IC: N/A

Test Report No.: 16090106.fcc01 Page 1 of 42 Client: DS Tags Group B.V. Randstad 21 39A, 1314BG Almere, Netherlands **Digital Transmission System (DTS)** Test Item: **BLE** RTD1E00007A (conducted tests) Identification: **BAGTAG** Serial Number: RTD1E00016A (radiated tests) Project No.: 16090106 Date of Receipt: February 01, 2017 TÜV Rheinland Nederland B.V. Testing Location: Eiberkamp 10 9351VT Leek Test Specification: FCC 47 CFR Part 15, Subpart C, Section 15.247 (10-1-15 Edition) RSS-Gen (Issue 4, November 2014) an RSS-247 (Issue 1, May 2015) ANSI C63.10-2013 This report shall not be reproduced, except in full, without the written permission of TÜV Rheinland Nederland B.V. The test results relate only to the item(s) tested. Test Result: The test item **passed** the test specification(s). TÜV Rheinland Nederland B.V. Testing Laboratory: Eiberkamp 10 9351 VT Leek Tested by: Reviewed by: 2017-05-09 2017-05-09 R. van der Meer / Inspector E. van der Wal / Reviewer Name/Position Name/Position Date Signature Date Signature Other Aspects:-.

Abbreviations:

P(ass) = passed F(ail) = failed

F(ail) = failed N/A = not applicable N/T = not tested

IC: N/A

Test Report No.: 16090106.fcc01 Page 2 of 42

TEST SUMMARY

5.1.1 CONDUCTED MEASUREMENTS AT ANTENNA PORT

RESULT: PASS

5.1.2 DTS BANDWIDTH

RESULT: PASS

5.1.3 PEAK POWER SPECTRAL DENSITY

RESULT: PASS

5.1.4 BAND EDGE CONDUCTED EMISSIONS

RESULT: Pass

5.1.5 RADIATED SPURIOUS EMISSIONS OF TRANSMITTER

RESULT: Pass

5.2.1 AC POWER LINE CONDUCTED EMISSION OF TRANSMITTER

RESULT: Not Applicable

IC: N/A

6

Test Report No.: 16090106.fcc01 Page 3 of 42

Con	tents	
1.	GENERAL REMARKS	1
1.1	COMPLEMENTARY MATERIALS	1
2.	TEST SITES	1
2.1	TEST FACILITIES	1
2.2	LIST OF TEST AND MEASUREMENT INSTRUMENTS TABLE 1: LIST OF TEST AND MEASUREMENT EQUIPMENT	5
2.3	MEASUREMENT UNCERTAINTY	3
3.	GENERAL PRODUCT INFORMATION	7
3.1	PRODUCT FUNCTION AND INTENDED USE	7
3.2	SYSTEM DETAILS	7
3.3	COUNTERMEASURES TO ACHIEVE COMPLIANCE	3
4.	TEST SET-UP AND OPERATION MODES)
4.1	TEST METHODOLOGY)
4.2	OPERATION MODES)
4.3	PHYSICAL CONFIGURATION FOR TESTING)
5.	TEST RESULTS11	ı
5.1. 5.1. 5.1. 5.1. 5.1.	2 DTS Bandwidth	1 4 9 2 5
5.2	AC POWER LINE CONDUCTED MEASUREMENTS	4

DUTY CYCLE CORRECTION40

IC: N/A

Test Report No.: 16090106.fcc01 Page 4 of 42

1 General Remarks

1.1 Complementary Materials

There is no attachment to this test report.

2. Test Sites

2.1 Test Facilities

The Federal Communications Commission and Industry Canada has reviewed the technical characteristics of the test facilities at TÜV Rheinland Nederland B.V., located in Leek, 9351VT Eiberkamp 10, The Netherlands, and has found these test facilities to be in compliance with the requirements of 47 CFR Part 15, section 2.948.

The description of the test facilities has been filed at the Office of the Federal Communications Commission under registration number 90828. The facility has been added to the list of laboratories performing these test services for the public on a fee basis.

The description of the test facilities has been filed to Industry Canada under registration number 2932G-2. The facility has been added to the list of laboratories performing these test services for the public on a fee basis.

Normal test conditions:

Temperature (*) : +19°C to +25°C Relative humidity(*) : 20 % to 75 %

Supply voltage : 3.0V, battery operated only (new battery used).

When it was impracticable to carry out the tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests are stated separately.

IC: N/A

Test Report No.: 16090106.fcc01 Page 5 of 42

2.2 List of Test and Measurement Instruments

Table 1: List of Test and Measurement Equipment

Kind of Equipment	Manufacturer	Model Name	Inventory number	Calibration date (mm/yyyy)	Calibration due date (mm/yyyy)
For Antenna Port Cond	lucted Emissions				
Temperature- Humiditymeter	Extech	SD500	A00446	04/2016	04/2017
Spectrum Analyzer	Rohde & Schwarz	FSV	A01744	07/2016	07/2017
RF Cable	Huber + Suhner	Sucoflex 102	A01844	05/2016	05/2017
For Radiated Emission	S				
Measurement Receiver	Rohde & Schwarz	ESCI	A00314	03/2016	03/2017
RF Cable S-AR	Gigalink	APG0500	A00447	01/2017	01/2018
Controller	Maturo	SCU/088/ 8090811	A00450	N/A	N/A
Controller	EMCS	DOC202	A00257	N/A	N/A
Test facility	Comtest	FCC listed: 90828 IC: 2932G-2	A00235	07/2014	07/2017
Spectrum Analyzer	Rohde & Schwarz	FSV	A00337	06/2016	06/2017
Antenna mast	EMCS	AP-4702C	A00258	N/A	N/A
Amplifier for A00209	EMCS		A00378	N/A	N/A
Temperature- Humiditymeter	Extech	SD500	A00444	04/2016	04/2017
Guidehorn 1-18 GHz	EMCO	3115	A00009	04/2016	04/2017
Guidehorn 18-26.5 GHz	EMCO	3160-09	A00209	04/2016	04/2017
Biconilog Testantenna	Teseq	CBL 6111D	A00466	06/2016	06/2017
2.4 GHz bandreject filter	BSC	XN-1783	A00065	N/A	N/A
Bandpass filter 4-10 GHz	Reactel	7AS-7G-6G- 511	A00131	N/A	N/A
Bandpass filter 10-26 GHz	Reactel	9HS- 10G/26.5G- S11	A00151	N/A	N/A
Preamplifier 0.5 - 18 GHz	Miteq	AMF-5D- 005180-28- 13p	A00247	N/A	N/A
Filterbox	EMCS	RFS06S	A00255	02-20/2016	02-20/2017

Conformance of the used measurement and test equipment with the requirements of ISO/IEC 17025:2005 has been confirmed before testing. NA= Not Applicable

IC: N/A

Test Report No.: 16090106.fcc01 Page 6 of 42

2.3 Measurement Uncertainty

Table 2: Emission Measurement Uncertainty

Measurement Type	Frequency	Uncertainty
Antenna Port Conducted Emission	< 6GHz	±2.5dB
	> 6GHz	±2.7 to ± 4.2
Radiated Emission		
	30MHz - 1GHz	±5.22dB
	> 1GHz	±5.22dB

IC: N/A

Test Report No.: 16090106.fcc01 Page 7 of 42

3. General Product Information

3.1 Product Function and Intended Use

The brand BAGTAG model BAGTAG, hereafter referred to as EUT, is a Bluetooth Low Energy (BLE) transceiver used to transmit data.

The EUT is a Bluetooth Low Energy (BLE) device fitted with an integral PCB mounted antenna. All testing was performed using a sample that could be programmed by means of an App installed on a mobile phone, for the test frequencies as described in section 4.2. The conducted sample was supplied with a SMA connector in place of the internal antenna to enable direct connection to test equipment.

