

Report Reference No		C: 57803			
FCC ID :	2AJZP-D450A2				
Applicant's name:	Mason America, Inc.				
Address	506 2nd Ave, Suite 1400 Seattle, \	WA 98104, United States			
Manufacturer	Mason America, Inc.				
Address	506 2nd Ave, Suite 1400 Seattle, \	NA 98104, United States			
Test item description:	Mobile phone				
Trade Mark:	MASON				
Model/Type reference:	D450A				
Listed Model(s)					
Standard:	FCC CFR Title 47 Part 15 Subpar	rt C Section 15.247			
Date of receipt of test sample:	Sep 29,2018				
Date of testing	Sep 30,2018- Oct 19,2018				
Date of issue	Oct 22,2018				
Result:	PASS				
Compiled by (position+printedname+signature):	File administrators Silvia Li	Silvia Li			
Supervised by (position+printedname+signature):	Project Engineer Aaron Fang	Silvia Li Aaron.Fang Howsty			
Approved by (position+printedname+signature):	RF Manager Hans Hu	Homsty			
Testing Laboratory Name :	Shenzhen Huatongwei Internatio	onal Inspection Co., Ltd.			
Address	1/F, Bldg 3, Hongfa Hi-tech Indust Tianliao, Gongming, Shenzhen, Cl				

Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely correspond to the test sample.

Contents

<u>1.</u>	TEST STANDARDS AND REPORT VERSION	3
1.1.	Test Standards	3
1.2.	Report version	3
<u>2.</u>	TEST DESCRIPTION	4
<u>3.</u>	SUMMARY	5
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Operation state	6
3.4.	EUT configuration	6
3.5.	Modifications	6
<u>4.</u>	TEST ENVIRONMENT	7
4.1.	Address of the test laboratory	7
4.2.	Test Facility	7
4.3.	Environmental conditions	8
4.4.	Statement of the measurement uncertainty	8
4.5.	Equipments Used during the Test	9
<u>5.</u>	TEST CONDITIONS AND RESULTS	11
5.1.	Antenna requirement	11
5.2.	Conducted Emissions (AC Main)	12
5.3.	Conducted Peak Output Power	15
5.4.	Power Spectral Density	16
5.5.	6dB bandwidth	20
5.6.	Restricted band	24
5.7.	Band edge and Spurious Emissions (conducted)	28
5.8.	Spurious Emissions (radiated)	41
<u>6.</u>	TEST SETUP PHOTOS	47
<u>7.</u>	EXTERANAL AND INTERNAL PHOTOS	48

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

ANSI C63.10:2013: American National Standard forTesting Unlicensed Wireless Devices

<u>KDB 558074 D01 DTS Meas Guidance v05:</u> Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating under Section 15.247 of The FCC Rules

1.2. Report version

Revision No.	Date of issue	Description
N/A	2018-10-22	Original

2. TEST DESCRIPTION

Test Item	FCC Rule	Result	Test Engineer
Antenna requirement	15.203/15.247(c)	PASS	Xiaokang Tan
Line Conducted Emissions (AC Main)	15.207	PASS	Tony Duan
Conducted Peak Output Power	15.247(b)(3)	PASS	Xiaokang Tan
Power Spectral Density	15.247(e)	PASS	Xiaokang Tan
6dB Bandwidth	15.247(a)(2)	PASS	Xiaokang Tan
Restricted band	15.247(d)/15.205	PASS	Shower Dai
Spurious Emissions	15.247(d)/15.209	PASS	Shower Dai

Note: The measurement uncertainty is not included in the test result.

Shenzhen Huatongwei International Inspection Co., Ltd.

3. <u>SUMMARY</u>

3.1. Client Information

Applicant:	Mason America, Inc.	
Address:	506 2nd Ave, Suite 1400 Seattle, WA 98104, United States	
Manufacturer:	Mason America, Inc.	
Address:	506 2nd Ave, Suite 1400 Seattle, WA 98104, United States	

3.2. Product Description

-		
Name of EUT:	Mobile phone	
Trade Mark:	MASON	
Model No.:	D450A	
Listed Model(s):	-	
IMEI Code:	Conducted: 359333090022635 Radiated: 359333090022742	
Power supply:	DC 3.85V	
Adapter information:	Model:TPA-10120150UU Input:100-240Va.c. 50-60Hz 0.6A Output:5.0Vd.c. 3A	
Hardware version:	X57_PCB_V1.03_171226	
Software version:	: Mason D450A-H01A-S005	
WIFI		
Supported type:	802.11b/802.11g/802.11n(HT20)	
Modulation:	DSSS for 802.11b OFDM for 802.11g/802.11n(HT20)	
Operation frequency:	2412MHz~2462MHz	
Channel number: 11		
Channel separation:	5MHz	
Antenna type:	Integral Antenna	
Antenna gain:	1.2dBi	

3.3. Operation state

Test frequency list

According to section 15.31(m), regards to the operating frequency range over 10 MHz, must select three channel which were tested. the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, please see the above gray bottom.

