

Shenzhen Huatongwei International Inspection Co., Ltd.

1/F,Bldg 3,Hongfa Hi-tech Industrial Park,Genyu Road,Tianliao,Gongming,Shenzhen,China Phone:86-755-26748019 Fax:86-755-26748089 http://www.szhtw.com.cn

FCC REPORT

Report Reference No.....: CHTEW19100128 Report verification:

Project No....:: SHT1909064404EW

FCC ID.....:: 2AJZP-G450A1

Applicant's name....:: Mason America, Inc

Address..... 2101 4th Avenue Suite 1550, Seattle WA, 98121

Manufacturer....: Mason America, Inc

Address....: 2101 4th Avenue Suite 1550, Seattle WA, 98121

Test item description::

Trade Mark: MASON/yprime

Model/Type reference....: G450A1

Listed Model(s):

FCC CFR Title 47 Part 2 Standard::

> FCC CFR Title 47 Part 22 FCC CFR Title 47 Part 24 FCC CFR Title 47 Part 27

Date of receipt of test sample.....: Sep 27, 2019

Date of testing.....: Sep 28, 2019- Oct 28, 2019

Date of issue..... Oct 29, 2019

Result....: **Pass**

Compiled by

File administrators Silvia Li (position+printedname+signature)...:

Supervised by

(position+printedname+signature)....: Project Engineer Aaron Fang Silvia Li Aaron.Fang

Approved by

(position+printedname+signature)....: Manager Hans Hu

Testing Laboratory Name:: Shenzhen Huatongwei International Inspection Co., Ltd.

1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Address....:

Tianliao, Gongming, Shenzhen, China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely correspond to the test sample.

Page: 1 of 25

Report No.: CHTEW19100128 Page: 2 of 33 Issued: 2019-10-29

Contents

<u>1.</u>	TEST STANDARDS AND REPORT VERSION	3
1.1.	Applicable Standards	3
1.2.	Report version information	3
•	TEST DESCRIPTION	4
<u>2.</u>	TEST DESCRIPTION	4
<u>3.</u>	SUMMARY	5
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Operation state	6
3.4.	EUT configuration	6
3.5.	Modifications	6
<u>4.</u>	TEST ENVIRONMENT	7
<u></u>	<u></u>	
4.1.	Address of the test laboratory	7
4.2.	Test Facility	7
4.3.	Equipments Used during the Test	8
4.4.	Environmental conditions	9
4.5.	Statement of the measurement uncertainty	9
<u>5.</u>	TEST CONDITIONS AND RESULTS	10
5.1.	Conducted Output Power	10
5.2.	Peak-Average Ratio	11
5.3.	99% Occupied Bandwidth & 26 dB Bandwidth	12
5.4.	Band Edge	13
5.5.	Conducted Spurious Emissions	14
5.6.	Frequency stability VS Temperature measurement	15
5.7.	Frequency stability VS Voltage measurement	16
5.8.	ERP and EIRP	17
5.9.	Radiated Spurious Emission	20
<u>6.</u>	TEST SETUP PHOTOS OF THE EUT	25
<u>7.</u>	EXTERNAL AND INTERNAL PHOTOS OF THE EUT	26
8.	APPENDIX REPORT	33

Report No.: CHTEW19100128 Page: 3 of 33 Issued: 2019-10-29

1. TEST STANDARDS AND REPORT VERSION

1.1. Applicable Standards

The tests were performed according to following standards:

FCC Rules Part 2: FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS

FCC Rules Part 22: PUBLIC MOBILE SERVICES

FCC Rules Part 24: PERSONAL COMMUNICATIONS SERVICES

FCC Rules Part 27: MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES

<u>TIA/EIA 603 E March 2016:</u>Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

ANSI C63.26: 2015: American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services

KDB 971168 D01 Power Meas License Digital Systems v03: MEASUREMENT GUIDANCE FOR CERTIFICATION OF LICENSED DIGITAL TRANSMITTERS

