

RADIO TEST REPORT FCC ID: 2AJZY-P326981

Product:WIRELESS SPEAKER SUNGLASSESTrade Mark:N/AModel No.:P326.981Serial Model:N/AReport No.:SRS171109808Issue Date:01 Nov. 2017

Prepared for

Ningbo Gecen Promotion & Gift Co., Ltd No.178, Jinmao Road, jiaochuan Street, Zhenhai District, Ningbo, China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel.: +86-755-6115 9388 Fax.: +86-755-6115 6599 Website:http://www.ntek.org.cn

TABLE OF CONTENTS

FAC	TLITIES AND ACCREDITATIONS	.5		
3.1 3.2 3.3	FACILITIES LABORATORY ACCREDITATIONS AND LISTINGS MEASUREMENT UNCERTAINTY	5		
GEN	VERAL DESCRIPTION OF EUT	.6		
SET	UP OF EQUIPMENT UNDER TEST	.9		
6.1 6.2 6.3	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM SUPPORT EQUIPMENT EQUIPMENTS LIST FOR ALL TEST ITEMS	10 11		
TES	T REQUIREMENTS	13		
7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10	CONDUCTED EMISSIONS TEST RADIATED SPURIOUS EMISSION NUMBER OF HOPPING CHANNEL RADIATED SPURIOUS EMISSION HOPPING CHANNEL SEPARATION MEASUREMENT RADIATED SPURIOUS CHANNEL 20DB BANDWIDTH TEST RADIATED 20DB BANDWIDTH TEST RADIATED 20DD UCTED BAND EDGE MEASUREMENT RADIATENNA APPLICATION	16 27 31 35 39 43 47 51		
	SUM FAC 3.1 3.2 3.3 GEN DES SET 6.1 6.2 6.3 TES 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9	3.2 LABORATORY ACCREDITATIONS AND LISTINGS 3.3 MEASUREMENT UNCERTAINTY GENERAL DESCRIPTION OF EUT		

1 TEST RESULT CERTIFICATION

Applicant's name:	Ningbo Gecen Promotion & Gift Co., Ltd
Address	No.178, Jinmao Road, jiaochuan Street, Zhenhai District, Ningbo, China
Manufacturer's Name:	Ningbo Gecen Promotion & Gift Co., Ltd
Address:	No.178, Jinmao Road, jiaochuan Street, Zhenhai District, Ningbo, China
Product description	
Product name:	WIRELESS SPEAKER SUNGLASSES
Model and/or type reference:	P326.981
Serial Model	N/A

Measurement Procedure Used:

APPLICABLE STANDARDS

STANDARD/ TEST PROCEDURE	TEST RESULT
FCC 47 CFR Part 2, Subpart J:2016 FCC 47 CFR Part 15, Subpart C:2016 KDB 174176 D01 Line Conducted FAQ v01r01 ANSI C63.10-2013	Complied

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	: 24 Oc	t. 2017 ~ 31 Oct. 2017
Testing Engineer	:	Eileen Wu. (Eileen Liu)
Technical Manager	·	Jason chen (Jason Chen)
Authorized Signatory	:	(Sam Chen)

FCC Part15 (15.247), Subpart C			
Standard Section	Test Item	Verdict	Remark
15.207	Conducted Emission	PASS	
15.247(c)	Radiated Spurious Emission	PASS	
15.247(a)(1)	Hopping Channel Separation	PASS	
15.247(b)(1)	Peak Output Power	PASS	
15.247(a)(iii)	Number of Hopping Frequency	PASS	
15.247(a)(iii)	Dwell Time	PASS	
15.247(a)(1)	Bandwidth	PASS	
15.205	Band Edge Emission	PASS	
15.203	Antenna Requirement	PASS	

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description

Site Description CNAS-Lab. :	Accredited by CNAS, 2014.09.04 The Laboratory has been assessed and proved to be in compliance with CNAS-CL01:2006 (identical to ISO/IEC 17025:2005) The Certificate Registration Number is L5516.
IC-Registration	Accredited by Industry Canada, August 29, 2012 The Certificate Registration Number is 9270A-1.
FCC- Accredited	Test Firm Registration Number: 463705. Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01 This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
	Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification		
Equipment	WIRELESS SPEAKER SUNGLASSES	
Trade Mark	N/A	
FCC ID	2AJZY-P326981	
Model No.	P326.981	
Serial Model	N/A	
Model Difference	N/A	
Operating Frequency	2402MHz~2480MHz	
Modulation	GFSK,π/4-DQPSK, 8-DPSK	
Bluetooth Version	BT V4.2	
Number of Channels	79 Channels	
Antenna Type	PCB Antenna	
Antenna Gain	1.5dBi	
Power supply	DC supply: DC 3.7V from battery or DC 5V from USB for charge.	
	Adapter supply:	
HW Version	HC-X13 V2	
SW Version	0.1.0	

Note: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Report No.: SRS171109808

Revision History				
Report No.	Version	Description	Issued Date	
SRS171109808	Rev.01	Initial issue of report	Nov. 01, 2017	

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for π /4-DQPSK modulation; 3Mbps for 8-DPSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

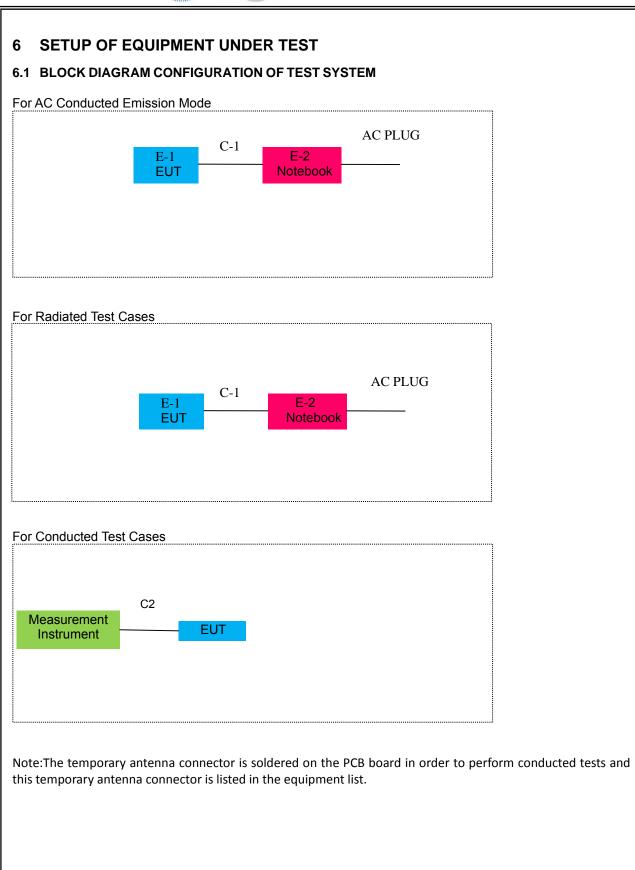
Channel	Frequency(MHz)
0	2402
1	2403
39	2441
40	2442
77	2479
78	2480

Note: fc=2402MHz+k \times 1MHz k=0 to 78

The following summary table is showing all test modes to demonstrate in compliance with the standard.

For AC Conducted Emission		
Final Test Mode	Description	
Mode 1 normal link mode		
Note: AC nower line Conducted Emission was tested under maximum output power		

Note: AC power line Conducted Emission was tested under maximum output power.


