

FCC PART 15.249

TEST REPORT

For

Keeson Technology Corporation Limited

No. 158, Qiumao Road, Wangjiangjing Xiuzhou district Jiaxing, Zhejiang China

FCC ID: 2AK23MC210

Report Type: CIIPC		Product Type: CONTROL BOX
Test Engineer:	Matt Yao	Neith Jan
Report Number:	RSHA1906260	02-00B
Report Date:	2019-07-09	
Reviewed By:	Oscar Ye RF Leader	Oscar. Ye
Test Laboratory:		88934268

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	3
OBJECTIVE	
RELATED SUBMITTAL(S)/GRANT(S)	3
Test Methodology	
Measurement Uncertainty	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	5
JUSTIFICATION	5
EUT Exercise Software	5
SUPPORT EQUIPMENT LIST AND DETAILS	
EXTERNAL I/O CABLE	
BLOCK DIAGRAM OF TEST SETUP	6
SUMMARY OF TEST RESULTS	7
TEST EQUIPMENT LIST	8
FCC§15.203 - ANTENNA REQUIREMENT	9
Applicable Standard	
ANTENNA CONNECTOR CONSTRUCTION	9
FCC §15.207 (A) – AC LINE CONDUCTED EMISSIONS	10
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER SETUP	
Test Procedure	
CORRECTED FACTOR & OVER LIMIT CALCULATION Test Results Summary	
TEST DATA	
FCC§15.205, §15.209&§15.249- RADIATED EMISSIONS& OUT OF BAND EMISSION	
APPLICABLE STANDARD	
EUT SETUP	
TEST EQUIPMENT SETUP	
Test Procedure Corrected Amplitude & Margin Calculation	
CORRECTED AMPLITUDE & MARGIN CALCULATION TEST RESULTS SUMMARY	
TEST DATA	
	13

FCC Part 15.249

Page 2 of 16

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Applicant	Keeson Technology Corporation Limited
Tested Model	MC210
Series Model	MC210BS、MC210TS、MC210SP、MC210KL、MC210LT、MC210BK
Model Difference	Model name
Product Type	CONTROL BOX
Dimension	148mm(L)*63mm(W)*36mm(H)
Power Supply	AC 100V~240V/DC 2*9V from batteries

All measurement and test data in this report was gathered from production sample serial number: 20190626002. (Assigned by BACL, Kunshan). The EUT was received on 2019-06-26.

Objective

This type approval report is prepared on behalf of Keeson Technology Corporation Limited in accordance with Part 2-Subpart J, and Part 15-Subparts A and C of the Federal Communication Commissions' rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.249 rules.

This is a CIIPC report based on the original report RSHA190123005-00B with FCC ID: 2AK23MC210 that grant on 2019-03-18, the differences between the original device and the current one are as follows:

A power drop protection circuit is added to the PCB board; it affects a lot on Conduction Emissions and Radiated Emissions (Below 1GHz) which were presented in this report, and other data were referred to the original report.

Related Submittal(s)/Grant(s)

FCC Part 15.249 DXX grant with FCC ID: PCU-RF372A.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All radiated and conducted emissions measurement was performed at Bay Area Compliance Lab Corp. (Kunshan). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

	Item	Uncertainty	
AC Power Line	es Conducted Emissions	3.19 dB	
RF conducte	ed test with spectrum	0.9dB	
RF Output Po	wer with Power meter	0.5dB	
	30MHz~1GHz	6.11dB	
Radiated emission	1GHz~6GHz	4.45dB	
Radiated emission	6GHz~18GHz	5.23dB	
	18GHz~40GHz	5.65dB	
Occupied Bandwidth		0.5kHz	
Temperature		1.0°C	
Humidity		6%	

Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Kunshan) to collect test data is located on the No.248 Chenghu Road, Kunshan, Jiangsu province, China.

