

RF TEST REPORT

Report No.:	SET2020-06231		
Product Name:	Mobile Phone		
Model No. :	D450C1		
FCC ID:	2AJZP-D450C1		
Applicant:	Mason America, Inc.		
Address:	506 2nd Ave Suite 1400 Seattle Washington United States		
Dates of Testing:	05/20/2020		
Issued by:	CCIC Southern Testing Co., Ltd.		
Lab Location:	Electronic Testing Building, No. 43 Shahe Road, Xili Street, Nanshan District, Shenzhen, Guangdong, China.		
	Tel: 86 755 26627338 Fax: 86 755 26627238		

This test report consists of 25 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CCIC-SET. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CCIC-SET within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit.

Test Report

Product Name:	Mobile Phone	
Brand Name:	MASON	
Trade Name:	MASON	
Applicant:	Mason America, Inc.	
Applicant Address::	506 2nd Ave Suite 1400 Sea	attle Washington United States
Manufacturer:	Mason America, Inc.	
Manufacturer Address:		-
Test Standards:	47 CFR Part 15 Subpart E 1 RSS 247 Issue 2, Feb. 2017	5.407
Test Result:	PASS	
Tested by:	Vincent	2020.08.03
Reviewed by:	Vincent, Test Engineer	2020.08.03
Approved by:	Shuangwan Zhang	2020.08.03
	Shuangwen Zhang, Manage	۶r

TABLE OF CONTENTS

RF	TEST REPORT1
1.	GENERAL INFORMATION4
1.1.	EUT Description
1.2.	Test Standards and Results
1.3.	Test Facility
2.	U-NII DFS RULE REQUIREMENTS
2.1.	Working modes and required test items
2.2.	Test limits and radar signal parameters
3.	TEST PROCEDURE
3.1.	DFS Test Setup configuration
3.2.	BVADT DFS Measurement system:
4.	TEST RESULTS
5.	LIST OF MEASURING EQUIPMENT

Change History				
Issue Date Reason for change				
1.0 2020.08.03		First edition		

1. General Information

1.1. EUT Description

EUT Type	Mobile Phone	
EUT supports Radios application	WLAN5.0GHz 802.11a/n (HT20/40)/ac(VHT20/40/80)	
	Master device	
Operation	Slaver device with radar detection function	
	Slaver device without radar detection function	
Hotspot Mode	Not support	
TPC	Not support	
	CCK, DQPSK, DBPSK for DSSS	
Modulation Type	256QAM, 64QAM, 16QAM, QPSK, BPSK for OFDM	
	256QAM for OFDM in 11ac mode only	
	802.11a: 54/48/36/24/18/12/9/6 Mbps	
Transfer Rate	802.11n : up to 135 Mbps	
	802.11ac: up to V9	
	Band UNII-1: 5150 ~ 5250MHz	
Frequency Range	Band UNII-2a: 5250 ~ 5350MHz	
Trequency Kange	Band UNII-2c: 5500 ~ 5700MHz	
	Band UNII-3: 5725 ~ 5850MHz	
	802.11a: 20MHz	
Channel Bandwidth	802.11n: 20MHz/40MHz	
	802.11ac: 20MHz/40MHz/80MHz	
Antenna Type	Internal	
Antenna Gain	-0.83dBi ;	

1.2. Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart E and RSS 247 Issue 2:

No.	Identity	Document Title		
	47 CFR Part 15			
1	Subpart E § 15.407	Radio Frequency Devices		
	RSS 247			
	KDB Publication	UNIT DES Compliance Drace danse Norre Dales		
2	905462 D02v02	UNII DFS Compliance Procedures New Rules		
2	KDB Publication	UNIL Oli sute With sort De Jan Detection Name Delas		
3	905462 D03v01	UNII Clients Without Radar Detection New Rules		

Test detailed items/section required by FCC rules results are as below:

No.	FCC Rule	Description	Result
1	15.407, RSS247	Channel Move Time	PASS
2	15.407, RSS247	Channel Closing Transmission Time	PASS
3	15.407, RSS247	Non- Occupancy Period	PASS

1.3. Test Facility

NVLAP Lab Code: 201008-0

CCIC-SET is a third party testing organization accredited by NVLAP according to ISO/IEC 17025. The accreditation certificate number is 201008-0.

FCC- Designation Number: CN5031

CCIC-SET EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Designation Number: CN5031, valid time is until December 31, 2020.