For Radiated Test Cases		
Final Test Mode	Description	
Mode 1	normal link mode	
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	

Note: For radiated test cases, the worst mode data rate 3Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

For Conducted Test Cases				
Final Test Mode	Description			
Mode 2	CH00(2402MHz)			
Mode 3	CH39(2441MHz)			
Mode 4	CH78(2480MHz)			
Mode 5 Hopping mode				
Note: The engineering test program was provided and the EUT was programmed to be in continuously				
transmitting mode.				
1 AC now or line Cor	ducted Emission was tested under maximum output nower			

1. AC power line Conducted Emission was tested under maximum output power.

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID	Note
E-1	WIRELESS SPEAKER SUNGLASSES	N/A	P326.981	2AJZY-P326981	EUT
E-2	Notebook	Lenovo	Thinkpad Edge E430	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	NO	NO	1.2m
C-2	RF Cable	NO	NO	1.0m

Notes:

(1) The support equipment was authorized by Declaration of Confirmation.

- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation Test equipment

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2017.06.06	2018.06.05	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2016.11.10	2017.11.09	1 year
3	EMI Test Receiver	Agilent	N9038A	MY53227146	2017.06.06	2018.06.05	1 year
4	Test Receiver	R&S	ESPI	101318	2017.06.06	2018.06.05	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2017.04.09	2018.04.08	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2017.06.06	2018.06.05	1 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2017.04.09	2018.04.08	1 year
8	Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2017.07.06	2018.07.05	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2017.08.09	2018.08.08	1 year
10	Amplifier	MITEQ	TTA1840-35- HG	177156	2017.06.06	2018.06.05	1 year
11	Loop Antenna	ARA	PLA-1030/B	1029	2017.06.06	2018.06.05	1 year
12	Power Meter	DARE	RPR3006W	15I00041SN 084	2017.08.09	2018.08.08	1 year
13	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2017.04.21	2020.04.20	3 year
14	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2017.04.21	2020.04.20	3 year
15	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2017.04.21	2020.04.20	3 year
16	High Test Cable(1G-40G Hz)	N/A	R-04	N/A	2017.04.21	2020.04.20	3 year
17	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

Conduction Test equipment							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2017.06.06	2018.06.05	1 year
2	LISN	R&S	ENV216	101313	2017.04.19	2018.04.18	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2017.06.06	2018.06.05	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2017.06.06	2018.06.05	1 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2017.04.21	2020.04.20	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2017.04.21	2020.04.20	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2017.04.21	2020.04.20	3 year

1	Filter	TRILTHIC	2400MHz	29	2017.04.19	2018.04.18	1 year
---	--------	----------	---------	----	------------	------------	--------

Note: Each piece of equipment is scheduled for calibration once a year.

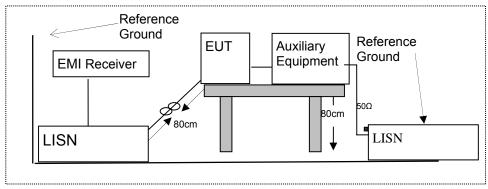
7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a) and KDB 174176 D01 Line Conducted FAQ v01r01

7.1.2 Conformance Limit


Frequency(MHz)	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency

2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

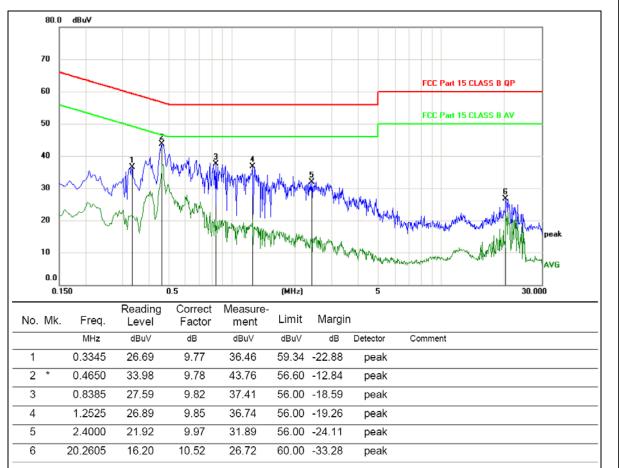
7.1.3 Test Configuration

7.1.4 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.

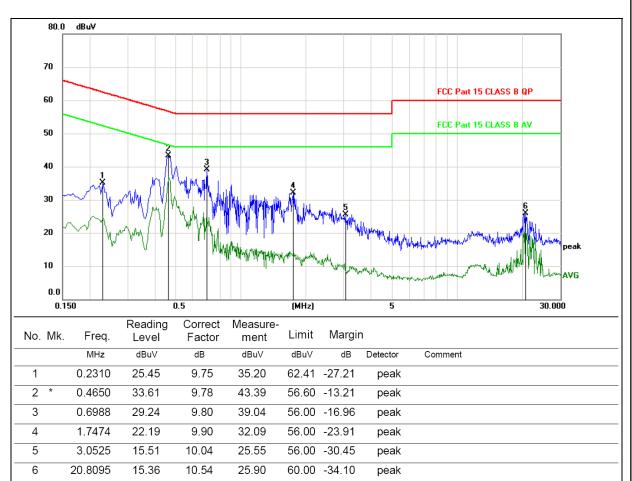
7.1.5 Test Results


Pass

7.1.6 Test Results

EUT:	WIRELESS SPEAKER SUNGLASSES	Model Name :	P326.981
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	L
	DC 5V through the USB port connecting notebook	Test Mode:	Mode 1

All the modulation modes have been tested, and the worst result was report as below:



Maximum data x:Over limit !:over margin Note:Measurement=Reading Level+Correc Factor. Factor=(LISN or ISN or PLC or Current

Probe)Factor+Cable

EUT:	WIRELESS SPEAKER SUNGLASSES	Model Name :	P326.981
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	Ν
	DC 5V through the USB port connecting notebook	Test Mode:	Mode 1

Maximum data x:Over limit !:over margin Note: Measurement=Reading Level+Correc Factor. Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

MHz	MHz	GHz		
16.42-16.423	399.9-410	4.5-5.15		
16.69475-16.69525	608-614	5.35-5.46		
16.80425-16.80475	960-1240	7.25-7.75		
25.5-25.67	1300-1427	8.025-8.5		
37.5-38.25	1435-1626.5	9.0-9.2		
73-74.6	1645.5-1646.5	9.3-9.5		
74.8-75.2	1660-1710	10.6-12.7		
123-138	2200-2300	14.47-14.5		
149.9-150.05	2310-2390	15.35-16.2		
156.52475-156.52525	2483.5-2500	17.7-21.4		
156.7-156.9	2690-2900	22.01-23.12		
162.0125-167.17	3260-3267	23.6-24.0		
167.72-173.2	3332-3339	31.2-31.8		
240-285	3345.8-3358	36.43-36.5		
322-335.4	3600-4400	(2)		
	MHz 16.42-16.423 16.69475-16.69525 16.80425-16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2 123-138 149.9-150.05 156.52475-156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285	MHzMHz16.42-16.423399.9-41016.69475-16.69525608-61416.80425-16.80475960-124025.5-25.671300-142737.5-38.251435-1626.573-74.61645.5-1646.574.8-75.21660-1710123-1382200-2300149.9-150.052310-2390156.52475-156.525252483.5-2500156.7-156.92690-2900162.0125-167.173260-3267167.72-173.23332-3339240-2853345.8-3358		