Bay Area Compliance Laboratories Corp. (Kunshan) Lab is accredited to ISO/IEC 17025 by A2LA (Lab code: 4323.01), the FCC designation No. CN1185 under the FCC KDB 974614 D01 and CAB identifier CN0004 under the ISED requirement. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

SYSTEM TEST CONFIGURATION

Justification

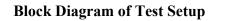
Channel list:

Channel	Channel Frequency (MHz)		Frequency (MHz)
1	2403	40	2442
2	2404		
38	2440	77	2479
39	2441	78	2480

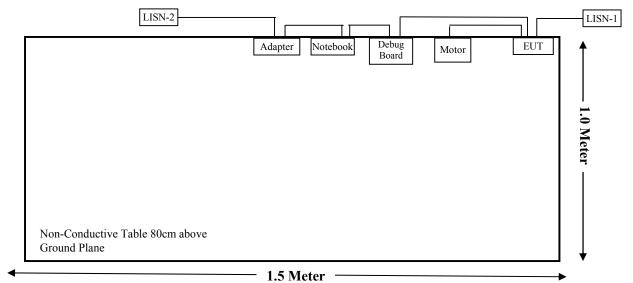
EUT was tested with Channel 1, 40 and 78.

EUT Exercise Software

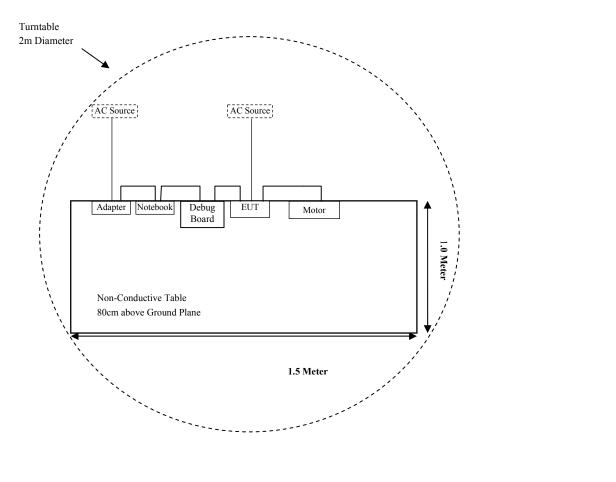
RF test tool: UartAssist.exe


Support Equipment List and Details

Manufacturer	nufacturer Description Model		Serial Number	
OKIN	Motor	B15527	68001060150187285017	
DELL	Notebook	GX620	D65874152	
DELL	Adapter	LA65NS0-00	DF263	
OKIN	Debug Board	/	/	


External I/O Cable

Cable Description	Length (m)	From Port	То
Power cable	1.0	EUT	Motor
SYNC Cable	0.2	EUT	Debug Board
DC Cable	1.0	Debug Board	Notebook
AC Power Cord	1.8	Adapter	LISN-2/AC Source/Socket


Report No.: RSHA190626002-00B

For Conducted Emissions:

For Radiated Emissions(Below 1GHz):

FCC Part 15.249

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.203	Antenna Requirement	Compliant
§15.207(a)	Conduction Emissions	Compliant
815 205 815 200 815 240	Spurious Emissions (Below 1GHz)	Compliant
§15.205, §15.209, §15.249	Spurious Emissions (Above 1GHz)	Compliant (See Note 1)
§15.215 (c)	20 dB Bandwidth	Compliant (See Note 1)

Note 1: For these items, all the test data please refers to the original report RSHA190123005-00B with FCC ID: 2AK23MC210.