The content of this report and measurement results have not been changed other than the way of presenting the data.

3.2 System Details

Details and an overview of the system and all of its components, as it has been tested, may be found below.

EUT : Digital Transmission System (DTS), BLE

Manufacturer : DS Tags Group B.V.

Brand : BAGTAG Model(s) : BAGTAG

Serial Number(s) : RTD1E00007A (conducted tests); RTD1E00016A (radiated tests)

Voltage input rating :

Voltage output rating : 3.0 Vdc (from non-rechargeable battery- type CR2320)

Current input rating : -

Antenna : Internal, integrated on the PCB

Antenna Gain : -25 dBi

Operating frequency : 2402 MHz-2480 MHz.

Modulation : GFSK

.

Remarks : n.a.

Test Report No.:	16090106.fcc01	Page 8 of 42
Table 3: Interfaces	present on the EUT	
There are no interfac	e ports present on the EUT.	
2.2 Cauntames	course to cobieve compliance	
	asures to achieve compliance	
No additional measu	res were employed to achieve compliance) .

IC: N/A

Test Report No.: 16090106.fcc01 Page 9 of 42

4. Test Set-up and Operation Modes

4.1 Test Methodology

The test methodology used is based on the requirements of RSS-GEN, RSS-247, 47 CFR Part 15, Sections 15.31, 15.33, 15.35, 15.205, 15.207, 15.209, 15.247.

The test methods, which have been used, are based on ANSI C63.10-2013.

4.2 Operation Modes

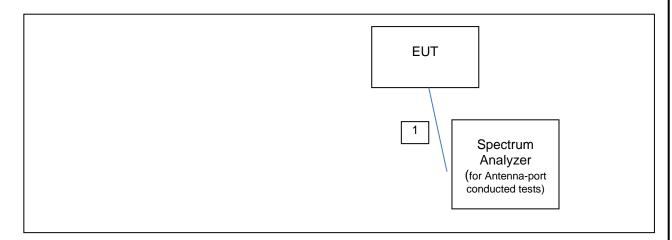
Testing was performed at the lowest operating frequency (2402 MHz), at the operating frequency in the middle of the specified frequency band (2440 MHz) and at the highest operating frequency (2480 MHz). These operation modes were selected after review of the capabilities and characteristics of the EUT. The test modes and settings were enabled by means of a RF Test App on a mobile phone and transmitted through NFC connection.

The EUT has been tested in the modes as described in table below

Operation Mode	EUT Status	Frequency (MHz)	TX power control setting
Transmitter	On	2402	0 dBm
Transmitter	On	2440	0 dBm
Transmitter	On	2480	0 dBm

Figure: RF Test App as used

IC: N/A


Test Report No.: 16090106.fcc01 Page 10 of 42

4.3 Physical Configuration for Testing

The EUT was programmed for the required settings as mentioned in section 4.2.

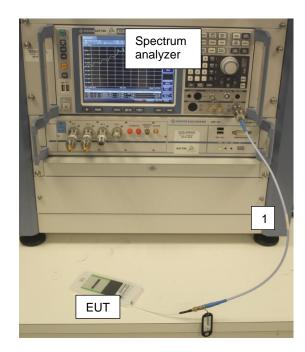

The justification and manipulation of cables and equipment in order to simulate a worst-case behavior of the test setup has been carried out as prescribed in ANSI C63.10-2013.

Figure 1: Test Setup Diagram – antenna port conducted tests.

No.	Port	From	То	Remarks
1.	Antenna port	EUT	Spectrum analyzer	Conducted tests

Figure 2: Test Setup Photos - conducted tests

IC: N/A

Test Report No.: 16090106.fcc01 Page 11 of 42

5. Test Results

5.1 Conducted Measurements at Antenna Port

5.1.1 Conducted Output Power

RESULT: Pass

Date of testing: 2017-02-01

Requirements:

FCC 15.247(b)(3)

For systems using digital modulation in the 2400-2483.5 MHz band, the maximum peak output power is 1W (+30dBm).

RSS-247 section 5.4(4): the e.i.r.p. shall not exceed 4 W (+36 dBm).

Test procedure:

The Peak Conducted Output Power was measured using the method according to section 11.9.1.1 in ANSI C63.10-2013.

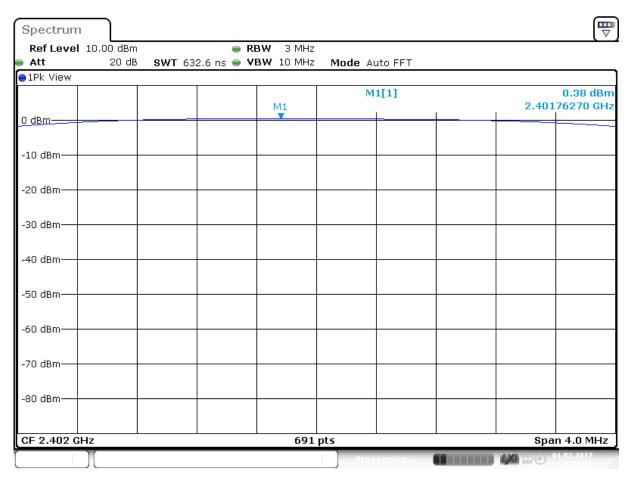
The maximum peak output power (conducted) was measured at the antenna connector with a spectrum analyzer. The final measurement takes into account the loss generated by all the involved cables.

Measurement uncertainty is +/- 2.5 dB.

Notes: $mW = 10 \land (dBm/10)$ $dBm = 10 \times log(mW)$

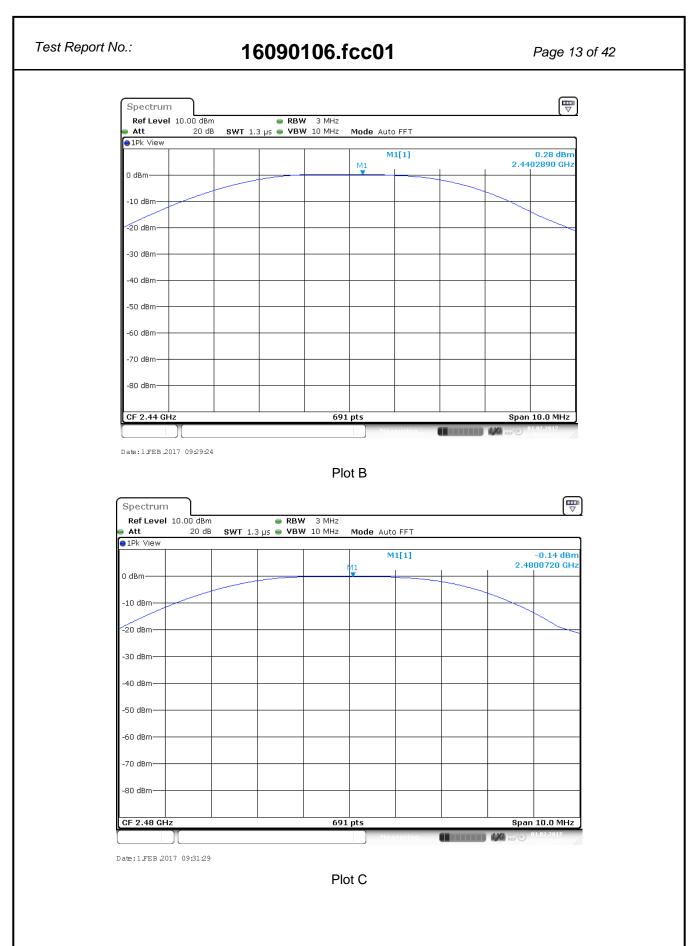
plots: Peak power plots,

Figures 1a, 1b and 1c show plots of the Peak Power outputs, correction factors (= 0.8dB Cableloss) included in the reading.