1.2. Report version information

Revision No.	Date of issue	Description
N/A	2019-10-29	Original

Report No.: CHTEW19100128 Page: 4 of 33 Issued: 2019-10-29

2. Test Description

Test Item	Section in CFR 47	Result	Test Engineer	
	Part 2.1046 Part 22.913(a)			
Conducted Output Power	Part 24.232(c)	Pass	Jiongsheng Feng	
	Part 27.50			
Peak-to-Average Ratio	Part 24.232	Pass	Jiongsheng Feng	
. out to your ago Hailo	Part 27.50	. 466	Grongeneng rong	
	Part 2.1049			
99% Occupied Bandwidth & 26 dB Bandwidth	Part 22.917(b)	Pass	Jiongsheng Feng	
Bandwidth	Part 24.238(b) Part 27.53			
	Part 27.33		+	
	Part 22.917			
Band Edge	Part 24.238	Pass	Jiongsheng Feng	
	Part 27.53			
	Part 2.1051			
Conducted Spurious Emissions	Part 22.917	Pass	Jiongsheng Feng	
Conducted Spurious Emissions	Part 24.238	Pass		
	Part 27.53			
	Part 2.1055(a)(1)(b)			
Frequency stability vs temperature	Part 22.355	Pass	Jiongsheng Feng	
requeries stability to temperature	Part 24.235	. 400	olongonong r ong	
	Part 27.54			
	Part 2.1055(d)(1)(2)			
Frequency stability vs voltage	Part 22.355	Pass	Jiongsheng Feng	
	Part 24.235			
	Part 27.54			
ERP and EIRP	Part 22.913(a) Part 24.232(b)	Pass	Pan Xie	
ERF and EIRF	Part 27.50	F a 5 5	Pan Ale	
	Part 2.1053			
	Part 22.1033			
Radiated Spurious Emissions	Part 24.238	Pass	Pan Xie	
	Part 27.53			

Note: The measurement uncertainty is not included in the test result.

Report No.: CHTEW19100128 Page: 5 of 33 Issued: 2019-10-29

3. **SUMMARY**

3.1. Client Information

Applicant:	Mason America, Inc
Address:	2101 4th Avenue Suite 1550, Seattle WA, 98121
Manufacturer:	Mason America, Inc
Address:	2101 4th Avenue Suite 1550, Seattle WA, 98121

3.2. Product Description

Name of EUT:	PAD		
Trade Mark:	MASON/yprime		
Model No.:	G450A1		
Listed Model(s):	-		
SIM Information:	Support Two SIM Card		
Power supply:	DC 3.8V		
Adapter information1:	Model: A138A-120150U-US2 Input: 100-240Va.c., 50/60Hz, 0.5A Output: 5.0Vd.c., 2.5A/9.0Vd.c.,2.0A/12Vd.c.,1.5A		
Hardware version:	PVT2.0		
Software version:	N2G48H		
3G:			
Operation Band:	FDD Band II, FDD Band IV , FDD Band V		
Power Class:	Class 3		
Modulation Type:	QPSK		
Transmit frequency:	FDD Band II: 1852.40MHz~1907.60MHz FDD Band IV: 1712.40MHz~1752.60MHz FDD Band V: 826.40MHz~846.60MHz		
Receive frequency:	FDD Band II: 1932.40MHz~1987.60MHz FDD Band IV: 2112.40MHz~2152.60MHz FDD Band V: 871.40MHz~891.60MHz		
Antenna type:	FPC Antenna		
Antenna gain:	Band II: 1.2dBi,Band IV: 1.1dBi, Band V: 0.4dBi		

Report No.: CHTEW19100128 Page: 6 of 33 Issued: 2019-10-29

3.3. Operation state

> Test frequency list

FDD Band II		FDD	Band IV	FDD Band V	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
9262	1852.40	1312	1712.40	4132	826.40
9400	1880.00	1413	1732.60	4183	836.60
9538	1907.60	1513	1752.60	4233	846.60

Test mode

Antenna port conducted and radiated test items were performed according to KDB 971168 D01 Power Meas. License Digital Systems v03 and ANSI C63.26-2015 with maximum output power.

Radiated measurements were performed with rotating EUT in different three orthogonal test planes to find the maximum emission.

Radiated emissions were investigated as following frequency range:

30 MHz to 10th harmonic for FDD Band II, Band IV, Band V.

The Test EUT support two SIM card(SIM1,SIM2),so all the tests are performed at each SIM card (SIM1,SIM2) mode, the datum recorded is the worst case for all the mode at SIM1 Card mode.

All modes and data rates and positions were investigated.

Test modes are chosen to be reported as the worst case configuration below:

Test modes					
Band	Radiated	Conducted			
WCDMA Band V	■ RMC 12.2Kbps Link	■ RMC 12.2Kbps Link			
WCDMA Band II	■ RMC 12.2Kbps Link	■ RMC 12.2Kbps Link			
WCDMA Band IV	■ RMC 12.2Kbps Link	■ RMC 12.2Kbps Link			

3.4. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

supplied by the manufacturersupplied by the lab

Manufacturer: /
Model No.: /

Manufacturer: /
Model No.: /

Manufacturer: /
Model No.: /

3.5. Modifications

No modifications were implemented to meet testing criteria.

Report No.: CHTEW19100128 Page: 7 of 33 Issued: 2019-10-29

4. TEST ENVIRONMENT

4.1. Address of the test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd.

Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China.

4.2. Test Facility

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 762235

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files.

