Shenzhen Huatongwei International Inspection Co., Ltd.

1/F,Bldg 3,Hongfa Hi-tech Industrial Park,Genyu Road,Tianliao,Gongming,Shenzhen,China Phone:86-755-26748019 Fax:86-755-26748089 http://www.szhtw.com.cn

TEST REPORT

Report Reference No.....: TRE1809007008 R/C.....: 84875

FCC ID.....: 2AJZP-D450B

Applicant's name.....: Mason America, Inc.

Manufacturer...... Mason America, Inc.

Test item description: Mobile phone

Trade Mark MASON

Model/Type reference...... D450B

Listed Model(s)

Standard FCC CFR Title 47 Part 15 Subpart C Section 15.225

Date of receipt of test sample...... Sep 17,2018

Date of testing...... Sep 18,2018-Oct 08,2018

Date of issue...... Oct 09,2018

Result...... PASS

Compiled by

(position+printedname+signature)...: File administrators Silvia Li

Silvali

Supervised by

(position+printedname+signature)....: Project Engineer Aaron Fang

Aaron.Fang

Approved by

(position+printedname+signature)....: RF Manager Hans Hu

Testing Laboratory Name: Shenzhen Huatongwei International Inspection Co., Ltd.

Tianliao, Gongming, Shenzhen, China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely correspond to the test sample.

Report No : TRE1809007008 Page 2 of 24 Issued: 2018-10-09

Contents

<u>l.</u>	TEST STANDARDS AND REPORT VERSION	ა
1.1.	Test Standards	3
1.2.	Report version information	3
<u>2.</u>	TEST DESCRIPTION	4
<u>3.</u>	SUMMARY	5
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	EUT operation mode	6
3.4.	EUT configuration	6
<u>4.</u>	TEST ENVIRONMENT	7
4.1.	Address of the test laboratory	7
4.2.	Test Facility	7
4.3.	Environmental conditions	8
4.4.	Statement of the measurement uncertainty	8
4.5.	Equipments Used during the Test	9
<u>5.</u>	TEST CONDITIONS AND RESULTS	10
5.1.	Antenna requirement	10
5.2.	Restricted Bands of Operation	11
5.3.	AC Power Conducted Emissions	12
5.4.	Radiated Emission	15
5.5.	20 dB Occupied Bandwidth	18
5.6.	Radiated field strength of the fundamental signal	19
5.7.	Out of Band Emission	21
5.8.	Frequency Stability	23
<u>6.</u>	TEST SETUP PHOTOS OF THE EUT	24
7	EVTERNAL AND INTERNAL BUOTOS OF THE FUT	2.4
<u>7.</u>	EXTERNAL AND INTERNAL PHOTOS OF THE EUT	24

Report No : TRE1809007008 Page 3 of 24 Issued: 2018-10-09

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.225: Operation within the band 13.110-14.010 MHz.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

1.2. Report version information

Revision No.	Date of issue	Description
N/A	2018-10-09	Original

Report No : TRE1809007008 Page 4 of 24 Issued: 2018-10-09

2. TEST DESCRIPTION

Test Item	Section in CFR 47	Result	Test Engineer
Antenna requirement	15.203	PASS	Xiaokang Tan
Restricted Band of operation	15.205	PASS	Xiaokang Tan
AC Power Line Conducted Emissions	15.207	N/A	N/A
Radiated Emissions	15.209	PASS	Michael Jie
20dB Occupied Bandwidth	15.215	PASS	Xiaokang Tan
Field Strength of the Fundamental Signal	15.225(a)	PASS	Shower Dai
Out of Band Emission	15.225(b)(c)	PASS	Shower Dai
Frequency Stability	15.225(e)	PASS	Xiaokang Tan

Remark: N/A: not applicable

Report No : TRE1809007008 Page 5 of 24 Issued: 2018-10-09

3. **SUMMARY**

3.1. Client Information

Applicant:	Mason America, Inc.
Address:	506 2nd Ave, Suite 1400 Seattle, WA 98104, United States
Manufacturer:	Mason America, Inc.
Address:	506 2nd Ave, Suite 1400 Seattle, WA 98104, United States

