FCC REPORT

Report Reference No.....: CHTEW2209001101

Report verification:

Project No...... SHT2208258301EW

FCC ID.....: 2AJZP-G450A1

Applicant's name: Mason America, Inc

Test item description: PAD

Trade Mark MASON/yprime

Model/Type reference..... G450A1

Listed Model(s) -

Standard FCC CFR Title 47 Part 2

FCC CFR Title 47 Part 22 FCC CFR Title 47 Part 24

FCC CFR Title 47 Part 27

Date of testing...... Aug.31, 2022-Sep.05, 2022

Date of issue...... Sep.06, 2022

Result.....: Pass

Compiled by

(position+printedname+signature)...: File administrators Fanghui Zhu

Jang Mir Zhu

Supervised by

(position+printedname+signature)....: Project Engineer Caspar Chen

Louise

Approved by

(position+printedname+signature)....: Manager Hans Hu

Testing Laboratory Name: Shenzhen Huatongwei International Inspection Co., Ltd.

Gongming, Shenzhen, China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely correspond to the test sample.

Report No.: CHTEW2209001101 Page: 2 of 52 Issued: 2022-09-06

Contents

<u>1.</u>	TEST STANDARDS AND REPORT VERSION	3
	Angliant to Otan too to	
1.1.	Applicable Standards	3
1.2.	Report version information	3
<u>2.</u>	TEST DESCRIPTION	4
<u>3.</u>	SUMMARY	5
		_
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Operation state	7
3.4.	EUT operation mode	8
3.5.	EUT configuration	9
3.6.	Modifications	9
<u>4.</u>	TEST ENVIRONMENT	10
4.1.	Address of the test laboratory	10
4.2.	Equipments Used during the Test	11
4.3.	Environmental conditions	12
4.4.	Statement of the measurement uncertainty	12
<u>5.</u>	TEST CONDITIONS AND RESULTS	13
5.1.	Conducted Output Power	13
5.2.	Peak-to-Average Ratio	14
5.3.	99% Occupied Bandwidth & 26 dB Bandwidth	15
5.4.	Band Edge	16
5.5.	Conducted Spurious Emissions	17
5.6.	Frequency stability VS Temperature measurement	18
5.7.	Frequency stability VS Voltage measurement	19
5.8.	ERP and EIRP	20
5.9.	Radiated Spurious Emission	31
<u>6.</u>	TEST SETUP PHOTOS OF THE EUT	51
<u>7.</u>	EXTERNAL AND INTERNAL PHOTOS OF THE EUT	52
8.	APPENDIX REPORT	5.2

Report No.: CHTEW2209001101 Page: 3 of 52 Issued: 2022-09-06

1. TEST STANDARDS AND REPORT VERSION

1.1. Applicable Standards

The tests were performed according to following standards:

FCC Rules Part 2: FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS

FCC Rules Part 22: PUBLIC MOBILE SERVICES

FCC Rules Part 24: PERSONAL COMMUNICATIONS SERVICES

FCC Rules Part 27: MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES

ANSI C63.26: 2015: American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services

KDB 971168 D01 Power Meas License Digital Systems v03: MEASUREMENT GUIDANCE FOR

CERTIFICATION OF LICENSED DIGITAL TRANSMITTERS

1.2. Report version information

Revision No.	Date of issue	Description
N/A	2022-09-06	Increase the band71 frequency band, increase the test based on the report CHTEW19100129

Report No.: CHTEW2209001101 Page: 4 of 52 Issued: 2022-09-06

2. Test Description

Test Item	Section in CFR 47	Result	Test Engineer
Conducted Output Power	Part 2.1046 Part 22.913(a) Part 24.232(c) Part 27.50	Pass	Jiongsheng Feng
Peak-to-Average Ratio	Part 24.232 Part 27.50	Pass	Jiongsheng Feng
99% Occupied Bandwidth & 26 dB Bandwidth	Part 2.1049 Part 22.917(b) Part 24.238(b) Part 27.53	Pass	Jiongsheng Feng
Band Edge	Part 2.1051 Part 22.917 Part 24.238 Part 27.53	Pass	Jiongsheng Feng
Conducted Spurious Emissions	Part 2.1051 Part 22.917 Part 24.238 Part 27.53	Pass	Jiongsheng Feng
Frequency stability VS Temperature	Part 2.1055(a)(1)(b) Part 22.355 Part 24.235 Part 27.54	Pass	Jiongsheng Feng
Frequency stability VS Voltage	Part 2.1055(d)(1)(2) Part 22.355 Part 24.235 Part 27.54	Pass	Jiongsheng Feng
ERP and EIRP	Part 22.913(a) Part 24.232(b) Part 27.50	Pass	Pan Xie
Radiated Spurious Emissions	Part 2.1053 Part 22.917 Part 24.238 Part 27.53	Pass	Pan Xie

Note: The measurement uncertainty is not included in the test result.

Report No.: CHTEW2209001101 Page: 5 of 52 Issued: 2022-09-06

3. **SUMMARY**

3.1. Client Information

Applicant:	Mason America, Inc
Address:	2101 4th Avenue Suite 1550, Seattle WA, 98121
Manufacturer:	Mason America, Inc
Address:	2101 4th Avenue Suite 1550, Seattle WA, 98121

3.2. Product Description

Name of EUT:	PAD	PAD							
Trade Mark:	MASON/yprime	MASON/yprime							
Model No.:	G450A1	G450A1							
Listed Model(s):	-	-							
SIM Information:	Support Two SIM Car	rd							
Power supply:	DC 3.8V								
Adapter information:	Input: 100-240Va.c., 5	Model: A138A-120150U-US2 Input: 100-240Va.c., 50/60Hz, 0.5A Output: 5.0Vd.c., 2.5A/9.0Vd.c.,2.0A/12Vd.c.,1.5A							
Hardware version:	PVT2.0								
Software version:	N2G48H								
4G									
Operation Band:	☑ FDD Band 2☑ FDD Band 7☑ FDD Band 41	☑ FDD Band 4☑ FDD Band 12☑ FDD Band 71	⊠ FDD Band 5 ⊠ FDD Band 17						
Transmit frequency:	FDD Band 2: FDD Band 4: FDD Band 5: FDD Band 7: FDD Band 12: FDD Band 17: TDD Band 41: FDD Band 71:	1710.7 MHz - 1754.3 824.7 MHz - 848.3 M 2502.5 MHz - 2567.5 699.7 MHz - 715.3 M 706.5 MHz - 713.5 M 2498.5 MHz - 2687.5	1850.7 MHz – 1909.3 MHz 1710.7 MHz – 1754.3 MHz 824.7 MHz – 848.3 MHz 2502.5 MHz – 2567.5 MHz 699.7 MHz – 715.3 MHz 706.5 MHz – 713.5 MHz 2498.5 MHz – 2687.5 MHz 665.5 MHz – 695.5 MHz						
Receive frequency:	FDD Band 2: FDD Band 4: FDD Band 5: FDD Band 7: FDD Band 12: FDD Band 17: TDD Band 41: FDD Band 71:	1930.7 MHz - 1989.3 2110.7 MHz - 2154.3 869.7 MHz - 893.3 M 2622.5 MHz - 2687.5 729.7 MHz - 745.3 M 736.5 MHz - 743.5 M 2498.5 MHz - 2687.5 619.9 MHz - 649.5 M	MHz Hz MHz Hz Hz MHz						

Report No.: CHTEW2209001101 Page: 6 of 52 Issued: 2022-09-06

	FDD Band 2:	1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz
	FDD Band 4:	1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz
	FDD Band 5:	1.4MHz, 3MHz, 5MHz, 10MHz
Channel bandwidth:	FDD Band 7:	5MHz, 10MHz, 15MHz, 20MHz
Chamer bandwidth.	FDD Band 12:	1.4MHz, 3MHz, 5MHz, 10MHz
	FDD Band 17:	5MHz, 10MHz
	TDD Band 41:	5MHz, 10MHz, 15MHz, 20MHz
	FDD Band 71:	5MHz, 10MHz, 15MHz, 20MHz
Power Class:	Class 3	
Modulation type:	QPSK, 16QAM	
Antenna type	FPC Antenna	
Antenna Gain	Band2:1.2dBi Band4:1.1dBi Band5:0.4dBi Band7:1.8dBi Band12:0.2dBi Band17:0.2dBi Band41:1.8dBi Band 71:-1.5 dBi	

