Radiated Rx Emissions, 30 to 1000MHz, Horizontal

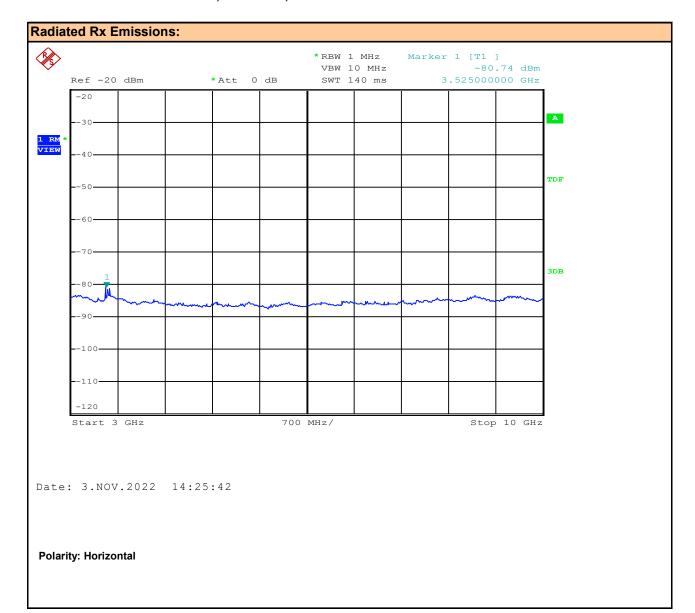

Plot 14.4 - Radiated Rx Emissions, 30 to 1000MHz, Vertical

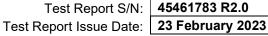
45461783 R2.0




Plot 14.5 - Radiated Rx Emissions, 1 to 3GHz, Horizontal

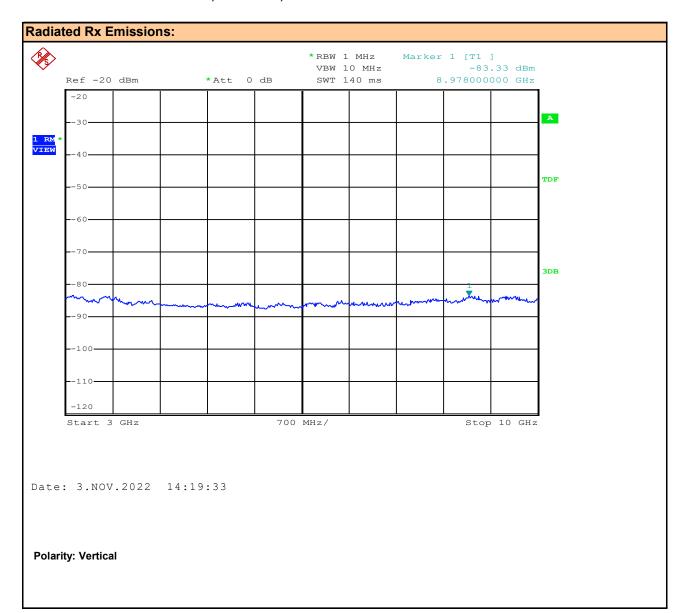
Plot 14.6 - Radiated Rx Emissions, 1 to 3GHz, Vertical





45461783 R2.0

Plot 14.7 - Radiated Rx Emissions, 3 to 10GHz, Horizontal



45461783 R2.0

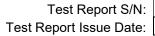
Plot 14.8 - Radiated Rx Emissions, 3 to 10GHz, Vertical

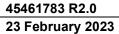
Test Report S/N: Test Report Issue Date:

45461783 R2.0 23 February 2023

Table 14.1 - Summary of Radiated Rx Measurements

Summary of	Summary of Radiated Rx Emissions									
Measured	Channel Antenna		A		Antenna	Cable	Amplifier	Corrected		
Frequency	Citatillei	Antenna	Emission	Emission	ACF	Loss	Gain	Emission	Limit	Margin
Range	Frequency	Polarization	Frequency	[E _{Meas}]	[ACF]	[L _c]	[G _A]	[E _{Corr}]		
(MHz)	(MHz)			(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV)	(dB)
9kHz - 30MHz	1	Front	ND	ND (1)	0.00	0.00	0.00 (3)	ND (2)	n/a	n/a
9kHz - 30MHz	-	Side	ND	ND (1)	0.00	0.00	0.00 (3)	ND (2)	n/a	n/a
30-1000MHz	-	Horizontal	ND	ND (1)	0.00	0.00	0.00 (3)	ND (2)	n/a	n/a
30-1000MHz	-	Vertical	ND	ND (1)	0.00	0.00	0.00 (3)	ND (2)	n/a	n/a
1-3GHz	-	Horizontal	ND	ND (1)	0.00	0.00	0.00 (3)	ND (2)	n/a	n/a
1-3GHz	-	Vertical	ND	ND (1)	0.00	0.00	0.00 (3)	ND (2)	n/a	n/a
3-10GHz	-	Horizontal	ND	ND (1)	0.00	0.00	0.00 (3)	ND (2)	n/a	n/a
3-10GHz	-	Vertical	ND	ND (1)	0.00	0.00	0.00 (3)	ND (2)	n/a	n/a
								Results:	Com	plies