3.2. Product Description

0.2			
Name of EUT:	Mobile phone		
Trade Mark:	MASON		
Model No.:	D450B		
Listed Model(s):	-		
Power supply*:	DC 3.85V		
Adapter information:	Model:TPA-10120150UU Input:100-240Va.c. 50-60Hz 0.6A		
	Output:5.0Vd.c. 3A		
RF Specification	RF Specification		
Operation frequency:	13.56MHz		
Channel number:	1		
Modulation Type:	ASK		
Antenna type:	Integral Antenna		
Antenna gain:	0dBi		

Report No: TRE1809007008 Page 6 of 24 Issued: 2018-10-09

3.3. EUT operation mode

TEST MODE

For RF test items
The engineering test program was provided and enabled to make EUT continuous transmit.
For AC power line conducted emissions:
The EUT was set to connect with large package sizes transmission.

3.4. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- - supplied by the manufacturer
- supplied by the lab

Manufacturer : /
Model No. : /
Manufacturer : /
Model No. : /

Report No: TRE1809007008 Page 7 of 24 Issued: 2018-10-09

4. TEST ENVIRONMENT

4.1. Address of the test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd.

Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China

Phone: 86-755-26748019 Fax: 86-755-26748089

4.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No. 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 762235

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 762235.

IC-Registration No.: 5377B-1

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377B-1.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

Report No: TRE1809007008 Page 8 of 24 Issued: 2018-10-09

4.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
Relative Humidity:	30~60 %
Air Pressure:	950~1050mba

4.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors in calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report according to TR-100028-01 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2" and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system according to ISO/IEC 17025. Further more, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Here after the best measurement capability for Shenzhen Huatongwei is reported:

Test Items	Measurement Uncertainty	Notes
Conducted spurious emissions 9KHz-30MHz	3.39 dB	(1)
Radiated Emissions 30~1000MHz	4.24 dB	(1)
Radiated Emissions 1~18GHz	5.16 dB	(1)
Radiated Emissions 18-40GHz	5.54 dB	(1)
Occupied Bandwidth		(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Report No : TRE1809007008 Page 9 of 24 Issued: 2018-10-09

4.5. Equipments Used during the Test

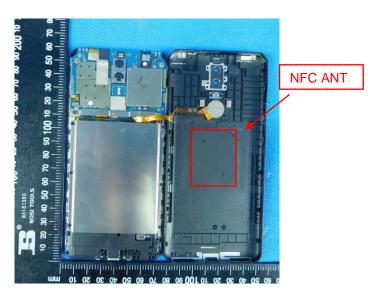
Condu	icted Emissions					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. (mm-dd-yy)	Next Cal. (mm-dd-yy)
1	EMI Test Receiver	R&S	ESCI	101247	11/11/2017	11/10/2018
2	Artificial Mains	SCHWARZBECK	NNLK 8121	573	11/11/2017	11/10/2018
3	2-Line V- Network	R&S	ESH3-Z5	100049	11/11/2017	11/10/2018
4	Pulse Limiter	R&S	ESH3-Z2	101488	11/11/2017	11/10/2018
5	RF Connection Cable	HUBER+SUHNER	EF400	N/A	11/21/2017	11/20/2018
6	Test Software	R&S	ES-K1	N/A	N/A	N/A
Radiat	ed Emissions					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. (mm-dd-yy)	Next Cal. (mm-dd-yy)
1	Semi- Anechoic Chamber	Albatross projects	SAC-3m-01	C11121	10/16/2016	10/15/2019
2	EMI Test Receiver	R&S	ESCI	100900	11/11/2017	11/10/2018
3	Loop Antenna	R&S	HFH2-Z2	100020	11/20/2017	11/19/2020
4	Ultra- Broadband Antenna	SCHWARZBECK	VULB9163	538	4/5/2017	4/4/2020
5	Horn Antenna	SCHWARZBECK	9120D	1011	3/27/2017	3/26/2020
6	Broadband Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170472	3/27/2017	3/26/2020
7	Pre-amplifier	SCHWARZBECK	BBV 9743	9743-0022	10/18/2017	10/17/2018
8	Broadband Pre-amplifier	SCHWARZBECK	BBV 9718	9718-248	10/18/2017	10/17/2018
9	Spectrum Analyzer	R&S	FSP40	100597	11/11/2017	11/10/2018
10	RF Connection Cable	HUBER+SUHNER	RE-7-FL	N/A	11/21/2017	11/20/2018
12	Test Software	Audix	E3	N/A	N/A	N/A
13	Test Software	R&S	ES-K1	N/A	N/A	N/A
14	Turntable	Maturo Germany	TT2.0-1T	N/A	N/A	N/A
15	Antenna Mast	Maturo Germany	CAM-4.0-P-12	N/A	N/A	N/A
RF Co	nducted Test					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. (mm-dd-yy)	Next Cal. (mm-dd-yy)
1	Spectrum Analyzer	R&S	FSV40	100048	11/11/2017	11/10/2018