Report No.: CHTEW2209001101 Page: 7 of 52 Issued: 2022-09-06

3.3. Operation state

Test frequency list

Test Frequency ID Low Range Mid Range High Range	Bandwidth [MHz] 1.4 3 5 10 15 10 15 10 15 10 15 10 20 10 1.4/3/5/10 15 10/20 10 1.4 3 5 10 15 10 15 10 15 10	NuL 18607 18615 18625 18650 18675 18700 18900 19193 19185	Frequency of Uplink [MHz] 1850.7 1851.5 1852.5 1855	N _{DL}	Frequency of Downlink
Mid Range High Range	3 5 10 15 ¹¹ 20 ¹¹ 1.4/3/5/10 15 ⁽¹⁾ /20 ⁽¹⁾ 1.4 3 5 10	18615 18625 18650 18675 18700 18900 19193	1851.5 1852.5	607	[MHz]
Mid Range High Range	3 5 10 15 ¹¹ 20 ¹¹ 1.4/3/5/10 15 ⁽¹⁾ /20 ⁽¹⁾ 1.4 3 5 10	18615 18625 18650 18675 18700 18900 19193	1851.5 1852.5		1930.7
Mid Range High Range	5 10 15 ¹¹ 20 ¹¹ 1.4/3/5/10 15 ⁽¹⁾ /20 ⁽¹⁾ 1.4 3 5 10	18625 18650 18675 18700 18900 19193	1852.5	615	1931.5
Mid Range High Range	15 ⁽¹⁾ 20 ⁽¹⁾ 1.4/3/5/10 15 ⁽¹⁾ /20 ⁽¹⁾ 1.4 3 5 10 15 ⁽¹⁾	18675 18700 18900 19193	1855	625	1932.5
High Range	20 (I) 1.4/3/5/10 15 (I)/20 (I) 1.4 3 5 10 15 (I)	18700 18900 19193		650	1935
High Range	1.4/3/5/10 15 ⁽¹⁾ /20 ⁽¹⁾ 1.4 3 5 10	18900 19193	1857.5	675	1937.5
High Range	1.4 3 5 10	19193	1860	700	1940
NOTE 1: Bandwidth f	1.4 3 5 10		1880	900	1960
NOTE 1: Bandwidth f	3 5 10 15 ^[1]		1909.3	1193	1989.3
NOTE 1: Bandwidth f	5 10 15 ^[1]		1908.5	1185	1988.5
NOTE 1: Bandwidth f	15 ^{FI}	19175	1907.5	1175	1987.5
	15 ^[1]	19150	1905	1150	1985
		19125	1902.5	1125	1982.5
	20 [1]	19100	1900	1100	1980
36.101 [27	or which a relaxation of Clause 7.3) is allo		cified UE receiver s	ensitivity re	quirement (15
Test Frequency ID	Bandwidth [MHz]	NuL	Frequency of Uplink [MHz]	N _{DL}	Frequency of Downlink [MHz]
	1.4	19957	1710.7	1957	2110.7
	3	19965	1711.5	1965	2111.5
l ow Range	5	19975	1712.5	1975	2112.5
Low Range	10		1715	2000	2115
					2117.5
Mid Dange			1720		2120 2132.5
ivild Range					2154.3
	3	20385	1753.5	2385	2153.5
High Dangs	5	20375	1752.5	2375	2152.5
nign Range	10	20350	1750	2350	2150
	15	20325	1747.5	2325	2147.5
	20	20300	1/45	2300	2145
Test Frequency ID	Bandwidth	N _{UL}	Frequency of	N _{DL}	Frequency of
	[MHz]		Uplink [MHz]		Downlink
	1.4	20407	824.7	2407	[MHz] 869.7
					870.5
Low Range	5				871.5
	10 ^[1]	20450	829	2450	874
Mid Range	1.4/3/5	20525	836.5	2525	881.5
					893.3 892.5
High Range	5				891.5
	10 [1]	20600	844	2600	889
		of the spec			
36.101 [27]	Clause 7.3) is allow	ved.			
Test Frequency ID	Bandwidth [MHz]	N _{UL}	Frequency of Uplink [MHz]	N _{DL}	Frequency of Downlink
	[2]		I	2775	[MHz] 2622.5
		20775	2502 E	2113	2625
	5	20775	2502.5 2505	2800	
Low Range	5 10 15	20800 20825	2502.5 2505 2507.5	2800 2825	2627.5
Low Range	5 10 15 20 ^[1]	20800	2505		
Low Range	5 10 15 20 ^[1]	20800 20825	2505 2507.5	2825	2627.5
	5 10 15 20 lu 5/10/15 20 lu	20800 20825 20850 21100	2505 2507.5 2510 2535	2825 2850 3100	2627.5 2630 2655
Mid Range	5 10 15 20 [1] 5/10/15 20 [1]	20800 20825 20850 21100 21425	2505 2507.5 2510 2535 2567.5	2825 2850 3100 3425	2627.5 2630 2655 2687.5
	5 10 15 20 lu 5/10/15 20 lu	20800 20825 20850 21100 21425 21400	2505 2507.5 2510 2535 2567.5 2565	2825 2850 3100 3425 3400	2627.5 2630 2655 2687.5 2685
Mid Range High Range	5 10 15 20 17 5/10/15 20 17 5 10 15 20 17	20800 20825 20850 21100 21425 21400 21375 21350	2505 2507.5 2510 2535 2567.5 2565 2562.5 2560	2825 2850 3100 3425 3400 3375 3350	2627.5 2630 2655 2687.5 2685 2682.5 2680
Mid Range High Range NOTE 1: Bandwidth fo	5 10 15 20 th 5/10/15 20 th 5 10 15 20 th	20800 20825 20850 21100 21425 21400 21375 21350 of the speci	2505 2507.5 2510 2535 2567.5 2565 2562.5 2560	2825 2850 3100 3425 3400 3375 3350	2627.5 2630 2655 2687.5 2685 2682.5 2680
Mid Range High Range NOTE 1: Bandwidth fo	5 10 15 20 17 5/10/15 20 17 5 10 15 20 17	20800 20825 20850 21100 21425 21400 21375 21350 of the speci	2505 2507.5 2510 2535 2567.5 2565 2562.5 2560	2825 2850 3100 3425 3400 3375 3350	2627.5 2630 2655 2687.5 2685 2682.5 2680
Mid Range High Range NOTE 1: Bandwidth fo	5 10 15 20 th 5/10/15 20 th 5 10 15 20 th	20800 20825 20850 21100 21425 21400 21375 21350 of the speci	2505 2507.5 2510 2535 2567.5 2565 2562.5 2560	2825 2850 3100 3425 3400 3375 3350	2627.5 2630 2655 2687.5 2685 2682.5 2680
Mid Range High Range NOTE 1: Bandwidth f	5 10 15 20 th 5/10/15 20 th 5 10 15 20 th or which a relaxation Clause 7.3) is allow	20800 20825 20850 21100 21425 21400 21375 21350 20 fthe specied.	2505 2507.5 2510 2535 2567.5 2565 2562.5 2560 fied UE receiver sen	2825 2850 3100 3425 3400 3375 3350 sitivity requi	2627.5 2630 2655 2687.5 2687.5 2682.5 2682.5 2680 rement (TS
Mid Range High Range NOTE 1: Bandwidth f 36.101 [27] Table 4.3.1.1.12-1:	5 10 15 20 th 5/10/15 20 th 5/10/15 20 th 10 15 20 th 10 1c January (Clause 7.3) is allow	20800 20825 20850 21100 21425 21400 21375 21350 of the specived.	2505 2507.5 2510 2535 2567.5 2565 2562.5 2560 0fied UE receiver sen	2825 2850 3100 3425 3400 3375 3350 sitivity requi	2627.5 2630 2655 2687.5 2688 2682.5 2680 rement (TS
Mid Range High Range NOTE 1: Bandwidth f	5 10 15 20 ty 5/10/15 20 ty 5/10/15 5 10 15 20 ty or which a relaxation Clause 7.3) is allow	20800 20825 20850 21100 21425 21400 21375 21350 20 fthe specied.	2505 2507.5 2507.5 2510 2535 2567.5 2565 2562.5 2560 fied UE receiver sen	2825 2850 3100 3425 3400 3375 3350 sitivity requi	2627.5 2630 2655 2687.5 2687.5 2682.5 2680 rement (TS
Mid Range High Range NOTE 1: Bandwidth f 36.101 [27] Table 4.3.1.1.12-1:	5 10 15 20 try 5/10/15 20 try 5/10/15 5 10 15 20 try or which a relaxation (Clause 7.3) is allow Test frequencies Bandwidth [MHz]	20800 20825 20850 21100 21425 21400 21375 21350 of the speci yed.	2505 2507.5 2510 2535 2567.5 2565 2562.5 2560 fied UE receiver sen A channel bandv Frequency of Uplink [MHz]	2825 2850 3100 3425 3400 3375 3375 3350 sitivity requi	2627.5 2630 2655 2687.5 2685 2682.5 2680 rement (TS
Mid Range High Range NOTE 1: Bandwidth f 36:101 [27] Table 4.3.1.1.12-1: Test Frequency ID	5 10 15 20 th 5/10/15 20 th 5/10/15 20 th 5 10 15 20 th 10 15 20 th 10 1clause 7.3) is allow Test frequencies Bandwidth [MHz] 1.4	20800 20825 20850 21100 21425 21400 21375 21350 of the speci yed.	2505 2507.5 2510 2535 2567.5 2565 2562.5 2560 fied UE receiver sen A channel bandv Frequency of Uplink [MHz] 699.7	2825 2850 3100 3425 3400 3375 3350 sitivity requi	2627.5 2630 2655 2687.5 2688 2682.5 2680 rement (TS Perating band 12 Frequency of Downlink [MHz] 729.7
Mid Range High Range NOTE 1: Bandwidth f 36.101 [27] Table 4.3.1.1.12-1:	5 10 15 20 try 5/10/15 20 try 5/10/15 5 10 15 20 try or which a relaxation (Clause 7.3) is allow Test frequencies Bandwidth [MHz]	20800 20825 20825 21100 21425 21400 21375 21350 of the specied.	2505 2507.5 2507.5 2510 2535 2567.5 2566.5 2562.5 2560 fied UE receiver sen A channel bandv Frequency of Uplink [MHz] 699.7 700.5	2825 2850 3100 3425 3430 3375 3350 3350 vidth for o No. 5017 5025	2627.5 2630 2655 2687.5 2687.5 2682.5 2680 rement (TS Perating band 12 Frequency of Downlink [MHz] 729.7 730.5
Mid Range High Range NOTE 1: Bandwidth f 36:101 [27] Table 4.3.1.1.12-1: Test Frequency ID	5 10 15 20 th 5/10/15 20 th 5/10/15 20 th 5 10 15 20 th 15 20 th Or which a relaxation Clause 7.3) is allow	20800 20825 20850 21100 21425 21407 21375 21350 of the specived. stor E-UTR Nut 23017 23025 23035	2505 2507.5 2510 2535 2567.5 2565 2562.5 2560 fied UE receiver sen A channel bandv Frequency of Uplink [MHz] 699.7 700.5 701.5	2825 2850 3100 3425 3400 3375 3350 ssitivity requi	2627.5 2630 2655 2687.5 2688 2682.5 2680 rement (TS Perating band 12 Frequency of Downlink [MH2] 729.7 730.5 731.5
Mid Range High Range NOTE 1: Bandwidth f 36:101 [27] Table 4.3.1.1.12-1: Test Frequency ID	5 10 15 20 try 5/10/15 20 try 5/10/15 5 10 15 10 15 20 try or which a relaxation Clause 7.3) is allow Test frequencies Bandwidth [MHz] 1.4 3 5 [0] 10 try 11 try 12 try 13 try 14/3	20800 20825 20825 21100 21425 21400 21375 21350 of the specied.	2505 2507.5 2507.5 2510 2535 2567.5 2566.5 2562.5 2560 fied UE receiver sen A channel bandv Frequency of Uplink [MHz] 699.7 700.5	2825 2850 3100 3425 3430 3375 3350 3350 vidth for o No. 5017 5025	2627.5 2630 2655 2687.5 2687.5 2682.5 2680 rement (TS Perating band 12 Frequency of Downlink [MHz] 729.7 730.5
Mid Range High Range NOTE 1: Bandwidth for 36.101 [27] Table 4.3.1.1.12-1: Test Frequency ID Low Range	5 10 15 20 tri 5/10/15 20 tri 5/10/15 20 tri 5 10 15 10 15 20 tri 10 rewhich a relaxation (Clause 7.3) is allow Test frequencies Bandwidth [MHz] 1.4 3 5 tri 10 tri 1.4/3	20800 20825 20825 21100 21425 21407 21350 21350 of the specived. **MuL** 23017 23025 23035 23050 23095	2505 2507.5 2507.5 2510 2535 2567.5 2565 2562.5 2560 fied UE receiver sen A channel bandv Frequency of Uplink [MHz] 699.7 700.5 701.5 704 707.5	2825 2850 3100 3402 3475 3400 3375 3350 No. No. 5017 5025 5035 5080 5095	2627.5 2630 2655 2687.5 2688 2682.5 2680 rement (TS Perating band 12 Frequency of Downlink [MHz] 729.7 730.5 731.5 734 737.5
Mid Range High Range NOTE 1: Bandwidth for 36.101 [27] Table 4.3.1.1.12-1: Test Frequency ID Low Range	5 10 15 20 I'I 5/10/15 20 I'I 5/10/15 5 10 15 20 I'I 7 or which a relaxation (Clause 7.3) is allow Test frequencies Bandwidth [MHz] 1.4 3 5 I'I 10 I'I 1.4/3 5 I'I/10 I'I 1.4/4	20800 20825 20825 21100 21425 21400 21375 21375 21350 of the specied. 8 for E-UTR NuL 23017 23025 23035 23095 23173	2505 2507.5 2507.5 2510 2535 2567.5 2565 2562.5 2560 fied UE receiver sen A channel bandv Frequency of Uplink [MHz] 699.7 700.5 701.5 704 707.5	2825 2850 3100 3402 3400 3375 3350 3350 No. 5017 5025 5035 5060 5095	2627.5 2630 2655 2687.5 2688 2682.5 2680 rement (TS Perating band 12 Frequency of Downlink [MHz] 729.7 730.5 731.5 734 737.5
Mid Range High Range NOTE 1: Bandwidth for 36.101 [27] Table 4.3.1.1.12-1: Test Frequency ID Low Range	5 10 15 20 I ¹¹ 5/10/15 20 I ¹³ 5/10/15 5 10 15 10 15 20 I ¹³ or which a relaxation Clause 7.3) is allow Test frequencies Bandwidth [MHz] 1.4 3 5 [1] 10 I ¹³ 1.4/3 5 [1]/10 I ¹³ 1.4/3	20800 20825 20825 21100 211425 21400 21375 21350 of the specived. 8 for E-UTR Nut 23017 23025 23035 23060 23095 23173 23165	2505 2507.5 2510 2535 2567.5 2565 2562.5 2560 fied UE receiver sen A channel bandv Frequency of Uplink [MHz] 699.7 700.5 701.5 704 707.5 715.3 714.5	2825 2850 3100 3425 3400 3375 3350 3350 vidth for o No. 5017 5025 5035 5060 5095	2627.5 2630 2655 2687.5 2687.5 2682.5 2680 rement (TS Perating band 12 Frequency of Downlink [MHz] 729.7 730.5 731.5 734 737.5 745.3 744.5
Mid Range High Range NOTE 1: Bandwidth [27] Table 4.3.1.1.12-1: Test Frequency ID Low Range Mid Range	5 10 15 20 tr 5/10/15 20 tr 5/10/15 20 tr 5 10 15 20 tr 16 20 tr 17 18 20 tr 18 20 tr 19 10 15 20 tr 10 15 20 tr 10 15 20 tr 10 15 20 tr 10 11 10 11 11 11 11 11 11 11 11 11 11	20800 20825 20825 21100 21425 21400 21375 21350 21350 of the specied. Nu. 23017 23025 23035 23060 23095 23165 23165	2505 2507.5 2507.5 2510 2535 2567.5 2565 2562.5 2560 fied UE receiver sen A channel bandv Frequency of Uplink [MHz] 699.7 700.5 701.5 704 707.5 715.3 714.5 713.5	2825 2850 3100 3402 3400 3375 3350 No. 5017 5025 5035 5060 5095 5155	2627.5 2630 2655 2687.5 2688 2682.5 2680 rement (TS Perating band 12 Frequency of Downlink [MHz] 729.7 730.5 731.5 734 737.5 745.3 744.5 743.5
Mid Range High Range NOTE 1: Bandwidth [27] Table 4.3.1.1.12-1: Test Frequency ID Low Range Mid Range	5 10 15 20 I'I 5/10/15 20 I'I 5/10/15 5 10 15 20 I'I or which a relaxation (Clause 7.3) is allow Test frequencies Bandwidth [MHz] 1.4 3 5 I'I 10 I'I 1.4/3 5 I'I/10 I'I	20800 20825 20825 20850 21100 211425 21402 21375 21350 of the specied. For E-UTR Nu. 23017 23025 23035 23095 23173 23165 23155 23155	2505 2507.5 2507.5 2510 2535 2567.5 2566.5 2562.5 2560 fied UE receiver sen A channel bandv Frequency of Uplink [MHz] 699.7 700.5 701.5 704 707.5 715.3 714.5 713.5 711.1	2825 2850 3100 3100 3425 3400 3375 3350 Sitivity requi	2627.5 2630 2655 2687.5 2688.5 2682.5 2680.5 2680.0 rement (TS Perating band 12 Frequency of Downlink [MHz] 729.7 730.5 731.5 734 737.5 745.3 744.5 743.5 7441.5
	Low Range Mid Range High Range Test Frequency ID Low Range Mid Range High Range NOTE 1: Bandwidth ft 36.101 [27]	MHz 1.4 3 5 5 10 15 20 Mid Range 1.4/3/5/10/15/20 1.4 3 3 5 10 10 15 20 Mid Range 1.4/3/5/10/15/20 1.4 3 5 10 10 15 20 Mid Range 1.4 3 5 10 10 10 10 10 10 10	Test Frequency ID Bandwidth Mul. Mul	MHz Uplink [MHz	MHz Uplink [MHz

Report No.: CHTEW2209001101 Page: 8 of 52 Issued: 2022-09-06

FDD Band 17	Test Frequency ID Bandwidth			N _{UL}	Frequency of Uplink [MHz]	N _{DL}	Frequency of Downlink [MHz]
	5 177			23755	706.5	5755	736.5
	Low Range	10 ^[1]		23780	709	5780	739
	Mid Range	5 ^[1] /10 [[]	11	23790	710	5790	740
	High Range	5 [1]		23825	713.5	5825	743.5
		10 ^[1]		23800	711	5800	741
	NOTE 1: Bandwidth f	or which a re e 7.3) is allov		n of the speci	fied UE receiver so	ensitivity requ	irement (TS 36.101
TDD Band 41	Test Frequency ID			ndwidth MHz]	EARFCN		y (UL and DL) [MHz]
	Low Rang	je		5	39675	2	498.5
				10	39700		2501
			15		39725	2503.5	
			20		39750	2506	
	MILE					2593	
	Mid Range High Range		5/10/15/20		40620		
			5		41565	2687.5	
				10	41540	2685	
			15		41515	2682.5	
			20		41490	2680	
			<u>'</u>		•	'	
TDD Band 71	Test Frequency ID	Bandw [MH:		NuL	Frequency o Uplink [MHz		Frequency of Downlink [MHz]
		5		133147	665.5	68611	619.5
	Low Range	10		133172	668	68636	622
	Low Range	15		133197	670.5	68661	624.5
		20		133222	673	68686	627
	Mid Range	5/10/		133297	680.5	68761	634.5
	wiid Range	20		133322	683	68786	637
		5		133447	695.5	68911	649.5
	High Range	10		133422	693	68886	647
	riigiritaligo	15		133397	690.5	68861	644.5
	1.1	20		133372	688	68836	642

3.4. EUT operation mode

For RF test items

The EUT has been tested under typical operating condition. Testing was performed by configuring EUT to maximum output power status.