IC-Registration No.:5377A

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No.: 5377A.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

Report No.: CHTEW19100128 Page: 8 of 33 Issued: 2019-10-29

4.3. Equipments Used during the Test

Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Signal and spectrum Analyzer	R&S	HTWE0242	FSV40	100048	2019/10/26	2020/10/25
•	Spectrum Analyzer	Agilent	HTWE0286	N9020A	MY5051018 7	2019/10/26	2020/10/25
•	Radio communication tester	R&S	HTWE0287	CMW500	137688-Lv	2019/10/26	2020/10/25
•	Test software	Tonscend	N/A	JS1120	N/A	N/A	N/A

•	Radiated Spur	ious Emission					
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Semi-Anechoic Chamber	Albatross projects	HTWE0122	SAC-3m-01	N/A	2018/09/27	2021/09/26
•	Spectrum Analyzer	R&S	HTWE0098	FSP40	100597	2019/10/26	2020/10/25
•	Loop Antenna	R&S	HTWE0170	HFH2-Z2	100020	2018/04/02	2021/04/01
•	Ultra-Broadband Antenna	SCHWARZBECK	HTWE0123	VULB9163	538	2018/04/04	2021/04/03
•	Horn Antenna	SCHWARZBECK	HTWE0126	9120D	1011	2017/04/01	2020/03/31
•	Pre-amplifier	CD	HTWE0071	PAP-0102	12004	2018/11/14	2019/11/13
•	Broadband Preamplifier	SCHWARZBECK	HTWE0201	BBV 9718	9718-248	2019/05/23	2020/05/22
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-01	6m 18GHz S Serisa	N/A	2019/05/10	2020/5/09
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-02	6m 3GHz RG Serisa	N/A	2019/05/10	2020/5/09
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-03	6m 3GHz RG Serisa	N/A	2019/05/10	2020/5/09
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-04	6m 3GHz RG Serisa	N/A	2019/05/10	2020/5/09
•	RF Connection Cable	HUBER+SUHNER	HTWE0121-01	6m 18GHz S Serisa	N/A	2019/05/10	2020/5/09
•	EMI Test Software	Audix		E3	N/A	N/A	N/A

•	Auxiliary Equipment						
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Climate chamber	ESPEC	HTWE0254	GPL-2	N/A	2019/10/23	2020/10/22
•	DC Power Supply	Gwinstek	HTWE0274	SPS-2415	GER835793	N/A	N/A

Report No.: CHTEW19100128 Page: 9 of 33 Issued: 2019-10-29

4.4. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

	VN=Nominal Voltage	DC 3.80V
Voltage	VL=Lower Voltage	DC 3.60V
	VH=Higher Voltage	DC 4.35V
Tomporoturo	TN=Normal Temperature	25 °C
Temperature	Extreme Temperature	From -30° to + 50° centigrade
Humidity	30~60 %	
Air Pressure	950-1050 hPa	

4.5. Statement of the measurement uncertainty

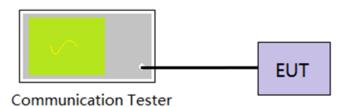
The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01"Electromagnetic compatibilityand Radio spectrum Matters (ERM);Uncertainties in the measurementof mobile radio equipment characteristics;Part 1"and TR-100028-02 "Electromagnetic compatibilityand Radio spectrum Matters (ERM);Uncertainties in the measurementof mobile radio equipment characteristics;Part 2 " and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Huatongwei laboratory is reported:

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.51 dB	(1)
Transmitter power Radiated	2.66dB for <1GHz 3.44dB for >1GHz	(1)
Conducted spurious emissions 9kHz~40GHz	0.51 dB	(1)
Radiated spurious emissions	2.66dB for <1GHz	(1)
radiated oparious critisaloris	3.44dB for >1GHz	(1)
Occupied Pandwidth	15Hz for <1GHz	(1)
Occupied Bandwidth	70Hz for >1GHz	(1)
Eroguenov orror	15Hz for <1GHz	(1)
Frequency error	70Hz for >1GHz	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Report No.: CHTEW19100128 Page: 10 of 33 Issued: 2019-10-29


5. TEST CONDITIONS AND RESULTS

5.1. Conducted Output Power

LIMIT

N/A

TEST CONFIGURATION

TEST PROCEDURE

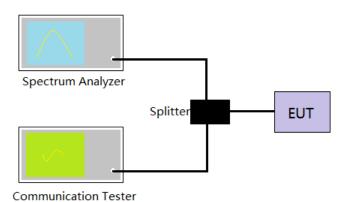
- 1. The EUT output port was connected to communication tester.
- 2. Set EUT at maximum power through communication tester.
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Measure the maximum burst average power.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Refer to appendix A on the section 8 appendix report