Report No: TRE1809007008 Page 10 of 24 Issued: 2018-10-09

5. TEST CONDITIONS AND RESULTS

5.1. Antenna requirement

Requirement


FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of anantenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

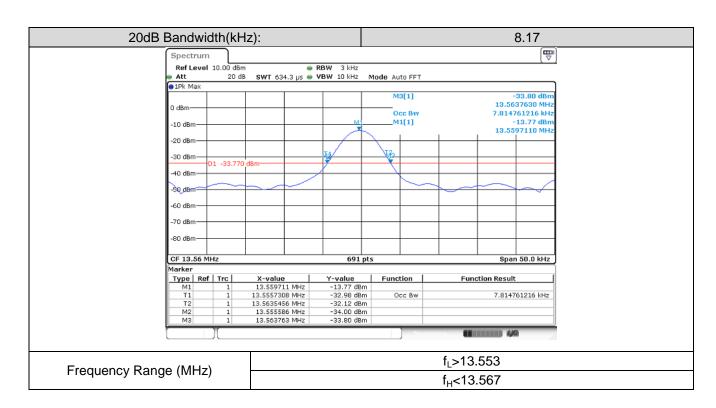
Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

TEST RESULTS

Report No : TRE1809007008 Page 11 of 24 Issued: 2018-10-09

5.2. Restricted Bands of Operation


Requirement

Only spurious emissions are permitted in any of the frequency bands listed below :

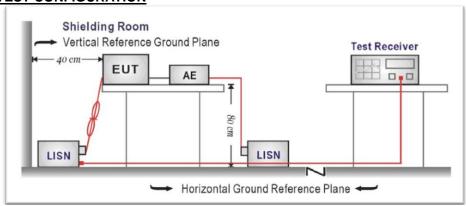
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