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	2400/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

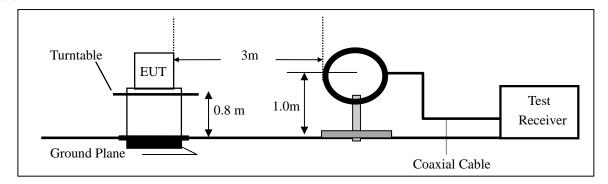
Limits of Radiated Emission Measurement(Above 1000MHz)

Frequency(MHz)	Class B (dBuV	/m) (at 3M)
Frequency(winz)	PEAK	AVERAGE
Above 1000	74	54

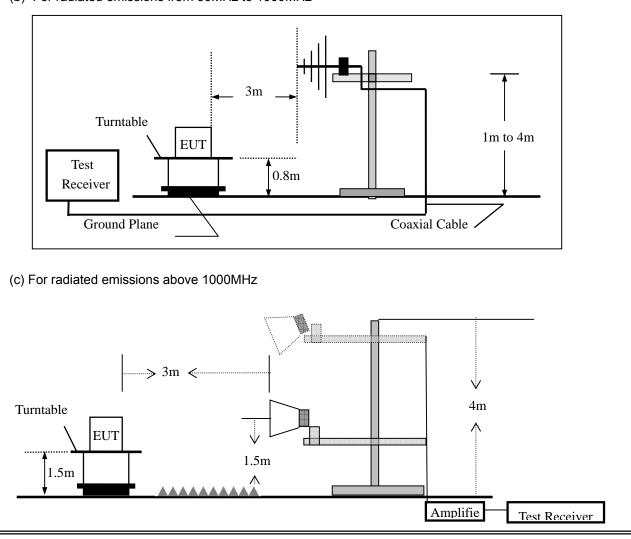
Remark :1. Emission level in dBuV/m=20 log (uV/m)

Measurement was performed at an antenna to the closed point of EUT distance of meters.
 Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 Measuring Instruments


The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

(b) For radiated emissions from 30MHz to 1000MHz

Version.1.2

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

se the following spectrum analyzer settings.								
Setting								
Auto								
1000 MHz								
10th carrier harmonic								
1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average								

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.

- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos.
 - Note:

Both horizontal and vertical antenna polarities were tested

and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission t	est, the Spectrum An	alyzer was set with the follow	ving configurations:
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Ab aug 4000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	10 Hz

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

■ Spurious Emission below 30MHz (9KHz to 30MHz)

EUT:	WIRELESS SPEAKER SUNGLASSES	Model No.:	P326.981
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2	Test By:	Eileen Liu

Freq.	Ant.Pol.	Emission L	evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor

Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below: EUT: WIRELESS SPEAKER SUNGLASSES Model Name : P326.981 **20** ℃ Relative Humidity: 48% Temperature: 1010hPa Test Mode: Mode 1 Pressure: DC 5V through the USB port Polarization: Test Voltage : Vertical connecting notebook dBuV/m 72.0 62 FCC Class B Radiation 52 42 32 X HAND MY Malundapation 22 12 2 -8 -18 -28 30.000 40 50 60 70 80 (MHz) 300 400 500 600 700 1000.000 Reading Correct Measure-Limit Margin Antenna Table No. Mk. Freq. Level Factor ment Height Degree MHz dBuV dB dBuV/m dBuV/m dB Detector cm degree Comment 71.8319 8.79 10.70 19.49 40.00 -20.51 1 peak 2 168.4137 12.84 13.90 26.74 43.50 -16.76 peak 3 204.2375 15.90 10.48 26.38 43.50 -17.12 peak 276.1235 15.15 12.89 28.04 46.00 -17.96 4 peak 5 316.5889 15.55 13.79 29.34 46.00 -16.66 peak 6 441.7425 19.40 16.67 36.07 46.00 -9.93 * peak Note:1. *: Maximum data; x:Over limit; !:over margin. 2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

EUT	:	WIREL	ESS SP	EAKER S	UNGLA	ASSES	Model	Name :	P326.981
Tem	perature:	20 ℃					Relativ	ve Humidity:	48%
Pres	sure:	1010hl	Pa				Test M	lode:	Mode 1
Test '	Voltage :		through	the USB ebook	oort		Polariz	zation:	Horizontal
72.0	dBuV/m								
62									
52								FCC Class B Ra	adiation
42									
ľ						3 X		4 5	6
32			1		2	1 martine	~~l	M M AL	I. MANUMAN
22			×	1 . Not	M NA	Mahal	VILLIA	n. W MANAGAR	llake in second
12	and appropriate manifestation of the state of the second state of	tongen Agronning Mark	Unit	Mulumaharan					
2									
-8									
-18									
-28	000 10		70				200	400 500 000	700 1000 000
30.	.000 40		70		(MHz)		300		700 1000.000
lo. Mi	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Table Height Degre	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm degree	Comment
1	71.8319	10.76	10.70	21.46	40.00	-18.54	peak		
2	162.6105	13.99	14.37	28.36	43.50	-15.14	peak		
3	252.0627	22.92	12.11	35.03	46.00	-10.97	peak		
4 *	420.5803	21.54	16.05	37.59	46.00	-8.41	peak		
	441.7425	20.65	16.67	37.32	46.00	-8.68	peak		
5				31.46	46.00	-14.54	peak		

Note:1. *:Maximum data; x:Over limit; !:over margin. 2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

EUT:		WIR	ELESS S	PEAKER	SUNGLA	SSES	Model No.:		P326.981		
Tempera	ture:	° 20	С				Relative Humi	dity:	48%		
	est Mode: Mode2/Mode3/Mode4 Test By:								Eileen Liu		
All the mo	odulatior	n moo	les have	been teste	ed, and the	e worst r	esult was repo	ort as belov	W:		
Test Mo	de: GFS	ктх	Low	I	1 1			1		1	
Freq (MHz)	Read L (dBuV		Polar (H/V)	Antenna Factor (dB/m)	Cable loss(dB)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m	Margin ı) (dB)	Remark	
4804	43.4	8	V	33.95	10.18	34.26	53.35	74	-20.65	PK	
4804	33.8	0	V	33.95	10.18	34.26	43.67	54	-10.33	AV	
7206	/			/							
9608	/			1							
4804	42.6	4	Н	33.95	10.18	34.26	52.51	74	-21.49	PK	
4804	33.2	3	Н	33.95	10.18	34.26	43.10	54	-10.90	AV	
7206	/			/							
9608	1			/							
Test Mo	de: GFS	ктх	Mid								
4882	41.0	2	V	33.93	10.2	34.29	50.86	74	-23.14	PK	
4882	32.2	5	V	33.93	10.2	34.29	42.09	54	-11.91	AV	
7323	/			/							
9764	/			/							
4882	41.2	5	Н	33.93	10.2	34.29	51.09	74	-22.91	PK	
4882	31.6	5	Н	33.93	10.2	34.29	41.49	54	-12.51	AV	
7323	/			/							
9764	/			/							
Test Mo	de: GFS	ктх	High								
4960	41.3	5	V	33.98	10.22	34.25	51.30	74	-22.70	PK	
4960	32.2	7	V	33.98	10.22	34.25	42.22	54	-11.78	AV	
7440	/			/							
9920	/			/							
4960	41.1	5	Н	33.98	10.22	34.25	51.10	74	-22.90	PK	
4960	30.7	9	Н	33.98	10.22	34.25	40.74	54	-13.26	AV	
7440	/			1							
9920	/			/							
	other en			ha factor +			actor and deemed t	o comply v	with		

