Shenzhen Huatongwei International Inspection Co., Ltd.

1/F,Bldg 3,Hongfa Hi-tech Industrial Park,Genyu Road,Tianliao,Gongming,Shenzhen,China Phone:86-755-26748019 Fax:86-755-26748089 http://www.szhtw.com.cn

TEST REPORT

Report Reference No......: TRE1710010202 R/C......: 40666

FCC ID.....: 2AK4CPP211NV5LRV

Applicant's name.....: Petcube, Inc.

USA

Manufacturer...... Yitoa Digital Technology Co.,LTD.

Nanshan District, Shenzhen

Test item description: Petcube Play

Trade Mark Petcube

Model/Type reference...... PP211NV5LRV

Listed Model(s) -

Standard: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of receipt of test sample........... Oct.20,2017

Date of testing...... Oct.21,2017- Nov.01,2017

Date of issue...... Nov.02,2017

Result...... PASS

Compiled by

(Position+Printed name+Signature): File administrators Candy Liu

Supervised by

(Position+Printed name+Signature): Project Engineer : Edward Pan

Approved by

(Position+Printed name+Signature): RF Manager Hans Hu

Testing Laboratory Name: Shenzhen Huatongwei International Inspection Co., Ltd.

Address....... 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road,

Tianliao, Gongming, Shenzhen, China

Candy Lieu, Bolward. Pan Huns Hu

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely correspond to the test sample.

Report No.: TRE1710010202 Page: 2 of 60 Issued: 2017-11-02

Contents

<u>1.</u>	TEST STANDARDS AND REPORT VERSION	3
1.1.	Test Standards	3
1.2.	Report version	3
<u>2.</u>	TEST DESCRIPTION	4
		-
<u>3.</u>	SUMMARY	5
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Operation state	6
3.4.	EUT configuration	6
3.5.	Modifications	6
<u>4.</u>	TEST ENVIRONMENT	7
	Address of the Acad laboratory	_
4.1.	Address of the test laboratory	7
4.2.	Test Facility	7
4.3.	Environmental conditions	8
4.4. 4.5	Statement of the measurement uncertainty	8 9
4.5.	Equipments Used during the Test	9
<u>5.</u>	TEST CONDITIONS AND RESULTS	10
5.1.	Antenna requirement	10
5.2.	Conducted Emissions (AC Main)	11
5.3.	Conducted Peak Output Power	14
5.4.	20 dB Bandwidth	18
5.5.	Carrier Frequencies Separation	22
5.6.	Hopping Channel Number	24
5.7.	Dwell Time	26
5.8.	Pseudorandom Frequency Hopping Sequence	30
5.9.	Restricted band (radiated)	31
5.10.	Band edge and Spurious Emissions (conducted)	33
5.11.	Spurious Emissions (radiated)	55
<u>6.</u>	TEST SETUP PHOTOS	59
7.	EXTERANAL AND INTERNAL PHOTOS	60
<u> </u>		

Report No.: TRE1710010202 Page: 3 of 60 Issued: 2017-11-02

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

<u>FCC Rules Part 15.247:</u> Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devicese

1.2. Report version

Version No.	Date of issue	Description
00	Nov.02,2017	Original

Report No.: TRE1710010202 Page: 4 of 60 Issued: 2017-11-02

2. TEST DESCRIPTION

Test Item	Section in CFR 47	Result	Test Engineer
Antenna Requirement	15.203/15.247 (c)	Pass	William Wang
AC Power Line Conducted Emissions	15.207	Pass	William Wang
Conducted Peak Output Power	15.247 (b)(1)	Pass	William Wang
20 dB Bandwidth	15.247 (a)(1)	Pass	William Wang
Carrier Frequencies Separation	15.247 (a)(1)	Pass	William Wang
Hopping Channel Number	15.247 (a)(1)	Pass	William Wang
Dwell Time	15.247 (a)(1)	Pass	William Wang
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)	Pass	William Wang
Restricted band	15.247(d)/15.205	Pass	William Wang
Radiated Emissions	15.247(d)/15.209	Pass	William Wang

Note: The measurement uncertainty is not included in the test result.

Report No.: TRE1710010202 Page: 5 of 60 Issued: 2017-11-02

3. **SUMMARY**

3.1. Client Information

Applicant:	Petcube, Inc.
Address:	2711 Centerville Road,Suite 400,Wilmington,Delaware19808, USA
Manufacturer:	Yitoa Digital Technology Co.,LTD.
Address:	6/F,Yitoa Building,KejiSouth Road 5th,Hi-tech Industrial Park, Nanshan District,Shenzhen

3.2. Product Description

Name of EUT:	Petcube Play
Trade Mark:	Petcube
Model No.:	PP211NV5LRV
Listed Model(s):	-
Power supply:	DC 5.0V from adapter
Adapter information:	Model:ASSA41w-050200 Input:100-240Va.c., 50-60Hz, 0.5A Output: 5Vd.c.,2A
Hardware version: RV1108-YT-V2.0	
Software version:	v2.6.0.1317
Bluetooth	
Version:	Supported BT4.0+EDR
Modulation:	GFSK, π/4DQPSK, 8DPSK
Operation frequency:	2402MHz~2480MHz
Channel number:	79
Channel separation: 1MHz	
Antenna type:	Integral Antenna
Antenna gain:	3.41 dBi

Report No.: TRE1710010202 Page: 6 of 60 Issued: 2017-11-02

3.3. Operation state

> Test frequency list

According to section 15.31(m), regards to the operating frequency range over 10 MHz, must select three channel which were tested. the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, please see the above gray bottom.

Channel	Frequency (MHz)
00	2402
01	2403
÷	:
39	2441
i i	:
77	2479
78	2480

> TEST MODE

$D\Gamma$	+00+	items:
κ	1681	Herris

The engineering test program was provided and enabled to make EUT continuous transmit

For AC power line conducted emissions:

The EUT was set to connect with the Bluetooth instrument under large package sizes transmission.

For Radiated suprious emissions test item:

The EUT in each of three orthogonal axis emissions had been tested ,but only the worst case (X axis) data recorded in the report.

3.4. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

supplied by the manufacturer

○ - suppli	ed by t	he lab
------------	---------	--------

	Manufacturer:	1
	Model No.:	1
	Manufacturer:	1
	Model No.:	1

3.5. Modifications

No modifications were implemented to meet testing criteria.

Report No.: TRE1710010202 Page: 7 of 60 Issued: 2017-11-02

4. TEST ENVIRONMENT

4.1. Address of the test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd.

Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China

4.2. Test Facility

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 762235

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files.

IC-Registration No.:5377B-1

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No.: 5377B-1.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

Report No.: TRE1710010202 Page: 8 of 60 Issued: 2017-11-02

4.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
Relative Humidity:	30~60 %
Air Pressure:	950~1050mba

4.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors in calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report according to TR-100028-01 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2" and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd. quality system according to ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Here after the best measurement capability for Shenzhen Huatongwei International Inspection Co., Ltd. is reported:

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.57 dB	(1)
Transmitter power Radiated	2.20 dB	(1)
Conducted spurious emissions 9kHz~40GHz	1.60 dB	(1)
Radiated spurious emissions 9kHz~40GHz	2.20 dB	(1)
Conducted Emissions 9kHz~30MHz	3.39 dB	(1)
Radiated Emissions 30~1000MHz	4.24 dB	(1)
Radiated Emissions 1~18GHz	5.16 dB	(1)
Radiated Emissions 18~40GHz	5.54 dB	(1)
Occupied Bandwidth		(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Report No.: TRE1710010202 Page: 9 of 60 Issued: 2017-11-02

4.5. Equipments Used during the Test

Cond	Conducted Emissions					
Item	Test Equipment Manufacturer Model No. Serial No. Last Cal.					
1	Artificial Mains	Rohde&Schwarz	ESH2-Z5	100028	2016/11/13	
2	EMI Test Receiver	Rohde&Schwarz	ESCI3	100038	2016/11/13	
3	Pulse Limiter	Rohde&Schwarz	ESHSZ2	100044	2016/11/13	
4	EMI Test Software	Rohde&Schwarz	ES-K1 V1.71	-	-	

Radiated Emissions								
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.			
1	EMI test receiver	Rohde&Schwarz	ESI 26	100009	2016/11/13			
2	Loop Antenna	Rohde&Schwarz	HFH2-Z2	100020	2016/11/13			
3	Ultra-Broadband Antenna	ShwarzBeck	VULB9163	538	2016/11/13			
4	Horn antenna	ShwarzBeck	9120D	1011	2016/11/13			
5	Horn Antenna	SCHWARZBECK	BBHA9170	25841	2016/11/13			
6	Amplifier	Sonoma	310N	E009-13	2016/11/13			
7	JS Amplifier	Rohde&Schwarz	JS4-00101800- 28-5A	F201504	2016/11/13			
8	Amplifier	Compliance Direction systems	PAP1-4060	120	2016/11/13			
9	High pass filter	Compliance Direction systems	BSU-6	34202	2016/11/13			
10	EMI test Software	Rohde&Schwarz	ESK1	-	-			
11	EMI test Software	Audix	E3	-	-			
12	TURNTABLE	MATURO	TT2.0	-	-			
13	ANTENNA MAST	MATURO	TAM-4.0-P	-	-			

RF Co	RF Conducted methods							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.			
1	Spectrum Analyzer	Rohde&Schwarz	FSP	1164.4391.40	2016/11/13			
2	2 MXA Signal Analyzer Agilent Technolog		N9020A	MY5050187	2016/11/13			

The Cal.Interval was one year.

Report No.: TRE1710010202 Page: 10 of 60 Issued: 2017-11-02

5. TEST CONDITIONS AND RESULTS

5.1. Antenna requirement

Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of anantenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

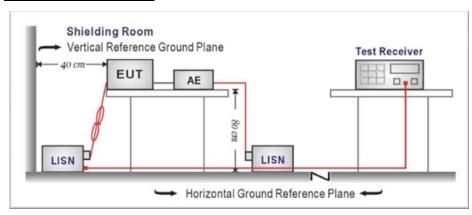
Test Result:

🛛 Passed 🔠 Not Applicable

Please refer to the below antenna photo.