Tarak Barra	Donal			Bandwid	Ith (MHz)			Modu	ulation	RB#		
Test Items	Band	1.4	3	5	10	15	20	QPSK	16QAM	1	Half	Full
	2	0	0	0	0	0	0	0	0	0	0	0
	4	0	0	0	0	0	0	0	0	0	0	0
	5	0	0	0	0	-	-	0	0	0	0	0
Conducted Output	7	-	-	0	0	0	0	0	0	0	0	0
Power	12	0	0	0	0	-	-	0	0	0	0	0
	17	-	-	0	0	-	-	0	0	0	0	0
	41	-	-	0	0	0	0	0	0	0	0	0
	71	-	-	0	0	0	0	0	0	0	0	0
	2	0	0	0	0	0	0	0	0	0	-	0
	4	0	0	0	0	0	0	0	0	0	-	0
	5	0	0	0	0	-	-	0	0	0	-	0
Peak-to-Average	7	-	-	0	0	0	0	0	0	0	-	0
Ratio	12	0	0	0	0	-	-	0	0	0	-	0
	17	-	-	0	0	-	-	0	0	0	-	0
	41	-	-	0	0	0	0	0	0	0	-	0
	71	-	-	0	0	0	0	0	0	0	0	0
	2	0	0	0	0	0	0	0	0	-	-	0
	4	0	0	0	0	0	0	0	0	-	-	0
	5	0	0	0	0	-	-	0	0	-	-	0
99% Occupied Bandwidth & 26	7	-	-	0	0	0	0	0	0	-	-	0
dB Bandwidth	12	0	0	0	0	-	-	0	0	0	-	0
	17	-	-	0	0	-	-	0	0	-	-	0
	41	_	-	0	0	0	0	0	0	-	-	0
	71	-	-	0	0	0	0	0	0	0	0	0

Report No.:	CHTEW2209001101				Pag	Page: 9 of 52			Iss	Issued: 20		022-09-06	
	2	0	0	0	0	0	0	0	0	0	-	0	
	4	0	0	0	0	0	0	0	0	0	-	0	
Rand Edga	5	0	0	0	0	-	-	0	0	0	-	0	
	7	-	-	0	0	0	0	0	0	0	-	0	
Band Edge	12	0	0	0	0	-	-	0	0	0	-	0	
	17	-	-	0	0	-	-	0	0	0	-	0	
	41	-	-	0	0	0	0	0	0	0	-	0	
	71	-	-	0	0	0	0	0	0	0	0	0	
	2	0	0	0	0	0	0	0	0	0	-	-	
	4	0	0	0	0	0	0	0	0	0	-	-	
	5	0	0	0	0	-	-	0	0	0	-	-	
Conducted	7	-	-	0	0	0	0	0	0	0	-	-	
Spurious Emission	12	0	0	0	0	-	-	0	0	0	-	-	
	17	-	-	0	0	-	-	0	0	0	-	-	
	41	-	-	0	0	0	0	0	0	0	-	-	
	71	-	-	0	0	0	0	0	0	0	0	0	
	2	0	0	0	0	0	0	0	0	-	-	0	
	4	0	0	0	0	0	0	0	0	-	-	0	
	5	0	0	0	0	-	-	0	0	-	-	0	
Frequency	7	-	-	0	0	0	0	0	0	-	-	0	
Stability	12	0	0	0	0	-	-	0	0	-	-	0	
	17	-	-	0	0	-	-	0	0	-	-	0	
	41	-	-	0	0	0	0	0	0	-	-	0	
	71	-	-	0	0	0	0	0	0	0	0	0	
	2	0	0	0	0	0	0	0	0	0	-	-	
	4	0	0	0	0	0	0	0	0	0	-	-	
	5	0	0	0	0	-	-	0	0	0	-	-	
ERP and EIRP	7	-	-	0	0	0	0	0	0	0	-	-	
	12	0	0	0	0	-	-	0	0	0	-	-	
	17	-	-	0	0	-	-	0	0	0	-	-	
	41	-	-	0	0	0	0	0	0	0	-	-	
	71	-	-	0	0	0	0	0	0	0	0	0	
	2	0	0	0	0	0	0	0	0	0	-	-	
	4	0	0	0	0	0	0	0	0	0	-	-	
D 11	5 7	0 -	0	0	0	-	-	0	0	0	-	-	
Radiated Spurious Emission	12	-	0	0	0	0	0	0	0	0	-	-	
Limboloff	17	-	-	0	0	-	-	0	0	0	-	-	
	41	-	-	0	0	0	0	0	0	0	-	-	
		-			1		1			1	+		
Remark	71 O O O O O O O O O O O O O O O O O												

3.5. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

• - supplied by the manufacturer

- supp	lied	pv.	the	lab

0	1	Manufacturer:	/
0	I	Model No.:	1
0	1	Manufacturer:	/
0	7	Model No.:	/

3.6. Modifications

No modifications were implemented to meet testing criteria.

Report No.: CHTEW2209001101 Page: 10 of 52 Issued: 2022-09-06

4. TEST ENVIRONMENT

4.1. Address of the test laboratory

Laboratory Name	Shenzhen Huatongwei International Inspection Co., Ltd.				
Laboratory Location	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China				
Connect information:	Tel: 86-755-26715499 E-mail: cs@szhtw.com.cn http://www.szhtw.com.cn	E-mail: cs@szhtw.com.cn			
Qualifications	Туре	Accreditation Number			
Qualifications	FCC	762235			

Report No.: CHTEW2209001101 Page: 11 of 52 Issued: 2022-09-06

4.2. Equipments Used during the Test

Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Signal and spectrum Analyzer	R&S	HTWE0242	FSV40	100048	2021/09/13	2022/09/12
•	Signal & Spectrum Analyzer	R&S	HTWE0262	FSW26	103440	2021/09/13	2022/09/12
•	Spectrum Analyzer	Agilent	HTWE0286	N9020A	MY50510187	2021/09/13	2022/09/12
•	Radio communication tester	R&S	HTWE0287	CMW500	137688-Lv	2021/09/13	2022/09/12
•	Test software	Tonscend	N/A	JS1120	N/A	N/A	N/A

•	Radiated Spu	ırious Emission					
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Semi-Anechoic Chamber	Albatross projects	HTWE0122	SAC-3m-01	N/A	2018/09/27	2022/09/26
•	Spectrum Analyzer	R&S	HTWE0098	FSP40	100597	2021/09/13	2022/09/12
•	Loop Antenna	R&S	HTWE0170	HFH2-Z2	100020	2021/04/06	2024/04/05
•	Broadband Horn Antenna	SCHWARZBECK	HTWE0103	BBHA9170	BBHA9170472	2020/04/27	2023/04/26
•	Ultra-Broadband Antenna	SCHWARZBECK	HTWE0123	VULB9163	538	2021/04/06	2024/04/05
•	Horn Antenna	SCHWARZBECK	HTWE0126	9120D	1011	2020/04/01	2023/03/31
•	Pre-amplifier	CD	HTWE0071	PAP-0102	12004	2021/11/05	2022/11/04
•	Broadband Preamplifier	SCHWARZBECK	HTWE0201	BBV 9718	9718-248	2022/02/28	2023/02/27
•	RF Connection Cable	HUBER+SUHNER	HTWE0120- 01	6m 18GHz S Serisa	N/A	2022/02/25	2023/02/24
•	RF Connection Cable	HUBER+SUHNER	HTWE0120- 02	6m 3GHz RG Serisa	N/A	2022/02/25	2023/02/24
•	RF Connection Cable	HUBER+SUHNER	HTWE0120- 03	6m 3GHz RG Serisa	N/A	2022/02/25	2023/02/24
•	RF Connection Cable	HUBER+SUHNER	HTWE0120- 04	6m 3GHz RG Serisa	N/A	2022/02/25	2023/02/24
•	RF Connection Cable	HUBER+SUHNER	HTWE0121- 01	6m 18GHz S Serisa	N/A	2018/09/27	2022/09/26
•	EMI Test Software	Audix	N/A	E3	N/A	N/A	N/A

•	Auxiliary Equipment								
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)		
•	Climate chamber	ESPEC	HTWE0254	GPL-2	N/A	2021/09/14	2022/09/13		
•	DC Power Supply	Gwinstek	HTWE0274	SPS-2415	GER835793	N/A	N/A		

Report No.: CHTEW2209001101 Page: 12 of 52 Issued: 2022-09-06

4.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

	VN=Nominal Voltage	DC 3.80V			
Voltage	VL=Lower Voltage	DC 3.60V			
	VH=Higher Voltage	DC 4.35V			
Tomporoturo	TN=Normal Temperature	25 °C			
Temperature	Extreme Temperature From -30° to + 50° centigrade				
Humidity	30~60 %				
Air Pressure	950-1050 hPa				

4.4. Statement of the measurement uncertainty

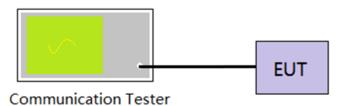
The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01"Electromagnetic compatibilityand Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics;Part 1"and TR-100028-02 "Electromagnetic compatibilityand Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics;Part 2 " and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Huatongweilaboratory is reported:

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.51 dB	(1)
Transmitter power Radiated	2.66dB for <1GHz 3.44dB for >1GHz	(1)
Conducted spurious emissions 9kHz~40GHz	0.51 dB	(1)
Radiated spurious emissions	2.66dB for <1GHz	(1)
readiated sparious emissions	3.44dB for >1GHz	(1)
Occupied Pandwidth	15Hz for <1GHz	(1)
Occupied Bandwidth	70Hz for >1GHz	(1)
Eroquoney error	15Hz for <1GHz	(1)
Frequency error	70Hz for >1GHz	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Report No.: CHTEW2209001101 Page: 13 of 52 Issued: 2022-09-06


5. TEST CONDITIONS AND RESULTS

5.1. Conducted Output Power

LIMIT

N/A

TEST CONFIGURATION

TEST PROCEDURE

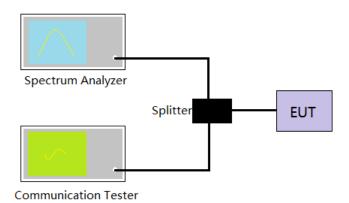
- 1. The EUT output port was connected to communication tester.
- 2. Set EUT at maximum power through communication tester.
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Measure the maximum burst average power.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Refer to appendix A on the section 8 appendix report


Report No.: CHTEW2209001101 Page: 14 of 52 Issued: 2022-09-06

5.2. Peak-to-Average Ratio

LIMIT

13dB

TEST CONFIGURATION

TEST PROCEDURE

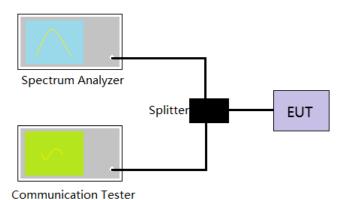
- 1. The EUT was connected to the spectrum analyzer and communication tester via a power splitter
- 2. Set EUT in maximum power output.
- 3. Center Frequency = Carrier frequency, RBW > Emission bandwidth of signal
- 4. The signal analyzer was set to collect one million samples to generate the CCDF curve
- 5. The measurement interval was set depending on the type of signal analyzed.
 - i. For continuous signals (>98% duty cycle), the measurement interval was set to 1ms.
 - ii. For bursttransmissions, the spectrum analyzer is set to use an internal "RF Burst" trigger that issynced with an incoming pulse and the measurement interval is set to less than the duration of the "on time" of one burst to ensure that energy is only captured during a time in whichthetransmitter is operating at maximum power
- 6. Record the maximum PAPR level associated with a probability of 0.1%.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Refer to appendix B on the section 8 appendix report


Report No.: CHTEW2209001101 Page: 15 of 52 Issued: 2022-09-06

5.3. 99% Occupied Bandwidth & 26 dB Bandwidth

<u>LIMIT</u>

N/A

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was connected to the spectrum analyzer and communication tester via a power splitter
- 2. Set EUT in maximum power output.
- 3. Spectrum analyzer setting as follow:

Center Frequency= Carrier frequency, RBW=1% to 5% of the anticipated OBW, VBW= 3 * RBW, Detector=Peak,

Trace maximum hold.