EUT:		RELESS S	PEAKER	SUNGLA			P326.9	81	
Temperat					Re	lative Humidi	-		
Test Mod		ode2/ Mode				st By:	Eileen		
All the m	odulation r	nodes have	e been tes	ted, and t	ne worst r	esult was rep	ort as below	<u>:</u>	
Test Mo	de: π/4 DQ	PSK TX Lo	w			I		1	
Freq (MHz)	Read Leve (dBuV/m)		Antenna Factor (dB/m)	Cable loss(dB)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4804	42.38	V	33.95	10.18	34.26	52.25	74	-21.75	PK
4804	30.90	V	33.95	10.18	34.26	40.77	54	-13.23	AV
7206	/		/						
9608	/		/						
4804	43.26	Н	33.95	10.18	34.26	53.13	74	-20.87	PK
4804	31.43	Н	33.95	10.18	34.26	41.30	54	-12.70	AV
7206	/		/						
9608	/		/						
Test Mo	de: π/4 DQ	PSK TX M	id						
4882	42.74	V	33.93	10.2	34.29	52.58	74	-21.42	PK
4882	32.19	V	33.93	10.2	34.29	42.03	54	-11.97	AV
7323	/		/						
9764	/		/						
4882	43.10	Н	33.93	10.2	34.29	52.94	74	-21.06	PK
4882	32.96	Н	33.93	10.2	34.29	42.80	54	-11.20	AV
7323	/		/						
9764	/		/						
Test Mo	de: π/4 DQ	PSK TX Hi	gh						
4960	41.65	V	33.98	10.22	34.25	51.60	74	-22.40	PK
4960	31.88	V	33.98	10.22	34.25	41.83	54	-12.17	AV
7440	1		/						l I
9920	1		1						
4960	42.47	Н	33.98	10.22	34.25	52.42	74	-21.58	PK
4960	31.32	Н	33.98	10.22	34.25	41.27	54	-12.73	AV
7440	/		/						
9920	1		1						
	other emiss	el + Antenr sions not re				ctor and deemed t	o comply wit	h	

	uro:	EUT: WIRELESS SPEAKER SUNGLASSES						P326.981			
Test Mode	ture: 20 ℃					Relative Humidity:					
All the m			Mode3/ Mo						en Liu		
All the mo	odulation mo	odes have	e been tes	ted, a	nd th	ne worst r	esult wa	is rep	ort as below:		
Test Mod	le: 8- DQPS	K TX Lov	/								
Freq (MHz)	Read Level (dBuV/m)	Polar (H/V)	Antenna Factor (dB/m)	Cab loss(Amp Factor (dB)	Resi (dBuV		Limit (dBuV/m)	Margin (dB)	Remark
4804	41.32	V	33.95	10.1	18	34.26	51.1	9	74	-22.81	PK
4804	31.14	V	33.95	10.1	18	34.26	41.0	1	54	-12.99	AV
7206	/		/								
9608	/		1								
4804	40.55	Н	33.95	10.1	18	34.26	50.4	2	74	-23.58	PK
4804	30.95	Н	33.95	10.1	18	34.26	40.8	2	54	-13.18	AV
7206	1		1								
9608	/		/								
Test Mod	le: 8- DQPS	K TX Mid									
4882	41.30	V	33.93	10.	2	34.29	51.1	4	74	-22.86	PK
4882	32.20	V	33.93	10.	2	34.29	42.0	4	54	-11.96	AV
7323	1		1								
9764	/		/								
4882	41.63	Н	33.93	10.		34.29	51.4		74	-22.53	PK
4882	31.62	Н	33.93	10.	2	34.29	41.4	6	54	-12.54	AV
7323	/		/								
9764	/		/								
Test Mod	le: 8- DQPS	K TX Hig	h								
4960	40.83	V	33.98	10.2	22	34.25	50.7	'8	74	-23.22	PK
4960	32.40	V	33.98	10.2	22	34.25	42.3	5	54	-11.65	AV
7440	/		/								
9920	/		/								
4960	41.16	Н	33.98	10.2	22	34.25	51.1	1	74	-22.89	PK
4960	32.92	Н	33.98	10.2	22	34.25	42.8	7	54	-11.13	AV
7440	/		1								
9920 Note:	/		1								

Spurious F	-mission in	Band edge	2							
EUT:	WI	RELESS S	PEAKER	Model N	o :	P326.	081			
		INGLASSE	S				501			
Temperature:	20	-			Relative Humidity: 48%					
Test Mode:		de2/ Mode		Test By: Eileen Liu d the worst result was report as below:						
			tested, ar	nd the wo	orst resu	It was report	as below:			
Test mode: GF	-SK IX LOW								1	
Freq (MHz)	Read Leve (dBuV/m)	(H/V)	Antenna Factor (dB/m)	Cable loss (dB)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	
2390	41.45	V	27.62	3.92	34.97	38.02	74	35.98	PK	
2390		V					54		AV	
2390	41.06	Н	37.63	74	36.37	37.63	74	36.37	PK	
2390		Н					54		AV	
Test mode: GF	SK Tx Hig	h		•						
2483.5	46.07	V	27.89	4	34.97	42.99	74	31.01	PK	
2483.5		V					54		AV	
2483.5	42.06	Н	27.89	4	34.97	38.98	74	35.02	PK	
2483.5		Н					54		AV	
Test mode: π/4 DQPSK Tx Low										
Freq (MHz)	Read Leve (dBuV/m)	$(H\Lambda/)$	Antenna Factor (dB/m)	Cable loss (dB)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	
2390	42.21	V	27.62	3.92	34.97	38.78	74	35.22	PK	
2390		V					54		AV	
2390	41.09	Н	27.62	3.92	34.97	37.66	74	36.34	PK	
2390		Н					54		AV	
Test mode: π/4	4 DQPSK T	x High								
2483.5	43.72	V	27.89	4	34.97	40.64	74	33.36	PK	
2483.5		V					54		AV	
2483.5	47.53	Н	27.89	4	34.97	44.45	74	29.55	PK	
2483.5		Н					54		AV	
Test mode: 8-	DPSK Tx L	.OW								
Freq (MHz)	Read Leve (dBuV/m)	(H/V)	Antenna Factor (dB/m)	Cable loss (dB)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	
2390	42.07	V	27.62	3.92	34.97	38.64	74	35.36	PK	
2390		V					54		AV	
2390	40.63	Н	27.62	3.92	34.97	37.20	74	36.80	PK	
		Н					54		AV	
2390	2390 H 54 AV Test mode: 8- DPSK Tx High									
	DPSK Tx H	ligh								
	DPSK Tx H 45.52	ligh V	27.89	4	34.97	42.44	74	31.56	РК	

Report No.: SRS171109808

2483.5	34.45	Н	27.89	4	34.97	31.37	74	42.63	PK
2483.5		Н					54		AV
Noto:									