Report No.: TRE1710010202 Page: 11 of 60 Issued: 2017-11-02

5.2. Conducted Emissions (AC Main)


LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.207

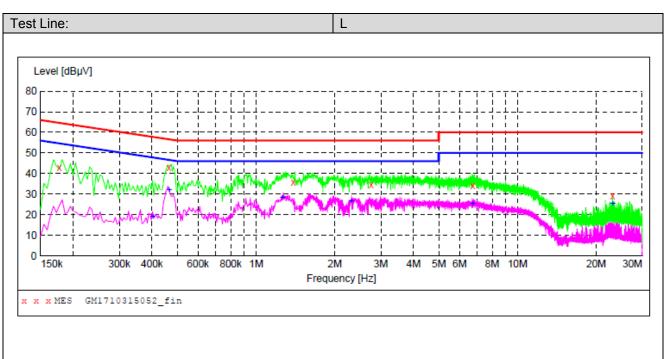
Fraguency range (MHz)	Limit (dBuV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE

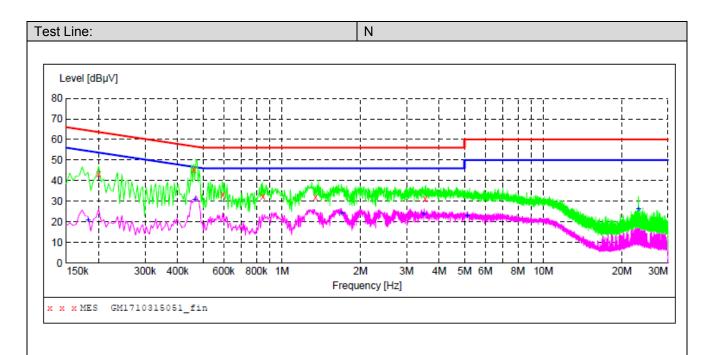
- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment.
- 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor,was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.


TEST RESULTS

Note:

- 1) Transd= Cable lose + Pulse Limiter Factor + Artificial Mains Factor
- 2) Margin= Limit Level

Report No.: TRE1710010202 Page: 12 of 60 Issued: 2017-11-02


MEASUREMENT RESULT: "GM1710315052_fin"

10/31/2017 9	:20PM						
Frequency				_	Detector	Line	PE
MHz	dBµ∇	dB	dΒμ∇	dB			
0.177000	43.00	10.4	65	21.6	OP	L1	GND
0.465000	42.80	10.2	57	13.8	QP	L1	GND
1.387500	35.60	10.2	56	20.4	QP	L1	GND
2.760000	34.70	10.2	56	21.3	QP	L1	GND
6.747000	33.90	10.3	60	26.1	QP	L1	GND
23.127000	29.10	10.7	60	30.9	QP	L1	GND

MEASUREMENT RESULT: "GM1710315052_fin2"

10/31/2017 9 Frequency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.402000	19.20	10.2	48	28.6	AV	L1	GND
0.465000	31.90	10.2	47	14.7	AV	L1	GND
1.261500	28.20	10.2	46	17.8	AV	L1	GND
2.310000	26.60	10.2	46	19.4	AV	L1	GND
6.738000	25.50	10.3	50	24.5	AV	L1	GND
23.127000	25.20	10.7	50	24.8	AV	L1	GND

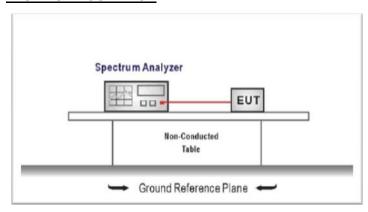
Report No.: TRE1710010202 Page: 13 of 60 Issued: 2017-11-02

MEASUREMENT RESULT: "GM1710315051_fin"

10	/31/2017 9	:18PM						
	Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.199500	43.40	10.3	64	20.2	QP	N	GND
	0.460500	45.20	10.2	57	11.5	QP	N	GND
	0.595500	33.10	10.2	56	22.9	QP	N	GND
	0.847500	32.50	10.1	56	23.5	QP	N	GND
	1.347000	32.00	10.2	56	24.0	QP	N	GND
	3.534000	31.10	10.3	56	24.9	QP	N	GND

MEASUREMENT RESULT: "GM1710315051_fin2"

10/31/2017 9 Frequency MHz	:18PM Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.181500	20.70	10.3	54	33.7	AV	N	GND
0.465000	30.80	10.2	47	15.8	AV	N	GND
1.693500	24.00	10.2	46	22.0	AV	N	GND
3.480000	23.80	10.3	46	22.2	AV	N	GND
5.118000	22.70	10.3	50	27.3	AV	N	GND
23.127000	26.20	10.7	50	23.8	AV	N	GND


Report No.: TRE1710010202 Page: 14 of 60 Issued: 2017-11-02

5.3. Conducted Peak Output Power

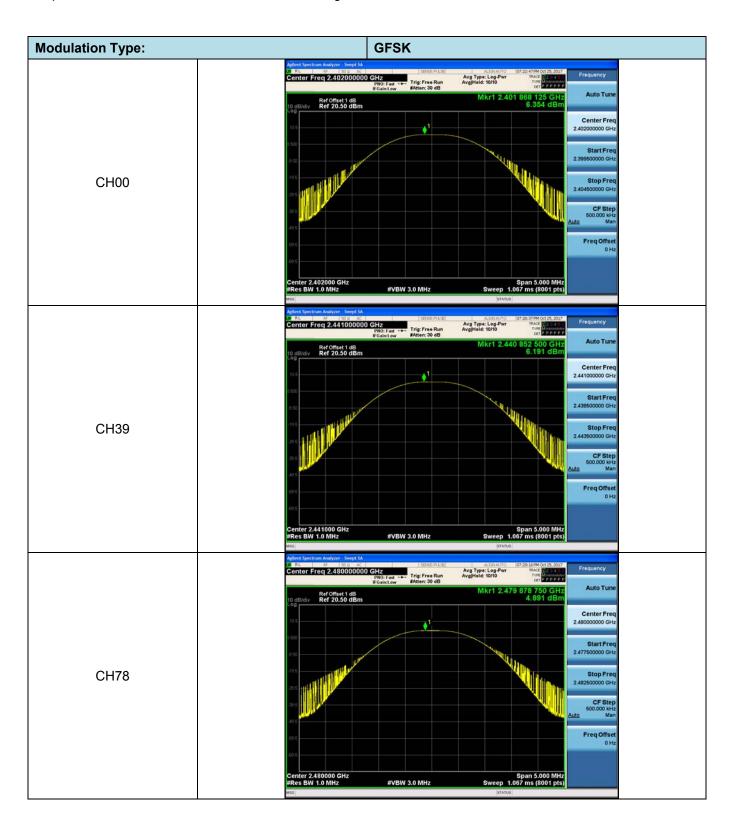
LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(1): For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

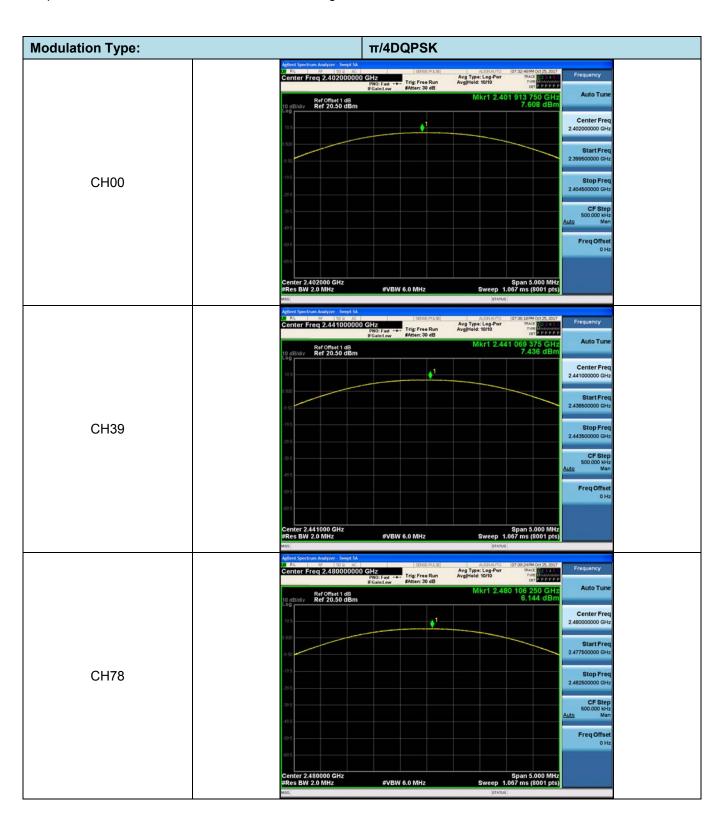
TEST CONFIGURATION

TEST PROCEDURE

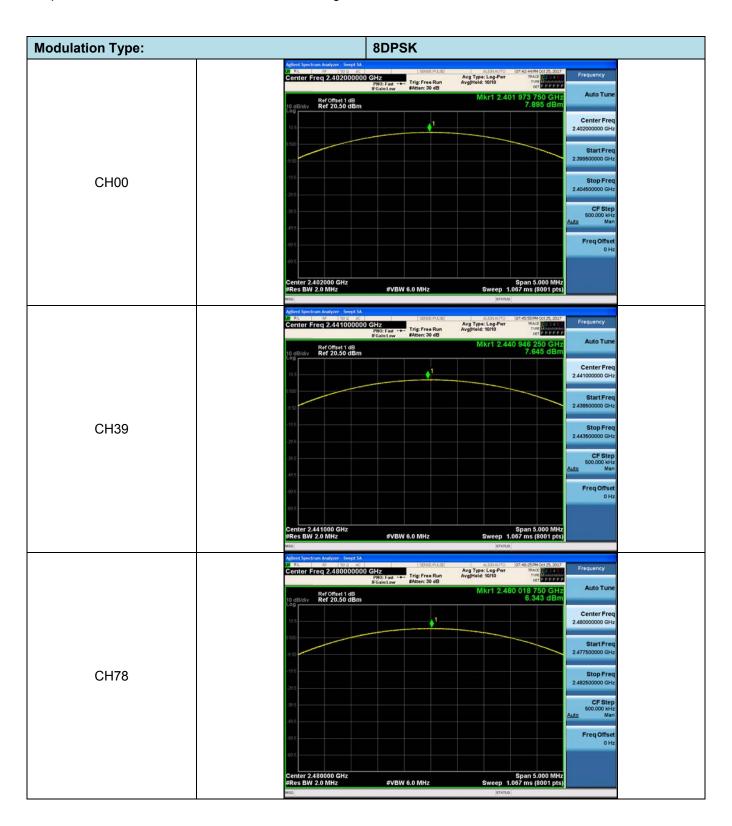
- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the pathloss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW≥ the 20 dB bandwidth of the emission being measured, VBW≥RBW Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.