Report No.: CHTEW19100128 Page: 11 of 33 Issued: 2019-10-29

5.2. Peak-Average Ratio

LIMIT

13dB

TEST CONFIGURATION

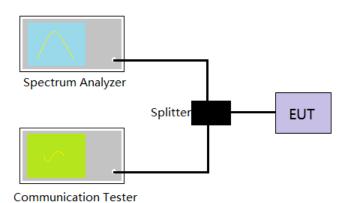
TEST PROCEDURE

- 1. The EUT was connected to the spectrum analyzer and communication tester via a power splitter
- 2. Set EUT in maximum power output.
- 3. Center Frequency = Carrier frequency, RBW > Emission bandwidth of signal
- 4. The signal analyzer was set to collect one million samples to generate the CCDF curve
- 5. The measurement interval was set depending on the type of signal analyzed.
 - i. For continuous signals (>98% duty cycle), the measurement interval was set to 1ms.
 - ii. For bursttransmissions, the spectrum analyzer is set to use an internal "RF Burst" trigger that issynced with an incoming pulse and the measurement interval is set to less than the duration of the "on time" of one burst to ensure that energy is only captured during a time in whichthetransmitter is operating at maximum power
- 6. Record the maximum PAPR level associated with a probability of 0.1%.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS


Refer to appendix B on the section 8 appendix report

Report No.: CHTEW19100128 Page: 12 of 33 Issued: 2019-10-29

5.3. 99% Occupied Bandwidth & 26 dB Bandwidth

LIMIT N/A

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was connected to the spectrum analyzer and communication tester via a power splitter
- 2. Set EUT in maximum power output.
- 3. Spectrum analyzer setting as follow:

Center Frequency= Carrier frequency, RBW=1% to 5% of anticipated OBW, VBW= 3 * RBW, Detector=Peak,

Trace maximum hold.

4. Record the value of 99% Occupied bandwidth and -26dB bandwidth.

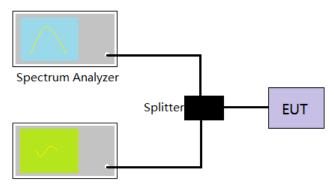
TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Refer to appendix C on the section 8 appendix report

Report No.: CHTEW19100128 Page: 13 of 33 Issued: 2019-10-29


5.4. Band Edge

LIMIT

Part 24.238 and Part 22.917 and Part 27.53 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

TEST CONFIGURATION

Communication Tester

TEST PROCEDURE

- 1. The EUT was connected to the spectrum analyzer and communication tester via a power splitter
- 2. Set EUT in maximum power output.
- 3. The band edges of low and high channels were measured.
- Spectrum analyzer setting as follow:
 RBW=100KHz, VBW = 300KHz, Sweep time= Auto
- 5. Record the test plot.

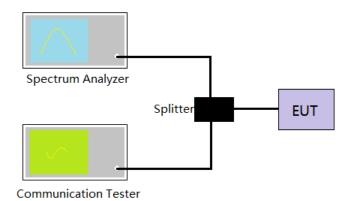
TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Refer to appendix D on the section 8 appendix report

Report No.: CHTEW19100128 Page: 14 of 33 Issued: 2019-10-29


5.5. Conducted Spurious Emissions

LIMIT

Part 24.238 and Part 22.917 and Part 27.53 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was connected to the spectrum analyzer and communication tester via a power splitter
- 2. Set EUT in maximum power output.
- 3. Spectrum analyzer setting as follow:

Below 1GHz, RBW=100KHz, VBW = 300KHz, Detector=Peak, Sweep time= Auto Above 1GHz, RBW=1MHz, VBW=3MHz, Detector=Peak, Sweep time= Auto Scan frequency range up to 10th harmonic.

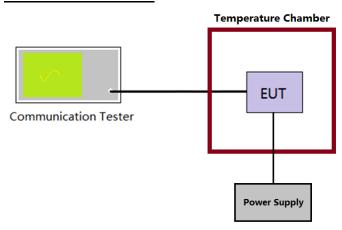
4. Record the test plot.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Refer to appendix E on the section 8 appendix report


Report No.: CHTEW19100128 Page: 15 of 33 Issued: 2019-10-29

5.6. Frequency stability VS Temperature measurement

LIMIT

2.5ppm

TEST CONFIGURATION

TEST PROCEDURE

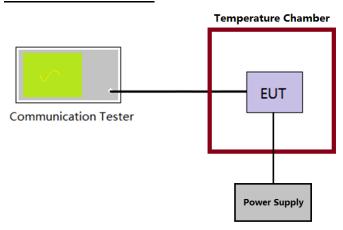
- 1. The equipment under test was connected to an external DC power supply and input rated voltage.
- 2. The EUT output port was connected to communication tester.
- 3. The EUT was placed inside the temperature chamber.
- 4. Turn EUT off and set the chamber temperature to −30°C. After the temperature stabilized for approximately 30 minutes recorded the frequency.
- 5. Repeat step 4 measure with 10°C increased per stage until the highest temperature of +50°C reached.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Refer to appendix F on the section 8 appendix report