4. Record the value of 99% Occupied bandwidth and 26dB bandwidth.

TEST MODE:

Please refer to the clause 3.3

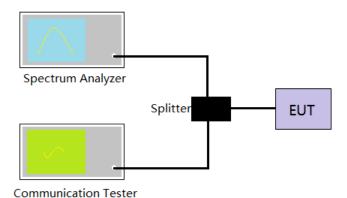
TEST RESULTS

Refer to appendix C on the section 8 appendix report

Report No.: CHTEW2209001101 Page: 16 of 52 Issued: 2022-09-06

5.4. Band Edge

LIMIT


Part 24.238 and Part 22.917 and Part 27.53 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

LTE Band 7

Part 27.53 m(4) For mobile digital stations, the attenuation factor shall be not less than $40 + 10 \log (P) dB$ on all frequencies between the channel edge and 5 megahertz from the channel edge, $43 + 10 \log (P) dB$ on all frequencies between 5 megahertz and X megahertz from the channel edge, and $55 + 10 \log (P) dB$ on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was connected to the spectrum analyzer and communication tester via a power splitter
- 2. Set EUT in maximum power output.
- 3. The band edges of low and high channels were measured.
- Spectrum analyzer setting as follow:
 RBW= no less than 1% of the OBW, VBW =3 * RBW, Sweep time= Auto
- 5. Record the test plot.

TEST MODE:

Please refer to the clause 3.3

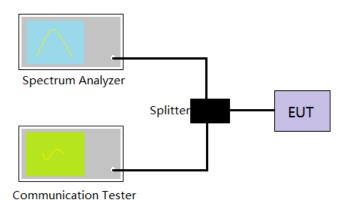
TEST RESULTS

Refer to appendix D on the section 8 appendix report

Report No.: CHTEW2209001101 Page: 17 of 52 Issued: 2022-09-06

5.5. Conducted Spurious Emissions

LIMIT


Part 24.238 and Part 22.917 and Part 27.53 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

LTE Band 7

Part 27.53 m(4) For mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees. Limit <-25 dBm

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was connected to the spectrum analyzer and communication tester via a power splitter
- 2. Set EUT in maximum power output.
- 3. Spectrum analyzer setting as follow:

Below 1GHz, RBW=100KHz, VBW = 300KHz, Detector=Peak, Sweep time= Auto Above 1GHz, RBW=1MHz, VBW=3MHz, Detector=Peak, Sweep time= Auto Scan frequency range up to 10th harmonic.

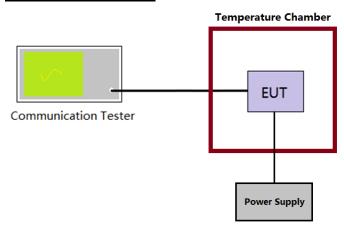
4. Record the test plot.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Refer to appendix E on the section 8 appendix report


Report No.: CHTEW2209001101 Page: 18 of 52 Issued: 2022-09-06

5.6. Frequency stability VS Temperature measurement

LIMIT

2.5ppm

TEST CONFIGURATION

TEST PROCEDURE

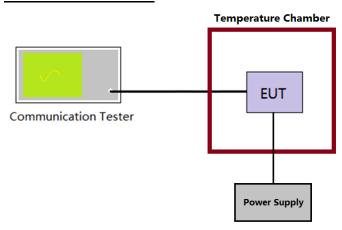
- 1. The equipment under test was connected to an external DC power supply and input rated voltage.
- 2. The EUT output port was connected to communication tester.
- 3. The EUT was placed inside the temperature chamber.
- 4. Turn EUT off and set the chamber temperature to –30°C. After the temperature stabilized for approximately 30 minutes recorded the frequency.
- 5. Repeat step 4 measure with 10°C increased per stage until the highest temperature of +50°C reached.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Refer to appendix F on the section 8 appendix report


Report No.: CHTEW2209001101 Page: 19 of 52 Issued: 2022-09-06

5.7. Frequency stability VS Voltage measurement

LIMIT

2.5ppm

TEST CONFIGURATION

TEST PROCEDURE

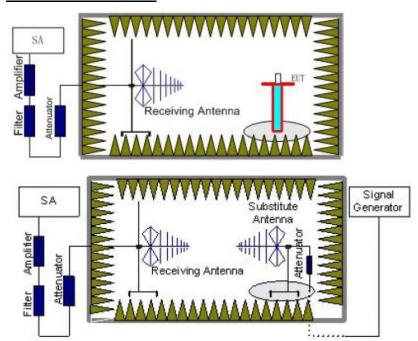
- 1. The equipment under test was connected to an external DC power supply and input rated voltage.
- 2. The EUT output port was connected to communication tester.
- 3. The EUT was placed inside the temperature chamber at 25°C
- 4. The power supply voltage to the EUT was varied ±15% of the nominal value measured at the input to the EUT
- 5. Record the maximum frequency change.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Refer to appendix F on the section 8 appendix report


Report No.: CHTEW2209001101 Page: 20 of 52 Issued: 2022-09-06

5.8. ERP and EIRP

LIMIT

LTE Band 2/7/41: 2W(33dBm) EIRP LTE Band 4: 1W(30dBm) EIRP LTE Band 5: 7W(38.50dBm) ERP LTE Band 12/17: 3W(34.77dBm) ERP

TEST CONFIGURATION

TEST PROCEDURE

- 1. Place the EUT in the center of the turntable.
 - a) For radiated emissions measurements performed at frequencies less than or equal to 1 GHz, the EUT shall be placed on a RF-transparent table at a nominal height of 80 cm above the reference ground plane
 - b) For radiated measurements performed at frequencies above 1 GHz, the EUT shall be placed on an RF transparent table at a nominal height of 1.5 m above the ground plane.
- 2. Unless the EUT uses an integral antenna, the EUT shall be terminated with a non-radiating transmitter load. In cases where the EUT uses an adjustable antenna, the antenna shall be adjusted through typical positions and lengths to maximize emissions levels.
- 3. The EUT shall be tested while operating on the frequency per manufacturer specification. Set the transmitter to operate in continuous transmit mode.
- 4. Receiver or Spectrum set as follow:

Below 1GHz, RBW=100kHz, VBW=300kHz, Detector=Peak, Sweep time=Auto

Above 1GHz, RBW=1MHz, VBW=3MHz, Detector=Peck, Sweep time=Auto

- 5. Each emission under consideration shall be evaluated:
 - a) Raise and lower the measurement antenna from 1 m to 4 m, as necessary to enable detection of the maximum emission amplitude relative to measurement antenna height.
 - b) Rotate the EUT through 360° to determine the maximum emission level relative to the axial position.
 - c) Return the turntable to the azimuth where the highest emission amplitude level was observed.

Report No.: CHTEW2209001101 Page: 21 of 52 Issued: 2022-09-06

d) Vary the measurement antenna height again through 1 m to 4 m again to find the height associated with the maximum emission amplitude.

- e) Record the measured emission amplitude level and frequency
- 6. Repeat step 5 for each emission frequency with the measurement antenna oriented in both the horizontal and vertical polarizations to determine the orientation that gives the maximum emissions amplitude.
- Set-up the substitution measurement with the reference point of the substitution antenna located as near
 as possible to where the center of the EUT radiating element was located during the initial EUT
 measurement.
- 8. Maintain the previous measurement instrument settings and test set-up, with the exception that the EUT is removed and replaced by the substitution antenna.
- 9. Connect a signal generator to the substitution antenna; locate the signal generator so as to minimize any potential influences on the measurement results. Set the signal generator to the frequency where emissions are detected, and set an output power level such that the radiated signal can be detected by the measurement instrument, with sufficient dynamic range relative to the noise floor.
- 10. For each emission that was detected and measured in the initial test
 - a) Vary the measurement antenna height between 1 m to 4 m to maximize the received (measured) signal amplitude.
 - b) Adjust the signal generator output power level until the amplitude detected by the measurement instrument equals the amplitude level of the emission previously measured directly in step 5 and step 6.
 - c) Record the output power level of the signal generator when equivalence is achieved in step b).
- 11. Repeat step 8 through step 10 with the measurement antenna oriented in the opposite polarization.
- 12. Calculate the emission power in dBm referenced to a half-wave dipole using the following equation:

Pe = Ps(dBm) - cable loss (dB) + antenna gain (dBd)

where

Pe = equivalent emission power in dBm

Ps = source (signal generator) power in dBm

NOTE—dBd refers to the measured antenna gain in decibels relative to a half-wave dipole.

13. Correct the antenna gain of the substitution antenna if necessary to reference the emission power to a half-wave dipole. When using measurement antennas with the gain specified in dBi, the equivalent dipole-referenced gain can be determined from:

gain (dBd) = gain (dBi) - 2.15 dB.

If necessary, the antenna gain can be calculated from calibrated antenna factor information

14. Provide the complete measurement results as a part of the test report.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

□ Not Applicable

Report No.: CHTEW2209001101 Page: 22 of 52 Issued: 2022-09-06

LTE Band 2-1.4MHz								
Modulation	Channel	EIRP	(dBm)	Lineit (dDae)	Daguit			
iviodulation	Channel	Vertical	Horizontal	Limit (dBm)	Result			
	Low	20.98	18.47	≤33.00				
QPSK	Mid	21.21	18.41		PASS			
	High	20.95	18.46					
	Low	19.53	17.20					
16QAM	Mid	19.82	17.27		PASS			
	High	19.48	17.41					

LTE Band 2-3MHz								
Modulation	Channel	EIRP	EIRP (dBm)		Dooult			
Modulation	Chamilei	Vertical	Horizontal	Limit (dBm)	Result			
	Low	20.80	18.14	700.00				
QPSK	Mid	21.10	18.40		PASS			
	High	20.76	18.33					
	Low	20.01	17.68	≤33.00				
16QAM	Mid	20.08	17.52	1	PASS			
	High	19.50	17.52		,			

LTE Band 2-5MHz							
Modulation	Channel	EIRP	(dBm)	Limit (dPm)	Result		
Wodulation	Channel	Vertical	Horizontal	Limit (dBm)			
	Low	21.58	18.87	≤33.00			
QPSK	Mid	21.79	18.74		PASS		
	High	21.66	18.83				
	Low	20.20	17.58				
16QAM	Mid	20.39	17.62		PASS		
	High	20.01	17.72				

LTE Band 2-10MHz							
Modulation	Channel	EIRP	EIRP (dBm)		Decult		
iviodulation	Channel	Vertical	Horizontal	Limit (dBm)	Result		
	Low	21.55	18.93	732.00			
QPSK	Mid	21.76	18.81		PASS		
	High	21.63	18.97				
	Low	20.17	17.68	≤33.00			
16QAM	Mid	20.36	17.77]	PASS		
	High	19.99	17.83				

Report No.: CHTEW2209001101 Page: 23 of 52 Issued: 2022-09-06

LTE Band 2-15MHz								
Modulation	Channel	EIRP	(dBm)	Line it (dDae)	Result			
iviodulation	Channel	Vertical	Horizontal	Limit (dBm)				
	Low	21.29	18.54	≤33.00				
QPSK	Mid	21.58	18.75		PASS			
	High	21.35	18.77					
	Low	20.56	18.10					
16QAM	Mid	20.55	17.95		PASS			
	High	19.94	17.88					

LTE Band 2-20MHz								
Modulation	Channel	EIRP	(dBm)	Limit (dBm)	Result			
IVIOGUIATIOTI	Charmer	Vertical	Horizontal	Limit (dbin)				
	Low	21.43	18.67	≤33.00				
QPSK	Mid	21.79	18.91		PASS			
	High	21.56	18.90					
	Low	20.76	18.37					
16QAM	Mid	20.72	18.09		PASS			
	High	20.10	17.95					

Report No.: CHTEW2209001101 Page: 24 of 52 Issued: 2022-09-06

LTE Band 4-1.4MHz									
	01 1	EIRP (dBm)		1: :: (15.)	- T				
Modulation	Channel	Vertical	Horizontal	Limit (dBm)	Result				
	Low	22.16	20.38						
QPSK	Mid	22.58	20.75	400.00	PASS				
	High	22.60	20.43						
	Low	20.24	18.97	≤30.00					
16QAM	Mid	20.62	19.37		PASS				
	High	20.53	19.17						

	LTE Band 4-3MHz								
Modulation	Channel	EIRP	(dBm)	Limit (dPm)	Result				
Modulation	Channel	Vertical	Horizontal	Limit (dBm)	Nesuit				
	Low	22.51	20.38						
QPSK	Mid	22.51	20.54		PASS				
	High	22.33	20.30	<30.00					
	Low	20.48	19.34	≤30.00					
16QAM	Mid	20.80	18.94		PASS				
	High	20.79	19.35						

LTE Band 4-5MHz									
Modulation	Channel	EIRP	(dBm)	Limit (dPm)	Dooult				
Modulation	Channel	Vertical	Horizontal	Limit (dBm)	Result				
	Low	23.03	20.84						
QPSK	Mid	23.29	21.19	400.00	PASS				
	High	23.28	20.90						
	Low	20.89	19.29	≤30.00	PASS				
16QAM	Mid	21.19	20.14	1					
	High	21.01	19.42						

	LTE Band 4-10MHz								
Modulation	Channel	EIRP (c		Limit (dPm)	D !!				
iviodulation	Channel	Vertical	Horizontal	Limit (dBm)	Result				
	Low	22.66	20.70						
QPSK	Mid	22.99	21.04	400.00	PASS				
	High	22.99	20.72						
	Low	20.61	19.22	≤30.00					
16QAM	Mid	20.95	19.59		PASS				
	High	20.80	19.35						

Report No.: CHTEW2209001101 Page: 25 of 52 Issued: 2022-09-06

LTE Band 4-15MHz									
Modulation		EIRP (dBm)		Limit (dDm)	Dogult				
Modulation	Channel	Vertical	Horizontal	Limit (dBm)	Result				
	Low	23.03	20.65	100.00					
QPSK	Mid	22.94	20.80		PASS				
	High	22.74	20.58						
	Low	20.87	19.53	≤30.00					
16QAM	Mid	21.14	19.40		PASS				
	High	21.08	19.50						