IC: N/A

Test Report No.: 16090106.fcc01 Page 12 of 42

Conducted Output Power


Frequency [MHz]	Output Power [dBm]	Limit [dBm]	Verdict [Pass/Fail]	Antenna Gain (dBi)	EIRP (dBm)	EIRP (mW)	Plot number
2402	0.38 (1.09 mW)	+30	Pass	-25	-24.62	0.0035	1A
2440	0.28 (1.07 mW)	+30	Pass	-25	-24.72	0.0034	1B
2480	-0.14 (0.97 mW)	+30	Pass	-25	-25.14	0.0031	1C

Date: 1.FEB .2017 10:03:10

Plot A

IC: N/A

Test Report No.: 16090106.fcc01 Page 14 of 42

5.1.2 DTS Bandwidth

RESULT: PASS

Date of testing: 2017-02-01

Requirements:

FCC 15.247(a)(2)

For systems using digital modulation in the 2400-2483.5MHz band, the 6dB bandwidth shall be at least 500kHz. For 99% Bandwidth: RSS-Gen Section 4.6.1: No requirement is given.

Test procedure DTS bandwidth:

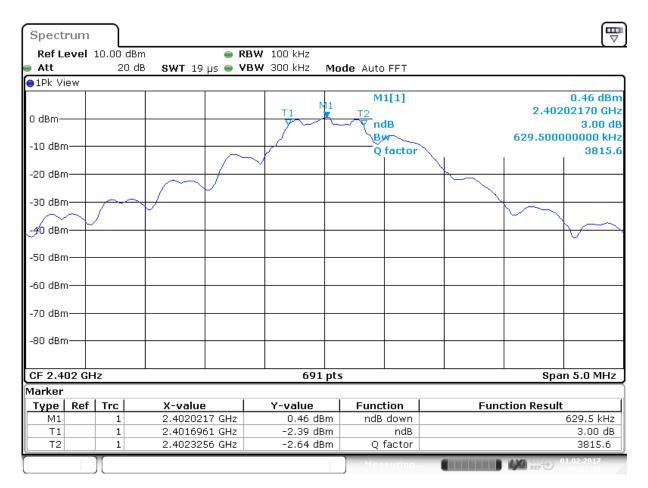
ANSI C63.10-2013 section 11.8.1 Option 1

The transmitter shall be operated at its maximum carrier power measured under normal test conditions. The span of the analyzer shall be set to capture all products of the modulation process, including the emission sideskirts. The resolution bandwidth shall be set as close to 1% of the selected span as is possible without being below 1%. The video bandwidth shall be set to 3 times the resolution bandwidth. Video averaging is not permitted. Where practical, a sampling detector shall be used given that a peak or peak hold may produce a wider bandwidth than actual.

A spectrum analyzer was connected to the antenna port of the EUT. The spectrum analyzer resolution bandwidth was set to 1% of the selected span, Video bandwidth was set to 3 times the resolution bandwidth. The span was set to capture the whole modulation process. The Spectrum analyzers automated function for x BW was used.

Measurement uncertainty is +/- 26kHz.

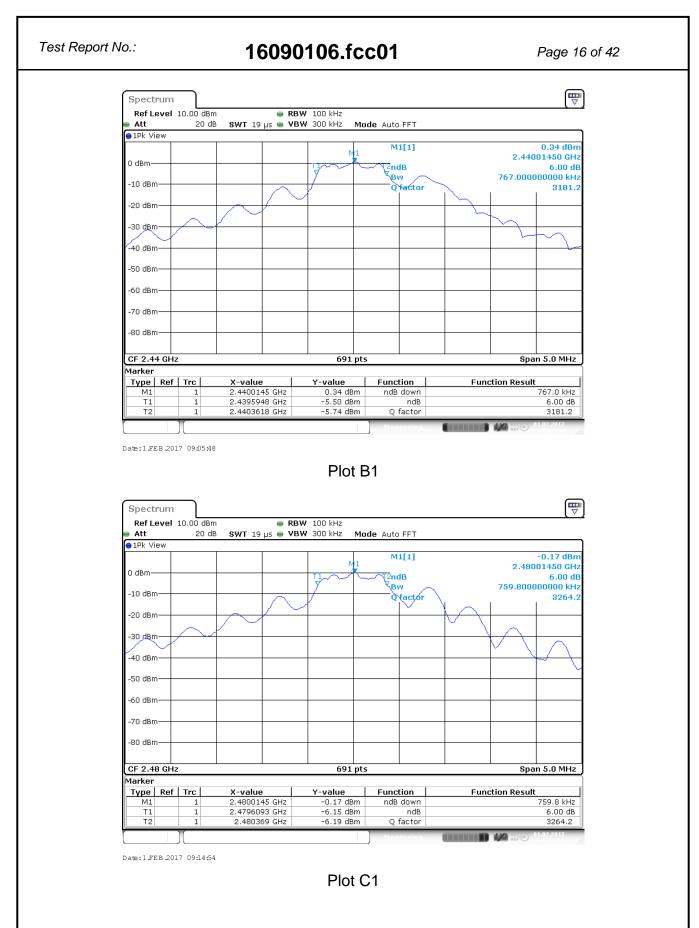
Plots A1,B1 and C1 shown on the next pages are of the 6 dB bandwidth. Plots A2,B2 and C2 shown on the next pages are of the 99% bandwidth.


IC: N/A

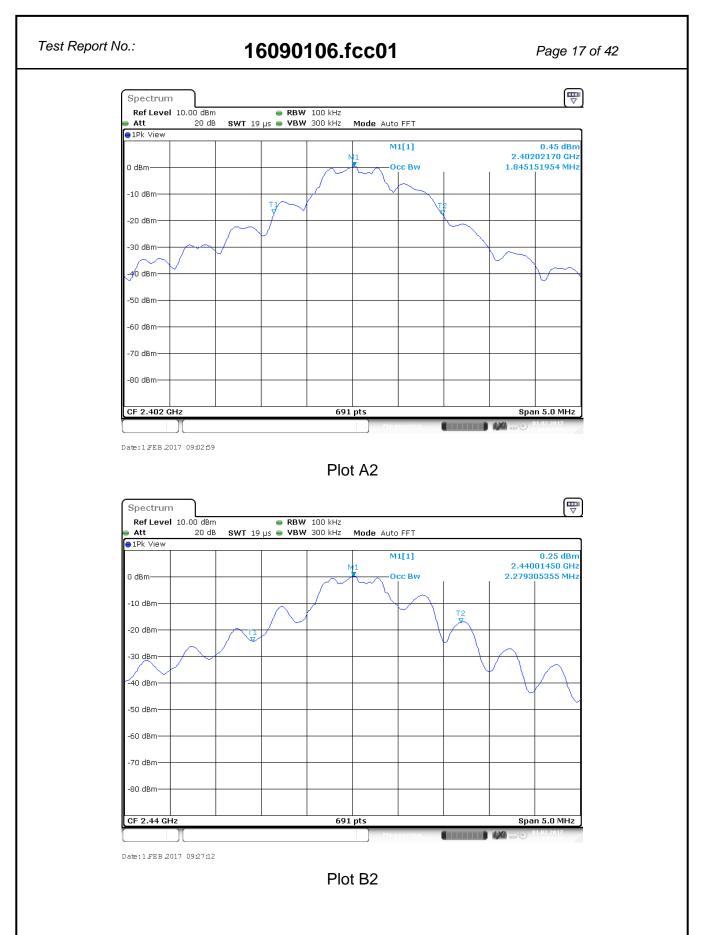
Test Report No.: 16090106.fcc01 Page 15 of 42