TEST RESULTS

Report No : TRE1809007008 Page 12 of 24 Issued: 2018-10-09

5.3. AC Power Conducted Emissions

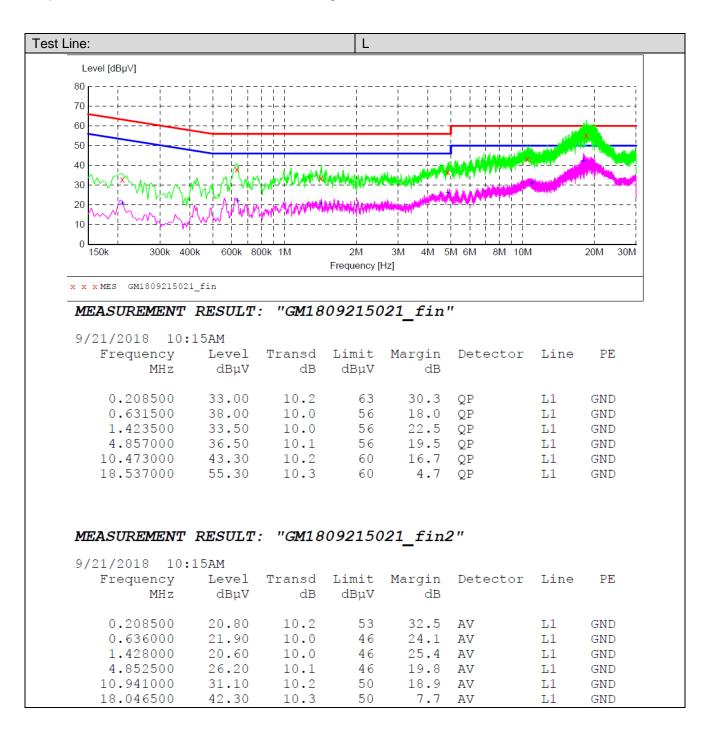

LIMIT

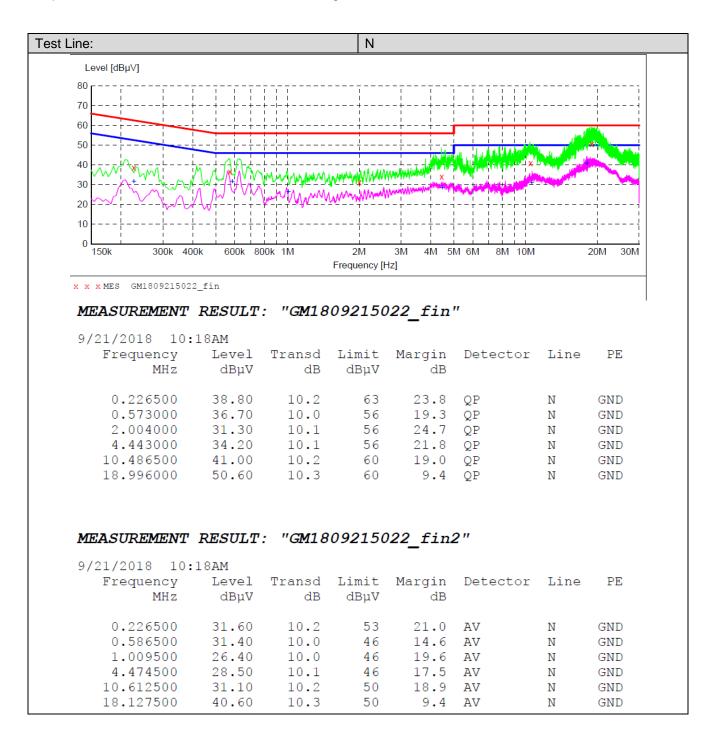
FCC CFR Title 47 Part 15 Subpart C Section 15.207:

Fraguency range (MHz)	Limit (dBuV)		
Frequency range (MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION


TEST PROCEDURE

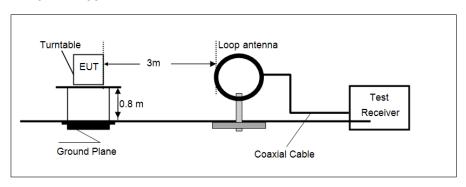

- 1. The EUT was setup according to ANSI C63.10:2013
- 2. The EUT was placed on a plat form of nominal size, 1 m by 1.5 m, raised 10 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 10 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedance stabilization network (LISN). The LISN provides a 50ohm / 50uH coupling impedance for the measuring equipment.
- 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST MODE:

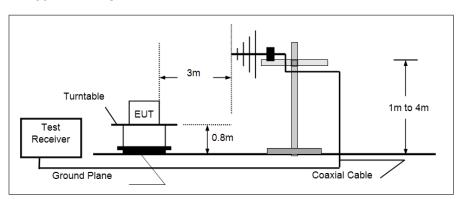
Please refer to the clause 3.3

TEST RESULTS

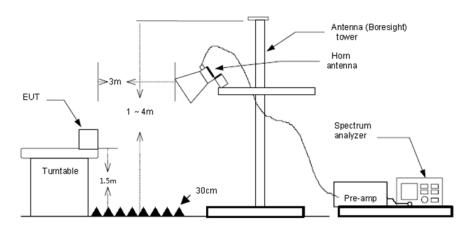
5.4. Radiated Emission


LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.209


Frequency	Limit (dBuV/m @3m)	Value	
30MHz~88MHz	40.00	Quasi-peak	
88MHz~216MHz	43.50	Quasi-peak	
216MHz~960MHz	46.00	Quasi-peak	
960MHz~1GHz	54.00	Quasi-peak	
Above 1GHz	54.00	Average	
Above IGHZ	74.00	Peak	