	LTE Band 4-20MHz									
Modulation	Channel	EIRP	(dBm)	Limit (dBm)	Result					
Modulation	Chamer	Vertical	Horizontal	Limit (dbin)	Kesuit					
	Low	23.08	20.70							
QPSK	Mid	23.14	20.89	400.00	PASS					
	High	22.91	20.63							
	Low	20.85	19.60	≤30.00						
16QAM	Mid	21.33	19.34		PASS					
	High	21.28	19.64							

Report No.: CHTEW2209001101 Page: 26 of 52 Issued: 2022-09-06

LTE Band 5-1.4MHz									
Modulation	Channel	ERP (dBm)		Limit (dDm)	Dooult				
Modulation	Channel	Vertical	Horizontal	Limit (dBm)	Result				
	Low	22.07	20.74						
QPSK	Mid	22.30	21.03	400.50	PASS				
	High	22.28	20.96						
	Low	20.73	19.40	≤38.50					
16QAM	Mid	20.78	19.85		PASS				
	High	20.81	19.62						

	LTE Band 5-3MHz									
Modulation	Channel	ERP	(dBm)	Limit (dPm)	Result					
Modulation	Channel	Vertical	Horizontal	Limit (dBm)	Result					
	Low	22.94	20.36	400.50						
QPSK	Mid	22.69	20.63		PASS					
	High	22.21	20.40							
	Low	20.78	19.89	≤38.50						
16QAM	Mid	20.88	19.67		PASS					
	High	20.90	19.47							

LTE Band 5-5MHz									
Modulation	Channel	ERP	(dBm)	Limit (dPm)	Dooult				
Modulation	Channel	Vertical	Horizontal	Limit (dBm)	Result				
	Low	22.62	20.57						
QPSK	Mid	22.47	20.85	400.50	PASS				
	High	22.04	20.51						
	Low	21.17	19.91	≤38.50	PASS				
16QAM	Mid	21.07	20.18	1					
	High	21.02	20.03						

	LTE Band 5-10MHz								
Modulation	Channel	ERP (dBm)		Limit (dBm)	Result				
Modulation	Channel	Vertical	Horizontal		Result				
	Low	22.56	20.59						
QPSK	Mid	22.42	20.86	400.50	PASS				
	High	22.01	20.52						
	Low	21.06	19.57	≤38.50					
16QAM	Mid	21.15	20.04		PASS				
	High	21.20	19.83						

Report No.: CHTEW2209001101 Page: 27 of 52 Issued: 2022-09-06

LTE Band 7-5MHz									
Modulation	Channel	EIRP (dBm)		Limit (dDm)	Dogult				
Modulation	Channel	Vertical	Horizontal	Limit (dBm)	Result				
	Low	21.17	19.37						
QPSK	Mid	21.33	19.35	400.00	PASS				
	High	21.19	19.02						
	Low	19.63	18.76	≤33.00					
16QAM	Mid	19.79	18.70		PASS				
	High	19.68	18.69						

	LTE Band 7-10MHz								
Modulation	Channel	EIRP	(dBm)	Limit (dPm)	Result				
Modulation	Channel	Vertical	Horizontal	Limit (dBm)	Result				
	Low	21.06	19.16						
QPSK	Mid	21.14	18.99		PASS				
	High	21.02	18.98	<22.00					
	Low	19.99	18.84	≤33.00					
16QAM	Mid	19.97	18.61		PASS				
	High	19.90	18.51						

LTE Band 7-15MHz									
Madulatian	Channel	EIRP	(dBm)	Limit (dPm)	Decult				
Modulation	Channel	Vertical	Horizontal	Limit (dBm)	Result				
	Low	21.06	19.22						
QPSK	Mid	21.20	19.34	400.00	PASS				
	High	21.06	19.22						
	Low	19.75	18.58	≤33.00					
16QAM	Mid	19.90	18.48	1	PASS				
	High	19.78	18.48						

LTE Band 7-20MHz									
Modulation	Channel	EIRP	(dBm)	Limit (dBm)	Result				
Wodulation	Chamer	Vertical	Horizontal	Limit (dbin)	Nesuit				
	Low	21.03	19.31						
QPSK	Mid	21.11	19.13		PASS				
	High	20.99	19.13	≤33.00					
	Low	20.06	18.92	≥33.00					
16QAM	Mid	20.27	19.00	1	PASS				
	High	20.09	18.96						

Report No.: CHTEW2209001101 Page: 28 of 52 Issued: 2022-09-06

LTE Band 12-1.4MHz									
Modulation	Channel	ERP	ERP (dBm)		Descrit				
Modulation	Channel	Vertical	Horizontal	Limit (dBm)	Result				
	Low	21.84	19.90						
QPSK	Mid	21.95	20.11	10.4.77	PASS				
	High	21.85	19.92						
	Low	20.57	19.27	- ≤34.77					
16QAM	Mid	20.78	19.44		PASS				
	High	20.78	19.34						

	LTE Band 12-3MHz								
Modulation	Channel	ERP	(dBm)	Limit (dPm)	Result				
Modulation	Channel	Vertical	Horizontal	Limit (dBm)	Result				
	Low	21.66	19.90						
QPSK	Mid	21.85	20.13		PASS				
	High	21.60	19.83	<24.77					
	Low	20.81	19.42	- ≤34.77					
16QAM	Mid	20.78	19.57		PASS				
	High	20.78	19.39						

LTE Band 12-5MHz								
Modulation	Channel	ERP	(dBm)	Limit (dPm)	Result			
Modulation	Chamei	Vertical	Horizontal	Limit (dBm)	Resuit			
	Low	21.32	19.71					
QPSK	Mid	21.45	19.87	10.4.77	PASS			
	High	21.41	19.71					
	Low	20.95	19.52	≤34.77				
16QAM	Mid	21.10	19.73	1	PASS			
	High	21.08	19.57					

	LTE Band 12-10MHz								
Modulation	Channel	ERP	(dBm)	Limit (dPm)	Popult				
Modulation	Channel	Vertical	Horizontal	Limit (dBm)	Result				
	Low	21.64	19.85						
QPSK	Mid	21.82	20.04	10.4.77	PASS				
	High	21.58	19.79						
	Low	20.89	19.41	- ≤34.77					
16QAM	Mid	21.25	19.65		PASS				
	High	21.22	19.53						

Report No.: CHTEW2209001101 Page: 29 of 52 Issued: 2022-09-06

LTE Band 17-5MHz								
Modulation	Channel	ERP	(dBm)	Limit (dBm)	Result			
Modulation	Channel	Vertical	Horizontal	Limit (dbm)	Result			
	Low	21.54	19.42					
QPSK	Mid	21.93	19.47		PASS			
	High	21.38	19.27	<24.77				
	Low	19.88	18.18	≤34.77				
16QAM	Mid	20.30	18.49		PASS			
	High	19.94	18.41					

	LTE Band 17-10MHz									
Modulation	Channel	ERP	(dBm)	Limit (dBm)	Result					
Modulation	Channel	Vertical	Horizontal	Limit (dbm)	Result					
	Low	21.50	19.05							
QPSK	Mid	21.88	19.32		PASS					
	High	21.34	19.13	<24.77						
	Low	19.91	18.24	≤34.77						
16QAM	Mid	20.33	18.53		PASS					
	High	19.97	18.43							

Report No.: CHTEW2209001101 Page: 30 of 52 Issued: 2022-09-06

LTE Band 41-5MHz									
Modulation	Channel	EIRP	(dBm)	Limit (dPm)	Result				
iviodulation	Channel	Vertical	Horizontal	Limit (dBm)	Result				
	Low	20.91	19.44						
QPSK	Mid	21.42	19.09		PASS				
	High	20.88	18.49	-22.00					
	Low	19.94	18.99	<33.00					
16QAM	Mid	20.04	18.62		PASS				
	High	20.51	18.21						

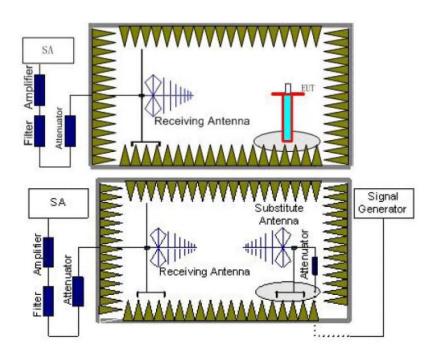
	LTE Band 41-10MHz								
Modulation	Channel	EIRP	(dBm)	Limit (dPm)	Result				
Modulation	Channel	Vertical	Horizontal	Limit (dBm)	Result				
	Low	21.17	19.33						
QPSK	Mid	22.03	18.96		PASS				
	High	21.00	18.52	-22.00					
	Low	20.07	19.02	<33.00					
16QAM	Mid	20.72	18.59		PASS				
	High	19.83	18.11						

LTE Band 41-15MHz									
Maril Jack	Channel	EIRP	(dBm)	Limit (dPm)	Result				
Modulation	Channel	Vertical	Horizontal	Limit (dBm)	Resuit				
	Low	21.11	19.90						
QPSK	Mid	21.58	19.45	90.00	PASS				
	High	20.60	19.02						
	Low	20.53	19.42	<33.00					
16QAM	Mid	21.02	19.00]	PASS				
	High	20.10	18.62						

	LTE Band 41-20MHz								
Modulation	Channal	EIRP	(dBm)	Limit (dPm)	Popult				
Modulation	Channel	Vertical	Horizontal	Limit (dBm)	Result				
	Low	21.22	19.85						
QPSK	Mid	21.87	19.51		PASS				
	High	20.88	19.07	-22.00					
	Low	20.42	19.44	<33.00					
16QAM	Mid	21.02	19.12		PASS				
	High	20.12	18.72						

Note:LTE Band71 ERP and EIRP datas refer to appendix report FCC-LTE band71

Report No.: CHTEW2209001101 Page: 31 of 52 Issued: 2022-09-06


5.9. Radiated Spurious Emission

LIMIT

LTE Band 2/4/5/12/17: -13dBm;

LTE Band 7/41: -25dBm

TEST CONFIGURATION

TEST PROCEDURE

- 1. Place the EUT in the center of the turntable.
 - a) For radiated emissions measurements performed at frequencies less than or equal to 1 GHz, the EUT shall be placed on a RF-transparent table at a nominal height of 80 cm above the reference ground plane
 - b) For radiated measurements performed at frequencies above 1 GHz, the EUT shall be placed on an RF transparent table at a nominal height of 1.5 m above the ground plane.
- 2. Unless the EUT uses an integral antenna, the EUT shall be terminated with a non-radiating transmitter load. In cases where the EUT uses an adjustable antenna, the antenna shall be adjusted through typical positions and lengths to maximize emissions levels.
- 3. The EUT shall be tested while operating on the frequency per manufacturer specification. Set the transmitter to operate in continuous transmit mode.
- 4. Receiver or Spectrum set as follow:

Below 1GHz, RBW=100kHz, VBW=300kHz, Detector=Peak, Sweep time=Auto

Above 1GHz, RBW=1MHz, VBW=3MHz, Detector=Peck, Sweep time=Auto

- 5. Each emission under consideration shall be evaluated:
 - a) Raise and lower the measurement antenna from 1 m to 4 m, as necessary to enable detection of the maximum emission amplitude relative to measurement antenna height.
 - b) Rotate the EUT through 360° to determine the maximum emission level relative to the axial position.
 - c) Return the turntable to the azimuth where the highest emission amplitude level was observed.
 - d) Vary the measurement antenna height again through 1 m to 4 m again to find the height associated with the maximum emission amplitude.
 - e) Record the measured emission amplitude level and frequency

Report No.: CHTEW2209001101 Page: 32 of 52 Issued: 2022-09-06

6. Repeat step 5 for each emission frequency with the measurement antenna oriented in both the horizontal and vertical polarizations to determine the orientation that gives the maximum emissions amplitude.

- Set-up the substitution measurement with the reference point of the substitution antenna located as near
 as possible to where the center of the EUT radiating element was located during the initial EUT
 measurement.
- 8. Maintain the previous measurement instrument settings and test set-up, with the exception that the EUT is removed and replaced by the substitution antenna.
- 9. Connect a signal generator to the substitution antenna; locate the signal generator so as to minimize any potential influences on the measurement results. Set the signal generator to the frequency where emissions are detected, and set an output power level such that the radiated signal can be detected by the measurement instrument, with sufficient dynamic range relative to the noise floor.
- 10. For each emission that was detected and measured in the initial test
 - a) Vary the measurement antenna height between 1 m to 4 m to maximize the received (measured) signal amplitude.
 - b) Adjust the signal generator output power level until the amplitude detected by the measurement instrument equals the amplitude level of the emission previously measured directly in step 5 and step 6.
 - Record the output power level of the signal generator when equivalence is achieved in step b).
- 11. Repeat step 8 through step 10 with the measurement antenna oriented in the opposite polarization.
- 12. Calculate the emission power in dBm referenced to a half-wave dipole using the following equation:

Pe = Ps(dBm) - cable loss (dB) + antenna gain (dBd)

where

Pe = equivalent emission power in dBm

Ps = source (signal generator) power in dBm

NOTE—dBd refers to the measured antenna gain in decibels relative to a half-wave dipole.

13. Correct the antenna gain of the substitution antenna if necessary to reference the emission power to a half-wave dipole. When using measurement antennas with the gain specified in dBi, the equivalent dipole-referenced gain can be determined from:

gain (dBd) = gain (dBi) -2.15 dB.