TEST MODE:

Please refer to the clause 3.3

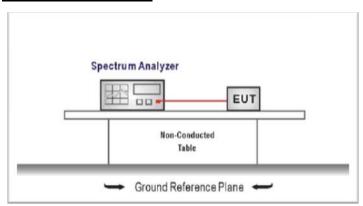

TEST RESULTS

Modulation type	Channel	PK Output power (dBm)	Limit (dBm)	Result	
	00	6.354			
GFSK	39	6.191	≤ 30.00	Pass	
	78	4.891			
	00	7.608			
π/4DQPSK	39	7.436	≤ 21.00	Pass	
	78	6.144			
	00	7.895			
8DPSK	39	7.645	7.645 ≤ 21.00		
	78	6.343			


Report No.: TRE1710010202 Page: 15 of 60 Issued: 2017-11-02

Report No.: TRE1710010202 Page: 16 of 60 Issued: 2017-11-02

Report No.: TRE1710010202 Page: 17 of 60 Issued: 2017-11-02


Report No.: TRE1710010202 Page: 18 of 60 Issued: 2017-11-02

5.4. 20 dB Bandwidth

LIMIT

N/A

TEST CONFIGURATION

TEST PROCEDURE

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW ≥ 1% of the 20 dB bandwidth, VBW ≥ RBW Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.


TEST MODE:

Please refer to the clause 3.3

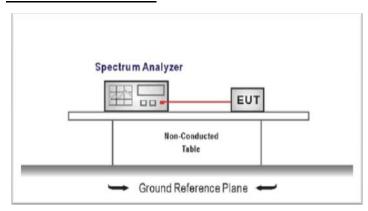
TEST RESULTS

Modulation type	Channel	20 dB Bandwidth (MHz)	Limit (MHz)	Result	
	00	0.9364			
GFSK	39	0.9206	-	Pass	
	78	0.9229			
	00	1.311			
π/4DQPSK	39	1.311	-	Pass	
	78	1.316			
	00	1.313			
8DPSK	39	1.321	-	Pass	
	78	1.321			

Report No.: TRE1710010202 Page: 19 of 60 Issued: 2017-11-02

Report No.: TRE1710010202 Page: 20 of 60 Issued: 2017-11-02

Report No.: TRE1710010202 Page: 21 of 60 Issued: 2017-11-02


Report No.: TRE1710010202 Page: 22 of 60 Issued: 2017-11-02

5.5. Carrier Frequencies Separation

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1):Frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25 kHz or the 2/3*20 dB bandwidth of the hopping channel, whichever is greater.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. Use the following spectrum analyzer settings:
 - Span = wide enough to capture the peaks of two adjacent channels
 - RBW ≥ 1% of the span, VBW ≥ RBW
 - Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.

TEST MODE:

Please refer to the clause 3.3

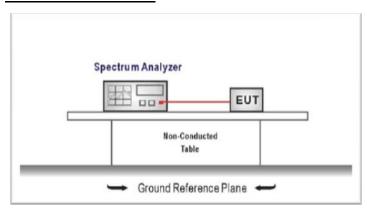
TEST RESULTS

Modulation type	Channel	Carrier Frequencies Separation (MHz)	Limit (MHz) *	Result
GFSK	39	0.979	≥0.936	Pass
π/4DQPSK	39	1.130	≥0.882	Pass
8DPSK	39	0.996	≥0.885	Pass

Note:

^{*:} GFSK limit = The maximum 20 dB Bandwidth for GFSK modulation on the section 5.4. $\pi/4$ DQPSK limit = 2/3 * The maximum 20 dB Bandwidth for $\pi/4$ DQPSK modulation on the section 5.4. 8DPSK limit = 2/3 * The maximum 20 dB Bandwidth for 8DPSK modulation on the section 5.4

Report No.: TRE1710010202 Page: 23 of 60 Issued: 2017-11-02


Report No.: TRE1710010202 Page: 24 of 60 Issued: 2017-11-02

5.6. Hopping Channel Number

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1):Frequency hopping systems in the 2400–2483.5 MHz band shall use at least **15** channels.

TEST CONFIGURATION

TEST PROCEDURE

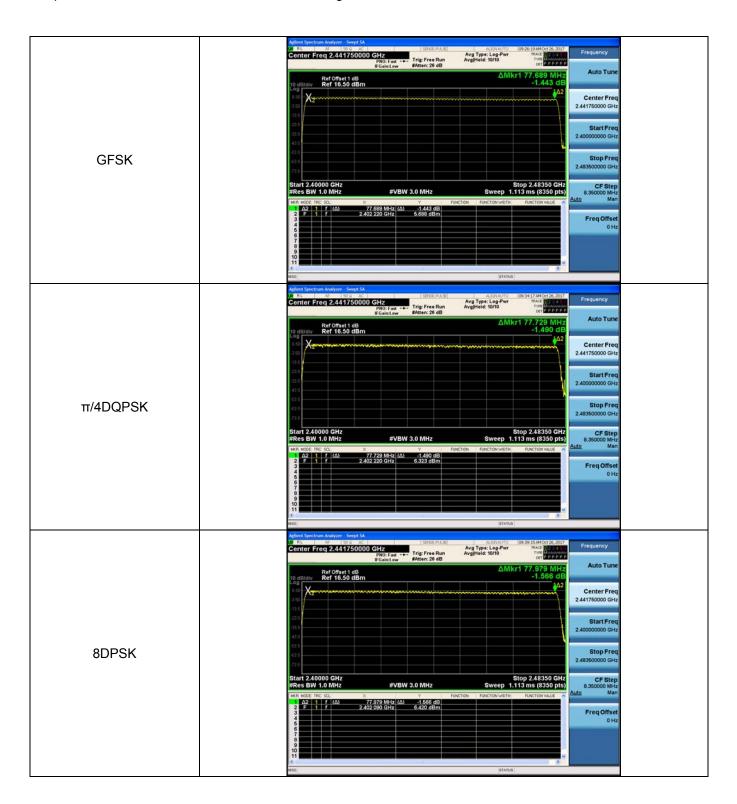
- The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. Use the following spectrum analyzer settings:

Span = the frequency band of operation

RBW ≥ 1% of the span, VBW ≥ RBW

Sweep = auto, Detector function = peak, Trace = max hold

4. Measure and record the results in the test report.

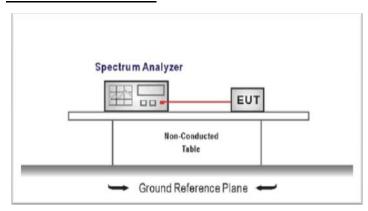

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Modulation type	Modulation type Channel number		Result
GFSK	79		
π/4DQPSK	79	≥15.00	Pass
8DPSK	79		

Report No.: TRE1710010202 Page: 25 of 60 Issued: 2017-11-02


Report No.: TRE1710010202 Page: 26 of 60 Issued: 2017-11-02

5.7. Dwell Time

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1):The average time of occupancy on any channel shall not be greater than 0.4 seconds within a pe-riod of 0.4 seconds multiplied by the number of hopping channels employed.

TEST CONFIGURATION

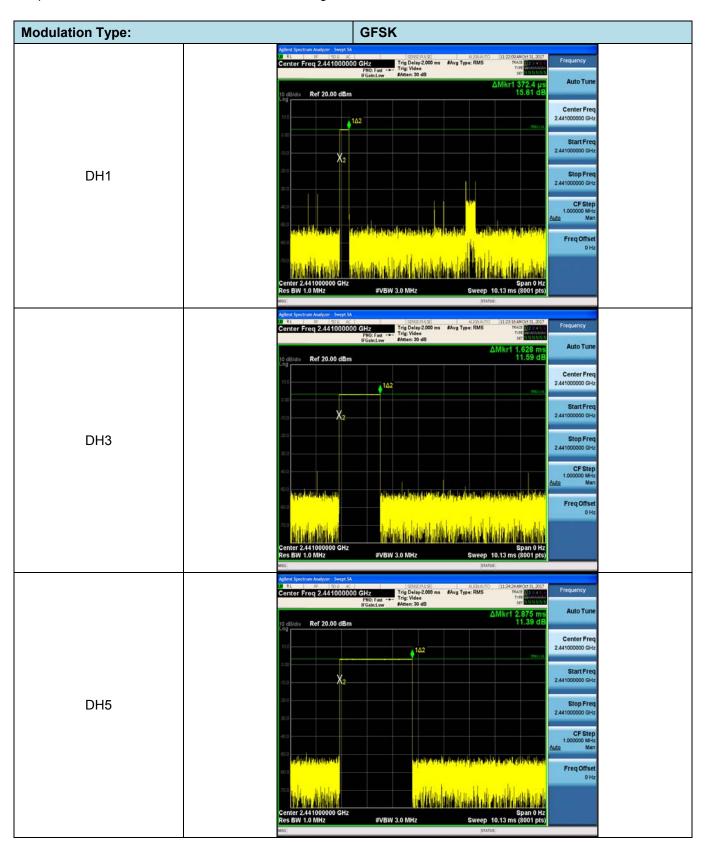
TEST PROCEDURE

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following spectrum analyzer settings:
 Span = zero span, centered on a hopping channel, RBW= 1 MHz, VBW ≥ RBW
 Sweep = as necessary to capture the entire dwell time per hopping channel,
- Detector function = peak, Trace = max hold

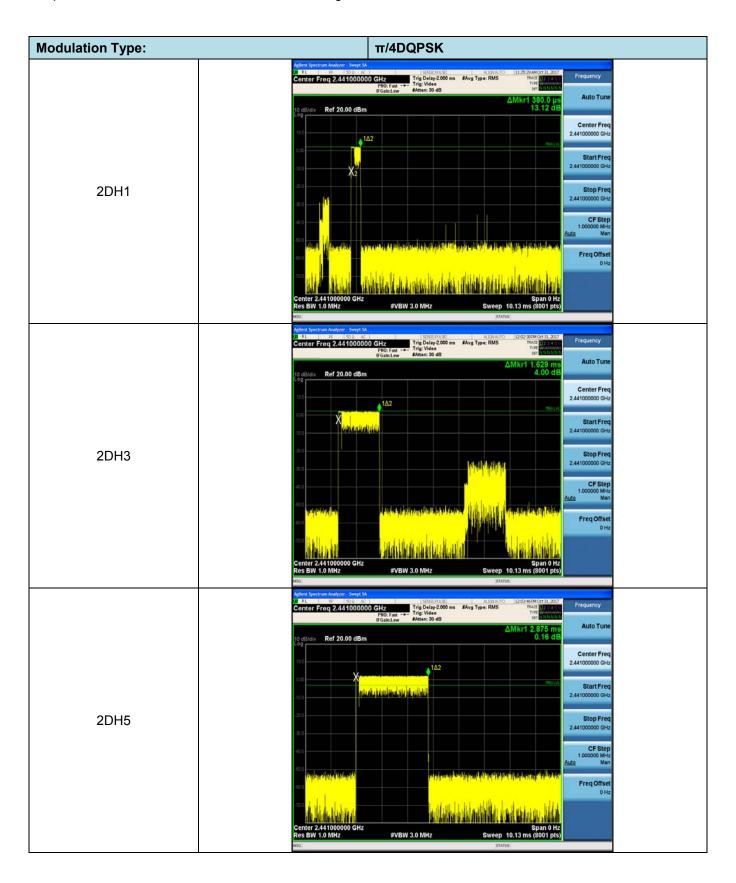
 4. Measure and record the results in the test report.