6dB and 99% Bandwidth

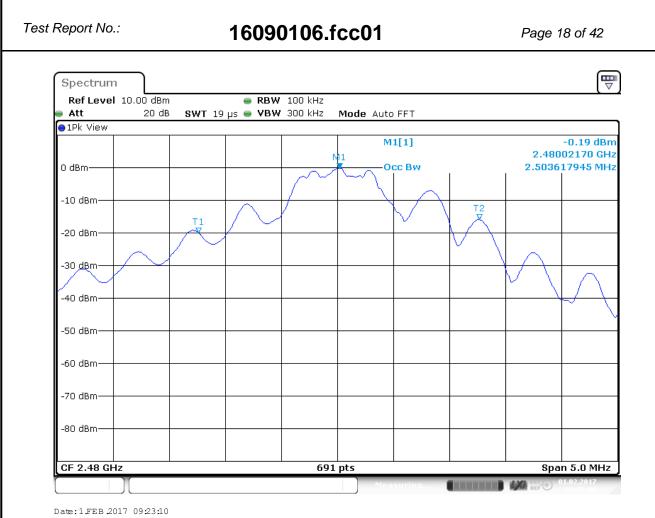
Operating Frequency [MHz]	99% Bandwidth [kHz]	Bandwidth Bandwidth [kHz]		Verdict [Pass/Fail]	Plot number	
2402	1845.15	629.58	>500	Pass	A1	
2440	2279.31	767.0	>500	Pass	B1	
2480	2503.62	759.8	>500	Pass	C1	



Date:1.FEB 2017 08:57:18


Plot A1

*Note: 3dB BW was chosen instead of 6dB BW, this is an error (by accident)



Plot C2

IC: N/A

Test Report No.: 16090106.fcc01 Page 19 of 42

5.1.3 Peak Power Spectral Density

RESULT: PASS

Date of testing: 2017-02-01

Requirements:

FCC 15.247(e) and RSS-247 section 5.2(2)

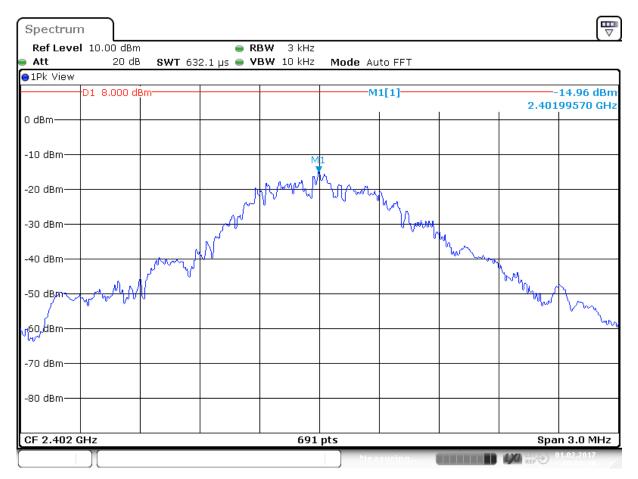
For digitally modulated systems, the power spectral density (PSD) conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band during any time interval of continuous transmission.

Test procedure:

ANSI C63.10-2013

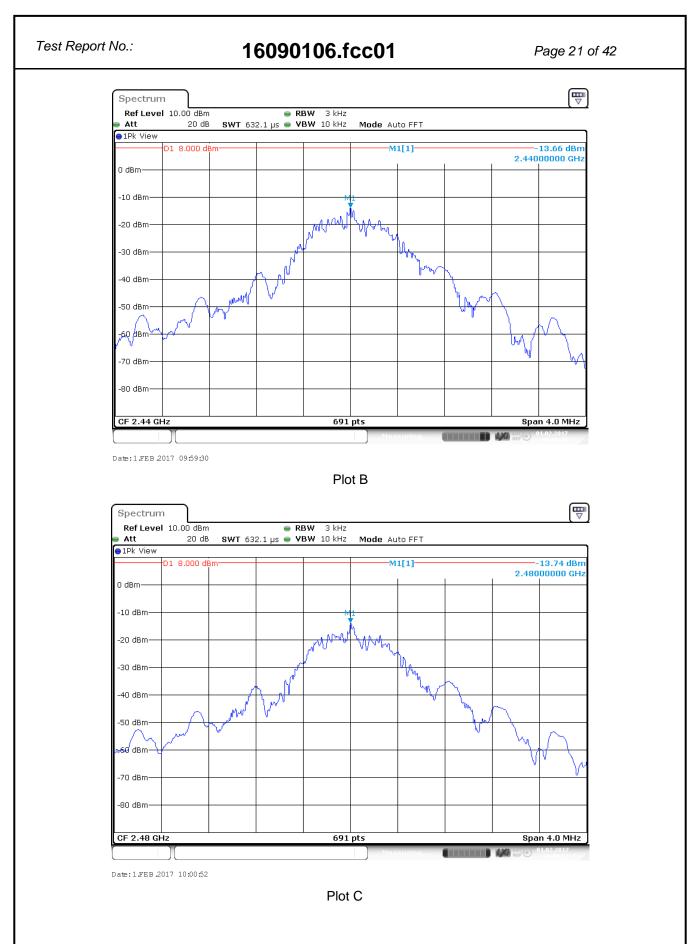
The section 11.10.2 PKPSD peak PSD procedure was used. A spectrum analyzer was connected to the antenna port of the EUT. The analyzer resolution bandwidth was set to 3kHz and the video bandwidth was set to 10kHz. The sweep time was set to auto couple and the trace was allowed to stabilize before making the final measurement. By using the Peak marker function the maximum amplitude was determined. The final measurement takes into account the loss generated by all the involved cables (0.8 dB).

Measurement uncertainty is +/- 1.1 dB.


IC: N/A

Test Report No.: 16090106.fcc01 Page 20 of 42

Peak Power Spectral Density


Operating Frequency [MHz]	Max PSD [dBm]	Limit [dBm]	Verdict [Pass/Fail]	Plot
2402	-14.96	8	Pass	Α
2440	-13.66	8	Pass	В
2480	-13.74	8	Pass	С

Date: 1.FEB 2017 09:58:11

Plot A

IC: N/A

Test Report No.:	16090106.fcc01	Page 22 of 42

5.1.4 Band Edge Conducted Emissions

RESULT: Pass

Date of testing: 2017-02-01

Requirements:

FCC 15.205, FCC 15.209, FCC 15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

Test procedure:

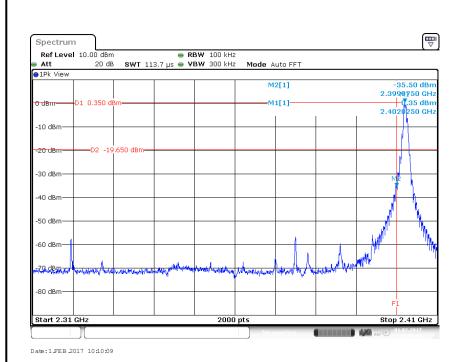
ANSI C63.10-2013 Section 11.13

The marker-delta method, as described in ANSI C63.10 was used.

Measurements were performed using a spectrum analyzer with a suitable span to encompass the peak of the fundamental and using the following settings:

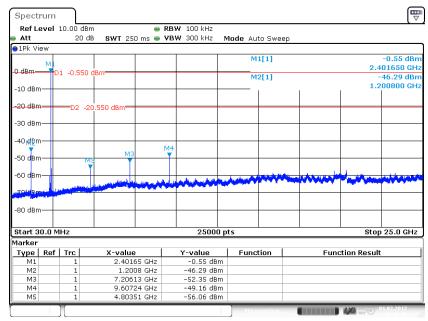
RBW = 100kHz, VBW = 300kHz.

The highest emission amplitudes relative to the appropriate limit were measured and recorded in this report.