If necessary, the antenna gain can be calculated from calibrated antenna factor information

14. Provide the complete measurement results as a part of the test report.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Note: only show the worse case for QPSK modulation.

Report No.: CHTEW2209001101 Page: 33 of 52 Issued: 2022-09-06

LTE Band 2-1.4MHz						
Channel	Frequency	Spurious Emission		Lineit (dDas)	Dooult	
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result	
	3701.40	Vertical	-36.08			
	5552.10	V	-39.83	≤-13.00	Pass	
Low	7402.80	V	-40.75			
LOW	3701.40	Horizontal	-36.99			
	5552.10	Н	-40.68	≤-13.00	Pass	
	7402.80	Н	-41.47			
	3760.00	Vertical	-35.40	≤-13.00	Pass	
	5640.00	V	-39.19			
Mid	7520.00	V	-40.15			
iviiu	3760.00	Horizontal	-36.16			
	5640.00	Н	-40.01	≤-13.00	Pass	
	7520.00	Н	-40.83			
	3818.60	Vertical	-34.24			
	5727.90	V	-38.13	≤-13.00	Pass	
High	7637.20	V	-39.15			
	3818.60	Horizontal	-35.75			
	5727.90	Н	-39.63	≤-13.00	Pass	
	7637.20	Н	-40.51			

LTE Band 2-3MHz						
Channel	Frequency	Spurious Emission		L' '(/ ID)	D It	
	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result	
	3703.00	Vertical	-33.49			
	5554.50	V	-36.01	≤-13.00	Pass	
Low	7406.00	V	-37.60			
LOW	3703.00	Horizontal	-33.91			
	5554.50	Н	-37.45	≤-13.00	Pass	
	7406.00	Н	-39.37			
	3760.00	Vertical	-31.41	≤-13.00	Pass	
	5640.00	V	-34.05			
Mid	7520.00	V	-35.46			
IVIIG	3760.00	Horizontal	-32.18		Pass	
	5640.00	Н	-36.24	≤-13.00		
	7520.00	Н	-37.98			
	3817.00	Vertical	-29.51		Pass	
	5725.50	V	-32.67	≤-13.00		
High	7634.00	V	-34.56			
	3817.00	Horizontal	-30.36	≤-13.00		
	5725.50	Н	-34.85		Pass	
	7634.00	Н	-35.54			

Report No.: CHTEW2209001101 Page: 34 of 52 Issued: 2022-09-06

LTE Band 2-5MHz						
Channel	Frequency	Spurious Emission		Lineit (dDas)	Desuit	
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result	
	3705.00	Vertical	-27.47			
	5557.50	V	-29.57	≤-13.00	Pass	
Low	7410.00	V	-32.24			
LOW	3705.00	Horizontal	-31.91			
	5557.50	Н	-37.61	≤-13.00	Pass	
	7410.00	Н	-36.90			
	3760.00	Vertical	-28.47	≤-13.00	Pass	
	5640.00	V	-31.42			
Mid	7520.00	V	-33.84			
iviiu	3760.00	Horizontal	-34.22		Pass	
	5640.00	Н	-39.18	≤-13.00		
	7520.00	Н	-38.10			
	3815.00	Vertical	-30.99			
	5722.50	V	-33.21	≤-13.00	Pass	
High	7630.00	V	-35.38			
	3815.00	Horizontal	-36.02			
	5722.50	Н	-40.85	≤-13.00	Pass	
	7630.00	Н	-39.37			

LTE Band 2-10MHz						
Channel	Frequency	Spurious Emission		1.1 · · 2 (/ ID · ·)	D !!	
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result	
	3710.00	Vertical	-29.31			
	5565.00	V	-32.31	≤-13.00	Pass	
Low	7420.00	V	-34.29			
LOW	3710.00	Horizontal	-38.58			
	5565.00	Н	-42.60	≤-13.00	Pass	
	7420.00	Н	-41.38			
	3760.00	Vertical	-31.29	≤-13.00	Pass	
	5640.00	V	-33.97			
Mid	7520.00	V	-36.29			
IVIIU	3760.00	Horizontal	-39.89		Pass	
	5640.00	Н	-44.55	≤-13.00		
	7520.00	Н	-42.92			
	3810.00	Vertical	-32.03			
	5715.00	V	-35.63	≤-13.00	Pass	
High	7620.00	V	-38.21			
	3810.00	Horizontal	-38.31			
	5715.00	Н	-43.63	≤-13.00	Pass	
	7620.00	Н	-41.69			

Report No.: CHTEW2209001101 35 of 52 Issued: 2022-09-06 Page:

LTE Band 2-15MHz						
Channal	Frequency	Spurious I	Emission	1.1.11 (ID)	Result	
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)		
	3715.00	Vertical	-30.68			
	5572.50	V	-34.41	≤-13.00	Pass	
Low	7430.00	V	-36.91			
LOW	3715.00	Horizontal	-39.59			
	5572.50	Н	-44.83	≤-13.00	Pass	
	7430.00	Н	-42.71			
	3760.00	Vertical	-31.64	≤-13.00	Pass	
	5640.00	V	-35.31			
Mid	7520.00	V	-37.76			
iviid	3760.00	Horizontal	-38.38		Pass	
	5640.00	Н	-43.57	≤-13.00		
	7520.00	Н	-42.00			
	3805.00	Vertical	-30.64			
	5707.50	V	-33.44	≤-13.00	Pass	
High	7610.00	V	-35.91			
	3805.00	Horizontal	-39.97	≤-13.00		
	5707.50	Н	-46.14		Pass	
	7610.00	Н	-44.64			

LTE Band 2-20MHz						
Channel	Frequency	Spurious	Emission	Lineit (dDas)	Result	
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)		
	3720.00	Vertical	-32.21		Pass	
	5580.00	V	-35.23	≤-13.00		
Low	7440.00	V	-37.26			
LOW	3720.00	Horizontal	-40.41			
	5580.00	Н	-46.56	≤-13.00	Pass	
	7440.00	Н	-44.99			
	3760.00	Vertical	-32.54	≤-13.00	Pass	
	5640.00	V	-35.54			
Mid	7520.00	V	-37.55			
iviid	3760.00	Horizontal	-40.70		Pass	
	5640.00	Н	-46.80	≤-13.00		
	7520.00	Н	-45.21			
	3800.00	Vertical	-31.39		Pass	
	5700.00	V	-34.00	≤-13.00		
Lligh	7600.00	V	-36.44			
High	3800.00	Horizontal	-41.01	≤-13.00		
	5700.00	Н	-47.09		Pass	
	7600.00	Н	-45.46			

Remark:

- Remark"---" means that the emission level is too low to be measured The emission levels of below 1 GHz are very lower than the limit and not show in test report.

Report No.: CHTEW2209001101 Page: 36 of 52 Issued: 2022-09-06

LTE Band 4-1.4MHz						
Channel	Frequency	Spurious Emission		Lineit (dDas)	Dooult	
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result	
	3421.40	Vertical	-33.50			
	5132.10	V	-38.87	≤-13.00	Pass	
Low	6842.80	V	-39.52			
LOW	3421.40	Horizontal	-34.71			
	5132.10	Н	-40.00	≤-13.00	Pass	
	6842.80	Н	-40.48			
	3465.00	Vertical	-32.59	≤-13.00	Pass	
	5197.50	V	-38.02			
Mid	6930.00	V	-38.72			
iviiu	3465.00	Horizontal	-33.61			
	5197.50	Н	-39.11	≤-13.00	Pass	
	6930.00	Н	-39.63			
	3508.60	Vertical	-31.05			
	5262.90	V	-36.61	≤-13.00	Pass	
High	7017.20	V	-37.39			
	3508.60	Horizontal	-32.34			
	5262.90	Н	-37.91	≤-13.00	Pass	
	7017.20	Н	-38.49			

LTE Band 4-3MHz						
Channel	Frequency	Spurious Emission		Lineit (alDue)	Daguit	
Chamei	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result	
	3423.00	Vertical	-32.99			
	5134.50	V	-38.34	≤-13.00	Pass	
Low	6846.00	V	-39.10			
LOW	3423.00	Horizontal	-33.88			
	5134.50	Н	-40.34	≤-13.00	Pass	
	6846.00	Н	-40.34			
	3465.00	Vertical	-35.01	≤-13.00	Pass	
	5197.50	V	-40.36			
Mid	6930.00	V	-40.66			
IVIIU	3465.00	Horizontal	-37.76		Pass	
	5197.50	Н	-43.07	≤-13.00		
	6930.00	Н	-43.52			
	3507.00	Vertical	-36.37		Pass	
High	5260.50	V	-41.60	≤-13.00		
	7014.00	V	-41.83			
	3507.00	Horizontal	-39.64			
	5260.50	Н	-45.19	≤-13.00	Pass	
	7014.00	Н	-45.06			

Report No.: CHTEW2209001101 Page: 37 of 52 Issued: 2022-09-06

LTE Band 4-5MHz							
Channel	Frequency	Spurious I	Emission	Limit (dDm)	Desuit		
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result		
	3425.00	Vertical	-38.85				
	5137.50	V	-43.42	≤-13.00	Pass		
Low	6850.00	V	-44.30				
LOW	3425.00	Horizontal	-40.63				
	5137.50	Н	-46.12	≤-13.00	Pass		
	6850.00	Н	-45.85				
	3465.00	Vertical	-39.59	≤-13.00	Pass Pass		
	5197.50	V	-44.12				
Mid	6930.00	V	-44.96				
IVIIG	3465.00	Horizontal	-41.50				
	5197.50	Н	-46.83	≤-13.00			
	6930.00	Н	-46.52				
	3505.00	Vertical	-40.66				
	5257.50	V	-45.10	≤-13.00	Pass		
Lliah	7010.00	V	-45.89				
High	3505.00	Horizontal	-42.20				
	5257.50	Н	-47.49	≤-13.00	Pass		
	7010.00	Н	-47.08				

LTE Band 4-10MHz							
Channel	Frequency	Spurious I	Emission	Limit (dDm)	Desuit		
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result		
	3430.00	Vertical	-42.56				
	5145.00	V	-46.26	≤-13.00	Pass		
Low	6860.00	V	-46.60				
LOW	3430.00	Horizontal	-42.46				
	5145.00	Н	-47.73	≤-13.00	Pass		
	6860.00	Н	-47.29				
	3465.00	Vertical	-42.75		Pass		
	5197.50	V	-46.44	≤-13.00			
Mid	6930.00	V	-47.13				
IVIIU	3465.00	Horizontal	-42.67		Pass		
	5197.50	Н	-47.90	≤-13.00			
	6930.00	Н	-47.45				
	3500.00	Vertical	-43.01				
	5250.00	V	-46.68	≤-13.00	Pass		
Lligh	7000.00	V	-47.36				
High	3500.00	Horizontal	-42.87				
	5250.00	Н	-48.09	≤-13.00	Pass		
	7000.00	Н	-47.61				

Report No.: CHTEW2209001101 Page: 38 of 52 Issued: 2022-09-06

LTE Band 4-15MHz							
Channal	Frequency	Spurious I	Emission	Limit (dDm)	Danult		
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result		
	3435.00	Vertical	-43.70				
	5152.50	V	-47.38	≤-13.00	Pass		
Low	6870.00	V	-47.91				
LOW	3435.00	Horizontal	-44.38				
	5152.50	Н	-49.51	≤-13.00	Pass		
	6870.00	Н	-50.24				
	3465.00	Vertical	-46.17	≤-13.00	Pass		
	5197.50	V	-49.70				
Mid	6930.00	V	-50.10				
IVIIG	3465.00	Horizontal	-46.30				
	5197.50	Н	-51.07	≤-13.00	Pass		
	6930.00	Н	-51.72				
	3495.00	Vertical	-47.99				
	5242.50	V	-51.36	≤-13.00	Pass		
High	6990.00	V	-51.67				
riigii	3495.00	Horizontal	-47.90				
	5242.50	Н	-52.58	≤-13.00	Pass		
	6990.00	Н	-54.50				

LTE Band 4-20MHz						
Channel	Frequency	Spurious I	Emission	Lineit (dDne)	Danish	
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result	
	3440.00	Vertical	-56.83			
	5160.00	V	-53.37	≤-13.00	Pass	
Low	6880.00	V	-53.38			
LOW	3440.00	Horizontal	-49.63			
	5160.00	Н	-60.02	≤-13.00	Pass	
	6880.00	Н	-61.97			
	3465.00	Vertical	-64.84	≤-13.00	Pass	
	5197.50	V	-57.19			
Mid	6930.00	V	-56.97			
IVIIU	3465.00	Horizontal	-54.70			
	5197.50	Н	-65.21	≤-13.00	Pass	
	6930.00	Н	-64.76			
	3490.00	Vertical	-67.12			
	5235.00	V	-58.66	≤-13.00	Pass	
Lligh	6980.00	V	-58.30			
High	3490.00	Horizontal	-55.97			
	5235.00	Н	-66.41	≤-13.00	Pass	
	6980.00	Н	-65.90			

- 1. Remark"---" means that the emission level is too low to be measured
- 2. The emission levels of below 1 GHz are very lower than the limit and not show in test report.