ISED Registration: 11185A-1

CAB identifier:CN0064

CCIC-SET. EMC Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 11185A-1 on Aug. 04, 2016, valid time is until Dec. 31, 2020

2. U-NII DFS Rule Requirements

2.1. Working modes and required test items

The manufacturer shall state whether the UUT is capable of operating as a Master and/or a Client. If the UUT is capable of operating in more than one operating mode then each operating mode shall be tested separately. See tables 1 and 2 for the applicability of DFS requirements for each of the operational modes.

Iat	able 1. Applicability of D15 Requirements prior to use a channel				
		Operational Mode			
	Requirement	Master	Client without radar	Client with radar	
			detection	detection	
Non-Occupancy Period		\checkmark	Not required	\checkmark	
DFS Detection Threshold		\checkmark	Not required	\checkmark	
Channel Availability Check Time		\checkmark	Not required	Not required	
Uniform Spreading		\checkmark	Not required	Not required	
	U-NII Detection Bandwidth	\checkmark	Not required	\checkmark	

Table 1: Applicability of DFS Requirements prior to use a channel

Table 2: Applicability of DFS Requirements during normal operation

	Operational Mode			
Requirement	Master	Client without radar	Client with radar	
		detection	detection	
DFS Detection Threshold	\checkmark	Not required	\checkmark	
Channel Closing Transmission Time	\checkmark	\checkmark	\checkmark	
Channel Move Time	\checkmark	\checkmark	\checkmark	
U-NII Detection Bandwidth	\checkmark	Not required	\checkmark	

2.2. Test limits and radar signal parameters

DFS Detection thresholds for Master Devices and Client Devices with Radar Detection

Maximum Transmit Power	Value (See Note 1 and 2)	
\geq 200 millwatt	-64 dBm	
< 200 millwatt	-62 dBm	

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna. Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

DFS Response requirement values

1 1			
Parameter	Value		
Non-occupancy period	Minimum 30 minutes		
Channel Availability Check Time	60 seconds		
Channel Move Time	10 seconds See Note 1.		
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period.		
	See Notes 1 and 2.		
U-NII Detection Bandwidth	100% of the UNII transmission power		
	bandwidth. See Note 3.		

Note 1: The instant that the Channel Move Time and the Channel Closing Transmission Time begins is as follows:

• For the Short Pulse Radar Test Signals this instant is the end of the Burst.

• For the Frequency Hopping radar Test Signal, this instant is the end of the last radar Burst generated.

• For the Long Pulse Radar Test Signal this instant is the end of the 12 second period defining the Radar Waveform.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 1 is used and for each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Parameters of DFS test signals

Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

Short pluse radar test waveforms

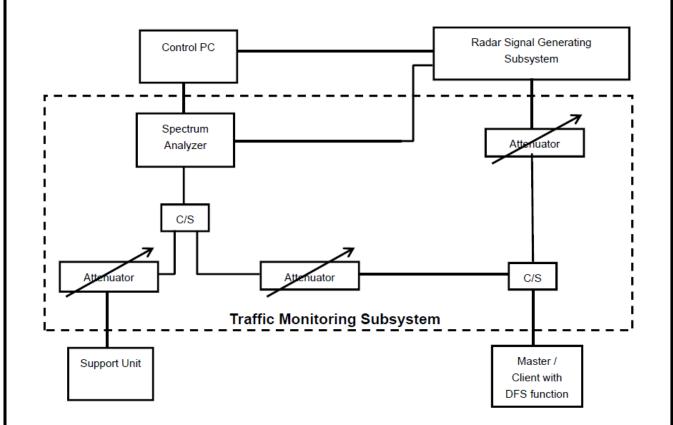
Radar Type	Pulse width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials	
0	1	1428	18	See Note 1	See Note 1	
1	1	Test A:15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B:15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1µsec, excluding PRI values selected in Test A	Roundup $ \begin{pmatrix} \frac{1}{360} \\ \frac{19 \cdot 10^6}{\text{PRI}_{\mu \text{we}}} \end{pmatrix} $	60%	30	
2	1-5	150-230	23-29	60%	30	
3	6-10	200-500	16-18	60%	30	
4	11-20	200-500	12-16	60%	30	
Note 1. Short	Aggregate (Radar Types 1-4)80%120Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move					
time, and channel closing time tests.						