TEST CONFIGURATION


● 9 kHz ~ 30 MHz

• 30 MHz ~ 1 GHz

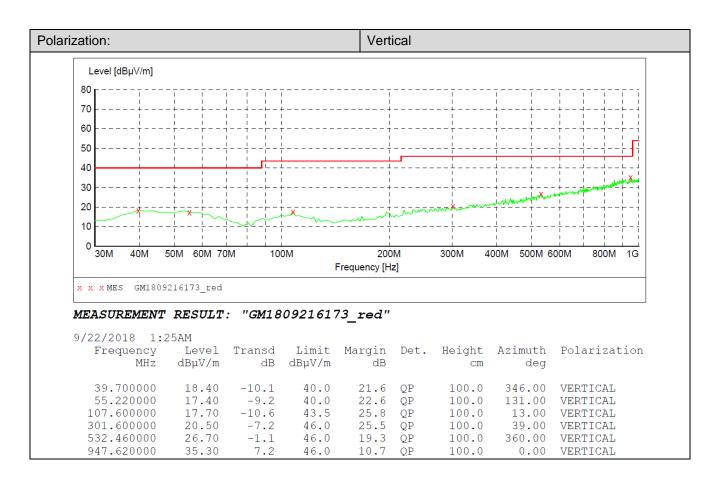
Above 1 GHz

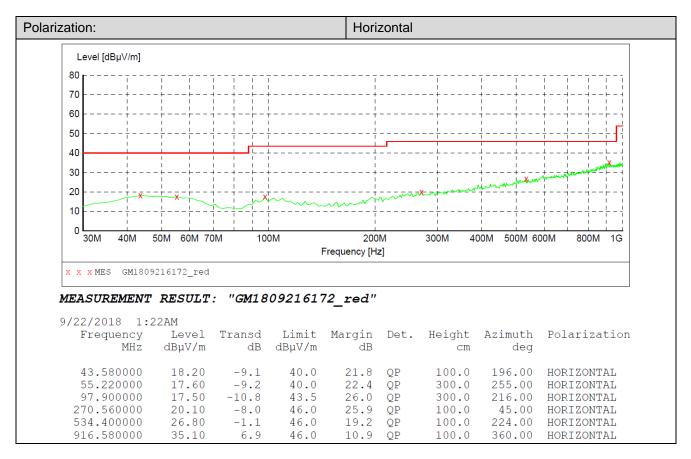
Report No: TRE1809007008 Page 16 of 24 Issued: 2018-10-09

TEST PROCEDURE

- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

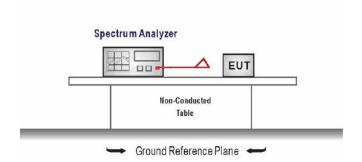

(3) From 1 GHz to 10th harmonic: RBW=1MHz, VBW=3MHz Peak detector for Peak value. RBW=1MHz, VBW=3MHz RMS detector for Average value.


TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

⊠ Passed	☐ Not Applicable
⊠ Passeu	

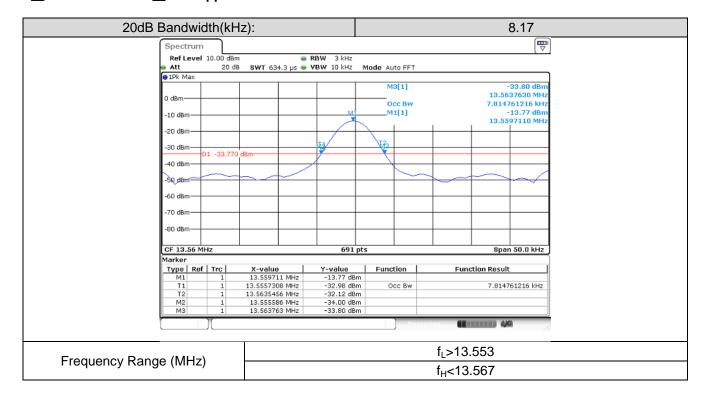

Report No: TRE1809007008 Page 18 of 24 Issued: 2018-10-09

5.5. 20 dB Occupied Bandwidth

<u>Limit</u>

Intentional radiators must be designed to ensure that the 20dB emission bandwidth in the specific band 13.553~13.567MHz.