802.11b/g/n(HT20)				
Channel	Frequency (MHz)			
01	2412			
02	2417			
06	2437			
10	2457			
11	2462			

Test mode

For RF test items

The engineering test program was provided and enabled to make EUT continuous transmit (duty cycle>98%).

For AC power line conducted emissions:

The EUT was set to connect with the WLAN AP under large package sizes transmission.

For Radiated suprious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit(duty cycle>98%). The EUT in each of three orthogonal axis emissions had been tested ,but only the worst case (X axis) data Recorded in the report.

3.4. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- supplied by the lab

•	Earphone	Manufacturer:	SHENZHEN ALLTHROUGH TECHNOLOGY CO.,LTD
		Model No.:	DC3.5 Earphone
o /	1	Manufacturer:	/
	1	Model No.:	/

3.5. Modifications

No modifications were implemented to meet testing criteria.

4. TEST ENVIRONMENT

4.1. Address of the test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd.

Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China

4.2. Test Facility

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 762235

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files.

IC-Registration No.:5377B-1

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No.: 5377B-1.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

4.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
Relative Humidity:	30~60 %
Air Pressure:	950~1050mba

4.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors in calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report according to TR-100028-01 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2" and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd. quality system according to ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Here after the best measurement capability for Shenzhen Huatongwei International Inspection Co., Ltd. is reported:

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.57 dB	(1)
Transmitter power Radiated	2.20 dB	(1)
Conducted spurious emissions 9kHz~40GHz	1.60 dB	(1)
Radiated spurious emissions 9kHz~40GHz	2.20 dB	(1)
Conducted Emissions 9kHz~30MHz	3.39 dB	(1)
Radiated Emissions 30~1000MHz	4.24 dB	(1)
Radiated Emissions 1~18GHz	5.16 dB	(1)
Radiated Emissions 18~40GHz	5.54 dB	(1)

 This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

4.5. Equipments Used during the Test

Conduc	cted Emissions					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. (mm-dd-yy)	Next Cal. (mm-dd-yy)
1	EMI Test Receiver	R&S	ESCI	101247	11/11/2017	11/10/2018
2	Artificial Mains	SCHWARZBECK	NNLK 8121	573	11/11/2017	11/10/2018
3	2-Line V- Network	R&S	ESH3-Z5	100049	11/11/2017	11/10/2018
4	Pulse Limiter	R&S	ESH3-Z2	101488	11/11/2017	11/10/2018
5	RF Connection Cable	HUBER+SUHNER	EF400	N/A	11/21/2017	11/20/2018
6	Test Software	R&S	ES-K1	N/A	N/A	N/A
Padiat	ed Emissions					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. (mm-dd-yy)	Next Cal. (mm-dd-yy)
1	Semi- Anechoic Chamber	Albatross projects	SAC-3m-01	C11121	10/16/2016	10/15/2019
2	EMI Test Receiver	R&S	ESCI	100900	11/11/2017	11/10/2018
3	Loop Antenna	R&S	HFH2-Z2	100020	11/20/2017	11/19/2020
4	Ultra- Broadband Antenna	SCHWARZBECK	VULB9163	538	4/5/2017	4/4/2020
5	Horn Antenna	SCHWARZBECK	9120D	1011	3/27/2017	3/26/2020
6	Broadband Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170 472	3/27/2017	3/26/2020
7	Pre-amplifier	SCHWARZBECK	BBV 9743	9743-0022	10/16/2018	10/15/2019
8	Broadband Pre-amplifier	SCHWARZBECK	BBV 9718	9718-248	10/16/2018	10/15/2019
9	Spectrum Analyzer	R&S	FSP40	100597	11/11/2017	11/10/2018
10	RF Connection Cable	HUBER+SUHNE R	RE-7-FL	N/A	11/21/2017	11/20/2018
11	RF Connection Cable	HUBER+SUHNE R	RE-7-FH	N/A	11/21/2017	11/20/2018
12	Test Software	Audix	E3	N/A	N/A	N/A
13	Test Software	R&S	ES-K1	N/A	N/A	N/A
14	Turntable	Maturo Germany	TT2.0-1T	N/A	N/A	N/A
15	Antenna Mast	Maturo Germany	CAM-4.0-P-12	N/A	N/A	N/A