Note:

1, Result = Read level + Antenna factor + cable loss-Amp factor 2, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

7.3 NUMBER OF HOPPING CHANNEL

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

7.3.3 Measuring Instruments

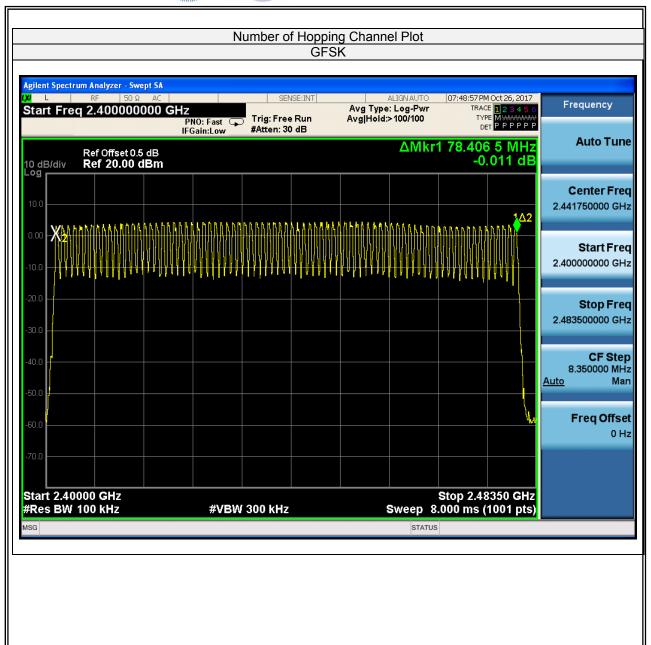
The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

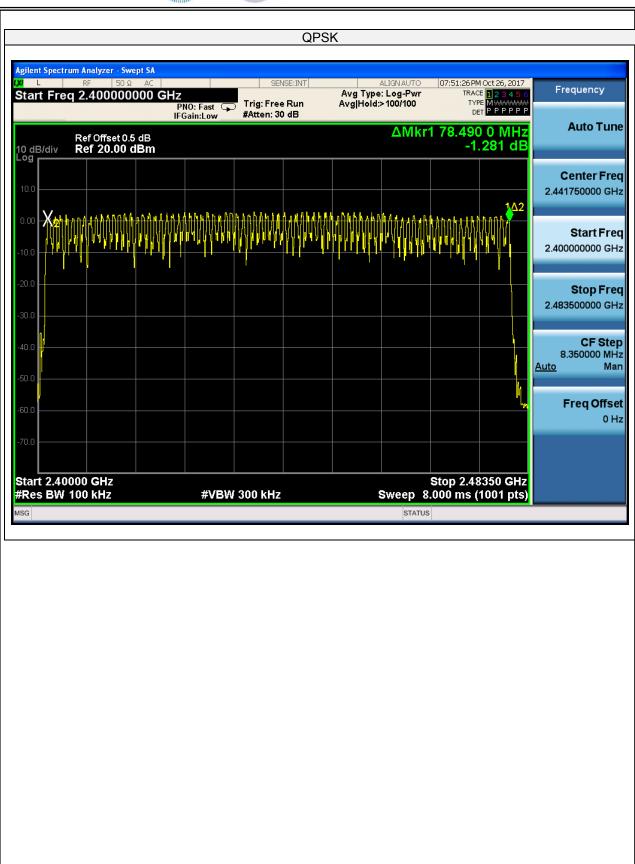
7.3.5 Test Procedure

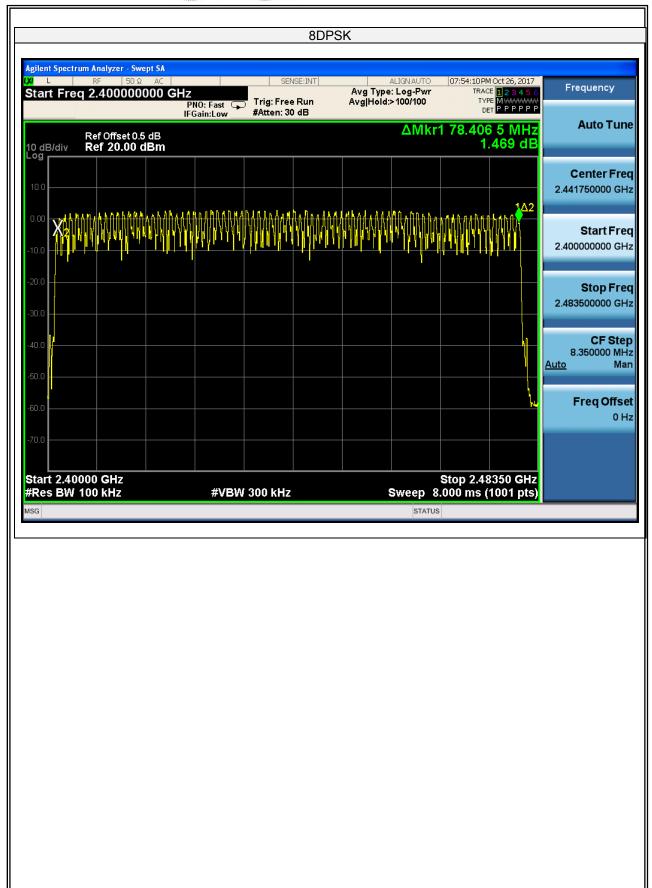
The testing follows ANSI C63.10-2013 clause 7.8.3 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold


7.3.6 Test Results

EUT:	WIRELESS SPEAKER SUNGLASSES	Model No.:	P326.981
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode 5	Test By:	Eileen Liu

Number of Hopping (Channel)	Adaptive Frequency hopping (Channel)	limit	Verdict
79	/	≥15	Pass
79	/	≥15	Pass
79	/	≥15	Pass





7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.4.2 Conformance Limit

Frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Measurement Bandwidth or Channel Separation RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel. VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.4.6 Test Results

EUT:	WIRE	LESS SPEAKE GLASSES	KER Model No.: P326.981					
Temperature:	20 ℃		Relative Hum	idity:	48%			
Test Mode:	Mode	2/Mode3/Mode4	4 Test By:		Eileen Liu			
Modulation Mode	Channel Number	Channel Frequency (MHz)	Measured Channel Separation (kHz)		Limit (kHz) V		Verdict	
GFSK	0 39 70	2402 2441	1000 1000	>82	7.50 9.40	2/3 of 20dB BW 2/3 of 20dB BW	PASS PASS	
π/4-DQPSK	78 0 39	2480 2402 2441	<u> 1000 </u>	>83	-	2/3 of 20dB BW 2/3 of 20dB BW 2/3 of 20dB BW	PASS PASS PASS	
	78 0	2480 2402	1000	>74	4.67 6.00	2/3 of 20dB BW 2/3 of 20dB BW	PASS PASS	
8-DPSK	39 78	2441 2480	<u>1000</u> 1000 1000		6.00	2/3 of 20dB BW 2/3 of 20dB BW 2/3 of 20dB BW	PASS	

Test Plot

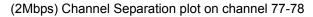
Agenet Spectrum Madgers, Swept SA Center Freq 2.402500000 GHz Center Freq 2.402500000 GHz Center Freq 2.402500000 GHz Center Freq 2.40250000 GHz Center Freq 2.405000 GHz Center Freq 2.4050000 GHz Center Freq 2.405000 GHz Center Freq