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date			
	Radiated Emission Test (Chamber 1#)							
Rohde & Schwarz	EMI Test Receiver	ESCI	100195	2018-11-12	2019-11-11			
Sunol Sciences	Broadband Antenna	JB3	A090413-1	2016-12-26	2019-12-25			
Sonoma Instrunent	Pre-amplifier	310N	171205	2018-08-15	2019-08-14			
Rohde & Schwarz	Auto test Software	EMC32	100361	/	/			
MICRO-COAX	Coaxial Cable	Cable-8	008	2018-08-15	2019-08-14			
MICRO-COAX	Coaxial Cable	Cable-9	009	2018-08-15	2019-08-14			
MICRO-COAX	Coaxial Cable Cable-10		010	2018-08-15	2019-08-14			
	Cond	lucted Emission Te	est					
ROHDE&SCHWARZ	EMI Test receiver	ESR	1316.3003K03- 102454-Qd	2019-06-25	2020-06-24			
Rohde & Schwarz	LISN	ESH3-Z5 862770/011		2018-11-12	2019-11-11			
Audix	Test Software	e3	V9					
Narda	Attenuator/6dB	10690812-2	26850-6	2019-01-10	2020-01-09			
MICRO-COAX	Coaxial Cable	Cable-15	015	2018-08-15	2019-08-14			

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

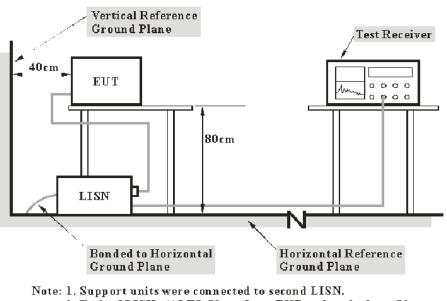
FCC§15.203 - ANTENNA REQUIREMENT

Applicable Standard

For intentional device, according to §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used.

Antenna Connector Construction

The EUT has a PCB antenna and antenna gain is 0dBi, which was permanently attached, fulfill the requirement of this section, please refer to the EUT photos.


Result: Compliant.

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC§15.207

EUT Setup

Note: 1. Support units were connected to second LISN. 2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W		
150 kHz – 30 MHz	9 kHz		

Test Procedure

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

Corrected Factor & Over Limit Calculation

The Corrected factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Factor (dB) = LISN VDF (dB) + Cable Loss (dB) + Transient Limiter Attenuation (dB)

The "**Over Limit**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit of 7dB means the emission is 7 dB above the limit. The equation for Over Limit calculation is as follows:

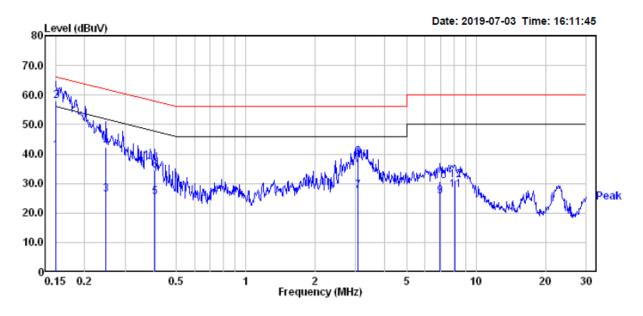
Over Limit (dB) = Read level (dB μ V) + Factor (dB) - Limit (dB μ V)

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Part 15.207.

Test Data

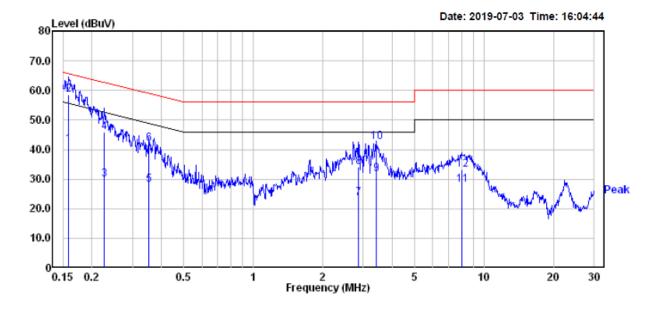
Environmental Conditions


Temperature:	25.0℃
Relative Humidity:	48 %
ATM Pressure:	101.2 kPa

The testing was performed by Matt Yao on 2019-07-03.

Test Result: Compliant.