TEST MODE:

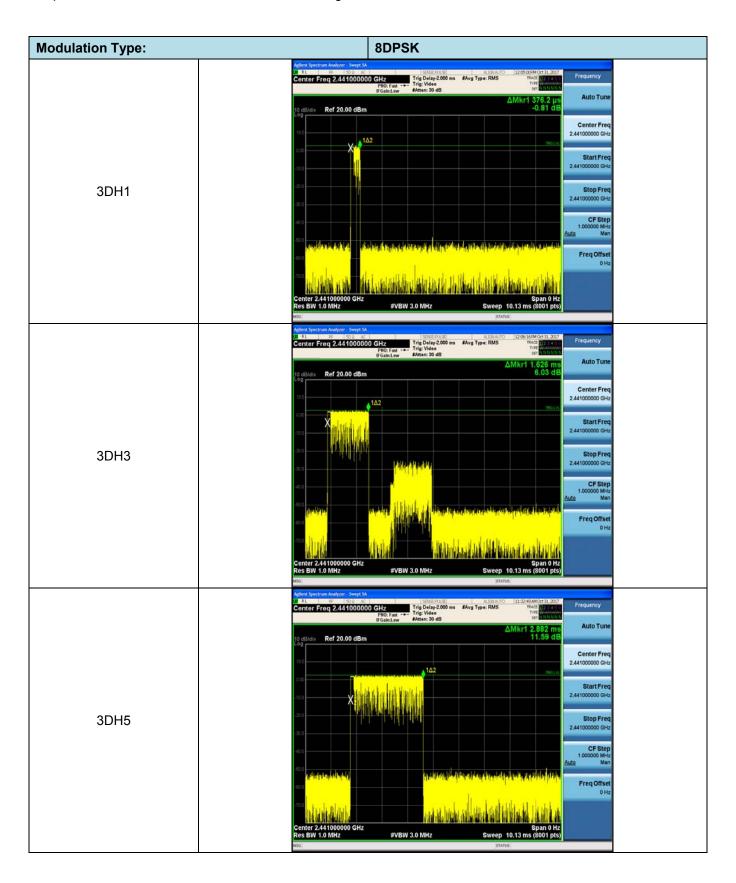
Please refer to the clause 3.3


TEST RESULTS

Modulation type	Channel	Dwell time (Second)	Limit (Second)	Result	
	DH1	0.119			
GFSK	DH3	0.260	≤ 0.40	Pass	
	DH5	0.307			
π/4DQPSK	2DH1	0.122			
	2DH3	0.261	≤ 0.40	Pass	
	2DH5	0.307			
	3DH1	0.120			
8DPSK	3DH3	0.260	≤ 0.40	Pass	
	3DH5	0.307			


Note:

- 1. We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.
- Dwell time=Pulse time (ms) × (1600 ÷ 2 ÷ 79) ×31.6 Second for DH1, 2DH1, 3DH1
 Dwell time=Pulse time (ms) × (1600 ÷ 4 ÷ 79) ×31.6 Second for DH3, 2DH3, 3DH3
 Dwell time=Pulse time (ms) × (1600 ÷ 6 ÷ 79) ×31.6 Second for DH5, 2DH5, 3DH5

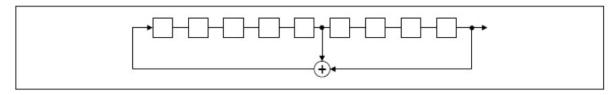

Report No.: TRE1710010202 Page: 27 of 60 Issued: 2017-11-02

Report No.: TRE1710010202 Page: 28 of 60 Issued: 2017-11-02

Report No.: TRE1710010202 Page: 29 of 60 Issued: 2017-11-02

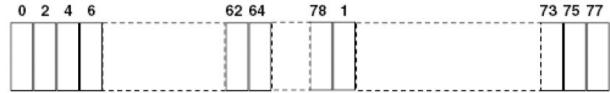
Report No.: TRE1710010202 Page: 30 of 60 Issued: 2017-11-02

5.8. Pseudorandom Frequency Hopping Sequence


LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1):Frequency hopping systems shall have hopping channel carrier fre-quencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Al-ternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier fre-quencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to chan-nel frequencies that are selected at the system hopping rate from a pseudo ran-domly ordered list of hopping fre-quencies. Each frequency must be used equally on the average by each trans-mitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their cor-responding transmitters and shall shift frequencies in synchronization with the transmitted signals.

TEST RESULTS


The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the friststage. The sequence begins with the frist one of 9 consecutive ones, for example: the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

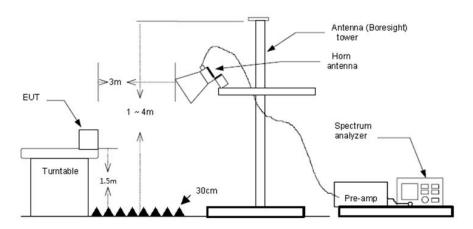
Linear Feedback Shift Register for Generation of the PRBS sequence

An explame of pseudorandom frequency hopping sequence as follows:

Each frequency used equally one the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals.

Report No.: TRE1710010202 Page: 31 of 60 Issued: 2017-11-02


5.9. Restricted band (radiated)

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, Radiated Emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the Radiated Emissions limits specified in §15.209(a) (see §15.205(c)).

TEST CONFIGURATION

TEST PROCEDURE

- The EUT was setup and tested according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. Thisis repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- The receiver set as follow: RBW=1 MHz, VBW=3 MHz Peak detector for Peak value RBW=1 MHz, VBW=10 Hz Peak detector for Average value.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

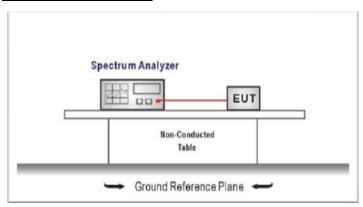
Note:

- 1) Final level= Read level + Antenna Factor+ Cable Loss- Preamp Factor
- 2) Have pre-scan all modulation mode, found the GFSK modulation which it was worst case, so only the worst case's data on the test report.
- 3) The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.

Report No.: TRE1710010202 Page: 32 of 60 Issued: 2017-11-02

CH00									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
2310.00	37.05	28.05	6.62	37.65	34.07	74.00	-39.93	Vertical	Peak
2322.10	45.71	27.99	6.64	37.68	42.66	74.00	-31.34	Vertical	Peak
2390.03	45.65	27.65	6.75	37.87	42.18	74.00	-31.82	Vertical	Peak
2310.00	36.71	28.05	6.62	37.65	33.73	74.00	-40.27	Horizontal	Peak
2322.00	48.49	27.99	6.64	37.68	45.44	74.00	-28.56	Horizontal	Peak
2390.03	40.98	27.65	6.75	37.87	37.51	74.00	-36.49	Horizontal	Peak
2310.00	24.12	28.05	6.62	37.65	21.14	54.00	-32.86	Vertical	Average
2321.91	40.74	27.99	6.64	37.68	37.69	54.00	-16.31	Vertical	Average
2390.03	26.84	27.65	6.75	37.87	23.37	54.00	-30.63	Vertical	Average
2310.00	23.57	28.05	6.62	37.65	20.59	54.00	-33.41	Horizontal	Average
2376.01	30.99	27.72	6.73	37.83	27.61	54.00	-26.39	Horizontal	Average
2390.03	24.09	27.65	6.75	37.87	20.62	54.00	-33.38	Horizontal	Average

CH78									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
2483.50	55.66	27.26	6.83	37.87	51.88	74.00	-22.12	Vertical	Peak
2496.33	53.03	27.21	6.84	37.87	49.21	74.00	-24.79	Vertical	Peak
2500.00	36.13	27.20	6.84	37.87	32.30	74.00	-41.70	Vertical	Peak
2483.50	55.57	27.26	6.83	37.87	51.79	74.00	-22.21	Horizontal	Peak
2496.41	51.54	27.21	6.84	37.87	47.72	74.00	-26.28	Horizontal	Peak
2500.00	36.03	27.20	6.84	37.87	32.20	74.00	-41.80	Horizontal	Peak
2483.50	50.63	27.26	6.83	37.87	46.85	54.00	-7.15	Vertical	Average
2500.00	23.53	27.20	6.84	37.87	19.70	54.00	-34.30	Vertical	Average
2483.50	48.62	27.26	6.83	37.87	44.84	54.00	-9.16	Horizontal	Average
2500.00	23.25	27.20	6.84	37.87	19.42	54.00	-34.58	Horizontal	Average