Long pulse radar test waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Number of Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

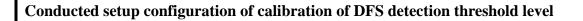
Frequency hopping radar test waveform

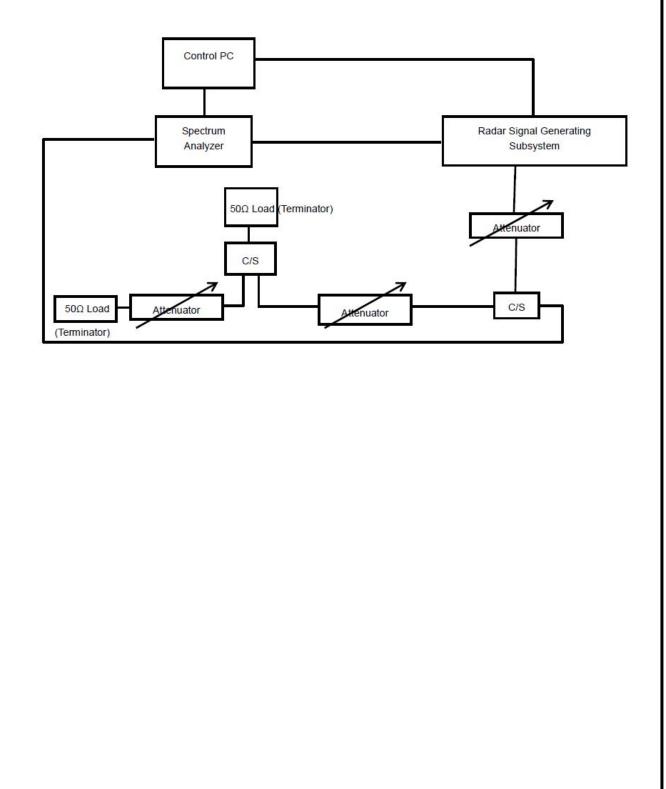
Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70%	30


3. **Test Procedure** 3.1. **DFS Test Setup configuration Client without Radar Detection Mode** Control PC Radar Signal Generating Subsystem Spectrum Attenuator Analyzer C/S C/S Attenuator Attenuator Master Note book Client (UUT) Note book

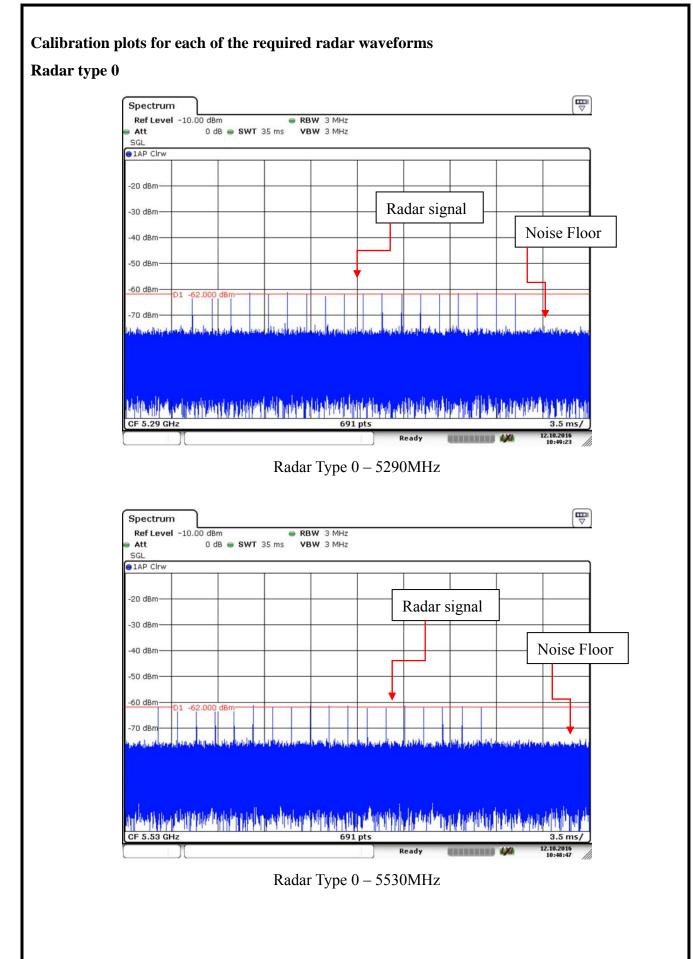
The UUT is a UNII device operating in client mode without radar detection. The radar test signals are injected into the master device.