TEST CONFIGURATION

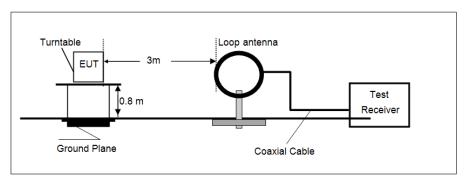

TEST PROCEDURE

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following spectrum analyzer settings:
 Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW ≥ 1% of the 20 dB bandwidth, VBW ≥ RBW
 Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS


Report No: TRE1809007008 Page 19 of 24 Issued: 2018-10-09

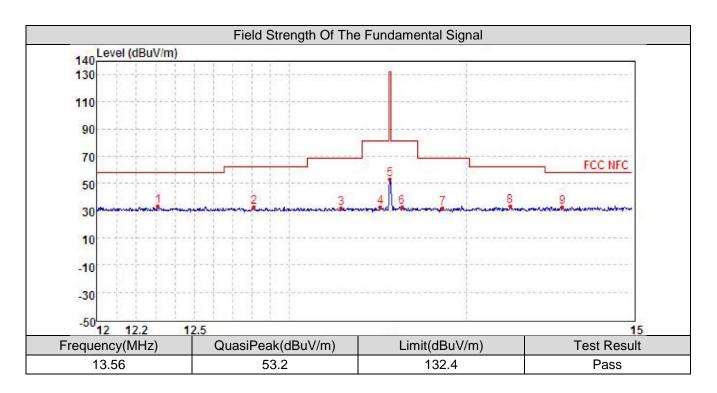
5.6. Radiated field strength of the fundamental signal

LIMIT

Fundamental frequency(MHz)	Field strength of fundamental (uV/m @30m)	Field strength of fundamental (dBuV/m @3m)	
13.553-13.567	15.848	124.0	
13.410-13.553&13.567-13.710	334	90.5	
13.110-13.410&13.710-14.010	106	80.5	

TEST CONFIGURATION

TEST PROCEDURE


- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. Thisis repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- 5. The receiver set as follow:

1110 10001101 001 000 10110111					
Frequency	Detector	RBW	VBW	Remark	
9kHz-150kHz	Quasi-peak	200Hz	600Hz	Quasi-peak Value	
50kHz-30MHz	Quasi-peak	9kHz	30kHz	Quasi-peak Value	
30MHz-1GHz	Quasi-peak	120kHz	300KHz	Quasi-peak Value	
Above 1GHz	Peak	1MHz	3MHz	Peak Value	

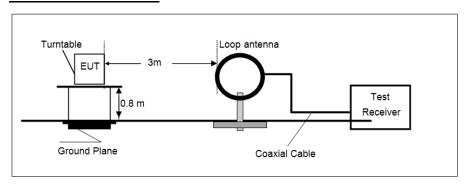
TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Report No: TRE1809007008 Page 21 of 24 Issued: 2018-10-09