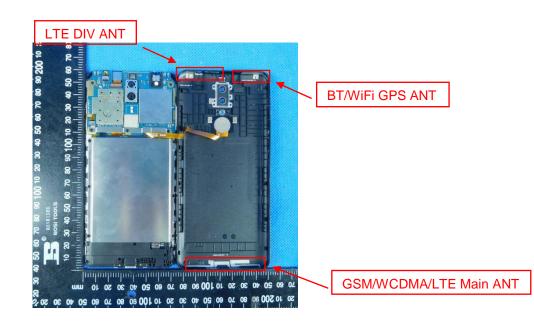
RF Con	RF Conducted Test						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. (mm-dd-yy)	Next Cal. (mm-dd-yy)	
1	Spectrum Analyzer	R&S	FSV40	100048	11/11/2017	11/10/2018	
2	EXA Signal Analyzer	Agilent	N9020A	184247	9/20/2018	9/19/2019	
3	Power Meter	Anritsu	ML249A	N/A	9/20/2018	9/19/2019	
4	OSP	R&S	OSP120	101317	N/A	N/A	

5. TEST CONDITIONS AND RESULTS

5.1. Antenna requirement <u>REQUIREMENT:</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of anantenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

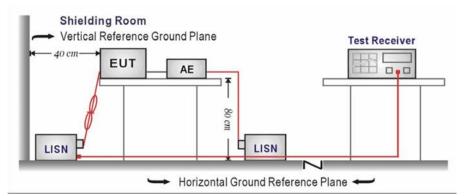
(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

TEST RESULTS

☑ Passed □ Not Applicable

The directional gain of the antenna less than 6 dBi, please refer to the below antenna photo.

5.2. Conducted Emissions (AC Main)


<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.207:

	Limit (d	BuV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

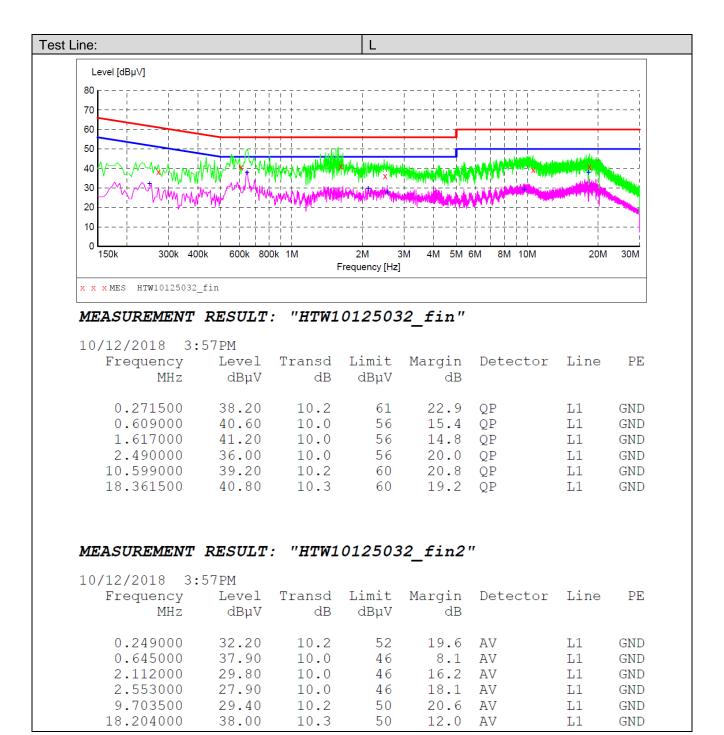
* Decreases with the logarithm of the frequency.