Report No.: CHTEW19100128 Page: 16 of 33 Issued: 2019-10-29

5.7. Frequency stability VS Voltage measurement

LIMIT

2.5ppm

TEST CONFIGURATION

TEST PROCEDURE

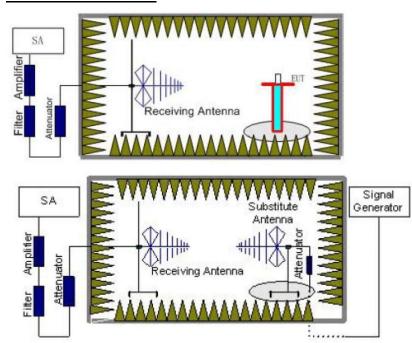
- 1. The equipment under test was connected to an external DC power supply and input rated voltage.
- 2. The EUT output port was connected to communication tester.
- 3. The EUT was placed inside the temperature chamber at 25°C
- 4. The power supply voltage to the EUT was varied $\pm 15\%$ of the nominal value measured at the input to the EUT
- 5. Record the maximum frequency change.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Refer to appendix F on the section 8 appendix report


Report No.: CHTEW19100128 Page: 17 of 33 Issued: 2019-10-29

5.8. ERP and EIRP

LIMIT

WCDMA Band V: 7W (38.45dBm) ERP WCDMA Band II: 2W (33dBm) EIRP WCDMA Band IV: 1W (30dBm) EIRP

TEST CONFIGURATION

TEST PROCEDURE

- 1. Place the EUT in the center of the turntable.
 - a) For radiated emissions measurements performed at frequencies less than or equal to 1 GHz, the EUT shall be placed on a RF-transparent table at a nominal height of 80 cm above the reference ground plane
 - b) For radiated measurements performed at frequencies above 1 GHz, the EUT shall be placed on an RF transparent table at a nominal height of 1.5 m above the ground plane.
- 2. Unless the EUT uses an integral antenna, the EUT shall be terminated with a non-radiating transmitter load. In cases where the EUT uses an adjustable antenna, the antenna shall be adjusted through typical positions and lengths to maximize emissions levels.
- 3. The EUT shall be tested while operating on the frequency per manufacturer specification. Set the transmitter to operate in continuous transmit mode.
- 4. Receiver or Spectrum set as follow:
 - Below 1GHz, RBW=100kHz, VBW=300kHz, Detector=Peak, Sweep time=Auto Above 1GHz, RBW=1MHz, VBW=3MHz, Detector=Peck, Sweep time=Auto
- 5. Each emission under consideration shall be evaluated:
 - a) Raise and lower the measurement antenna from 1 m to 4 m, as necessary to enable detection of the maximum emission amplitude relative to measurement antenna height.
 - b) Rotate the EUT through 360° to determine the maximum emission level relative to the axial position.
 - c) Return the turntable to the azimuth where the highest emission amplitude level was observed.
 - d) Vary the measurement antenna height again through 1 m to 4 m again to find the height associated with the maximum emission amplitude.
 - e) Record the measured emission amplitude level and frequency
- 6. Repeat step 5 for each emission frequency with the measurement antenna oriented in both the horizontal and vertical polarizations to determine the orientation that gives the maximum emissions amplitude.
- 7. Set-up the substitution measurement with the reference point of the substitution antenna located as near as possible to where the center of the EUT radiating element was located during the initial EUT measurement.
- 8. Maintain the previous measurement instrument settings and test set-up, with the exception that the EUT is removed and replaced by the substitution antenna.

Report No.: CHTEW19100128 Page: 18 of 33 Issued: 2019-10-29

9. Connect a signal generator to the substitution antenna; locate the signal generator so as to minimize any potential influences on the measurement results. Set the signal generator to the frequency where emissions are detected, and set an output power level such that the radiated signal can be detected by the measurement instrument, with sufficient dynamic range relative to the noise floor.

- 10. For each emission that was detected and measured in the initial test
 - a) Vary the measurement antenna height between 1 m to 4 m to maximize the received (measured) signal amplitude.
 - b) Adjust the signal generator output power level until the amplitude detected by the measurement instrument equals the amplitude level of the emission previously measured directly in step 5 and step 6.
 - c) Record the output power level of the signal generator when equivalence is achieved in step b).
- 11. Repeat step 8 through step 10 with the measurement antenna oriented in the opposite polarization.
- 12. Calculate the emission power in dBm referenced to a half-wave dipole using the following equation: Pe = Ps(dBm) cable loss (dB) + antenna gain (dBd) where

Pe = equivalent emission power in dBm

Ps = source (signal generator) power in dBm

NOTE—dBd refers to the measured antenna gain in decibels relative to a half-wave dipole.