(1Mbps) Channel Separation plot on channel 00-01

(2Mbps) Channel Separation plot on channel 00-01

(2Mbps) Channel Separation plot on channel 39-40

(1Mbps) Channel Separation plot on channel 39-40


#VBW 100 kHz

Span 2.500 MH eep 2.667 ms (1001 pt

 Agenetization Adaptation
 Application Adaptation
 Application Adaptation
 Application Adaptation
 Application Adaptation
 Application Adaptation
 Application Addition
 Application Addition

Version.1.2

Center 2.402500 G #Res BW 30 kHz

Page 33 of 55

Test Plot

(3Mbps) Channel Separation plot on channel 00-01

(3Mbps) Channel Separation plot on channel 39-40

(3Mbps) Channel Separation plot on channel 77-78

Version.1.2

7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

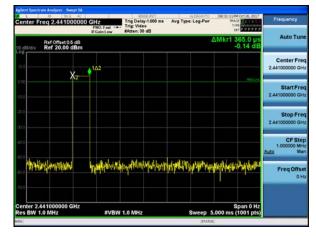
7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW \geq 1MHz VBW \geq RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting. Measure the maximum time duration of one single pulse.

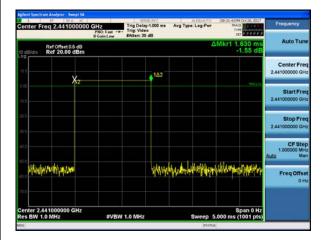
7.5.6 Test Results

EUT:	WIRELESS SPEAKER SUNGLASSES	Model No.:	P326.981
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Eileen Liu

Mode	Data Packet	Frequency (MHz)	Pulse Duration (ms)	Dwell Time (s)	Limit (s)	Conclusion
GFSK	DH1	2441	0.365	0.117	<0.4	PASS
	DH3	2441	1.630	0.261	<0.4	PASS
	DH5	2441	2.870	0.306	<0.4	PASS
π/4 DQPSK	DH1	2441	0.365	0.117	<0.4	PASS
	DH3	2441	1.615	0.258	<0.4	PASS
	DH5	2441	2.875	0.307	<0.4	PASS
8- DPSK	DH1	2441	0.370	0.118	<0.4	PASS
	DH3	2441	1.620	0.259	<0.4	PASS
	DH5	2441	2.870	0.306	<0.4	PASS
Note: 1 A period time = 0.4 (s) * 79 = 31.6(s) 2 DH1 time slot = Pulse Duration * (1600/(2*79)) * A period time/1000						


2 DH1 time slot = Pulse Duration * (1600/(2*79)) * A period time/1000 DH3 time slot = Pulse Duration * (1600/(4*79)) * A period time/1000 DH5 time slot = Pulse Duration * (1600/(6*79)) * A period time/1000

For Example:


- In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to (1600 / 6 / 79) x (0.4 x 79) = 106.67 hops.
- In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to (800 / 6 / 20) x (0.4 x 20) = 53.33 hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

Package Transfer Time Plot CH39-DH1

Package Transfer Time Plot CH39-DH3

Package Transfer Time Plot CH39-DH5

 Aginet Spectrum Analyser: Swept SA
 EUX00700
 OBL02 SHE OCTAL SUTT
 Frequency

 Center Freq 2.441000000 GHz IF Cault and Transmission
 Trip Stress Mater: 30 dB
 Auto Tune
 Auto Tune

 Debider
 Ref Orset 0.6 dB
 Auto Tune
 -1.00 dB
 Auto Tune

 Debider
 Ref Orset 0.6 dB
 -1.00 dB
 Center Freq 2.441000000 GHz
 -1.00 dB

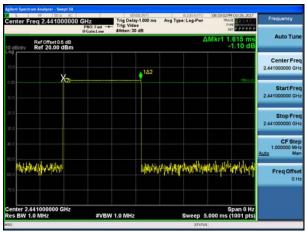
 Debider
 Ref Orset 0.6 dB
 -1.00 dB
 -1.00 dB
 Center Freq 2.441000000 GHz

 Debider
 Ref Orset 0.6 dB
 -1.00 dB
 -1.00 dB
 Center Freq 2.441000000 GHz

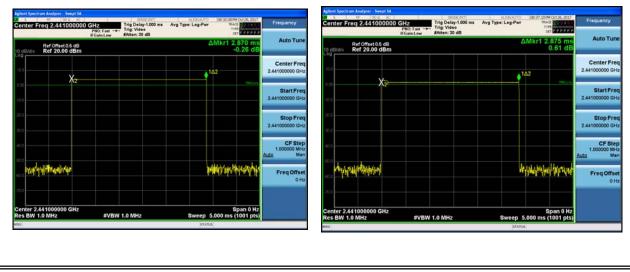
 Debider
 Ref Orset 0.6 dB
 -1.00 dB
 -1.00 dB
 Center Freq 2.441000000 GHz

 Debider
 Ref Orset 0.6 dB
 -1.00 dB
 -1.00 dB
 Center Freq 2.441000000 GHz

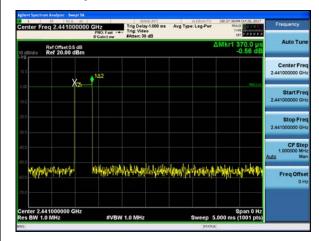
 Debider
 Ref Orset 0.6 dB
 -1.00 dB
 -1.00 dB
 Center Freq 2.441000000 GHz


 Debider
 Ref Orset 0.6 dB
 -1.00 dB
 -1.00 dB
 Center Freq 0.00 dB

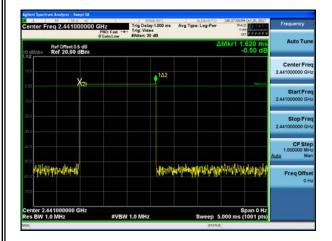
 Center 2.441000000 GHz
 Freq 00000 GHz
 Store Freq 0.0000 GHz
 Store Freq 0.000 GHz

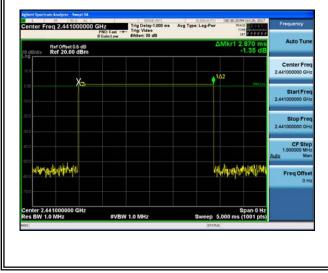

 Center 2.441000000 GHz
 #VEW 1.0 MHz
 Store F.0000 RD
 Store F.0000 RD
 </t

Package Transfer Time Plot CH39-2DH1



Package Transfer Time Plot CH39-2DH5




Package Transfer Time Plot CH39-3DH1

Package Transfer Time Plot CH39-3DH3

Package Transfer Time Plot CH39-3DH5

7.6 20DB BANDWIDTH TEST

7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.6.2 Conformance Limit

No limit requirement.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.6.6 Test Results

EUT:	WIRELESS SPEAKER SUNGLASSES	Model No.:	P326.981
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Eileen Liu