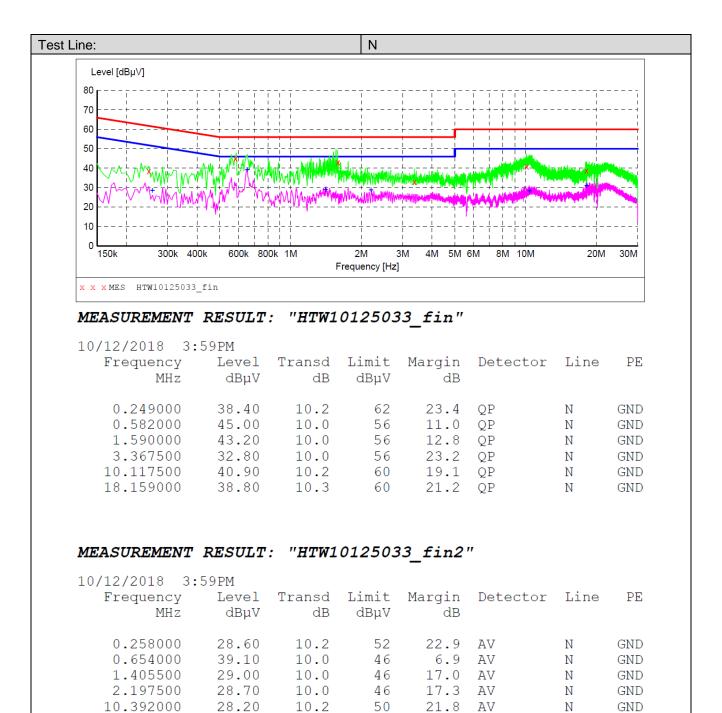
TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment.
- 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor,was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST MODE:


Please refer to the clause 3.3


TEST RESULTS

☑ Passed □ Not Applicable

Note:

- 1) Transd=Cable lose+ Pulse Limiter Factor + Artificial Mains Factor
- 2) Margin= Limit -Level

31.10

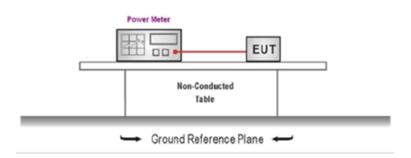
10.3

50

18.9

AV

18.204000


Ν

GND

5.3. Conducted Peak Output Power LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(3): 30dBm

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was tested according to ANSI C63.10: 2013 and KDB 558074 D01 for compliance to FCC 47 CFR 15.247 requirements.
- 2. The maximum peak conducted output power may be measured using a broadband peak RF power meter.
- 3. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector
- 4. Record the measurement data.

TEST MODE:

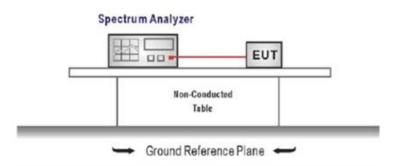
Please refer to the clause 3.3

TEST RESULTS

🛛 Passed

Not Applicable

Туре	Channel	Output power (dBm)	Limit (dBm)	Result	
	01	16.99			
802.11b	06	16.69	≤30.00	Pass	
	11	16.61			
	01	15.08			
802.11g	06	15.12	≤30.00	Pass	
	11	15.27			
	01	14.26			
802.11n(HT20)	06	14.14	≤30.00	Pass	
	11	14.10			


5.4. Power Spectral Density

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (e):

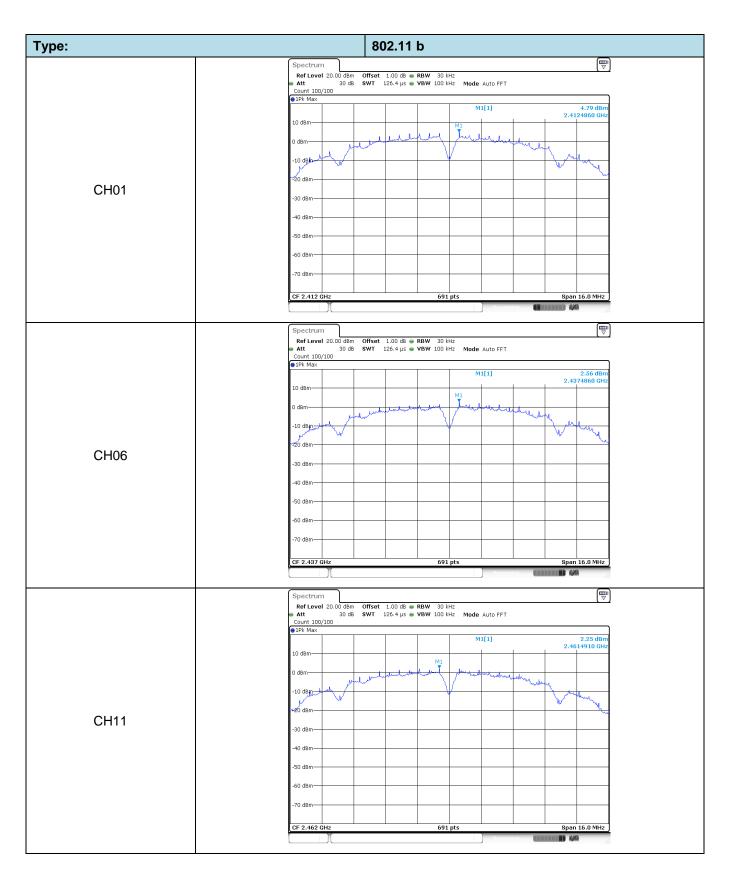
For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