Report No.: CHTEW2209001101 Page: 39 of 52 Issued: 2022-09-06

LTE Band 5-1.4MHz							
Channel	Frequency	Spurious	Emission	Limit (dDm)	Dooult		
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result		
	1649.40	Vertical	-35.90				
	2474.10	V	-43.41	≤-13.00	Pass		
Low	3298.80	V	-44.05				
LOW	1649.40	Horizontal	-37.63				
	2474.10	Н	-45.45	≤-13.00	Pass		
	3298.80	Н	-45.91				
	1673.00	Vertical	-35.39		Pass		
	2509.50	V	-42.93	≤-13.00			
Mid	3346.00	V	-43.49				
IVIIG	1673.00	Horizontal	-37.10		Pass		
	2509.50	Н	-44.95	≤-13.00			
	3346.00	Н	-45.44				
	1696.60	Vertical	-34.80				
	2544.90	V	-42.45	≤-13.00	Pass		
High	3393.20	V	-43.04				
riigii	1696.60	Horizontal	-35.05				
	2544.90	Н	-42.20	≤-13.00	Pass		
	3393.20	Н	-43.46				

LTE Band 5-3MHz							
Channal	Frequency	Spurious I	Emission	Lineit (dDne)	Decult		
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result		
	1651.00	Vertical	-33.73				
	2476.50	V	-41.45	≤-13.00	Pass		
Low	3302.00	V	-42.19				
LOW	1651.00	Horizontal	-34.35				
	2476.50	Н	-41.54	≤-13.00	Pass		
	3302.00	Н	-42.90				
	1673.00	Vertical	-33.20	≤-13.00	Pass		
	2509.50	V	-40.95				
Mid	3346.00	V	-41.72				
IVIIG	1673.00	Horizontal	-33.41		Pass		
	2509.50	Н	-40.78	≤-13.00			
	3346.00	Н	-42.18				
	1695.00	Vertical	-32.04				
	2542.50	V	-39.90	≤-13.00	Pass		
High	3390.00	V	-40.72				
riigii	1695.00	Horizontal	-32.55				
	2542.50	Н	-39.97	≤-13.00	Pass		
	3390.00	Н	-41.49				

Report No.: CHTEW2209001101 Page: 40 of 52 Issued: 2022-09-06

LTE Band 5-5MHz							
Channel	Frequency	Spurious I	Emission	Limit (dDm)	Danult		
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result		
	1653.00	Vertical	-29.90				
	2479.50	V	-38.57	≤-13.00	Pass		
Low	3306.00	V	-38.96				
LOW	1653.00	Horizontal	-33.07				
	2479.50	Н	-40.45	≤-13.00	Pass		
	3306.00	Н	-41.90	1			
	1673.00	Vertical	-30.29	≤-13.00	Pass		
	2509.50	V	-38.93				
Mid	3346.00	V	-39.30				
IVIIG	1673.00	Horizontal	-33.22				
	2509.50	Н	-40.57	≤-13.00	Pass		
	3346.00	Н	-42.02				
	1693.00	Vertical	-30.77				
	2539.50	V	-39.36	≤-13.00	Pass		
High	3386.00	V	-39.71				
High	1693.00	Horizontal	-32.33				
	2539.50	Н	-39.73	≤-13.00	Pass		
	3386.00	Н	-41.31				

LTE Band 5-10MHz							
Channel	Frequency	Spurious I	Emission	Limit (dDm)	Decult		
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result		
	1658.00	Vertical	-30.17				
	2487.00	V	-38.85	≤-13.00	Pass		
Low	3316.00	V	-39.27				
LOW	1658.00	Horizontal	-33.02				
	2487.00	Н	-40.38	≤-13.00	Pass		
	3316.00	Н	-41.86	1			
	1673.00	Vertical	-30.69	≤-13.00	Pass		
	2509.50	V	-39.34				
Mid	3346.00	V	-39.73				
IVIIU	1673.00	Horizontal	-33.21				
	2509.50	Н	-40.53	≤-13.00	Pass		
	3346.00	Н	-42.01				
	1688.00	Vertical	-30.92				
	2532.00	V	-39.55	≤-13.00	Pass		
Lligh	3376.00	V	-39.93				
High	1688.00	Horizontal	-33.39				
	2532.00	Н	-40.70	≤-13.00	Pass		
	3376.00	Н	-42.15				

- 1. Remark"---" means that the emission level is too low to be measured
- 2. The emission levels of below 1 GHz are very lower than the limit and not show in test report.

Report No.: CHTEW2209001101 Page: 41 of 52 Issued: 2022-09-06

LTE Band 7-5MHz							
Channel	Frequency	Spurious I	Emission	Limit (dDm)	Decult		
Chamilei	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result		
	5005.00	Vertical	-36.87				
	7507.50	V	-41.42	≤-25.00	Pass		
Low	10010.00	V	-41.86				
LOW	5005.00	Horizontal	-38.68				
	7507.50	Н	-43.65	≤-25.00	Pass		
	10010.00	Н	-43.17				
	5070.00	Vertical	-35.95		Pass		
	7605.00	V	-40.07	≤-25.00			
Mid	10140.00	V	-40.72				
IVIIU	5070.00	Horizontal	-36.18		Pass		
	7605.00	Н	-41.53	≤-25.00			
	10140.00	Н	-41.75				
	5135.00	Vertical	-33.37				
	7702.50	V	-37.72	≤-25.00	Pass		
High	10270.00	V	-38.49				
High	5135.00	Horizontal	-34.46				
	7702.50	Н	-39.92	≤-25.00	Pass		
	10270.00	Н	-40.38				

LTE Band 7-10MHz							
Channal	Frequency	Spurious I	Emission	Limit (dDm)	Danult		
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result		
	5010.00	Vertical	-32.20				
	7515.00	V	-36.73	≤-25.00	Pass		
Low	10020.00	V	-37.65				
LOW	5010.00	Horizontal	-35.43				
	7515.00	Н	-40.83	≤-25.00	Pass		
	10020.00	Н	-41.15				
	5070.00	Vertical	-32.93	≤-25.00	Pass		
	7605.00	V	-37.41				
Mid	10140.00	V	-38.29				
IVIIU	5070.00	Horizontal	-36.60				
	7605.00	Н	-41.78	≤-25.00	Pass		
	10140.00	Н	-42.05				
	5130.00	Vertical	-34.12				
	7695.00	V	-38.50	≤-25.00	Pass		
High	10260.00	V	-39.32				
riigii	5130.00	Horizontal	-37.37				
	7695.00	Н	-42.51	≤-25.00	Pass		
	10260.00	Н	-42.67				

Report No.: CHTEW2209001101 Page: 42 of 52 Issued: 2022-09-06

LTE Band 7-15MHz							
Channal	Frequency	Spurious I	Emission	Lineit (dDne)	D !!		
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result		
	5015.00	Vertical	-33.07				
	7522.50	V	-37.61	≤-25.00	Pass		
Low	10030.00	V	-38.56				
LOW	5015.00	Horizontal	-38.99				
	7522.50	Н	-44.87	≤-25.00	Pass		
	10030.00	Н	-44.98				
	5070.00	Vertical	-35.28	≤-25.00	Pass		
	7605.00	V	-39.56				
Mid	10140.00	V	-39.99				
iviid	5070.00	Horizontal	-38.06				
	7605.00	Н	-44.12	≤-25.00	Pass		
	10140.00	Н	-44.27				
	5125.00	Vertical	-34.14				
	7687.50	V	-38.52	≤-25.00	Pass		
∐iah	10250.00	V	-39.01				
High	5125.00	Horizontal	-37.30				
	7687.50	Н	-43.41	≤-25.00	Pass		
	10250.00	Н	-43.66				

LTE Band 7-20MHz							
Channel	Frequency	Spurious I	Spurious Emission		Desuit		
Chamilei	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result		
	5020.00	Vertical	-33.02				
	7530.00	V	-37.12	≤-25.00	Pass		
Low	10040.00	V	-37.82				
LOW	5020.00	Horizontal	-36.22				
	7530.00	Н	-42.40	≤-25.00	Pass		
	10040.00	Н	-42.80				
	5070.00	Vertical	-32.21	≤-25.00	Pass		
	7605.00	V	-36.36				
Mid	10140.00	V	-37.10				
IVIIU	5070.00	Horizontal	-34.81		Pass		
	7605.00	Н	-41.26	≤-25.00			
	10140.00	Н	-41.72				
	5120.00	Vertical	-31.21				
	7680.00	V	-35.45	≤-25.00	Pass		
High	10240.00	V	-36.24				
riigri	5120.00	Horizontal	-36.32				
	7680.00	Н	-42.68	≤-25.00	Pass		
	10240.00	Н	-42.92				

- 1. Remark"---" means that the emission level is too low to be measured
- 2. The emission levels of below 1 GHz are very lower than the limit and not show in test report.

Report No.: CHTEW2209001101 Page: 43 of 52 Issued: 2022-09-06

LTE Band 12-1.4MHz						
Channel	Frequency	Spurious Emission		Liveit (dDve)	D 14	
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result	
	1399.40	Vertical	-34.89			
	2099.10	V	-40.67	≤-13.00	Pass	
Low	2798.80	V	-42.22			
LOW	1399.40	Horizontal	-36.43			
	2099.10	Н	-41.42	≤-13.00	Pass	
	2798.80	Н	-43.06			
	1415.00	Vertical	-33.88	≤-13.00	Pass	
	2122.50	V	-39.72			
Mid	2830.00	V	-41.21			
IVIIU	1415.00	Horizontal	-35.20		Pass	
	2122.50	Н	-40.59	≤-13.00		
	2830.00	Н	-42.05			
	1430.60	Vertical	-32.41			
	2145.90	V	-38.16	≤-13.00	Pass	
Ligh	2861.20	V	-39.97			
High	1430.60	Horizontal	-33.51			
	2145.90	Н	-39.47	≤-13.00	Pass	
	2861.20	Н	-41.12			

LTE Band 12-3MHz						
Channal	Frequency	Spurious I	Emission	Lineit (dDne)	D !!	
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result	
	1401.00	Vertical	-31.62			
	2101.50	V	-37.49	≤-13.00	Pass	
Low	2802.00	V	-39.40			
LOW	1401.00	Horizontal	-32.53			
	2101.50	Н	-38.52	≤-13.00	Pass	
	2802.00	Н	-39.25			
	1415.00	Vertical	-29.86	≤-13.00	Pass	
	2122.50	V	-35.84			
Mid	2830.00	V	-37.84			
IVIIG	1415.00	Horizontal	-34.18		Pass	
	2122.50	Н	-39.85	≤-13.00		
	2830.00	Н	-40.52			
	1429.00	Vertical	-31.05			
	2143.50	V	-36.93	≤-13.00	Pass	
Lliab	2858.00	V	-38.87			
High	1429.00	Horizontal	-35.47			
	2143.50	Н	-41.06	≤-13.00	Pass	
	2858.00	Н	-41.55			

Report No.: CHTEW2209001101 Page: 44 of 52 Issued: 2022-09-06

LTE Band 12-5MHz						
Channal	Frequency	Spurious I	Emission	Lineit (dDne)	D It	
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result	
	1403.00	Vertical	-31.93			
	2104.50	V	-37.67	≤-13.00	Pass	
Low	2806.00	V	-39.50			
LOW	1403.00	Horizontal	-36.06	≤-13.00		
	2104.50	Н	-41.62		Pass	
	2806.00	Н	-42.02			
	1415.00	Vertical	-32.38	≤-13.00	Pass	
	2122.50	V	-38.25			
Mid	2830.00	V	-40.04			
IVIIG	1415.00	Horizontal	-37.05			
	2122.50	Н	-42.43	≤-13.00	Pass	
	2830.00	Н	-42.79			
	1427.00	Vertical	-33.45			
	2140.50	V	-39.22	≤-13.00	Pass	
High	2854.00	V	-40.96			
	1427.00	Horizontal	-37.93			
	2140.50	Н	-43.26	≤-13.00	Pass	
	2854.00	Н	-43.58			

LTE Band 12-10MHz					
Channel	Frequency	Spurious I	Emission	Lineit (dDas)	D !!
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
	1408.00	Vertical	-34.20		
	2112.00	V	-39.94	≤-13.00	Pass
Low	2816.00	V	-41.64		
LOW	1408.00	Horizontal	-39.06		
	2112.00	Н	-44.33	≤-13.00	Pass
	2816.00	Н	-44.49		
	1415.00	Vertical	-35.05	≤-13.00	Pass
	2122.50	V	-40.74		
Mid	2830.00	V	-42.39		
iviiu	1415.00	Horizontal	-39.94	≤-13.00	Pass
	2122.50	Н	-45.72		
	2830.00	Н	-45.78		
	1422.00	Vertical	-36.28		
	2133.00	V	-41.91	≤-13.00	Pass
High	2844.00	V	-43.50		
	1422.00	Horizontal	-40.99		
	2133.00	Н	-46.72	≤-13.00	Pass
	2844.00	Н	-46.73		

- 1. Remark"---" means that the emission level is too low to be measured
- 2. The emission levels of below 1 GHz are very lower than the limit and not show in test report.