13. Correct the antenna gain of the substitution antenna if necessary to reference the emission power to a half-wave dipole. When using measurement antennas with the gain specified in dBi, the equivalent dipole-referenced gain can be determined from: gain (dBd) = gain (dBi) - 2.15 dB.

If necessary, the antenna gain can be calculated from calibrated antenna factor information

14. Provide the complete measurement results as a part of the test report.

TE	CT	84	\sim	\mathbf{r}	_	_
	-	IVI			_	-

Please refer to the clause 3.3

TEST RESULTS

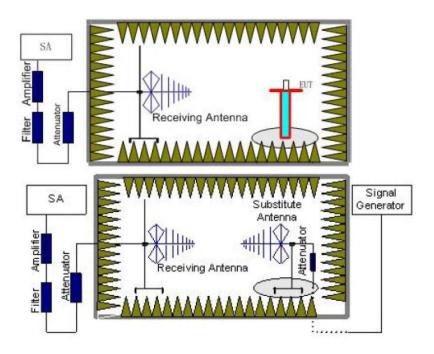
□ Passed	■ Not Applicable

Report No.: CHTEW19100128 Page: 19 of 33 Issued: 2019-10-29

Mode	Channel	Antenna Pol.	EIRP	Limit (dBm)	Result
WCDMA Band II	9262	V	19.80		
	9202	Н	20.82		
	0400	V	19.32	-22.00	Pass
	9400	Н	22.01	<33.00	Pa55
	9538	V	18.35		
		Н	22.84		

Mode	Channel	Antenna Pol.	EIRP	Limit (dBm)	Result
WCDMA Band IV	1312	V	22.61		Pass
	1312	Н	22.73		
	1412	V	20.62	<30.00	
	1412	Н	22.42	<30.00	Pa55
	1513	V	19.24		
		Н	19.98		

Mode	Channel	Antenna Pol.	ERP	Limit (dBm)	Result
WCDMA Band V	4132	V	18.72		Pass
	4132	Н	21.83		
	4400	V	17.80	-20.45	
	4183	Н	21.78	<38.45	
	4233	V	17.15		
		Н	20.25		


Report No.: CHTEW19100128 Page: 20 of 33 Issued: 2019-10-29

5.9. Radiated Spurious Emission

LIMIT

-13dBm

TEST CONFIGURATION

TEST PROCEDURE

- 1. Place the EUT in the center of the turntable.
 - a) For radiated emissions measurements performed at frequencies less than or equal to 1 GHz, the EUT shall be placed on a RF-transparent table at a nominal height of 80 cm above the reference ground plane
 - b) For radiated measurements performed at frequencies above 1 GHz, the EUT shall be placed on an RF transparent table at a nominal height of 1.5 m above the ground plane.
- 2. Unless the EUT uses an integral antenna, the EUT shall be terminated with a non-radiating transmitter load. In cases where the EUT uses an adjustable antenna, the antenna shall be adjusted through typical positions and lengths to maximize emissions levels.
- 3. The EUT shall be tested while operating on the frequency per manufacturer specification. Set the transmitter to operate in continuous transmit mode.
- 4. Receiver or Spectrum set as follow:
 - Below 1GHz, RBW=100kHz, VBW=300kHz, Detector=Peak, Sweep time=Auto Above 1GHz, RBW=1MHz, VBW=3MHz, Detector=Peck, Sweep time=Auto
- 5. Each emission under consideration shall be evaluated:
 - a) Raise and lower the measurement antenna from 1 m to 4 m, as necessary to enable detection of the maximum emission amplitude relative to measurement antenna height.
 - b) Rotate the EUT through 360° to determine the maximum emission level relative to the axial position.
 - c) Return the turntable to the azimuth where the highest emission amplitude level was observed.
 - d) Vary the measurement antenna height again through 1 m to 4 m again to find the height associated with the maximum emission amplitude.
 - e) Record the measured emission amplitude level and frequency
- 6. Repeat step 5 for each emission frequency with the measurement antenna oriented in both the horizontal and vertical polarizations to determine the orientation that gives the maximum emissions amplitude.
- 7. Set-up the substitution measurement with the reference point of the substitution antenna located as near as possible to where the center of the EUT radiating element was located during the initial EUT measurement.
- 8. Maintain the previous measurement instrument settings and test set-up, with the exception that the EUT is removed and replaced by the substitution antenna.
- 9. Connect a signal generator to the substitution antenna; locate the signal generator so as to minimize any

Report No.: CHTEW19100128 Page: 21 of 33 Issued: 2019-10-29

potential influences on the measurement results. Set the signal generator to the frequency where emissions are detected, and set an output power level such that the radiated signal can be detected by the measurement instrument, with sufficient dynamic range relative to the noise floor.