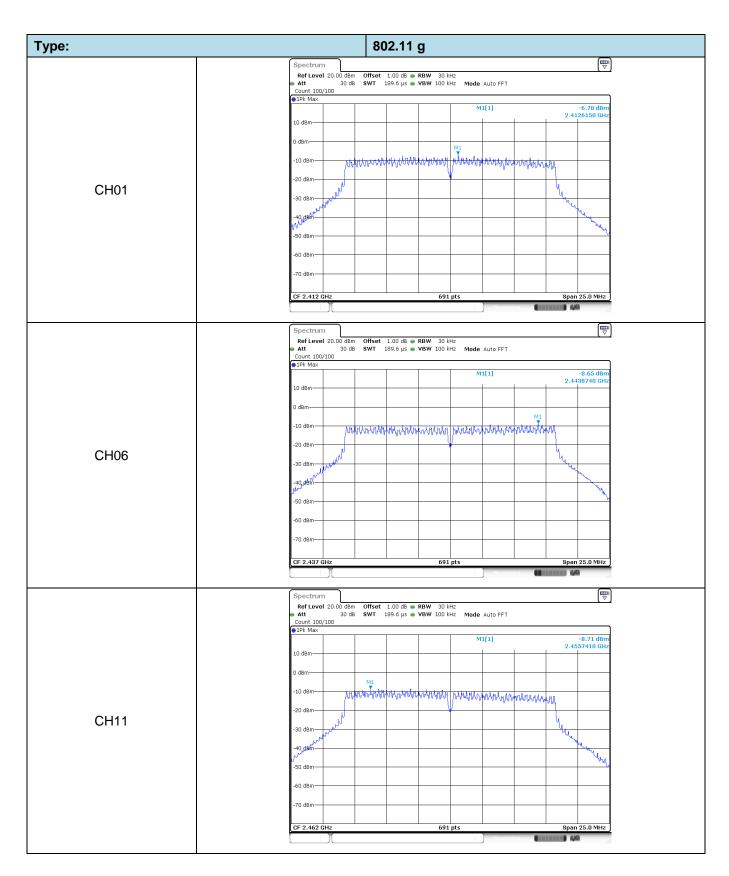
TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input,
- Configure the spectrum analyzer as shown below: Center frequency=DTS channel center frequency Span =1.5 times the DTS bandwidth RBW = 3 kHz ≤ RBW ≤ 100 kHz, VBW ≥ 3 × RBW Sweep time = auto couple Detector = peak Trace mode = max hold
- 3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter wave form on the spectrum analyzer.
- 4. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 5. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST MODE:


Please refer to the clause 3.3

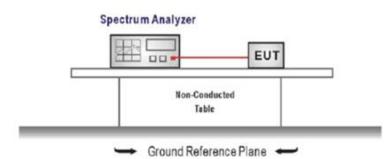

TEST RESULTS

☑ Passed □ Not Applicable

Туре	Channel	Power Spectral Density (dBm/30KHz)	Limit (dBm/3KHz)	Result	
	01	4.79			
802.11b	06	2.56	≤8.00	Pass	
	11	2.25			
	01	-6.78			
802.11g	06	-8.65	≤8.00	Pass	
	11	-8.71			
	01	-9.66			
802.11n(HT20)	06	-9.79	≤8.00	Pass	
	11	-10.05			