EUT operation mode: Transmitting in low channel. (Worst case)


Report No.: RSHA190626002-00B

AC 120V/60Hz, Line

	Read			Limit	0ver	
Freq	Level	Factor	Level	Line	Limit	Remark
MHz	dBuV	dB	dBuV	dBuV		
						Avenage
0.150	38.10	19.82	57.92	66.00	-8.08	QP
0.248	6.30	19.82	26.12	51.82	-25.70	Average
0.248	22.30	19.82	42.12	61.82	-19.70	QP
0.402	5.60	19.74	25.34	47.81	-22.47	Average
0.402	14.60	19.74	34.34	57.81	-23.47	QP
3.074	8.00	19.46	27.46	46.00	-18.54	Average
3.074	19.60	19.46	39.06	56.00	-16.94	QP
6.988	6.00	19.52	25.52	50.00	-24.48	Average
6.988	11.30	19.52	30.82	60.00	-29.18	QP
8.105	8.30	19.53	27.83	50.00	-22.17	Average
8.105	11.50	19.53	31.03	60.00	-28.97	QP
	MHz 0.150 0.248 0.248 0.402 0.402 3.074 3.074 6.988 6.988 8.105	Freq Level MHz dBuV 0.150 21.10 0.150 38.10 0.248 6.30 0.248 22.30 0.402 5.60 0.402 14.60 3.074 8.00 3.074 19.60 6.988 6.00 6.988 11.30 8.105 8.30	Freq Level Factor MHz dBuV dB 0.150 21.10 19.82 0.150 38.10 19.82 0.248 6.30 19.82 0.248 22.30 19.82 0.402 5.60 19.74 0.402 14.60 19.74 3.074 8.00 19.46 3.074 19.60 19.46 6.988 6.00 19.52 6.988 11.30 19.52 8.105 8.30 19.53	Freq Level Factor Level MHz dBuV dB dBuV 0.150 21.10 19.82 40.92 0.150 38.10 19.82 57.92 0.248 6.30 19.82 26.12 0.248 22.30 19.82 42.12 0.402 5.60 19.74 25.34 0.402 14.60 19.74 34.34 3.074 8.00 19.46 27.46 3.074 19.60 19.46 39.06 6.988 6.00 19.52 25.52 6.988 11.30 19.52 30.82 8.105 8.30 19.53 27.83	Freq Level Factor Level Line MHz dBuV dB dBuV dBuV dBuV 0.150 21.10 19.82 40.92 56.00 0.150 38.10 19.82 57.92 66.00 0.248 6.30 19.82 26.12 51.82 0.248 22.30 19.82 42.12 61.82 0.402 5.60 19.74 25.34 47.81 0.402 14.60 19.74 34.34 57.81 3.074 8.00 19.46 39.06 56.00 3.074 19.60 19.46 39.06 56.00 6.988 6.00 19.52 25.52 50.00 6.988 11.30 19.52 30.82 60.00 8.105 8.30 19.53 27.83 50.00	Freq Level Factor Level Line Linit MHz dBuV dB dBuV dBuV dB 0.150 21.10 19.82 40.92 56.00 -15.08 0.150 38.10 19.82 57.92 66.00 -8.08 0.248 6.30 19.82 26.12 51.82 -25.70 0.248 22.30 19.82 42.12 61.82 -19.70 0.402 5.60 19.74 25.34 47.81 -22.47 0.402 14.60 19.74 34.34 57.81 -23.47 3.074 8.00 19.46 27.46 46.00 -18.54 3.074 19.60 19.46 39.06 56.00 -16.94 6.988 6.00 19.52 25.52 50.00 -24.48 6.988 11.30 19.53 27.83 50.00 -22.17

Report No.: RSHA190626002-00B

AC 120V/60Hz, Neutral

		Read			Limit	0ver	
	Freq	Level	Factor	Level	Line	Limit	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	
1	0.158	21.70	19.82	41.52	55.56	-14.04	Average
2	0.158	38.70	19.82	58.52	65.56	-7.04	QP
3	0.226	10.20	19.82	30.02	52.61	-22.59	Average
4	0.226	26.20	19.82	46.02	62.61	-16.59	QP
5	0.354	8.30	19.80	28.10	48.87	-20.77	Average
6	0.354	22.30	19.80	42.10	58.87	-16.77	QP
7	2.869	4.20	19.46	23.66	46.00	-22.34	Average
8	2.869	14.80	19.46	34.26	56.00	-21.74	QP
9	3.417	12.10	19.46	31.56	46.00	-14.44	Average
10	3.417	23.00	19.46	42.46	56.00	-13.54	QP
11	8.020	8.40	19.53	27.93	50.00	-22.07	Average
12	8.020	13.70	19.53	33.23	60.00	-26.77	QP