3.2. BVADT DFS Measurement system:

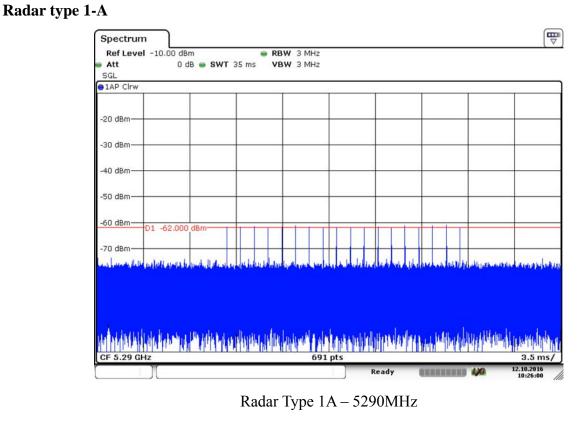

A complete BVADT DFS Measurement System consists of two subsystems: (1) the Radar Signal Generating Subsystem and (2) the Traffic Monitoring Subsystem. The control PC is necessary for generating the Radar waveforms in Table 1, 2. The traffic monitoring subsystem is specified to the type of unit under test (UUT).

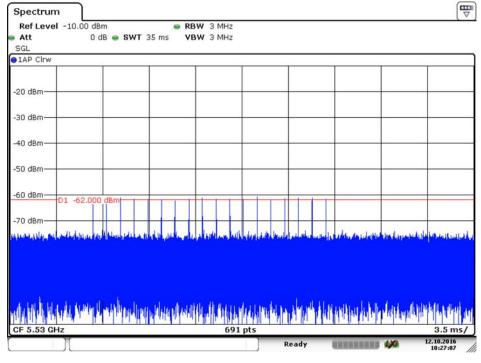


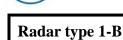
The test transmission will always be from the Master Device to the Client Device. While the Client device is set up to associate with the Master device and play the MPEG file (6 1/2Magic Hours) from Master device, the designated MPEG test file and instructions are located at: <u>http://ntiacsd.ntia.doc.gov/dfs/.</u>

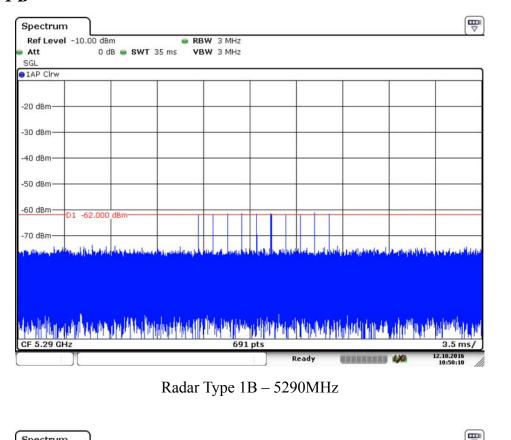


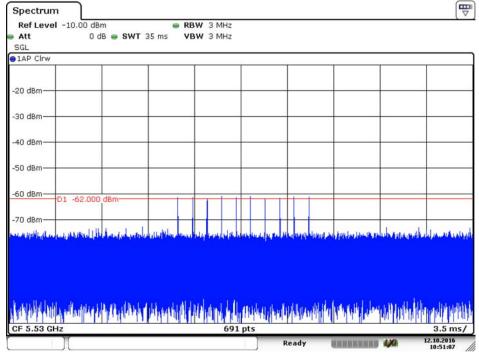
The measured channel is 5290 MHz and 5530MHz in 80MHz Bandwidth. The radar signal was the same as transmitted channels, and injected into the antenna port of AP (master) or Client Device with Radar Detection, measured the channel closing transmission time and channel move time.