Measurement uncertainty is +/- 2.5 dB.

Results: All out of band spurious emissions are more than 20 dB below the fundamental. See the figures on the following pages.

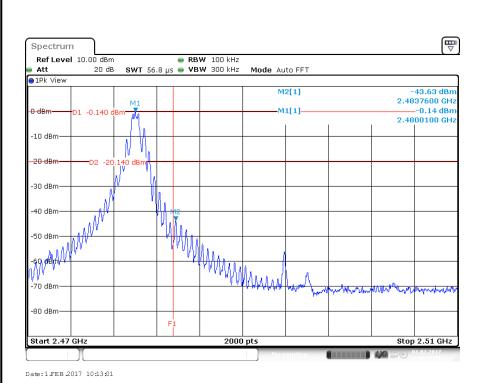
IC: N/A


Test Report No.: 16090106.fcc01 Page 23 of 42

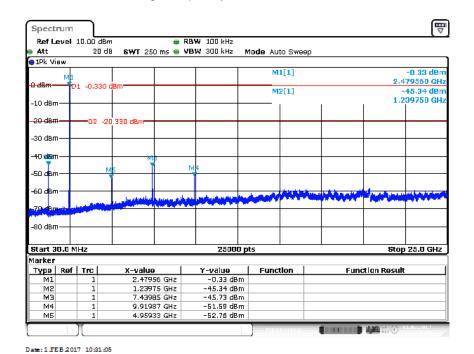
Plot: Band Edge Conducted Emission, Spectral Diagram, 2402 MHz

Plot showing more than 20 dB band edge attenuation.

F1 shows the band edge frequency of 2400 MHz.


Date:1FEB 2017 10:35:46

Plot: conducted unwanted emissions of the EUT, set at 2402 MHz, in the frequency range 30-25000 MHz, Peak values shown


IC: N/A

Test Report No.: 16090106.fcc01 Page 24 of 42

Plot: Band Edge Conducted Emission, Spectral Diagram, 2480 MHz. Plot showing more than 20 dB band edge attenuation. F1 shows the band edge frequency of 2483.5 MHz.

Plot: conducted unwanted emissions of the EUT, set at 2480 MHz, in the frequency range 30 – 25000 MHz, Peak values shown

IC: N/A

Test Report No.: 16090106.fcc01 Page 25 of 42

5.1.5 Radiated Spurious Emissions of Transmitter

RESULT: PASS

Date of testing: 2017-02-08

Frequency range: 30 MHz - 25GHz

Requirements:

FCC 15.209, FCC 15.247(d) and RSS-Gen

Radiated emissions which fall outside the operation frequency band and outside restricted bands shall either meet the limit specified in FCC 15.209(a) or be attenuated at least 20dB below the power level in the 100kHz bandwidth within the band that contains the highest level of the desired power (the less severe limit applies).

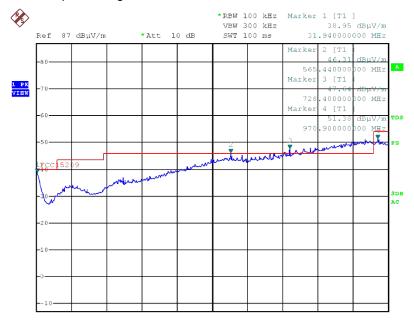
Radiated emissions which fall in the restricted bands, as defined in FCC 15.205(a) RSS-Gen Table 6, must comply with the radiated emission limits specified in FCC 15.209(a) and RSS-Gen Table 4.

Test procedure: ANSI C63.10-2013

The EUT was placed on the top of a rotating non-conductive table 1.5 meters above the ground in a semi-anechoic chamber. Before final measurements of radiated emissions were performed, the EUT was scanned to determine its emission spectrum profile. The physical arrangement of the test system and the associated cabling were varied in order to ensure that maximum emission amplitudes were attained. The spectrum was examined from 30MHz to the 10th harmonic of the highest fundamental transmitter frequency (25GHz). Final radiated emission measurements were made at 3m distance. At each frequency where a spurious emission was found, the EUT was rotated 360° and the antenna was raised and lowered from 1 to 4m in order to determine the emission's maximum level. Measurements were taken using both horizontal and vertical antenna polarizations.

The highest emission amplitudes relative to the appropriate limit were recorded in this report. Field strength values of radiated emissions at frequencies not listed in the tables are more than 20 dB below the applicable limit. The levels are expressed in dBm which are derived from dBm = $E(dB\mu V/m) - 95.2dB$. Where Peak (Pk) values where at least 6 dB under the Average (Av) limits, Av value was not tested. Where applicable Average values were obtained by using the duty cycle correction factor.

Test Report No.: 16090106.fcc01 Page 26 of 42


Radiated Emissions, 30MHz - 1GHz, Horizontal and Vertical Antenna Orientations

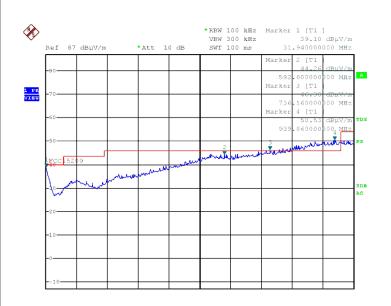
Frequency [MHz]	EUT Orientation	Antenna Orientation	Level QP [dBµV/m]	Limit QP [dBµV/m]	Verdict [Pass/Fail]
32.00	Vertical	Vertical	31.2	40.0	Pass
472.32	Vertical	Horizontal	33.6	46.0	Pass
(just above noise)					
555.74	Horizontal	Horizontal	36.6	46.0	Pass
(just above noise)					
596.48 (noise)	Vertical	Vertical	36.6	46.0	Pass
728.40 (noise)	Vertical	Vertical	38.5	46.0	Pass
850-960 (noise)	Vertical	Vertical	43.0	46.0	Pass

Notes: - Level QP = Reading QP + Factor

- Tested in modes as described in section 4.2, the 6 highest values noted. Preliminary measurements indicated that the radiated emissions from EUT were not affected by the EUT's operating frequency.

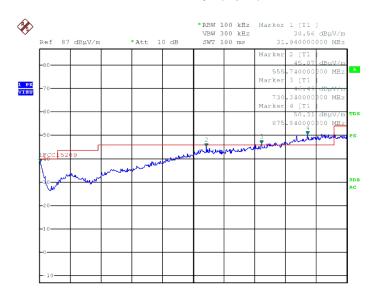
- *R refers to a frequency in a restricted band
- Quasi Peak detector used with a bandwidth of 120 kHz.
- Measurement uncertainty is +/- 5.22 dB.
- a selection of plots are given below.

ORI


Date: 8.FEB.2017 08:50:05

Plot of the emissions (Peak detector values shown), EUT at 2402 MHz, EUT Vertical-Antenna Vertical

IC: N/A


Test Report No.: 16090106.fcc01 Page 27 of 42

ORI

Date: 8.FEB.2017 08:56:48

Plot of the emissions (Peak detector values shown), EUT at 2440 MHz, EUT sideways (Z pos)-Antenna Vertical

ORI

Date: 8.FEB.2017 09:11:17

Plot of the emissions (Peak detector values shown), EUT at 2480 MHz, EUT Horizontal-Antenna Horizontal

IC: N/A

Test Report No.: 16090106.fcc01 Page 28 of 42

Radiated Emissions, 1 - 25GHz, EUT at 2402 MHz.