Report No.: CHTEW2209001101 45 of 52 Issued: 2022-09-06 Page:

LTE Band 17-5MHz						
Channel	Frequency	Spurious I	Emission	Limit (dDm)	D W	
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result	
	1413.00	Vertical	-38.20			
	2119.50	V	-40.58	≤-13.00	Pass	
Low	2826.00	V	-41.58			
LOW	1413.00	Horizontal	-40.08	≤-13.00		
	2119.50	Н	-42.35		Pass	
	2826.00	Н	-43.08			
	1420.00	Vertical	-36.79	≤-13.00	Pass	
	2130.00	V	-39.25			
Mid	2840.00	V	-40.33			
IVIIU	1420.00	Horizontal	-38.33		Pass	
	2130.00	Н	-40.49	≤-13.00		
	2840.00	Н	-41.31			
	1427.00	Vertical	-33.58			
	2140.50	V	-36.33	≤-13.00	Pass	
l limb	2854.00	V	-37.56			
High	1427.00	Horizontal	-36.20			
	2140.50	Н	-38.48	≤-13.00	Pass	
	2854.00	Н	-38.80			

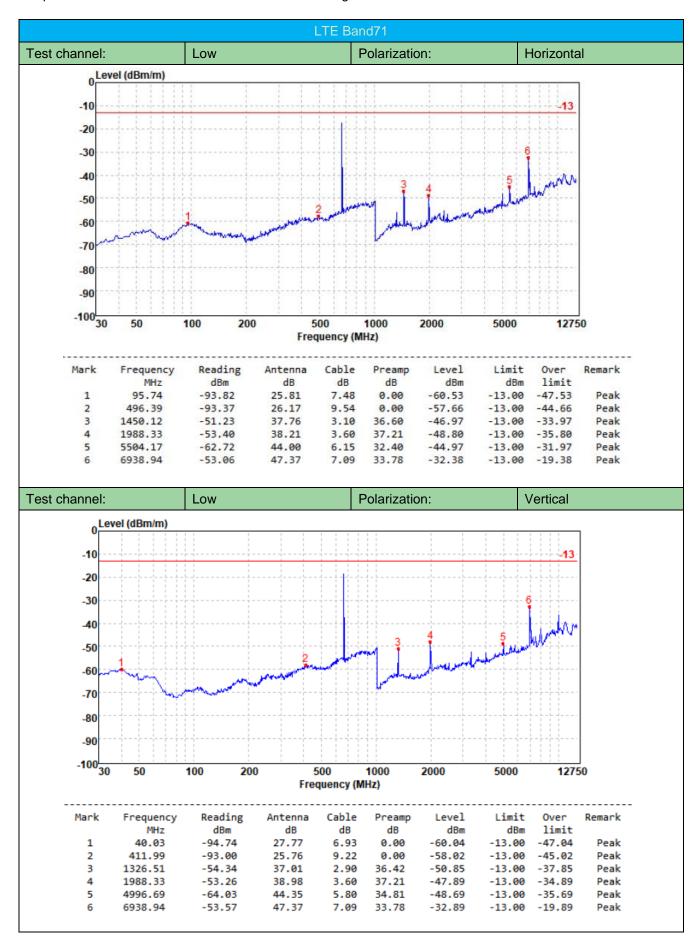
LTE Band 17-10MHz					
Channel	Frequency	Spurious I	Emission	Limit (dPm)	Result
Chamei	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
	1418.00	Vertical	-31.45		
	2127.00	V	-34.52	≤-13.00	Pass
Low	2836.00	V	-36.02		
LOW	1418.00	Horizontal	-34.23		
	2127.00	Н	-36.63	≤-13.00	Pass
	2836.00	Н	-37.22		
	1420.00	Vertical	-29.97	≤-13.00	Pass
	2130.00	V	-33.13		
Mid	2840.00	V	-34.71		
IVIIG	1420.00	Horizontal	-32.55		Pass
	2130.00	Н	-35.27	≤-13.00	
	2840.00	Н	-35.93		
	1422.00	Vertical	-28.36		
	2133.00	V	-31.67	≤-13.00	Pass
∐iah	2844.00	V	-33.32		
High	1422.00	Horizontal	-30.99		
	2133.00	Н	-33.80	≤-13.00	Pass
	2844.00	Н	-34.68		

- 1.
- Remark"---" means that the emission level is too low to be measured The emission levels of below 1 GHz are very lower than the limit and not show in test report

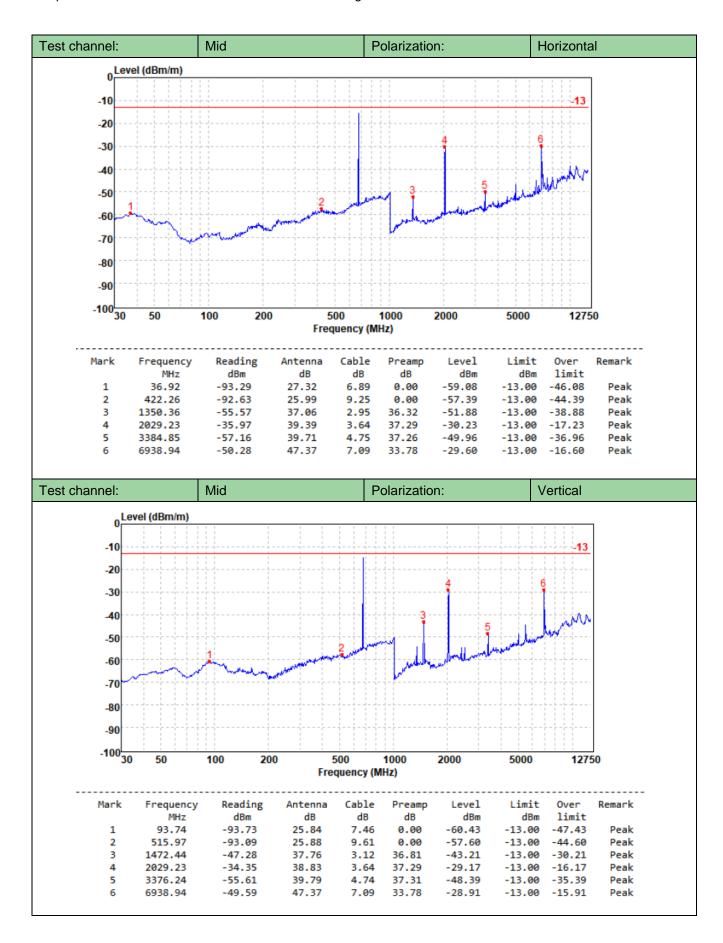
Report No.: CHTEW2209001101 Page: 46 of 52 Issued: 2022-09-06

LTE Band 41-5MHz						
Channal	Frequency	Spurious I	Emission	Lineit (dDne)	D !!	
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result	
	5005.00	Vertical	-37.41			
	7507.50	V	-42.21	<-25.00	Pass	
Low	10010.00	V	-42.72			
LOW	5005.00	Horizontal	-37.16			
	7507.50	Н	-41.94	<-25.00	Pass	
	10010.00	Н	-42.68			
	5070.00	Vertical	-37.20	<-25.00	Pass	
	7605.00	V	-41.91			
Mid	10140.00	V	-42.47			
IVIIG	5070.00	Horizontal	-36.60		Pass	
	7605.00	Н	-41.47	<-25.00		
	10140.00	Н	-42.36			
	5135.00	Vertical	-36.63			
	7702.50	V	-41.39	<-25.00	Pass	
∐iah	10270.00	V	-41.98			
High	5135.00	Horizontal	-36.22			
	7702.50	Н	-41.11	<-25.00	Pass	
	10270.00	Н	-42.06			

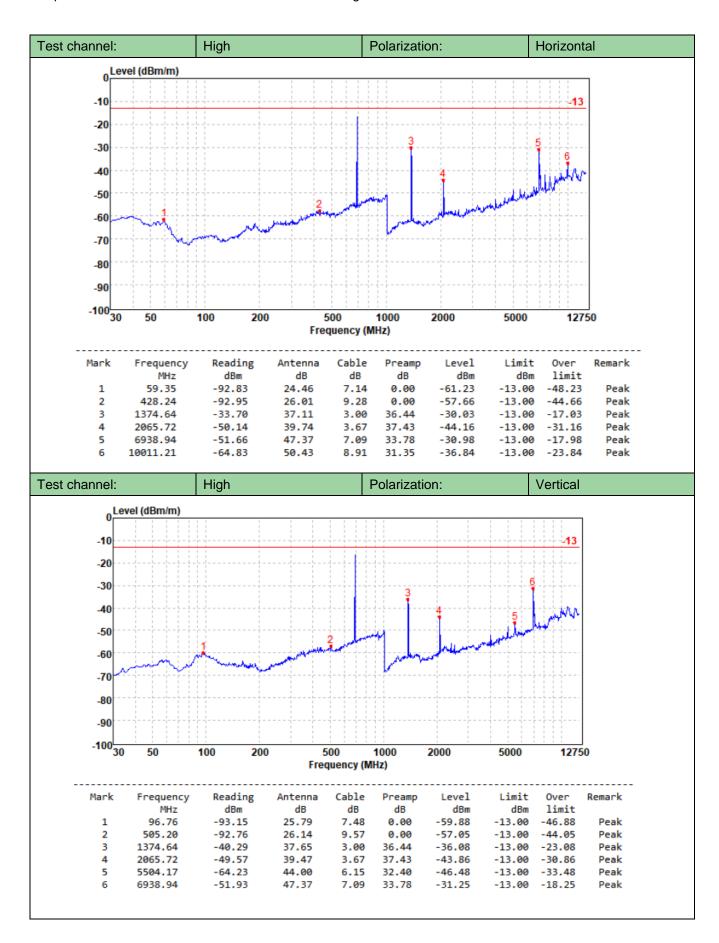
LTE Band 41-10MHz					
Channel	Frequency	Spurious I	Emission	Limit (dDm)	Result
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
	5010.00	Vertical	-36.37		
	7515.00	V	-41.17	<-25.00	Pass
Low	10020.00	V	-41.79		
LOW	5010.00	Horizontal	-36.44		
	7515.00	Н	-41.32	<-25.00	Pass
	10020.00	Н	-42.23		
	5070.00	Vertical	-36.53	<-25.00	Pass
	7605.00	V	-41.32		
Mid	10140.00	V	-41.93		
IVIIU	5070.00	Horizontal	-36.70		Pass
	7605.00	Н	-41.53	<-25.00	
	10140.00	Н	-42.43		
	5130.00	Vertical	-36.80		
	7695.00	V	-41.56	<-25.00	Pass
Lliab	10260.00	V	-42.16		
High	5130.00	Horizontal	-36.87		
	7695.00	Н	-41.69	<-25.00	Pass
	10260.00	Н	-42.57		


Report No.: CHTEW2209001101 47 of 52 2022-09-06 Page: Issued:

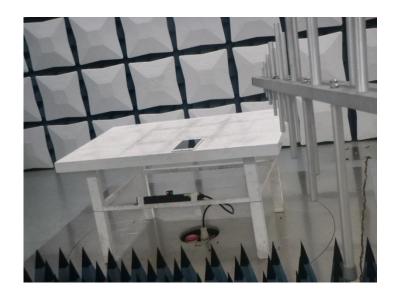
LTE Band 41-15MHz						
Channal	Frequency	Spurious I	Emission	Limit (dDay)	D 14	
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result	
	5015.00	Vertical	-36.56			
	7522.50	V	-41.37	<-25.00	Pass	
Low	10030.00	V	-41.99			
LOW	5015.00	Horizontal	-37.23			
	7522.50	Н	-42.21	<-25.00	Pass	
	10030.00	Н	-43.08			
	5070.00	Vertical	-37.05	<-25.00	Pass	
	7605.00	V	-41.80			
Mid	10140.00	V	-42.31			
iviid	5070.00	Horizontal	-37.02		Pass	
	7605.00	Н	-42.05	<-25.00		
	10140.00	Н	-42.92			
	5125.00	Vertical	-36.80			
	7687.50	V	-41.57	<-25.00	Pass	
High	10250.00	V	-42.09			
	5125.00	Horizontal	-36.86			
	7687.50	Н	-41.89	<-25.00	Pass	
	10250.00	Н	-42.79			

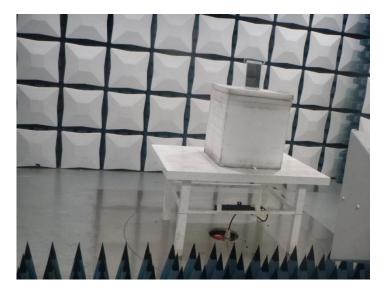

LTE Band 41-20MHz						
Channal	Frequency	Spurious I	Emission	Limit (dDm)	Dogult	
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result	
	5020.00	Vertical	-36.55			
	7530.00	V	-41.26	<-25.00	Pass	
Low	10040.00	V	-41.83			
LOW	5020.00	Horizontal	-36.62			
	7530.00	Н	-41.66	<-25.00	Pass	
	10040.00	Н	-42.60			
	5070.00	Vertical	-36.37	<-25.00	Pass	
	7605.00	V	-41.09			
Mid	10140.00	V	-41.67			
iviid	5070.00	Horizontal	-36.30			
	7605.00	Н	-41.41	<-25.00	Pass	
	10140.00	Н	-42.36			
	5120.00	Vertical	-36.15			
	7680.00	V	-40.89	<-25.00	Pass	
High	10240.00	V	-41.48			
High	5120.00	Horizontal	-36.64			
	7680.00	Н	-41.73	<-25.00	Pass	
	10240.00	Н	-42.62			

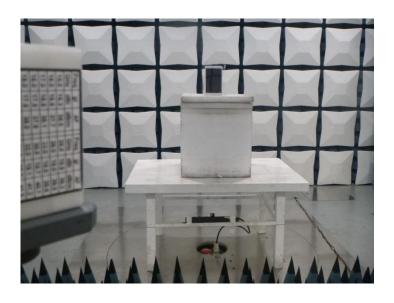
- 1.
- Remark"---" means that the emission level is too low to be measured The emission levels of below 1 GHz are very lower than the limit and not show in test report 2.


Report No.: CHTEW2209001101 Page: 48 of 52 Issued: 2022-09-06

Report No.: CHTEW2209001101 Page: 49 of 52 Issued: 2022-09-06




Report No.: CHTEW2209001101 Page: 50 of 52 Issued: 2022-09-06



Report No.: CHTEW2209001101 Page: 51 of 52 Issued: 2022-09-06

6. TEST SETUP PHOTOS OF THE EUT

Report No.: CHTEW2209001101 Page: 52 of 52 Issued: 2022-09-06

7. EXTERNAL AND INTERNAL PHOTOS OF THE EUT

Refere to the test report No.: CHTEW22090011

8. APPENDIX REPORT