5.7. Out of Band Emission


LIMIT

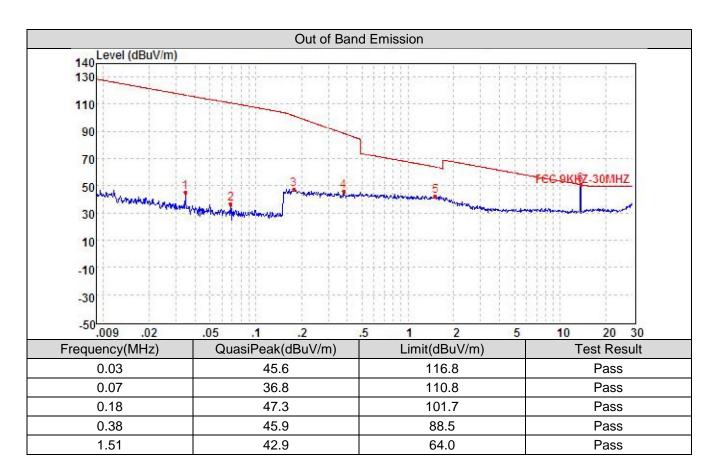
Frequency(MHz)	Field strength (dBuV/m)	
0.009-0.490	2400/F(kHz) at 300m	
0.490-1.705	24000/F(kHz) at 30m	
1.705-30	29.54 at 30m	

Note:For measurements in the band 0.009MHz to 0.490MHz the specified measurement distance is 300m. The distance correction will be: Correction = 40*log (300/3) = 80dB

For measurements in the band 0.490 MHz to 30 MHz the specified measurement distance is 30 m. The distance correction will be: Correction = 20*log(30/3) = 20 dB

TEST CONFIGURATION

TEST PROCEDURE

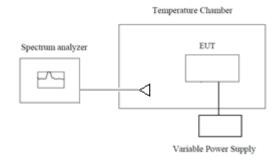

- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. Thisis repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- 5. The receiver set as follow:

Frequency	Detector	RBW	VBW	Remark
9kHz-150kHz	Quasi-peak	200Hz	600Hz	Quasi-peak Value
50kHz-30MHz	Quasi-peak	9kHz	30kHz	Quasi-peak Value
30MHz-1GHz	Quasi-peak	120kHz	300KHz	Quasi-peak Value
Above 1GHz	Peak	1MHz	3MHz	Peak Value

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS


Report No: TRE1809007008 Page 23 of 24 Issued: 2018-10-09

5.8. Frequency Stability

LIMIT

The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency over a temperature variation of -20 degrees to + 50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

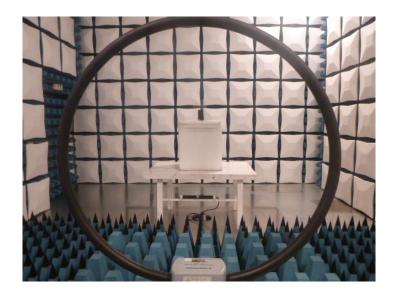
TEST CONFIGURATION

TEST PROCEDURE

- 1. The equipment under test was connected to an external power supply.
- 2. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators.
- 3. The EUT was placed inside the temperature chamber.
- Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 25[°]C operating frequency as reference frequency.
- 5. Turn EUT off and set the chamber temperature to −20 °C. After the temperature stabilized for approximately 30 minutes recorded the frequency.
- 6. Repeat step measure with 10°C increased per stage until the highest temperature of +50°C reached.

TEST MODE:

Please refer to the clause 3.3


TEST RESULTS

Test En Voltage	viroment Temperature(°C)	Frequency Reading(MHz)	Frequency Error(%)	Limit	Result
Voltage	• • • • • • • • • • • • • • • • • • • •	3 ()	, ,	1.0.0404	
	-20	13.56005	0.005%	±0.01%	Pass
DC3.85V	-10	13.56004	0.004%	\pm 0.01%	Pass
	0	13.56004	0.004%	$\pm 0.01\%$	Pass
	10	13.56006	0.006%	±0.01%	Pass
	20	13.56005	0.005%	±0.01%	Pass
	30	13.56006	0.006%	±0.01%	Pass
	40	13.56009	0.009%	±0.01%	Pass
	50	13.56012	0.012%	$\pm 0.01\%$	Pass
DC3.3V	20	13.56004	0.004%	±0.01%	Pass
DC4.4V	20	13.56006	0.006%	±0.01%	Pass

Report No : TRE1809007008 Page 24 of 24 Issued: 2018-10-09

6. TEST SETUP PHOTOS OF THE EUT

Radiated Emissions

7. EXTERNAL AND INTERNAL PHOTOS OF THE EUT

Reference to the test report No.: TRE1809007001

-----End of Report-----