Mode	Freq (MHz)	20dB Bandwidth (KHz)	Limit (kHz)	Conclusion
	2402	747.5	/	PASS
GFSK	2441	829.4	/	PASS
	2480	836.3	/	PASS
	2402	1117.0	/	PASS
π/4 DQPSK	2441	1118.0	/	PASS
	2480	1117.0	/	PASS
	2402	1164.0	/	PASS
8- DPSK	2441	1164.0	/	PASS
	2480	1166.0	/	PASS

Note: N/A (Not Applicable)

20dB Bandwidth plot on channel 00 (1Mbps)

20dB Bandwidth plot on channel 39 (1Mbps)

20dB Bandwidth plot on channel 78 (1Mbps)

a 2.41 Ref Offset 0.5 dB Ref 20.00 dBm Clear Wri Aven Max Ho enter 2.48 GHz Res BW 30 kHz Span 3 MH #VBW 100 kH SI Min H Occupied Ba Total P 9.86 dBn 842.09 kHz De -3.794 kHz ansmit Freq Err OBW F 99.00 % dB Bandwidth 836.3 kHz x dB -20.00 dB

20dB Bandwidth plot on channel 00 (2Mbps)

20dB Bandwidth plot on channel 39 (2Mbps)

20dB Bandwidth plot on channel 78 (2Mbps)

20dB Bandwidth plot on channel 00 (3Mbps)

20dB Bandwidth plot on channel 39 (3Mbps)

20dB Bandwidth plot on channel 78 (3Mbps)

Version.1.2

7.7 PEAK OUTPUT POWER

7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

7.7.3 Measuring Instruments

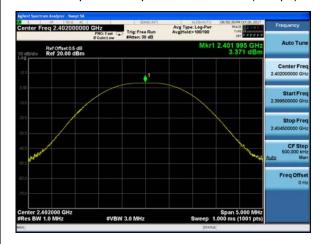
The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW \geq the 20 dB bandwidth of the emission being measured VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold


7.7.6 Test Results

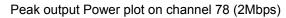
EUT:	WIRELESS SPEAKER SUNGLASSES	Model No.:	P326.981
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Eileen Liu

Mode	Freq (MHz)	PK Output Power (dBm)	PK Output Power (mW)	Limit (dBm)	Margin (dB)
	2402	3.371	2.173	30	17.287
GFSK	2441	4.421	2.768	30	17.184
	2480	3.681	2.334	30	16.553
	2402	1.942	1.564	21	17.294
π/4 DQPSK,	2441	3.078	2.031	21	17.190
-	2480	2.118	1.629	21	16.551
	2402	1.940	1.563	21	17.291
8- DPSK	2441	3.088	2.036	21	17.191
-	2480	2.107	1.624	21	16.556

Peak output Power plot on channel 00 (1Mbps)

Peak output Power plot on channel 39 (1Mbps)

Peak output Power plot on channel 78 (1Mbps)



Peak output Power plot on channel 00 (2Mbps)

Peak output Power plot on channel 39 (2Mbps)

Allers Spectrues Andgers' Swept SA Center Freq 2.48000000 GHz Fige Trees Trees Andgers' Swept SA Auto Tune Ref Offset 0.5 dB Center Freq 2.4800000 GHz 2.118 dBm Center Freq 2.4800000 GHz 2.118 dBm Center Freq 2.480000 GHz 2.118 dBm Center Freq 2.480000 GHz 2.118 dBm Center Freq 2.480000 GHz Center Set 2.480000 GHz Start Freq 2.480000 GHz Center Set 2.480000 GHz Start Freq 2.480000 GHz Center Set 2.480000 GHz Start Freq 2.48000 GHZ Start Freq 2.48

Version.1.2

Page 45 of 55

Peak output Power plot on channel 00 (3Mbps)

Peak output Power plot on channel 39 (3Mbps)

Peak output Power plot on channel 78 (3Mbps)

Report No.: SRS171109808

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

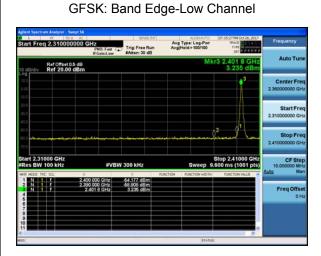
RBW = 100KHz

VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.



7.8.6 Test Results

EUT:	WIRELESS SPEAKER SUNGLASSES	Model No.:	P326.981
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2 /Mode4/ Mode 5	Test By:	Eileen Liu

Test Plot

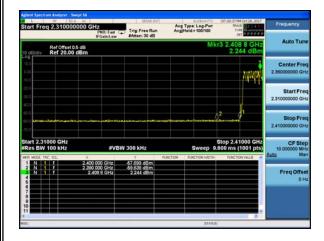
Note: Hopping enabled and disabled have evaluated, and the wortest data was reported

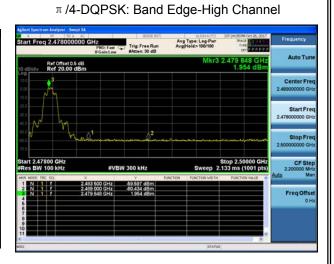
GFSK: Band Edge-Low Channel (Hopping Mode)

Start Fre		0.0 AC 00000 GHz PNO: Fast FGals:Low	Trig: Free Run #Atten: 30 dB	Avg Type: Log-Pwr Avg Held>100/100	107:10:42PM Oct 26, 2017 TRACE P 2 4 4 TYPE Notecomment Det P P P P P	Frequency
10 dB/div	Ref Offsel Ref 20.0	10.5 dB 10 dBm		Mk	r3 2,409 8 GHz 3.670 dBm	Auto Tune
					3. 	Center Fred 2.36000000 GHz
-30.0						Start Freq 2.31000000 GHz
40.0 40.0 -70.0	a.h			in the intervention of the second	2	Stop Free 2.410000000 GH
Start 2.31 #Res BW	100 kHz	#VE	3W 300 kHz	Sweep 9	Stop 2.41000 GHz 600 ms (1001 pts)	CF Step 10.000000 MH
1 N	- {	2 400 000 GHz 2 390 000 GHz 2 409 8 GHz	-58.041 dBm -59.818 dBm 3.670 dBm	UNCTION FUNCTION WOTH	TUNCTION VALUE	Freq Offse 0 H
8 9 10						

GFSK: Band Edge-High Channel

GFSK: Band Edge-High Channel (Hopping Mode)





x /4-DQPSK: Band Edge-Low Channel

π /4-DQPSK: Band Edge-Low Channel (Hopping Mode)

π /4-DQPSK: Band Edge-High Channel (Hopping Mode)

THACE DE LA	Type: Log-Pwr	An	Trig: Free Run	PNO: Fast C	000 GHz		art Fre
	Mkr		Botten: JO dB	Gais:Low	5 dB		dB/div
3							
Å							0 0
2 1 be			ngangan yan kinada yan			e-sev usereden	0 0 0
Stop 2.41000 GHz 600 ms (1001 pts)	Sweep 9.0		300 kHz	#VB			
FUNCTION VALUE	FUNCTION WIDTH	FUNCTION	¥ 54,598 dBm 59,437 dBm 1,699 dBm	00 GHz	2 390 00	1	
	2 3 2.400 8 GH 1.699 GBr 3 2 3 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 5 6 1.699 GBr 4 3 5 6 1.699 GBr 5 6 1.699 GBr 5 1.699 GBr 5	Binded top of the second secon	Avg Type: Log-Pur AvgBield-300100 The Top Type AvgBield-300100 The Top Type AvgBield-300100 The Top Type AvgBield-300100 The Top Type AvgBield-3000 The Top Type Stop 2.41000 CH Sweep 9.500 ms (1001 pt)	Trig Free Run Ardian 30 dD Mitra 2.4019 GB Mitra 2.4019 GB Mitra 2.4019 GB Stop 2.41000 GH Stop 2.41000 GH Stop 2.41000 GH Stop 2.41000 GH Stop 2.41000 GH	NO.T market and the second sec	D000 GHz Free Free Bun Arg Type: Las Pur trained States 30 dB March Type: Trained States 30 dB March Type	g 2.31000000000000000000000000000000000000