Test plot as follows:

ype:	802.11n(HT20)					
·	Spectrum 🕎					
	Ref Level 20.00 dBm Offset 1.00 dB 🖷 RBW 30 kHz					
	● Att 30 dB SWT 189.6 µs ● VBW 100 kHz Mode Auto FFT Count 100/100					
	●1Pk Max 					
	10 dBm					
	0 dBm					
	-10 dBm www.www.www.www.www.www.					
	-20 dBm					
CH01	-30 dBm					
	-40 dg/m ²²					
	-50 dBm					
	-60 dBm					
	-70 dBm-					
	CF 2.412 GHz 691 pts Span 25.0 MHz					
	Measuring					
	Spectrum					
	Att 30 dB SWT 189.6 µs VBW 100 kHz Mode Auto FFT Count 100/100					
	● 1Pk Max					
	M1[1] -9.79 dBm 2.4438740 GHz					
	10 dBm					
	0 dBm					
	-10 dem Mitwick Wark when when when when when when when when					
	have have been and the second of the second of the second s					
CH06	-20 dBm-					
01100	-30 dBm					
	-40,dťm					
	-50 dBm					
	-60 d8m					
	-70 dBm					
	CF 2.437 GHz 691 pts Span 25.0 MHz					
	Spectrum 🐨					
	RefLevel 20.00 dBm Offset 1.00 dB RBW 30 kHz					
	Count 100/100 ● 1Pk Max					
	M1[1] -10.05 dBm					
	10 dBm 2.4570070 GHz					
	0 dBm					
	-10 dem www.www.www.www.www.www.www.www.					
	-20 dBm					
CH11	-30 dBm - 10 M					
	-40,d8m					
	-50 dBm					
	-60 d8m					
	-70 dBm-					
	CF 2.462 GHz 691 pts Span 25.0 MHz					


5.5. 6dB bandwidth

<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(2):

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- 2. Configure the spectrum analyzer as shown below (enter all losses between the transmitter output and the spectrum analyzer).

Center Frequency =DTS channel center frequency Span=2 x DTS bandwidth RBW = 100 kHz, VBW ≥ 3 × RBW Sweep time= auto couple Detector = Peak Trace mode = max hold

Not Applicable

- Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter wave form on the spectrum analyzer.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission, and record the pertinent measurements.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Passed

Туре	Channel	6dB Bandwidth (MHz) Limit (kHz)		Result	
	01	8.61			
802.11b	06	9.60	≥500	Pass	
	11	9.60			
	01	16.11			
802.11g	06	16.44	≥500	Pass	
	11	15.81			
	01	17.22			
802.11n(HT20)	06	17.64	≥500	Pass	
	11	16.41			

Test plot as follows:

Туре:	802.11 b
	Spectrum 🕎
	RefLevel 20.50 dBm Offset 1.00 dB ● RBW 100 kHz Att 30 dB SWT 75.9 µs ● VBW 300 kHz Mode Auto FFT Count 500/500 ● 1Pk View
	M1[1] 0.56 dBm 2.4069600 GHz
	M2[1] 6.71 dBm 0 dBm 01 0.710 dBm M1 Autor Markan Q3 2.4110100 GHz
	-10 dBm
	-20 dBm
CH01	-20 dbm
	-50 dBm
	-60 dBm
	-70 dBm
	CF 2.412 GHz 1001 pts Span 30.0 MHz Marker Ture 19 of Tare X value A value Function Function
	Type Ref Trc X-value Y-value Function Function Result M1 1 2.40696 GHz 0.56 dBm M2 1 2.41010 GHz 6.71 dBm
	D3 M1 1 8.61 MHz -0.01 dB
	Spectrum RefLevel 20.50 dBm Offset 1.00 dB ● RBW 100 kHz ▲ Att 30 dB SWT 75.9 µs ● VBW 300 kHz Mode Auto FFT
	Count 500/500
	10 dBm - M2 M0[1] -1.55 dBm 2.4324400 GHz
	0 dBm01 -0.923 dBm11
	-10 dBm
	-20 dBm
CH06	-30 dbm -40 dbm -40 dbm
	-50 dBm
	-60 dBm
	-70 dBm CF 2.437 GHz 1001 pts Span 30.0 MHz
	Marker Type Ref Trc X-value Y-value Function Function Result
	M1 1 2.43244 GHz -1.55 dBm M2 1 2.43746 GHz 5.00 dBm D3 M1 9.6 MHz -0.13 dB
	Spectrum 🕎
	Ref Level 20.50 dBm Offset 1.00 dB ● RBW 100 kHz ● Att 30 dB SWT 75.9 µs ● VBW 300 kHz Mode Auto FFT
	Count 500/500
	10.4bm 2.4569300 GHz
	0.dBm D1 - 0.665 dBm Mit Mark Mark Mark Mark Mark Mark Mark Mark
	-10 dBm
	-30 d8m
CH11	
	-60 dBm
	CF 2.462 GHz 1001 pts Span 30.0 MHz
	Marker Type Ref Trc X-value Y-value Function Function Result
	M1 1 2.45693 GHz -2.88 dBm M2 1 2.46149 GHz 5.31 dBm D3 M1 1 9.6 MHz 1.83 dB