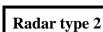


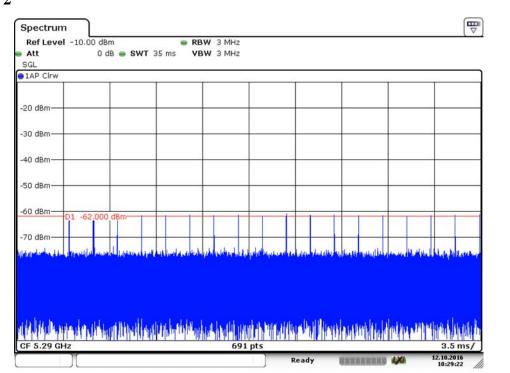


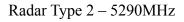


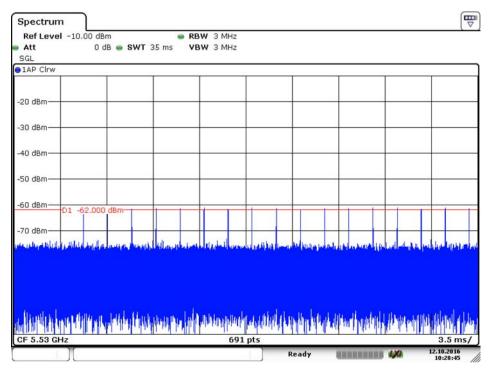


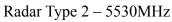


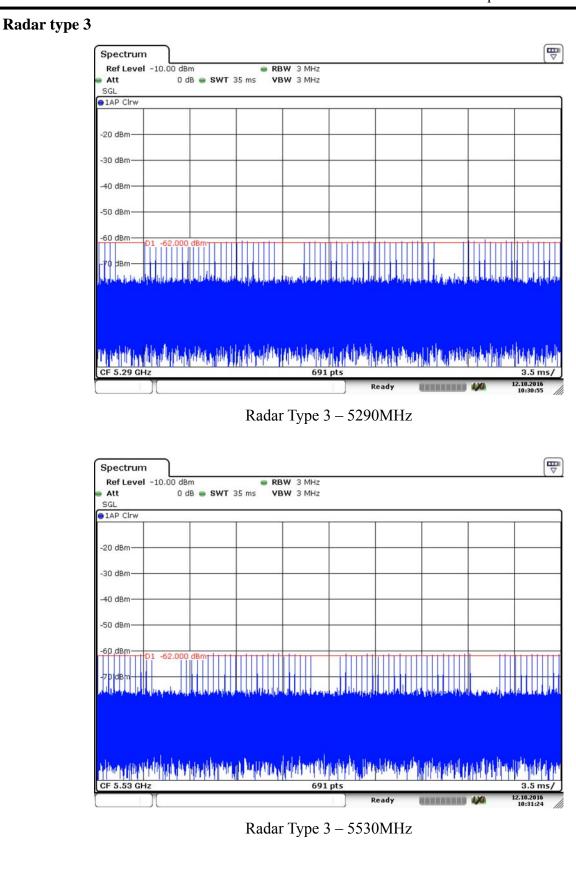


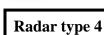


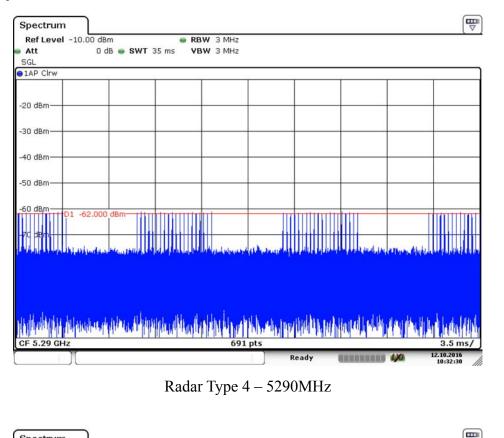


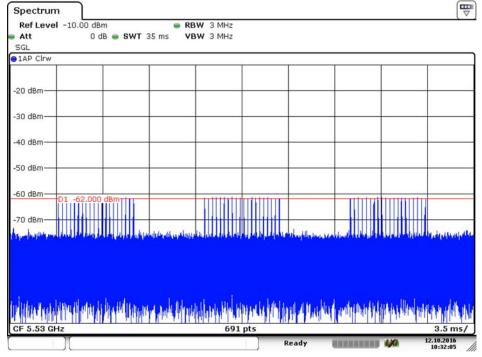


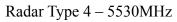

Radar Type 1B - 5530MHz

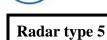


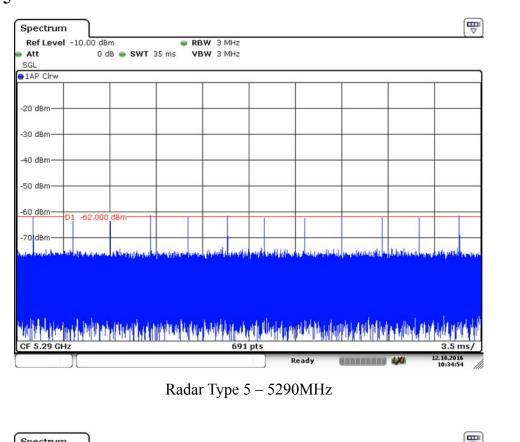


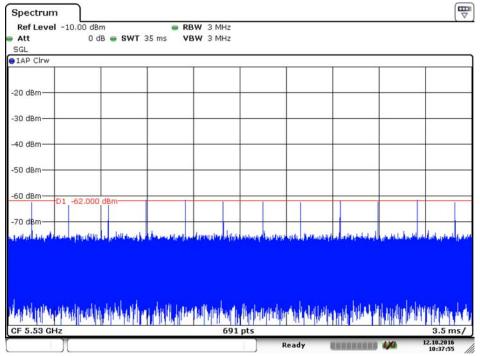


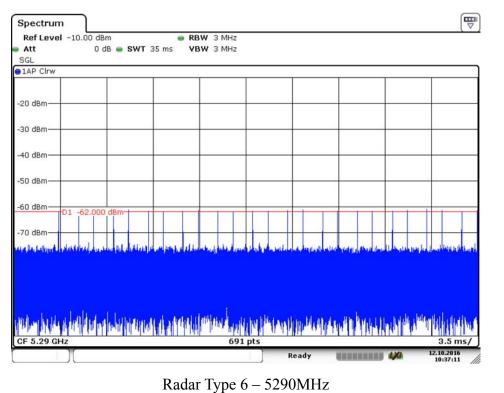


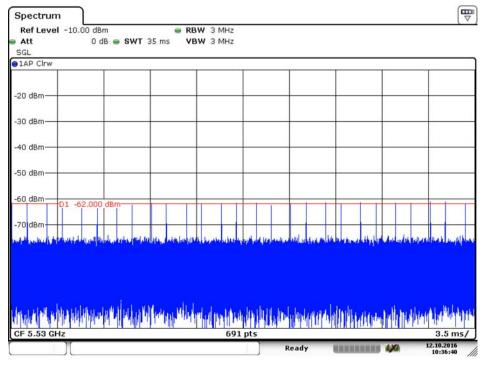












Radar Type 5 – 5530MHz

Radar Type 6 – 5530MHz

4. Test Results

Channel closing transmission and channel move time and Non-Occupancy period

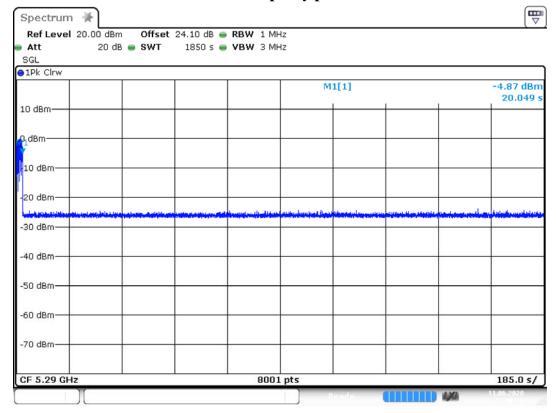
Test Item	Operation Channel	Test Result	Limit	Pass / Fail
Channel Move Time		0.422s	<10s	Pass