Report No.: TRE1710010202 Page: 33 of 60 Issued: 2017-11-02

5.10. Band edge and Spurious Emissions (conducted)

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

TEST CONFIGURATION

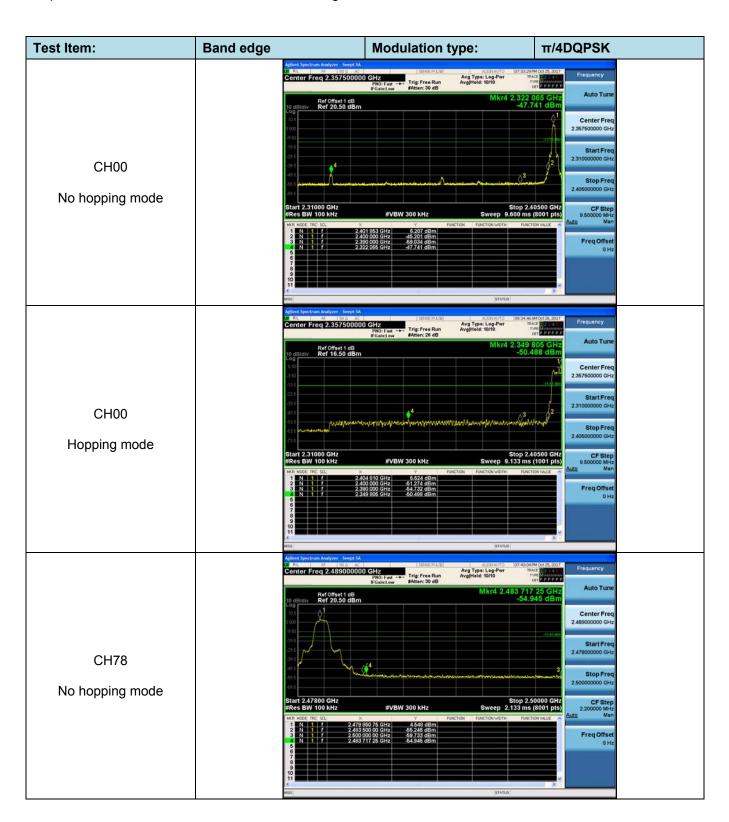
TEST PROCEDURE

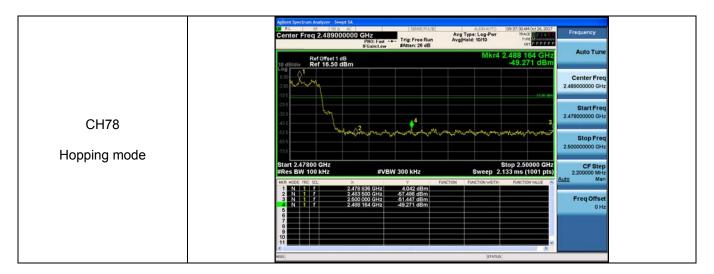
- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. Use the following spectrum analyzer settings:
 - RBW = 100 kHz, VBW ≥ RBW
 - Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.

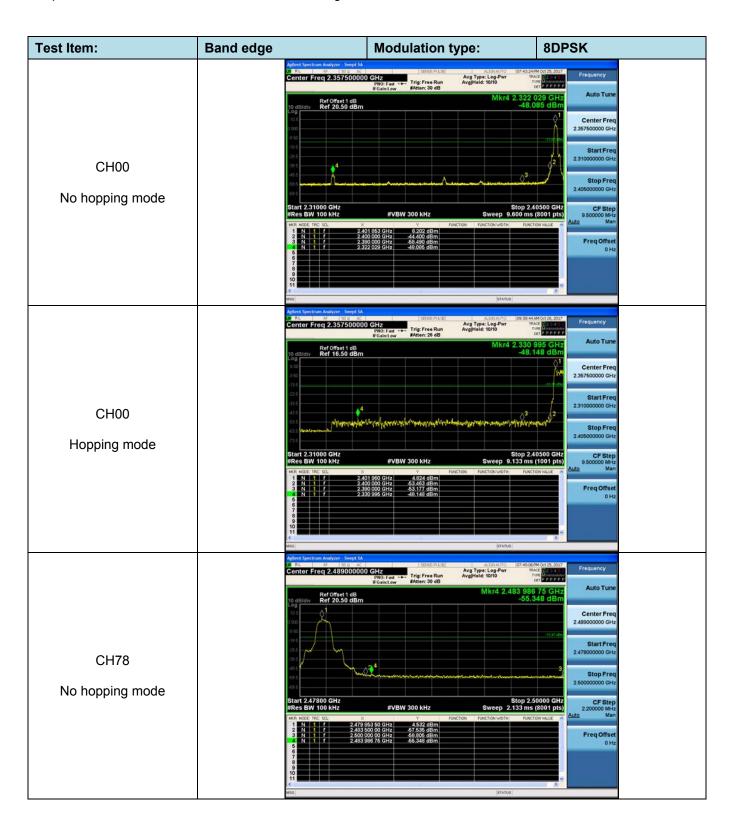
TEST MODE:

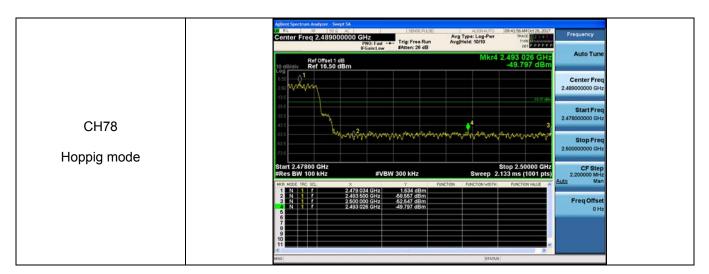
Please refer to the clause 3.3

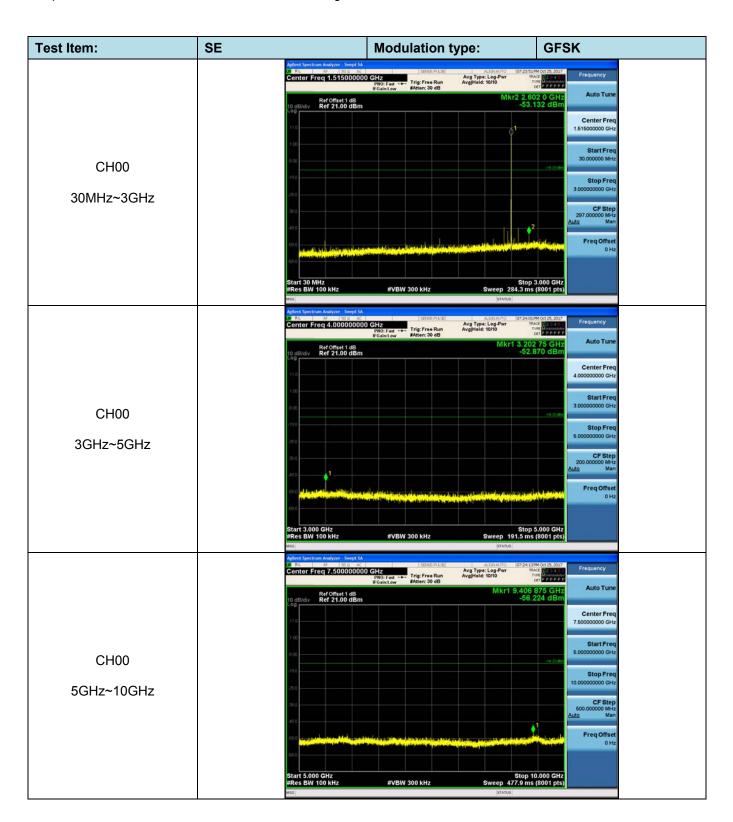
TEST RESULTS

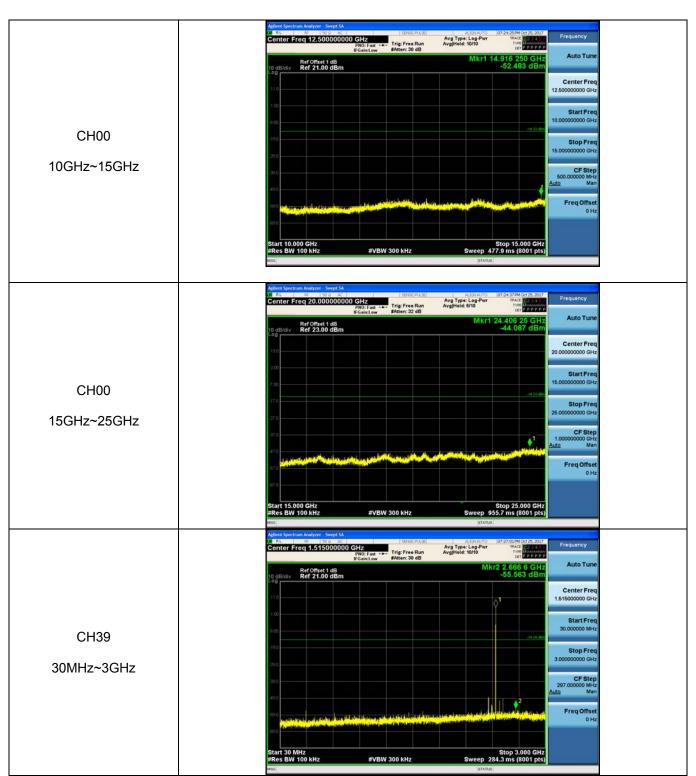

 Report No.: TRE1710010202 Page: 34 of 60 Issued: 2017-11-02

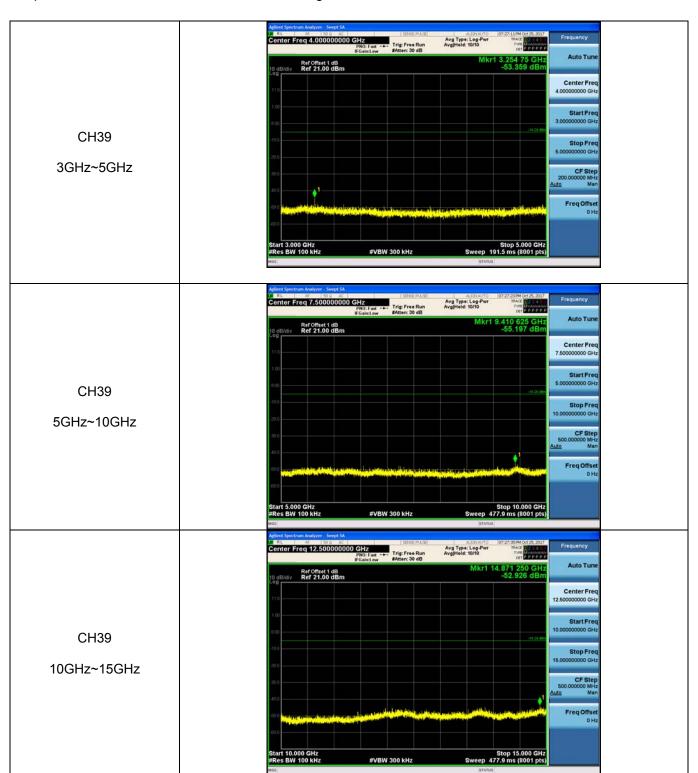

Report No.: TRE1710010202 Page: 35 of 60 Issued: 2017-11-02

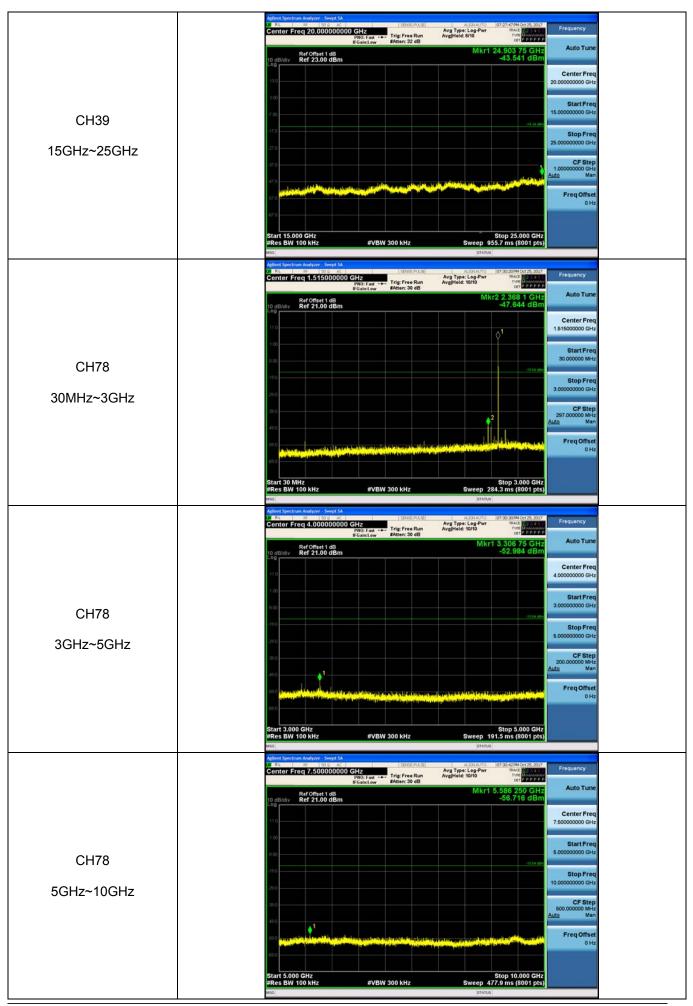

Report No.: TRE1710010202 Page: 36 of 60 Issued: 2017-11-02


Report No.: TRE1710010202 Page: 37 of 60 Issued: 2017-11-02

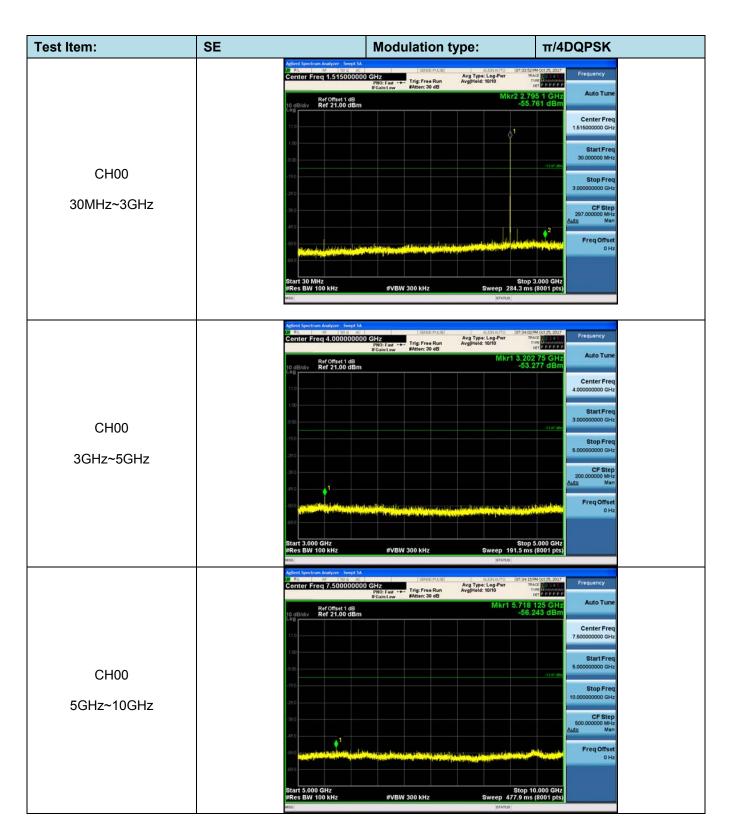

Report No.: TRE1710010202 Page: 38 of 60 Issued: 2017-11-02

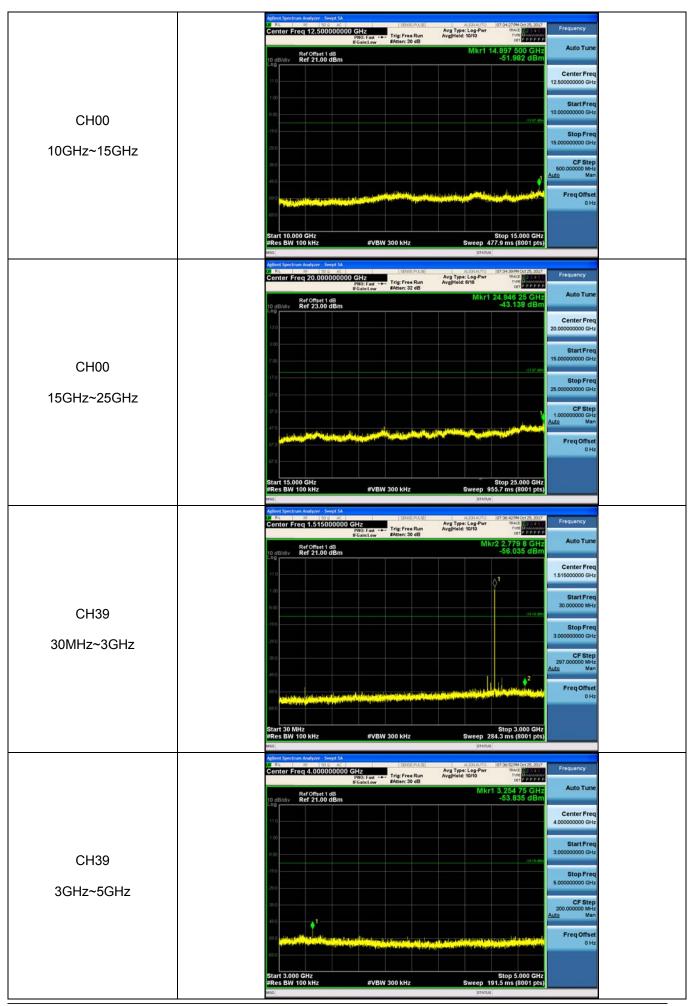

Report No.: TRE1710010202 Page: 39 of 60 Issued: 2017-11-02

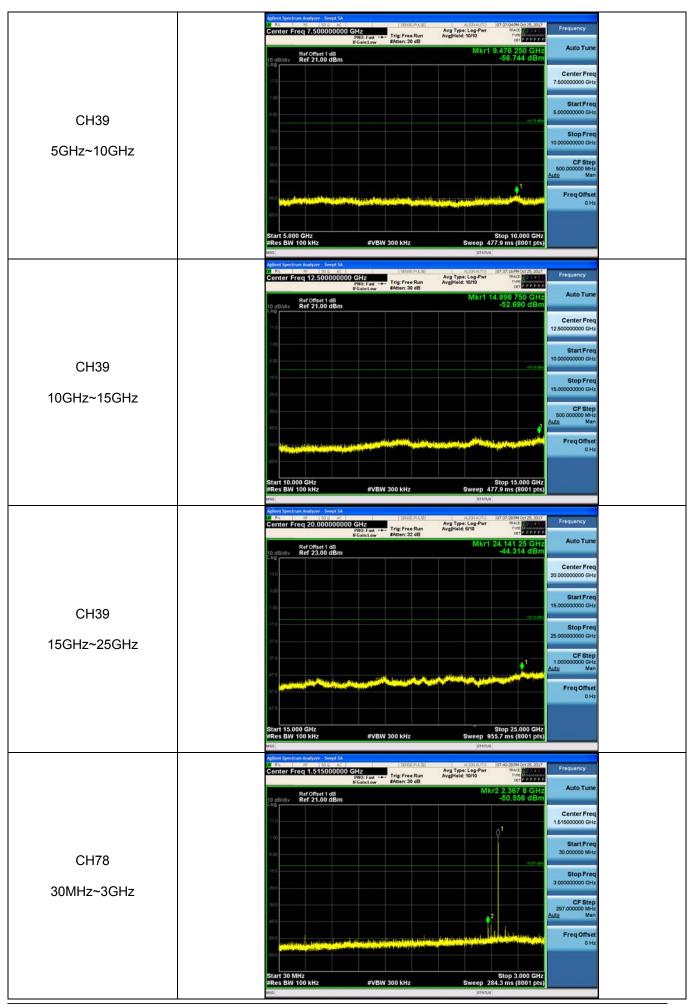