Гуре:	802.11 g
	Spectrum (♥
	RefLevel 20.50 dBm Offset 1.00 dB RBW 100 kHz Att 30 dB SWT 75.9 µs VBW 300 kHz Mode Auto FFT
	Court 500/500
	M1[1] -10.60 dBm
	10 d8m 2.4038100 GHz
	0 dBm 2.4069900 GHz
	Uden - 10.230 Mi Josephine Manhan antenhan har antenhan bar antenhan ante
	-20 dBm
01104	-30 d8m
CH01	www.www.
	-50 dBm
	-60 dBm
	-70 dBm
	CF 2.412 GHz 1001 pts Span 30.0 MHz
	Marker Type Ref Trc X-value Function Function Result
	M1 1 2.40381 GHz -10.60 dBm M2 1 2.40699 GHz -4.23 dBm
	D3 M1 1 16.11 MHz 0.10 dB
	Spectrum (₩
	RefLevel 20.50 dBm Offset 1.00 dB RBW 100 kHz Att 30 dB SWT 75.9 µs VBW 300 kHz Mode Auto FFT
	Count 500/500
	M1[1] -11.64 dBm 2.4287800 GHz
	10 dBm M2[1] -4.58 dBm 2420100 CHz
	-20 dBm
CH06	-30 dBm
61100	N9-980000
	-50 dBm-
	-60 dBm-
	-70 dBm
	CF 2.437 GHz 1001 pts Span 30.0 MHz Marker
	Type Ref Trc X-value Y-value Function Function Result
	M1 1 2.42878 GHz -11.64 dBm M2 1 2.44201 GHz -4.58 dBm O3 M1 1 16.44 MHz 0.47 dB
	US MIL I 10.44 MIL 0.47 UD Measuring (1111111 10 44
	Spectrum □ Ref Level 20.50 dBm Offset 1.00 dB ● RBW 100 kHz
	Att 30 dB SWT 75.9 µs VBW 300 kHz Mode Auto FFT Count 500/500
	10 dBm 2.4537800 GHz 10 dBm 4.06 dBm
	0 dBm M2 2.4569900 GH2
	-10 dom D1 -10.058 dom and walken burden burden pur burden
	-20 dBm
	-30 dBm
CH11	199.48m 74
	-50 d8m
	-60 d8m
	-70 dBm-
	CF 2.462 GHz 1001 pts Span 30.0 MHz
	Marker
	Type Ref Trc X-value Y-value Function Function Result M1 1 2.45378 GHz -10.94 dBm M2 1 2.45399 GHz -4.06 dBm
	D3 M1 1 15.81 MHz -0.62 dB
	Measuring.

802.11n(HT20) Type: Spectrum
 Ref Level
 20.50 dBm
 Offset
 1.00 dB
 RBW
 100 kHz

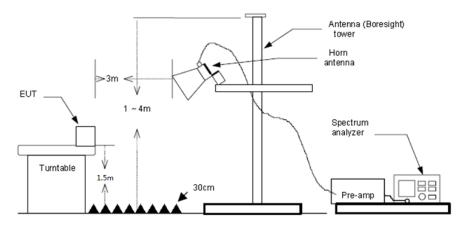
 Att
 30 dB
 SWT
 75.9 μs
 VBW
 300 kHz
 Mode
 Auto FFT
 Count 500/500 -11.41 dB 10 dBm -5.04 dB 2.4069900 GF M2[1] 0 dBn X -10 dB -20 dBr -30 dBn CH01 -40 dBm-WWW -50 dBm -60 dBn -70 dBm CF 2.412 GHz Marker 1001 pts Span 30.0 MHz Type Ref Trc X-value 2.40321 GHz 2.40699 GHz 17.22 MHz Y-value -11.41 dBm -5.04 dBm -0.30 dB Function Function Result M2 D3 M1 ₽ Spectrum Ref Level 20.50 dBm Att 30 dB Count 500/500 P1Pk View Mode Auto FFT -11.96 dBn 2.4281800 GH -5.74 dBn 2.4420100 GH M1[1] 10 dBm· M2[1] 0 dBm X. -10 dBm--20 dBm -30 dBm CH06 49. demno -50 dBm -60 dBm 70 dBm CF 2.437 GH: 1001 pt Span 30.0 MHz Type Ref Trc
 Y-value
 Function