Channel Closing Transmission Time	58	203ms	<260ms	Pass
Non-Occupancy period		≥30	≥30min	Pass
Channel Move Time		0.51649s	<10s	Pass
Channel Closing Transmission Time	106	205.25ms	<260ms	Pass
Non-Occupancy period		≥30	≥30min	Pass

Spect											
	evel	20.00 dB			👄 RBW 11						
🔵 Att		20 d	B 👄 SWT	14 s	😑 VBW 31	/Hz					
SGL											
⊖1Pk C	lrw										
							M	1[1]			-10.10 dB
10 dBm											1.55000
10 0.0.0	·						M	2[1]			-5.98 dB
0, dBm-	-+-	M2				_					1.97200
add d	Шм	L T									
		m II				+					
-20 0 1	n					+					
				ويخ مرساهمه	In the second second		-	a dama da da	الواباليو وبالمتعالم المحط	and a star and a star a st	فيعصب واطح إيريك
-30 dBr	n - 										
-40 dBr											
-40 081	"										
-50 dBr	n					_				_	
-60 dBr	n-+-		-			+				-	
-70 dBr	n		-		-	-				-	
CF 5.2	9 GHz				80)1 pts					1.4 s
Marker	с										
Туре	Ref	Trc	X-value	e	Y-value		Func	tion	Fur	ction Resul	t
M1		1		1.55 s	-10.10						
M2		1		1.972 s	-5.98						
M3		1	1.7	7603 s	-28.67	dBm					