8-DPSK: Band Edge-Low Channel (Hopping Mode)

8-DPSK: Band Edge-High Channel (Hopping Mode)

7.9 SPURIOUS RF CONDUCTED EMISSION

7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.9.4 Test Setup

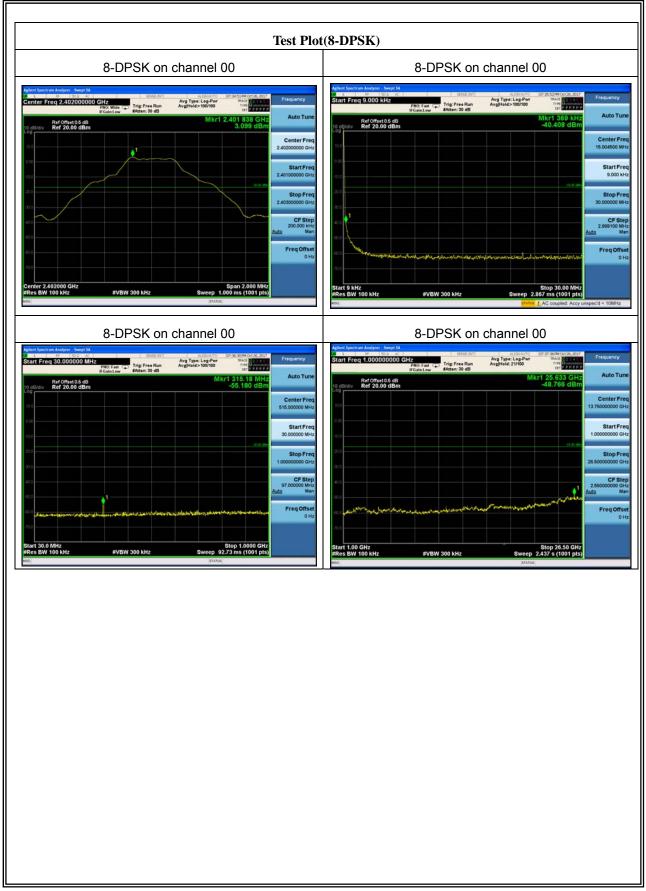
Please refer to Section 6.1 of this test report.

7.9.5 Test Procedure

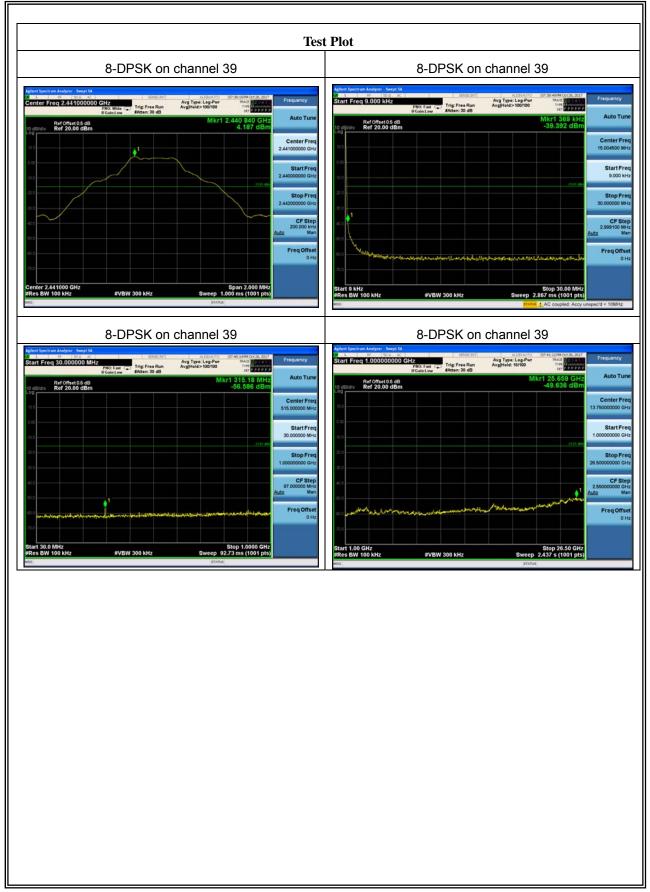
Establish an emission level by using the following procedure:

a) Set the center frequency and span to encompass frequency range to be measured.

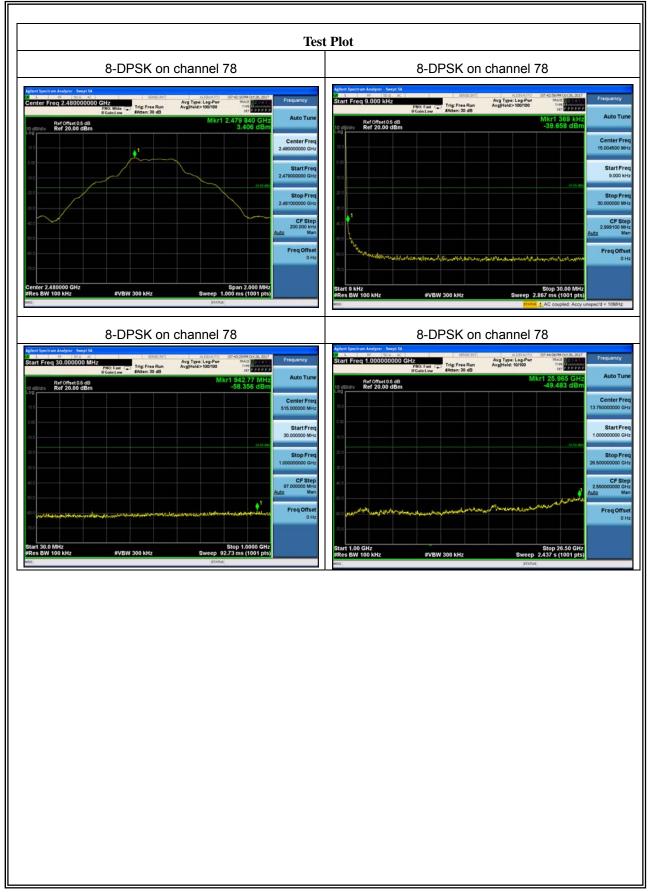
- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 \times RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.


h) Use the peak marker function to determine the maximum amplitude level. Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

7.9.6 Test Results


Remark: The measurement frequency range is from 9KHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

The worst mode is 8-DPSK mode, and the report only show the worst mode data.



7.10 ANTENNA APPLICATION

7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible partyshall be used with the device.

7.10.2 Result

The EUT antenna is permanent attached PCB antenna(Gain:1.5dBi). It comply with the standard requirement.

END OF REPORT