Frequency	EUT	Antenna	Detector	Bandwidth	Level Pk	Limit	Result
[MHz]	Orientation	Orientation		(MHz)	[dBm]	[dBm]	
1020.31	Horizontal	Horizontal	Pk	1	-53.2	-41.2 (Av) -21.2 (Pk)	Pass
1467.84	Vertical	Vertical	Pk	1	-52.3	-41.2 (Av) -21.2 (Pk)	Pass
1802.26	Vertical	Vertical	Pk	1	-52.5	-41.2 (Av) -21.2 (Pk)	Pass
2310-2390 ^{*R}	Horizontal	Vertical	Pk	1	-57.5	-41.2 (Av) -21.2 (Pk)	Pass
3875.25	Horizontal	Vertical	Pk	1	-50.5	-41.2 (Av) -21.2 (Pk)	Pass
11500.25	Vertical	Vertical	Pk	1	-37.1	-21.2 (Pk)	Pass
11500.25	Vertical	Vertical	Av	Dcf=-9.43dB	-46.5	-41.2 (Av)	Pass
13739.83	Vertical	Vertical	Pk	1	-38.0	-21.2 (Pk)	Pass
13739.83	Vertical	Vertical	Av	Dcf=-9.43dB	-47.4	-41.2 (Av)	Pass

Radiated Emissions, 1 - 25GHz, EUT at 2440 MHz.

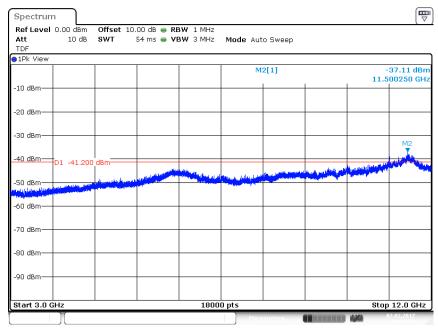
Frequency	EUT	Antenna	Detector	Bandwidth	Level	Limit	Result
[MHz]	Orientation	Orientation		(MHz)	Pk [dBm]	[dBm]	
1020.31	Horizontal	Horizontal	Pk	1	-53.5	-41.2 (Av) -21.2 (Pk)	Pass
1198.74	Horizontal	Vertical	Pk	1	-59.8	-41.2 (Av) -21.2 (Pk)	Pass
1997.59	Horizontal	Vertical	Pk	1	-55.8	-41.2 (Av) -21.2 (Pk)	Pass
2310-2390 ^{*R}	Horizontal	Vertical	Pk	1	-57.6	-41.2 (Av) -21.2 (Pk)	Pass
2483.5- 2500 ^{*R}	Horizontal	Vertical	Pk	1	-57.1	-41.2 (Av) -21.2 (Pk)	Pass
7320.25*H	Vertical	Vertical	Pk	1	-44.9	-21.2 (Pk)	Pass
7320.25*H	Vertical	Vertical	Pk	1	-56.0	-41.2 (Av)	Pass
11415.75	Vertical	Vertical	Pk	1	-37.9	-21.2 (Pk)	Pass
11415.75	Vertical	Vertical	Av	Dcf=-9.43dB	-47.3	-41.2 (Av)	Pass
13875.83	Vertical	Vertical	Pk	1	-38.0	-21.2 (Pk)	Pass
13875.83	Vertical	Vertical	Av	Dcf=-9.43dB	-47.4	-41.2 (Av)	Pass

IC: N/A

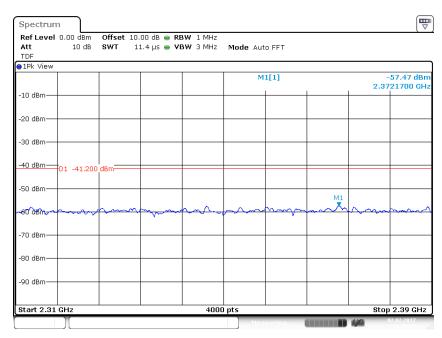
Test Report No.: 16090106.fcc01 Page 29 of 42

Radiated Emissions, 1 - 25GHz, EUT at 2480 MHz.

Frequency	EUT	Antenna	Detector	Bandwidth	Level	Limit	Result
[MHz]	Orientation	Orientation		(MHz)	Pk [dBm]	[dBm]	
1020.31	Horizontal	Horizontal	Pk	1	-54.3	-41.2 (Av) -21.2 (Pk)	Pass
1198.09	Horizontal	Horizontal	Pk	1	-58.1	-41.2 (Av) -21.2 (Pk)	Pass
1994.60	Horizontal	Vertical	Pk	1	-54.7	-41.2 (Av) -21.2 (Pk)	Pass
2483.5-2500*R	Horizontal	Vertical	Pk	1	-57.0	-41.2 (Av) -21.2 (Pk)	Pass
7440.25* ^H	Vertical	Vertical	Pk	1	-37.6	-21.2 (Pk)	Pass
7440.25* ^H	Vertical	Vertical	Av	Dcf=-9.43dB	-47.0	-41.2 (Av)	Pass
8791.25	Vertical	Vertical	Pk	1	-44.5	-21.2 (Pk)	Pass
8791.25	Vertical	Vertical	Av	Dcf=-9.43dB	-53.4	-41.2 (Av)	Pass
11480.75	Vertical	Vertical	Pk	1	-37.6	-21.2 (Pk)	Pass
11480.75	Vertical	Vertical	Av	Dcf=-9.43dB	-47.0	-41.2 (Av)	Pass

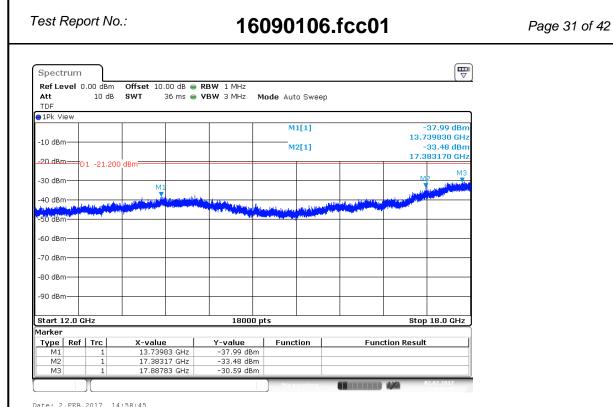

- Notes: *R refers to a frequency in a restricted band,
 - *H refers to a frequency which is a harmonic of the fundamental.
 - Measurement uncertainty is +/- 5.22 dB.
 - Dcf= -9.43 dB refers to a duty cycle correction factor that is used to convert Pk value to Av value, see section 6 for details.
 - from 10G to 25GHz its mostly noise that is measured.
 - a selection of plots is provided on the next pages

IC: N/A

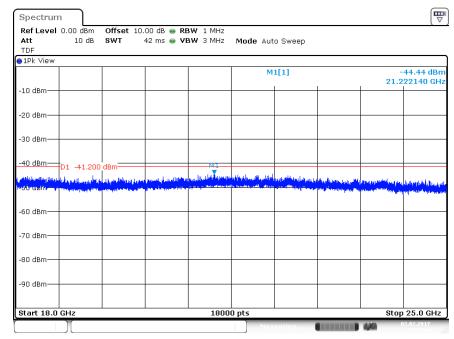

Test Report No.: 16090106.fcc01 Page 30 of 42

Plots of the radiated emissions

Date: 2.FEB.2017 14:14:35

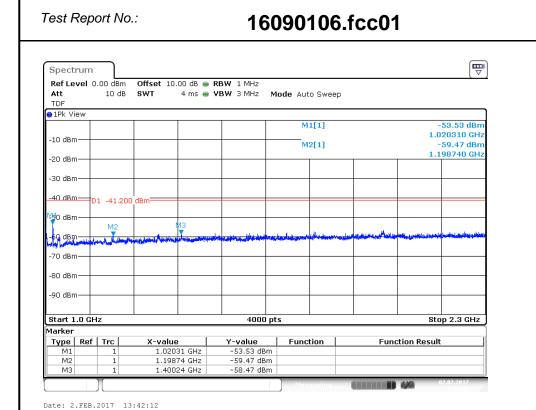

Plot of the emissions at 2402 MHz, EUT Vertical, antenna Horizontal polarization, Peak values shown