Date: 11.JUN.2020 17:09:00

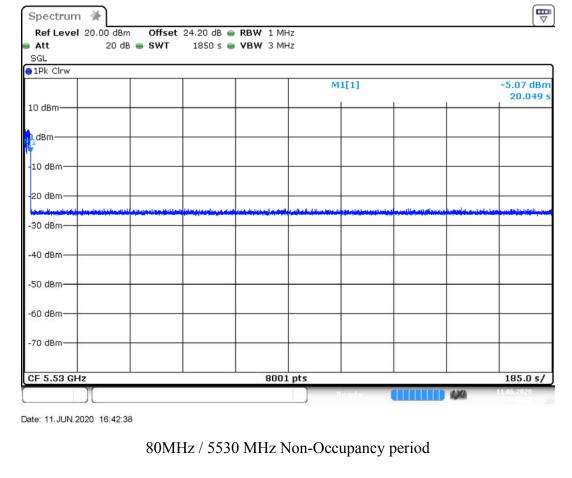
80MHz / 5290 MHz Closing Transmission Time and Channel Move Time

- Note: 1.The whole time was 14s, the software of this paragraph of time recording points is 8001, each point represents the time is 1.75ms
 - 2. Channel Closing transmission time(200+3.5ms)=200+Number(2)*Dwell(1.75ms)<260ms Channel Move time=M2-M1=1.972-1.55=0.422s


Ref Level	20.00 dBn	n Offset 24.20 dB	👄 RBW 1 MHz			
Att			VBW 3 MHz			
SGL						
⊜1Pk Clrw						
				M1[1]		-6.97
10 dBm						1.550
10 0000	M2			M2[1]		1.16
						2.066
	41					
Leithalbroad an						
20 dBm						
	MB	ورفياس ومراديها المتحاف فاعصاد وتعسامه	القادي المصاريين بأداخة ويرك والمجمع	فرط للالم الادارة، ير المعمر مرجع		
-30 dBm	and the second sec		na peril la la la la contrata perila perila de la contrata de la contrata de la contrata de la contrata de la c			
-40 dBm						
ma la						
-50 dBm	0					
-60 dBm						
-oo ubiii-						
-70 dBm						
, o abiii						
CF 5.53 GH	17		8001 pt	5		1.4
Marker			coor pt			
	f Trc	X-value	Y-value	Function	Function Re:	sult
M1	1	1.55 s	-6.97 dBm			
M1 M2 M3	1	2.06649 s 1.76728 s	1.16 dBm -27.87 dBm			

Date: 11.JUN.2020 16:02:47

80MHz / 5530 MHz Channel Move Time and Channel Move Time


- Note: 1.The whole time was 14s, the software of this paragraph of time recording points is 8001, each point represents the time is 1.75ms
 - 2. Channel Closing transmission time(200+5.25ms)=200+Number(3)*Dwell(1.75ms)<260ms Channel Move time=M2-M1=2.06649-1.55=0.51649s

Non-Occupancy period

Date: 11.JUN.2020 17:48:11

80MHz / 5290 MHz Non-Occupancy period

5. List of measuring equipment

DFS 7	DFS Test System								
No.	Equipment Name	Serial No.	Model No.	Manufacturer	Cal Date	Due Date			
1	Spectrum Analyzer	101008	FSV-40	R&S	2020.05.14	2021.05.13			
2	Vector Signal Generator	105328	SMU200A	R&S	2020.04.23	2021.04.22			
3	30dB Attenuator	272.4410.50	30	MCE/Weinschel	2020.04.24	2021.04.23			
4	20dB Attenuator	04702	779	narda	2020.04.24	2021.04.23			
5	6dB Attenuator	BM8173	2	MCE/Weinschel	2020.04.24	2021.04.23			

Support Unit used in test configuration and system								
Equipment	Trade Name	Model Name	FCC ID	Serial No.				
WLAN AP	D-Link	DIR-826	KA2IR826LMO1	QBQ91C6000056				
Notebook	Lenovo	E40	\	TP00005A				

** END OF REPORT **