Report No.: TRE1710010202 Page: 40 of 60 Issued: 2017-11-02

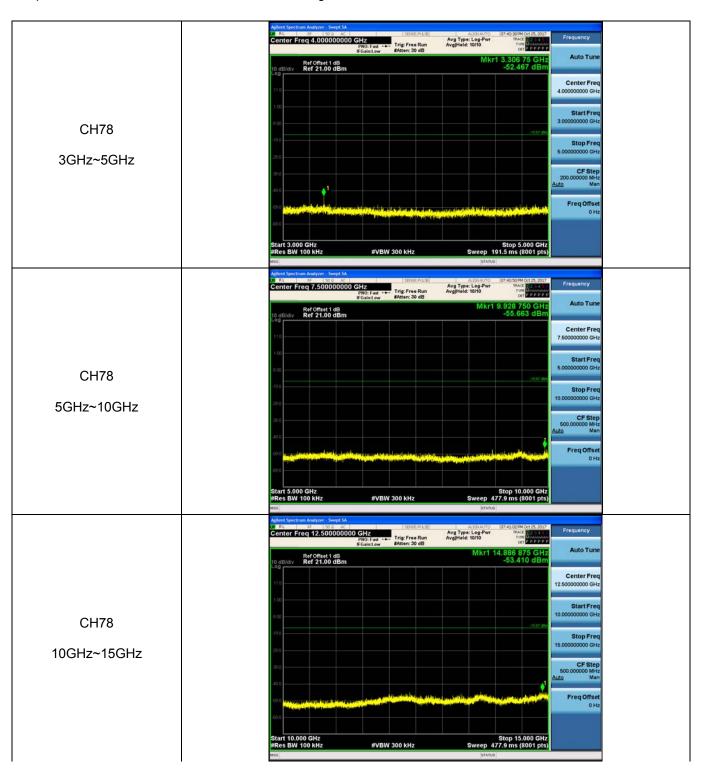

Report No.: TRE1710010202 Page: 41 of 60 Issued: 2017-11-02

Report No.: TRE1710010202 Page: 42 of 60 Issued: 2017-11-02

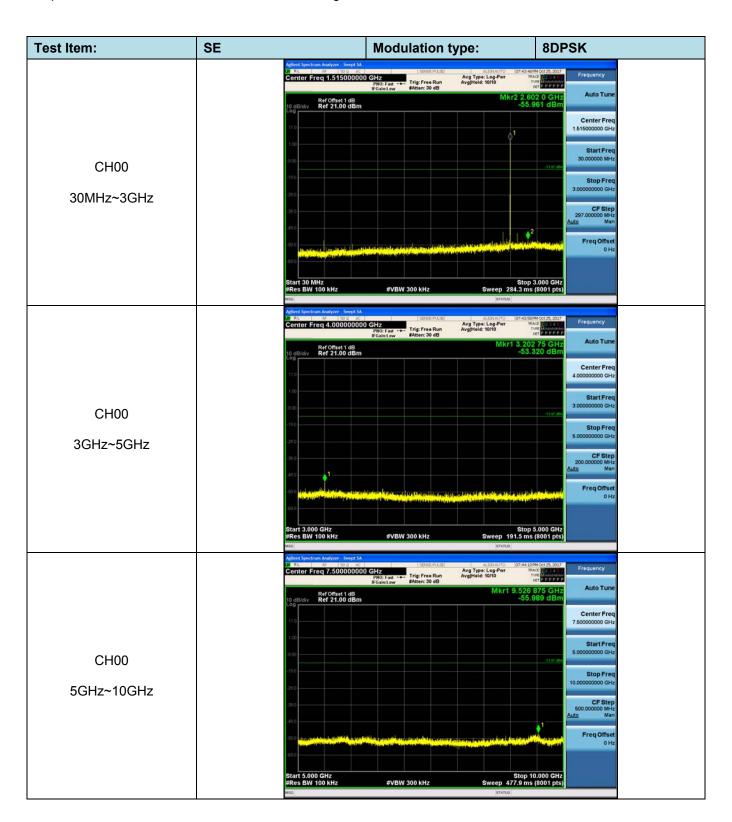

Report No.: TRE1710010202 Page: 43 of 60 Issued: 2017-11-02

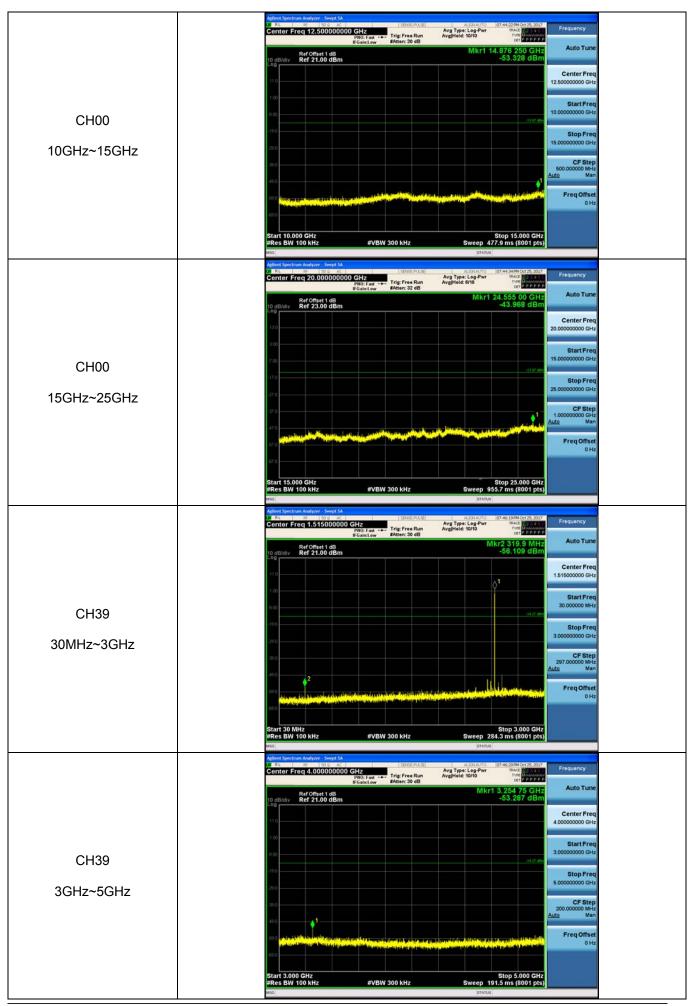

Report No.: TRE1710010202 Page: 44 of 60 Issued: 2017-11-02

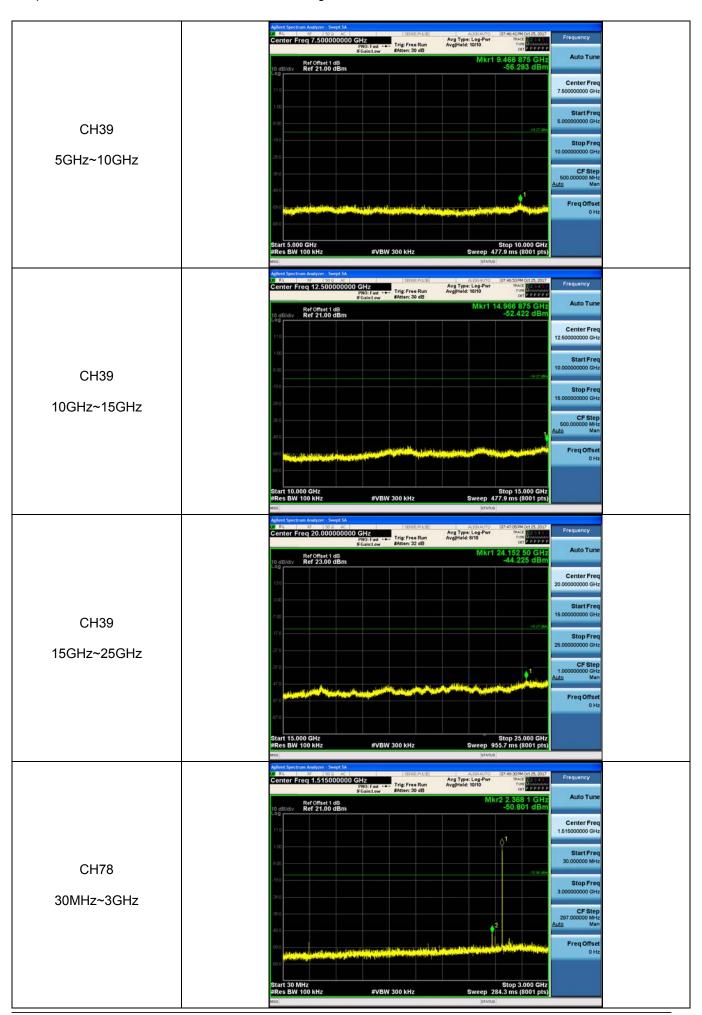

Report No.: TRE1710010202 Page: 45 of 60 Issued: 2017-11-02

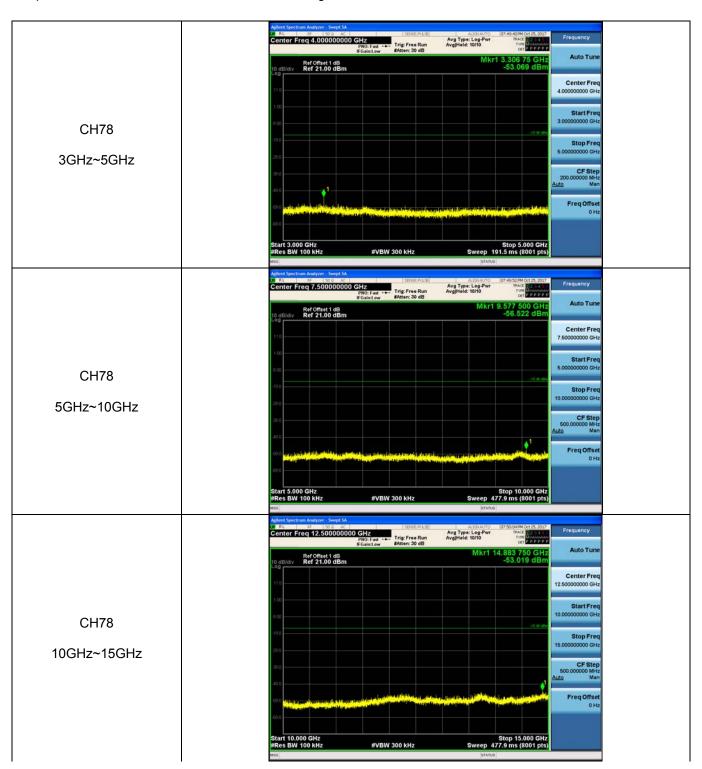

Report No.: TRE1710010202 Page: 46 of 60 Issued: 2017-11-02

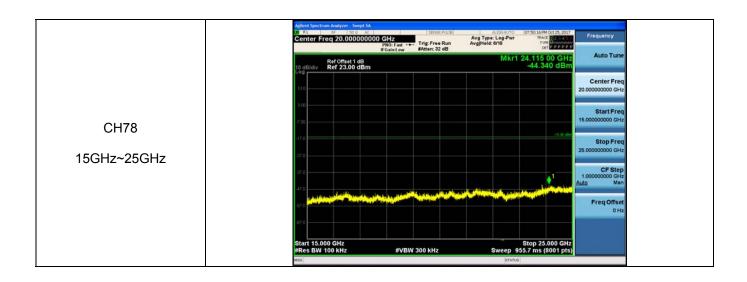
Report No.: TRE1710010202 Page: 47 of 60 Issued: 2017-11-02