Date: 2.FEB.2017 14:05:22

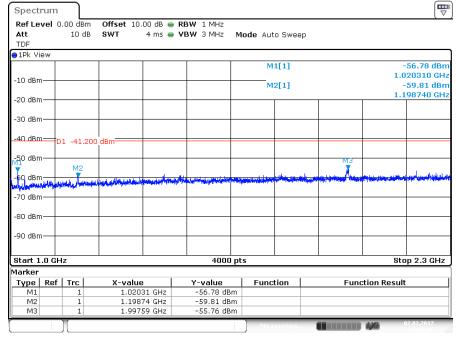

Plot of the emissions in the restricted band 2.31-2.39GHz at 2402 MHz, Vertical polarization, Peak values shown

2400. 2.122.2017 11.00.10

Plot of the emissions in the range 12 to 18GHz EUT at 2402 MHz, Vertical polarization, Peak values shown

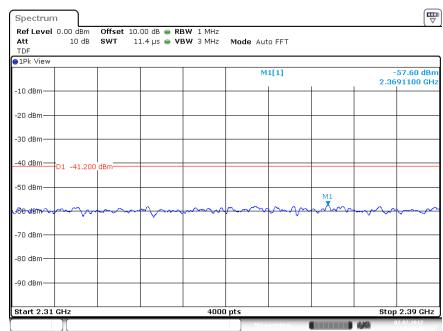

Date: 2.FEB.2017 15:22:44

Plot of the emissions in the range 18 to 25GHz EUT at 2402 MHz, Vertical polarization, Peak values shown


IC: N/A

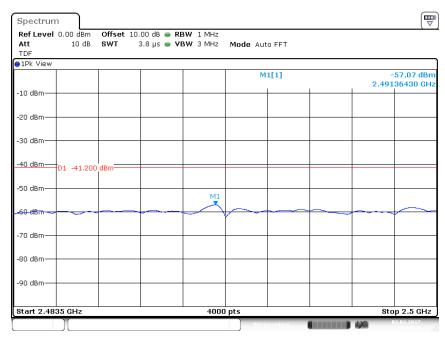
Page 32 of 42

Plot of the emissions in the range 1 to 2.3GHz of the EUT at 2440 MHz, EUT Horizontal Antenna Horizontal polarization, Peak values shown


Date: 2.FEB.2017 13:45:30

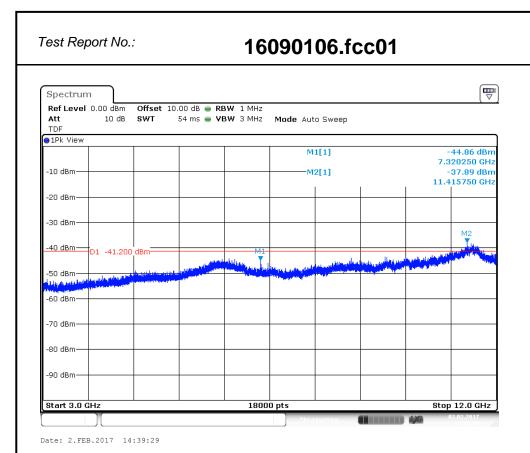
Plot of the emissions in the range 1 to 2.3GHz of the EUT at 2440 MHz, EUT Horizontal Antenna Vertical polarization, Peak values shown

IC: N/A

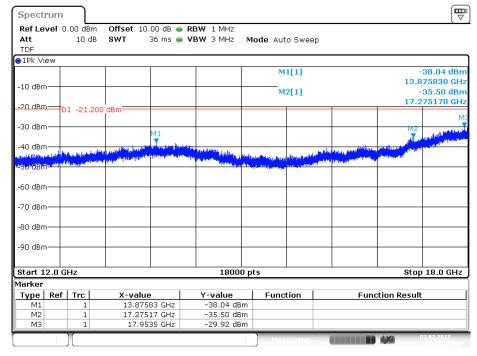


Date: 2.FEB.2017 14:06:49

Plot of the emissions of the EUT at 2440 MHz in the restricted band 2.31 -2.39GHz, EUT Vertical, Antenna Vertical polarization, Peak values shown

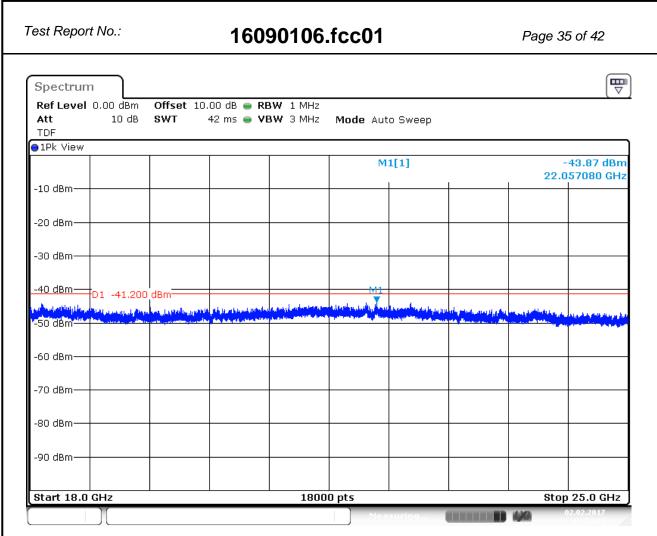


Date: 2.FEB.2017 14:00:42


Plot of the emissions of the EUT at 2440 MHz in the restricted band 2.4835 -2.5GHz, EUT Vertical, Antenna Vertical polarization, Peak values shown

Page 34 of 42

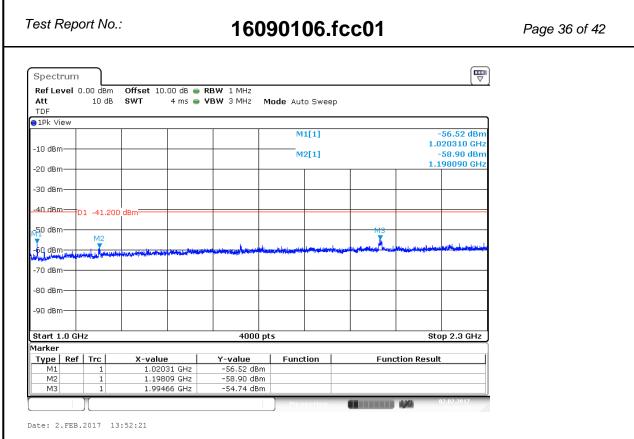
Plot Radiated unwanted emissions in the range 3 – 12 GHz at 2440MHz (Peak values, EUT Vertical, Antenna Vertical position shown).



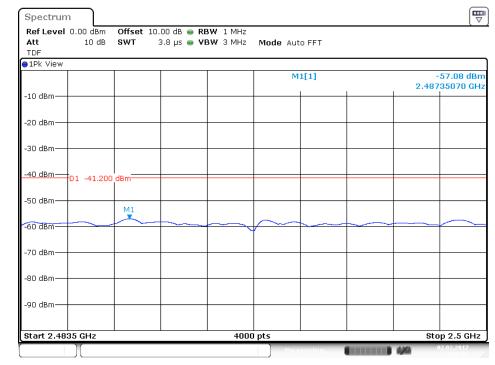
Date: 2.FEB.2017 15:03:28

Plot Radiated unwanted emissions in the range 12 – 18 GHz at 2440MHz (Peak values, EUT Vertical, Antenna Vertical position shown).