- 10. For each emission that was detected and measured in the initial test
 - a) Vary the measurement antenna height between 1 m to 4 m to maximize the received (measured) signal amplitude.
 - b) Adjust the signal generator output power level until the amplitude detected by the measurement instrument equals the amplitude level of the emission previously measured directly in step 5 and step 6.
 - c) Record the output power level of the signal generator when equivalence is achieved in step b).
- 11. Repeat step 8 through step 10 with the measurement antenna oriented in the opposite polarization.
- 12. Calculate the emission power in dBm referenced to a half-wave dipole using the following equation: Pe = Ps(dBm) cable loss (dB) + antenna gain (dBd) where

Pe = equivalent emission power in dBm

Ps = source (signal generator) power in dBm

NOTE—dBd refers to the measured antenna gain in decibels relative to a half-wave dipole.

13. Correct the antenna gain of the substitution antenna if necessary to reference the emission power to a half-wave dipole. When using measurement antennas with the gain specified in dBi, the equivalent dipole-referenced gain can be determined from: gain (dBd) = gain (dBi) - 2.15 dB.

If necessary, the antenna gain can be calculated from calibrated antenna factor information

14. Provide the complete measurement results as a part of the test report.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

□ Passed	☐ Not Applicable

Note: Worst case at WCDMA Band II/WCDMA Band IV/ WCDMA Band V

Report No.: CHTEW19100128 22 of 33 Issued: 2019-10-29 Page:

		WCDM	A Band II		
Channal	Channel Frequency Spurious Emission				Dooult
Chamer	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
	43.3375	Vertical	-68.84		
	90.1400	V	-68.53		Pass
	449.6463	V	-70.06	<-13.00	
	1364.250	V	-50.77	<-13.00	
	3625.218	V	-58.29		
9262	5242.500	V	-53.50		
9262	44.0650	Horizontal	-66.72		
	172.2263	Н	-72.56		
	449.8888	Н	-71.79	. 42.00	Door
	1320.250	Н	-51.00	<-13.00	Pass
	3853.125	Н	-59.06		
	5743.406	Н	-53.11		
	43.0950	Vertical	-68.65		Pass
	90.2613	V	-69.56		
	451.5863	V	-69.96	<-13.00	
	1375.250	V	-49.95		
	3199.875	V	-58.67		
0.400	5634.937	V	-53.61		
9400	43.7013	Horizontal	-66.92		Pass
	172.5900	Н	-71.47		
	632.2488	Н	-71.69	. 12.00	
	1374.750	Н	-51.32	<-13.00	
	3867.750	Н	-59.25		
	5489.906	Н	-53.85		
	43.0950	Vertical	-69.18		
	90.1400	V	-69.77		
	449.7675	V	-69.47	- 12.00	Pasa
	1375.250	V	-50.03	<-13.00	Pass
	3643.500	V	-59.16		
0530	5720.250	V	-50.18		
9538	43.7013	Horizontal	-66.73		
	172.4688	Н	-72.49		
	451.8288	Н	-72.15	40.00	Poss
	1381.250	Н	-50.77	<-13.00	Pass
	3583.781	Н	-59.12		
	5720.250	Н	-47.34		

Remark:

- 1.
- The emission behaviour belongs to narrowband spurious emission.

 The emission levels of not record in the report are very lower than the limit and not show in test report. 2.

Report No.: CHTEW19100128 23 of 33 Issued: 2019-10-29 Page:

		WCDM/	A Band IV		
Channel	Channel Frequency Spurious Emission		Limit (dDm)	Dogult	
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
9	42.6100	Vertical	-68.72		
	90.3825	V	-69.38		Pass
	451.8288	V	-69.34	<-13.00	
	1374.750	V	-50.11	<-13.00	Pa55
	3421.687	V	-57.48		
1312	5134.031	V	-42.19		
1312	43.4588	Horizontal	-66.40		
	172.3475	Н	-72.87		
	450.9800	Н	-71.54	40.00	Dana
	1364.000	Н	-51.17	<-13.00	Pass
	3577.687	Н	-59.39		
	5134.031	Н	-49.14		
	42.9738	Vertical	-68.63		
	90.3825	V	-69.79		Pass
	451.7075	V	-69.10	<-13.00	
	1375.250	V	-50.44		
	3151.125	V	-59.23		
4.440	5193.750	V	-42.05		
1412	44.1863	Horizontal	-66.48		Pass
	181.9263	Н	-79.64		
	400.0550	Н	-74.87	40.00	
	1374.750	Н	-50.95	<-13.00	
	3610.593	Н	-58.75		
	5201.062	Н	-49.24		
	42.9738	Vertical	-68.80		
	90.2613	V	-70.25		_
	450.0100	V	-71.36	40.00	
	1375.000	V	-49.57	<-13.00	Pass
	3625.218	V	-58.46		
4-12	5254.687	V	-41.32		
1513	44.1863	Horizontal	-66.00		
	172.4688	Н	-71.84		
	449.8888	Н	-72.41	10.00	Davis
	1421.750	Н	-51.00	<-13.00	Pass
	3764.156	Н	-59.40		
	5255.906	Н	-49.07		