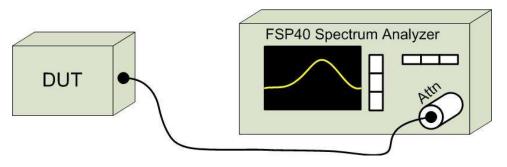

⁽¹⁾ No Emissions Detected (ND) above ambient or within 20dB of the limit


(3) External Amplier not used

$$E_{Corr} = E_{Meas} + ACF^{E} + L_{C} - G_{A}$$

 $E_{Corr} = E_{Meas} + ACF^{E} + L_{C} - G_{A}$ Where ACF^{E} is the Electric Antenna Correction Factor

⁽²⁾ Antenna ACF, Cable Loss and Amplifier Gain corrected in Spectrum Analyzer Transducer Factor



APPENDIX A - TEST SETUP DRAWINGS

Table A.1 – Conducted Measurement Setup

	Equipment List				
Asset Number	Manufacturer	Model Number	Description		
00241	R&S	FSU40	Spectrum Analyzer		

Figure A.1 – Test Setup – Conducted Measurements

Test Report S/N:
Test Report Issue Date:

45461783 R2.0 23 February 2023

Table A.2 – Radiated Emissions Measurement Equipment

Equipment List						
Asset Number	Manufacturer	Model Number	Description			
00051	HP	8566B	Spectrum Analyzer			
00049	HP	85650A	Quasi-peak Adapter			
00047	HP	85685A	RF Preselector			
00072	EMCO	2075	Mini-mast			
00073	EMCO	2080	Turn Table			
00071	EMCO	2090	Multi-Device Controller			
00265	Miteq	JS32-00104000-58-5P	Microwave L/N Amplifier			
00241	R&S	FSU40	Spectrum Analyzer			
00050	Chase	CBL-6111A	Bilog Antenna			
00275	Coaxis	LMR400	25m Cable			
00276	Coaxis	LMR400	4m Cable			
00278	TILE	34G3	TILE Test Software			
00034	ETS	3115	Double Ridged Guide Horn			
00085	EMCO	6502	Loop Antenna			

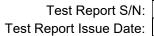


Figure A.2 - Test Setup Radiated Measurements 9kHzMHz - 30MHz

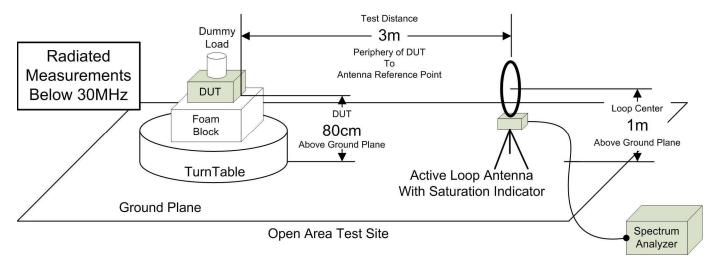
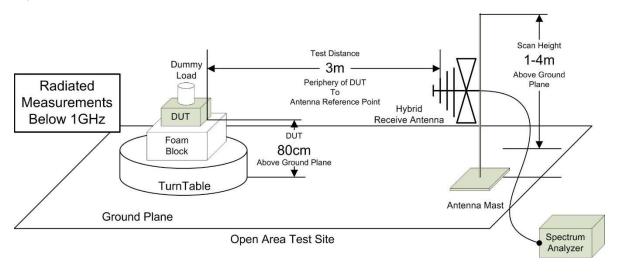
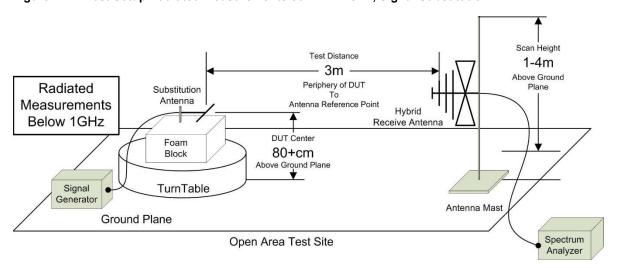
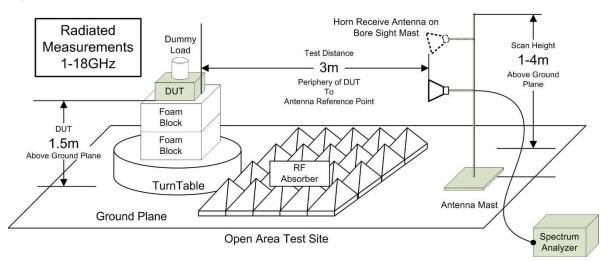
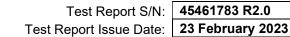