Report No.: TRE1710010202 Page: 48 of 60 Issued: 2017-11-02


Report No.: TRE1710010202 Page: 49 of 60 Issued: 2017-11-02


Report No.: TRE1710010202 Page: 50 of 60 Issued: 2017-11-02


Report No.: TRE1710010202 Page: 51 of 60 Issued: 2017-11-02

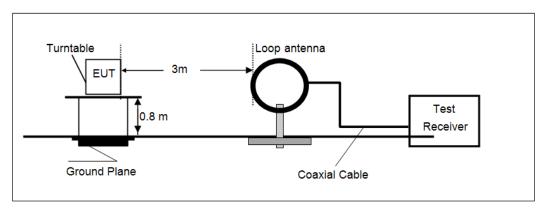

Report No.: TRE1710010202 Page: 52 of 60 Issued: 2017-11-02

Report No.: TRE1710010202 Page: 53 of 60 Issued: 2017-11-02

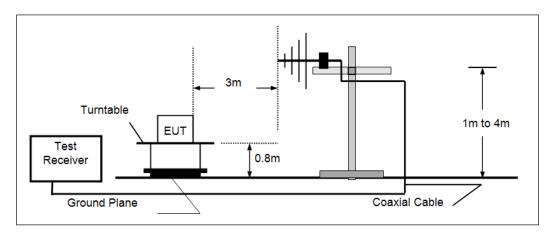
Report No.: TRE1710010202 Page: 54 of 60 Issued: 2017-11-02

Report No.: TRE1710010202 Page: 55 of 60 Issued: 2017-11-02

5.11. Spurious Emissions (radiated)

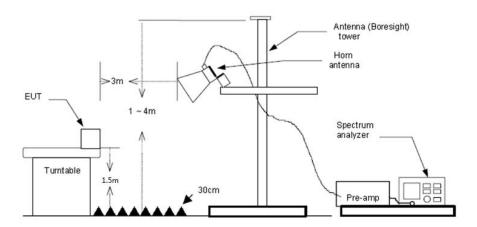

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.209


Frequency	Limit (dBuV/m @3m)	Value
30 MHz ~ 88 MHz	40.00	Quasi-peak
88 MHz ~ 216 MHz	43.50	Quasi-peak
216 MHz ~ 960 MHz	46.00	Quasi-peak
960 MHz ~ 1 GHz	54.00	Quasi-peak
Above 1 GHz	54.00	Average
Above I GHZ	74.00	Peak

TEST CONFIGURATION

➤ Below 30 MHz



> 30 MHz ~1000 MHz

Above 1 GHz

Report No.: TRE1710010202 Page: 56 of 60 Issued: 2017-11-02

TEST PROCEDURE

- 1. The EUT was tested according to ANSI C63.10:2013.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna.
- 5. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1 GHz, RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=QP, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
 - (3) Above 1 GHz, RBW=1 MHz, VBW=3 MHz Peak detector for Peak value RBW=1 MHz, VBW=10 Hz Peak detector for Average value.

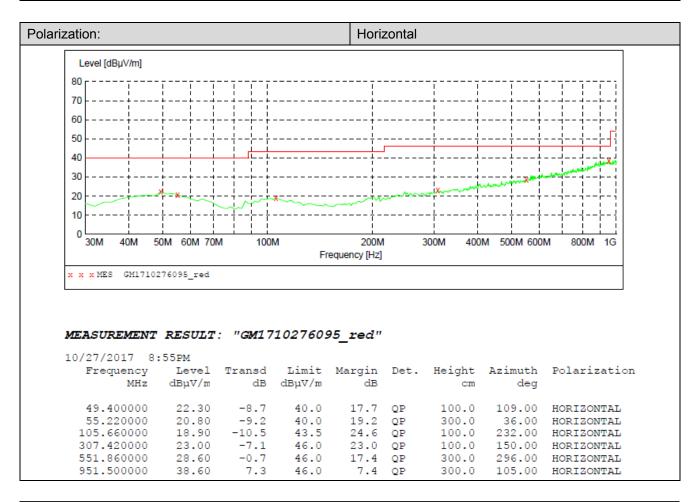
TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Note:

- 1) Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2) The emission levels of other frequencies are very lower than the limit and not show in test report.
- Below 1 GHz, Have pre-scan all modulation mode, found the GFSK modulation High channel which it was worst case, so only the worst case's data on the test report.
- 4) Above 1 GHz, Have pre-scan all modulation mode, found the GFSK modulation which it was worst case, so only the worst case's data on the test report
- 5) The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.


→ 9 kHz ~ 30 MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

Report No.: TRE1710010202 Page: 57 of 60 Issued: 2017-11-02

30 MHz ~ 1 GHz

zation:				Verti	cal			
Level [dBµV/m]								
80								
70	-++	++		+-		-++	+	
60	- + + +	++						
50	<u>. i i i</u> .	_		!_				
- i	77			<u>-</u>		1 1		 ;
40	+ + +			 -				
30								
20	_ _	_		<u> </u>		mannon	A CONTRACTOR OF THE PARTY OF TH	
20	1		******	~~~~~	7-50-0-			
10				<u>†</u> -				
0	<u> </u>	_						
30M 40M 5	50M 60M 70N	И 1001		200M		300M 400	M 500M 600	M 800M 1G
			Fr	equency [Hz]				
x x x MES GM1710	276096_red							
MEASUREMENT	RESULT	: "GM17	1027609	96 red"				
		: "GM17	1027609	96_red"				
10/27/2017 8	:57PM			_		Hoigh+	Azimuth	Polarization
10/27/2017 8 Frequency	:57PM Level	Transd	Limit	- Margin		_		Polarization
10/27/2017 8	:57PM			_		Height cm	Azimuth deg	Polarization
10/27/2017 8 Frequency	:57PM Level	Transd	Limit	- Margin		_		Polarization VERTICAL
10/27/2017 8 Frequency MHz	:57PM Level dBµV/m	Transd dB	Limit dBµV/m	- Margin dB	Det.	cm	deg	
10/27/2017 8 Frequency MHz 53.280000 55.220000 105.660000	:57PM Level dBµV/m 20.90 20.10 19.80	Transd dB -9.0 -9.2 -10.5	Limit dBµV/m 40.0 40.0 43.5	Margin dB 19.1 19.9 23.7	Det. QP QP QP	100.0 100.0 100.0	deg 204.00 164.00 359.00	VERTICAL VERTICAL VERTICAL
10/27/2017 8 Frequency MHz 53.280000 55.220000 105.660000 295.780000	:57PM Level dBµV/m 20.90 20.10 19.80 22.80	Transd dB -9.0 -9.2 -10.5 -7.3	Limit dBµV/m 40.0 40.0 43.5 46.0	Margin dB 19.1 19.9 23.7 23.2	Det. QP QP QP QP QP	100.0 100.0 100.0 100.0	deg 204.00 164.00 359.00 0.00	VERTICAL VERTICAL VERTICAL VERTICAL
10/27/2017 8 Frequency MHz 53.280000 55.220000 105.660000	:57PM Level dBµV/m 20.90 20.10 19.80	Transd dB -9.0 -9.2 -10.5	Limit dBµV/m 40.0 40.0 43.5	Margin dB 19.1 19.9 23.7	Det. QP QP QP	100.0 100.0 100.0	deg 204.00 164.00 359.00	VERTICAL VERTICAL VERTICAL

Report No.: TRE1710010202 Page: 58 of 60 Issued: 2017-11-02

> 1 GHz ~ 25 GHz

					CH00				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
1413.67	47.08	25.89	5.04	36.48	41.53	74.00	-32.47	Vertical	Peak
2571.25	49.45	27.63	6.89	37.85	46.12	74.00	-27.88	Vertical	Peak
4809.50	54.81	31.58	9.55	36.93	59.01	74.00	-14.99	Vertical	Peak
7209.02	38.07	36.21	11.87	35.07	51.08	74.00	-22.92	Vertical	Peak
4809.50	37.86	31.58	9.55	36.93	42.06	54.00	-11.94	Vertical	Average
1185.96	47.50	26.19	4.63	36.58	41.74	74.00	-32.26	Horizontal	Peak
2775.30	43.07	28.10	7.31	38.30	40.18	74.00	-33.82	Horizontal	Peak
4809.50	53.55	31.58	9.55	36.93	57.75	74.00	-16.25	Horizontal	Peak
7209.02	35.74	36.21	11.87	35.07	48.75	74.00	-25.25	Horizontal	Peak
4809.50	45.57	31.58	9.55	36.93	49.77	54.00	-4.23	Horizontal	Average

					CH39				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
1185.96	53.52	26.19	4.63	36.58	47.76	74.00	-26.24	Vertical	Peak
3963.52	39.29	29.70	8.73	38.13	39.59	74.00	-34.41	Vertical	Peak
4883.52	44.24	31.43	9.59	36.73	48.53	74.00	-25.47	Vertical	Peak
8549.59	33.26	37.10	12.88	34.45	48.79	74.00	-25.21	Vertical	Peak
1346.93	39.38	26.06	4.91	36.49	33.86	74.00	-40.14	Horizontal	Peak
2768.24	39.07	28.10	7.30	38.28	36.19	74.00	-37.81	Horizontal	Peak
4883.52	38.77	31.43	9.59	36.73	43.06	74.00	-30.94	Horizontal	Peak
7527.83	32.01	36.13	12.49	34.92	45.71	74.00	-28.29	Horizontal	Peak

					CH78				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
1491.30	50.30	25.81	5.26	36.58	44.79	74.00	-29.21	Vertical	Peak
2980.33	44.03	28.58	7.47	38.24	41.84	74.00	-32.16	Vertical	Peak
4958.68	48.09	31.46	9.64	36.52	52.67	74.00	-21.33	Vertical	Peak
7663.17	33.15	36.14	12.89	35.01	47.17	74.00	-26.83	Vertical	Peak
4958.68	34.94	31.46	9.64	36.52	39.52	54.00	-14.48	Vertical	Average
1746.25	52.03	25.29	5.86	37.03	46.15	74.00	-27.85	Horizontal	Peak
2775.30	45.06	28.10	7.31	38.30	42.17	74.00	-31.83	Horizontal	Peak
4958.68	50.33	31.46	9.64	36.52	54.91	74.00	-19.09	Horizontal	Peak
7741.59	34.09	36.10	13.10	35.04	48.25	74.00	-25.75	Horizontal	Peak
4958.68	34.72	31.46	9.64	36.52	39.30	54.00	-14.70	Horizontal	Average

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies(test frequency band is 1GHz to 25GHz) are very lower than the limit and not show in test report.

Report No.: TRE1710010202 Page: 59 of 60 Issued: 2017-11-02

6. TEST SETUP PHOTOS

Conducted Emissions

Radiated Emissions

Report No.: TRE1710010202 Page: 60 of 60 Issued: 2017-11-02

7. EXTERANAL AND INTERNAL PHOTOS

Reference to the test report No.: TRE1710010201.

End of Report