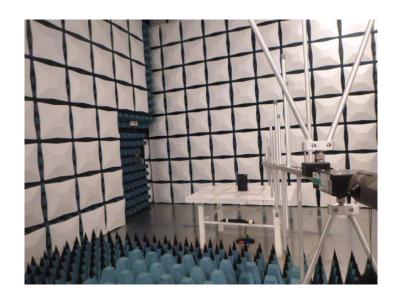
Remark:

- 1.
- The emission behaviour belongs to narrowband spurious emission.

 The emission levels of not record in the report are very lower than the limit and not show in test report. 2.

Report No.: CHTEW19100128 Page: 24 of 33 Issued: 2019-10-29

		WCDN	IA Band V		
Channel	Frequency	Spurious Emission		Limit (dDm)	Danult
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
	45.1563	Vertical	-69.63		Pass
	90.1400	V	-70.16		
	451.8288	V	-71.12	. 42.00	
	1375.250	V	-50.12	<-13.00	
	2475.250	V	-42.43		
4400	4374.750	V	-57.44		
4132	44.1863	Horizontal	-66.76		
	172.2263	Н	-73.86		
	450.0100	Н	-72.18	40.00	D
	1420.500	Н	-50.56	<-13.00	Pass
	2481.000	Н	-45.31		
	4549.031	Н	-55.80		
	43.0950	Vertical	-68.14		Pass
	90.1400	V	-69.36		
	450.0100	V	-70.28	<-13.00	
	1375.500	V	-49.77		
	2511.750	V	-39.77		
44.00	4999.968	V	-53.12		
4183	44.3075	Horizontal	-66.61		Pass
	172.1050	Н	-71.37		
	451.4650	Н	-72.62	40.00	
	1370.250	Н	-51.41	<-13.00	
	2510.500	Н	-44.58		
	3605.718	Н	-57.73		
	43.3375	Vertical	-69.02		_
	90.2613	V	-70.14		
	450.0100	V	-70.34	40.00	
	1375.500	V	-47.69	<-13.00	Pass
	2543.250	V	-40.07		
4000	4998.750	V	-53.90		
4233	44.0650	Horizontal	-66.94		
	172.2263	Н	-73.89		
	450.0100	Н	-72.10	<-13.00 Pas	De
	1360.000	Н	-51.30		Pass
	2537.250	Н	-43.18		
	3767.812	Н	-59.30		

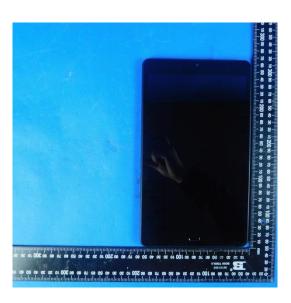

Remark:

- The emission behaviour belongs to narrowband spurious emission.

 The emission levels of not record in the report are very lower than the limit and not show in test report. 2.

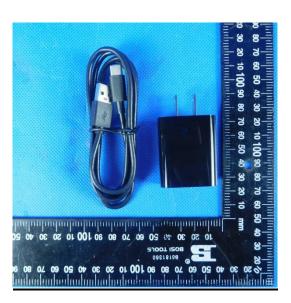
Report No.: CHTEW19100128 Page: 25 of 33 Issued: 2019-10-29

6. TEST SETUP PHOTOS OF THE EUT


Report No.: CHTEW19100128 Page: 26 of 33 Issued: 2019-10-29

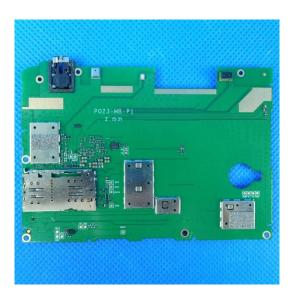

7. EXTERNAL AND INTERNAL PHOTOS OF THE EUT External photos of the EUT

Report No.: CHTEW19100128 Page: 27 of 33 Issued: 2019-10-29


Report No.: CHTEW19100128 Page: 28 of 33 Issued: 2019-10-29

Report No.: CHTEW19100128 Page: 29 of 33 Issued: 2019-10-29

Report No.: CHTEW19100128 Page: 30 of 33 Issued: 2019-10-29


Internal photos of the EUT

Report No.: CHTEW19100128 Page: 31 of 33 Issued: 2019-10-29

Report No.: CHTEW19100128 Page: 32 of 33 Issued: 2019-10-29

Report No.: CHTEW19100128 Page: 33 of 33 Issued: 2019-10-29

8. APPENDIX REPORT