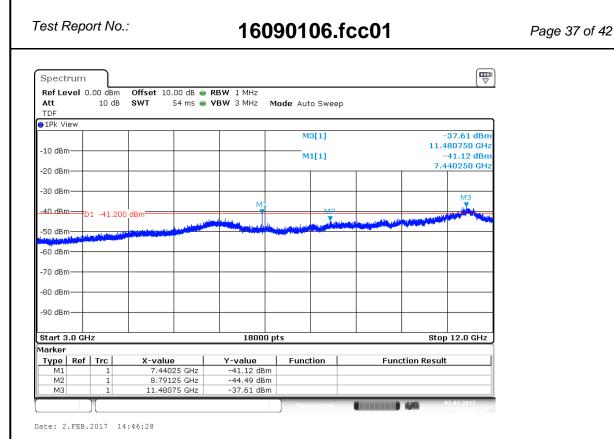
IC: N/A

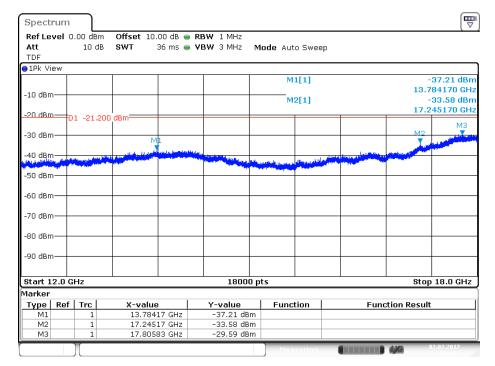


Date: 2.FEB.2017 15:24:05


Plot Radiated unwanted emissions in the range 12 - 18 GHz at 2440MHz (Peak values, EUT Vertical, Antenna Vertical position shown)

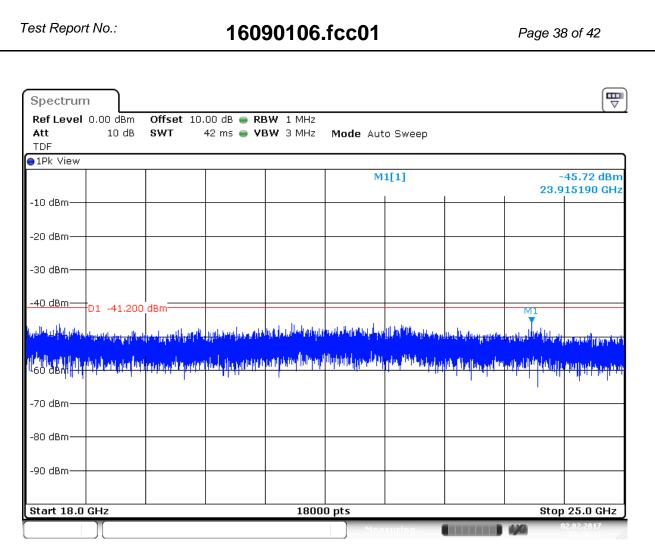
IC: N/A


Plot Radiated unwanted emissions in the range 1 - 2.35 GHz at 2480MHz (Peak values, Antenna horizontal position shown).


Date: 2.FEB.2017 13:59:22

Plot Radiated unwanted emissions in the range 2.4835 – 2.5 GHz at 2480MHz (Peak values, Antenna Vertical position shown).

Plot Radiated unwanted emissions in the range 3 – 12 GHz at 2480MHz (Peak values, EUT Vertical, Antenna Vertical position shown).



Date: 2.FEB.2017 14:54:43

Plot Radiated unwanted emissions in the range 12 – 18 GHz at 2480MHz (Peak values, EUT Vertical, Antenna Vertical position shown).

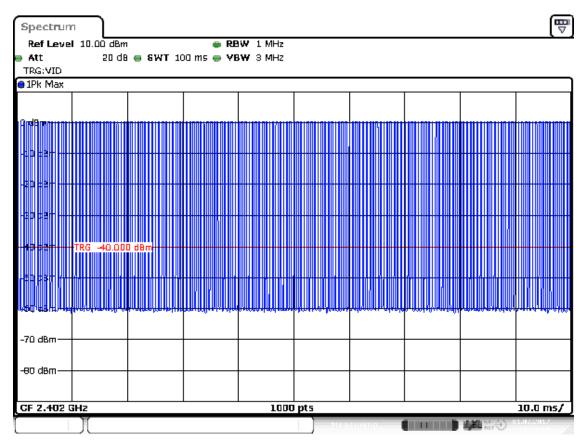
IC: N/A

Date: 2.FEB.2017 15:26:47

Plot Radiated unwanted emissions in the range 18 – 25 GHz at 2480MHz (Peak values, EUT Vertical, Antenna Horizontal position shown).

Test Report No.:	16090106.fcc01	Page 39 of 42				
5.2 AC Power Line Conducted Measurements						
RESULT: Not Appli	RESULT: Not Applicable.					
EUT is battery (non-	rechargeable) operated only.					

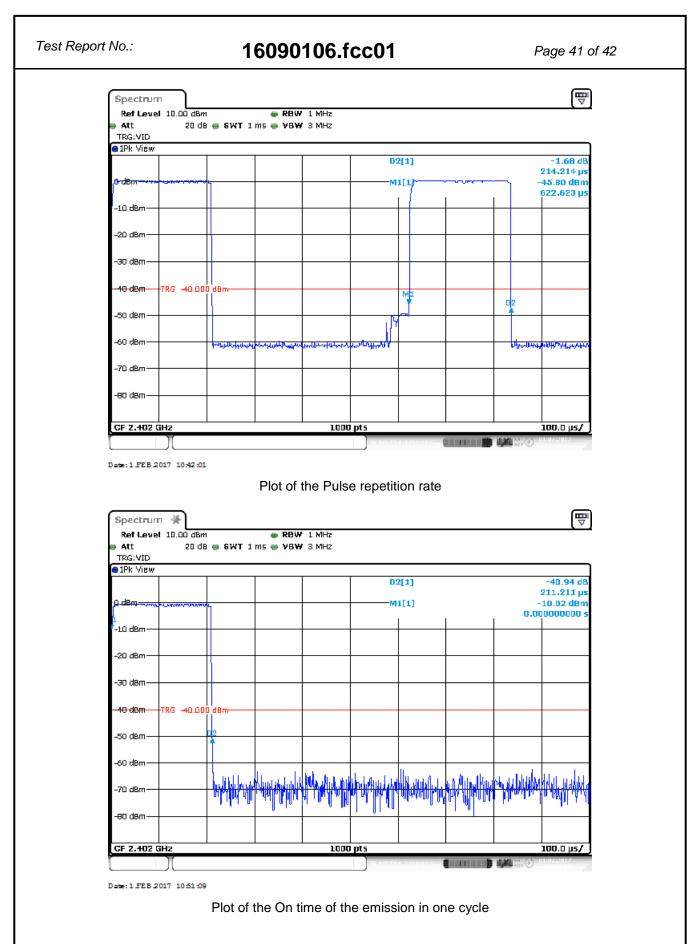
IC: N/A


Test Report No.: 16090106.fcc01 Page 40 of 42

6 Duty cycle correction

The duration of 1 peak was 0.211 ms and the pulse repetition rate was 0.625 ms In a 100ms period therefor 100 / 0.625 = 160 cycles could occur. So the total peak time in a 100 ms period was 160 * 0.211 ms = 33.76 ms.

The Dwell Time of the EUT, see plot below, is less than 100 ms and the measured value with Average detector may be adjusted with a "duty cycle correction factor", derived from 20 log (dwell time/100ms). In this case:


Duty Cycle Correction factor = 20 log (33.76ms/100ms) = -9.43 dB.

Date: 1 FEB 2017 10:39:00

Plot of all the emissions in a 100ms period

Test Report No.:	16090106.fcc01	Page 42 of 42
	End of report	