Note:

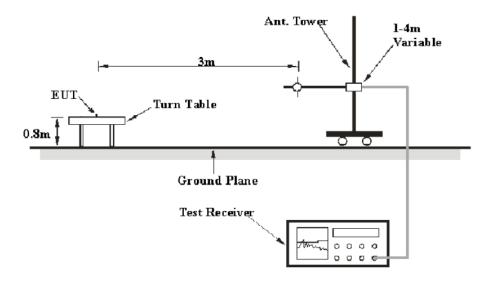
1) Factor (dB) = LISN VDF (dB) + Cable Loss (dB) + Transient Limiter Attenuation (dB)

2) Over Limit (dB) = Read level (dB μ V) + Factor (dB) - Limit (dB μ V)

FCC§15.205, §15.209&§15.249- RADIATED EMISSIONS& OUT OF BAND EMISSION

Applicable Standard

As per FCC§15.249 (a), except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:


Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)		
902–928 MHz	50	500		
2400–2483.5 MHz	50	500		
5725–5875 MHz	50	500		

As per FCC§15.249 (c), Field strength limits are specified at a distance of 3 meters.

(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

EUT Setup

Below 1 GHz:

The radiated emission and out of band emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209/15.205 and FCC 15.249 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

Test Equipment Setup

The system was investigated from 30 MHz to 1 GHz.

During the radiated emission test, the EMI test receiver Setup was set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector	
30 MHz – 1000 MHz	120 kHz	300 kHz	120 kHz	QP	

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude $(dB\mu V /m) =$ Meter Reading $(dB\mu V) +$ Antenna Factor (dB/m) + Cable Loss (dB) - Amplifier Gain (dB)

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin (dB) = Limit (dB μ V/m) – Corrected Amplitude (dB μ V/m)

Test Results Summary

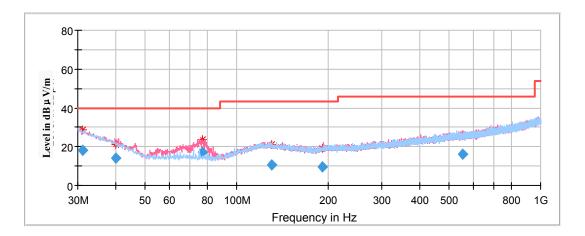
According to the data in the following table, the EUT complied with the FCC Part 15.209 &15.205 & 15.249.

Test Data

Environmental Conditions

Temperature:	24.2°C		
Relative Humidity:	50%		
ATM Pressure:	101.3kPa		

The testing was performed by Matt Yao on 2019-07-02.


Test Mode: Transmitting

FCC Part 15.249

Spurious Emission Test: (AC power supply-worse case)

30MHz-1GHz

(*Pre-scan with low, middle and high channels of operation in the X,Y and Z axes of orientation, the worst case low channel of operation in X-axis of orientation* was recorded)

Frequency	Corrected Amplitude	Rx Antenna		Turntable	Corrected	Limit	Margin
(MHz)	Quasi-peak (dBµV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
31.142906	18.22	199.0	V	109.0	-4.7	40.00	21.78
40.098600	14.07	100.0	V	148.0	-10.8	40.00	25.93
77.115650	17.25	100.0	V	179.0	-17.6	40.00	22.75
130.103900	10.76	199.0	Н	235.0	-11.6	43.50	32.74
191.348800	9.56	100.0	V	320.0	-12.9	43.50	33.94
552.232150	16.03	199.0	V	352.0	-5.6	46.00	29.97

***** END OF REPORT *****