Figure A.3 - Test Setup Radiated Measurements 30MHz - 1GHz

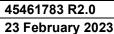

Figure A.4 - Test Setup Radiated Measurements 30MHz - 1GHz, Signal Substitution



Test Report S/N: Test Report Issue Date:

Figure A.5 – Test Setup Radiated Measurements 1 – 18GHz

45461783 R2.0



APPENDIX B - EQUIPMENT LIST AND CALIBRATION

Equipm	ent List						
Asset Number	Manufacturer	Model Number	Serial Number	Description	Last Calibrated	Calibration Interval	Calibration Due
00050	Chase	CBL-6111A	1607	Bilog Antenna	16 Nov 2020	Triennial	16 Nov 2023
00035	ETS	3115	6276	Double Ridged Guide Horn	4 Mar 2022	Triennial	4 Mar 2025
00085	EMCO	6502	9203-2724	Loop Antenna	6 Sep 2022	Triennial	6 Sep 2025
00333	HP	85685A	3010A01095	RF Preselector	23 Jun 2020	Triennial	30 Jun 2023
00049	HP	85650A	2043A00162	Quasi-peak Adapter	23 Jun 2020	Triennial	23 Jun 2023
00051	HP	8566B	2747A05510	Spectrum Analyzer	23 Jun 2020	Triennial	23 Jun 2023
00241	R&S	FSU40	100500	Spectrum Analyzer	10 Aug 2021	Triennial	10 Aug 2024
00005	HP	8648D	3847A00611	Signal Generator	23 Jun 2020	Triennial	23 Jun 2023
00072	EMCO	2075	0001-2277	Mini-mast	n/a	n/a	n/a
00073	EMCO	2080	0002-1002	Turn Table	n/a	n/a	n/a
00263	Koaxis	KP10-1.00M-TD	263	1m Armoured Cable	COU	n/a	COU
00263B	Koaxis	KP10-1.00M-TD	263B	1m Armoured Cable	COU	n/a	COU
00275	TMS	LMR400	n/a	25m Cable	COU	n/a	COU
00278	TILE	34G3	n/a	TILE Test Software	NCR	n/a	NCR

NCR: No Calibration Required COU: Calibrate On Use

APPENDIX C - MEASUREMENT INSTRUMENT UNCERTAINTY

	CISPR 16-4 Measurement Uncertainty (U _{LAB})					
Th	This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence interval using a coverage factor of k=2					
	Radiated Emissions 30MHz - 200MHz					
	$U_{LAB} = 5.14dB$ $U_{CISPR} = 6.3dB$					
	Radiated Emissions 200MHz - 1000MHz					
	$U_{LAB} = 5.90 dB$ $U_{CISPR} = 6.3 dB$					
	Radiated Emissions 1GHz - 6GHz					
	$U_{LAB} = 4.80dB$ $U_{CISPR} = 5.2dB$					
	Radiated Emissions 6GHz - 18GHz					
	$U_{LAB} = 5.1dB$ $U_{CISPR} = 5.5dB$					
	Power Line Conducted Emissions 9kHz to 150kHz					
	$U_{LAB} = 2.96dB$ $U_{CISPR} = 3.8dB$					
	Power Line Conducted Emissions 150kHz to 30MHz					
	U _{LAB} = 3.12dB					
	If the calculated uncertainty \mathbf{U}_{lab} is $less$ than \mathbf{U}_{CISPR} then:					
1	Compliance is deemed to occur if NO measured disturbance exceeds the disturbance limit					
2	2 Non-Compliance is deemed to occur if ANY measured disturbance EXCEEDS the disturbance limit					
	If the calculated uncertainty U _{lab} is greater than U _{CISPR} then:					
3	Compliance is deemed to occur if NO measured disturbance, increased by (U _{lab} - U _{CISPR}), exceeds the disturbance limit					
4	Non-Compliance is deemed to occur if ANY measured disturbance, increased by (U _{lab} - U _{CISPR}), EXCEEDS the disturbance limit					

Other Measurement Uncertainties (U _{LAB})					
RF Conducted Emis	RF Conducted Emissions 9kHz - 40GHz				
U _{LAB} = 1.0dB	U _{CISPR} = n/a				
Frequency/Bandwidth 9kHz - 40GHz					
U _{LAB} = 0.1ppm	$U_{CISPR} = n/a$				
Temperature					
U _{LAB} = 1 ^o C	U _{CISPR} = n/a				

END OF REPORT