 -11.96 dBm

 -5.74 dBm

 -0.10 dB
 X-value 2.42818 GHz 2.44201 GHz 17.64 MHz Function Result M1 M2 D3 M1 444 ₿ Spectrum
 Ref Level
 20.50 dBm
 Offset
 1.00 dB
 ●
 RBW
 100 kHz

 Att
 30 dB
 SWT
 75.9 μs
 ●
 VBW
 300 kHz
 Mode Auto FFT Count 500/500 -11.71 dBr 2.4531800 GH M1[1] 10 dBm-M2[1] -5.34 dBr 2.4569900 GH 0 dBm Think 10 dBm D1 -11.34 --20 dBm -30 dBm CH11 .49. dama mm -50 dBm· -60 dBm· -70 dBm-CF 2.462 GHz 1001 pts Span 30.0 MHz Marker Type Ref Trc X-value 2.45318 GHz 2.45699 GHz 16.41 MHz Y-value -11.71 dBm -5.34 dBm -0.87 dB Function Function Result M2 D3 M1 **1**


5.6. Restricted band

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, Radiated Emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the Radiated Emissions limits specified in §15.209(a) (see §15.205(c)).

TEST CONFIGURATION

TEST PROCEDURE

- 1) The EUT was setup and tested according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
- 2) The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3) The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 4) The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find themaximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- The receiver set as follow: RBW=1MHz, VBW=3MHz PEAK detector for Peak value. RBW=1MHz, VBW=3MHz RMS detector for Average value.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

☑ Passed □ Not Applicable

Note:

1) Final level= Read level + Antenna Factor+ Cable Loss- Preamp Factor

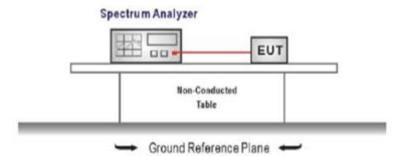
802.11b					CH01				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
2310.00	21.16	28.05	6.62	0.00	55.83	74.00	-18.17	Vertical	Peak
2390.01	20.07	27.65	6.75	0.00	54.47	74.00	-19.53	Vertical	Peak
2310.00	19.74	28.05	6.62	0.00	54.41	74.00	-19.59	Horizontal	Peak
2390.01	20.72	27.65	6.75	0.00	55.12	74.00	-18.88	Horizontal	Peak
2310.00	11.99	28.05	6.62	0.00	46.66	54.00	-7.34	Vertical	Average
2390.01	11.57	27.65	6.75	0.00	45.97	54.00	-8.03	Vertical	Average
2310.00	12.00	28.05	6.62	0.00	46.67	54.00	-7.33	Horizontal	Average
2390.01	11.63	27.65	6.75	0.00	46.03	54.00	-7.97	Horizontal	Average

802.11b	CH11											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value			
2483.49	20.25	27.26	6.83	0.00	54.34	74.00	-19.66	Vertical	Peak			
2500.00	20.58	27.20	6.84	0.00	54.62	74.00	-19.38	Vertical	Peak			
2483.49	19.84	27.26	6.83	0.00	53.93	74.00	-20.07	Horizontal	Peak			
2500.00	20.02	27.20	6.84	0.00	54.06	74.00	-19.94	Horizontal	Peak			
2483.49	11.57	27.26	6.83	0.00	45.66	54.00	-8.34	Vertical	Average			
2500.00	11.56	27.20	6.84	0.00	45.60	54.00	-8.40	Vertical	Average			
2483.49	11.61	27.26	6.83	0.00	45.70	54.00	-8.30	Horizontal	Average			
2500.00	11.58	27.20	6.84	0.00	45.62	54.00	-8.38	Horizontal	Average			

802.11g					CH01				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
2310.00	20.48	28.05	6.62	0.00	55.15	74.00	-18.85	Vertical	Peak
2390.01	20.04	27.65	6.75	0.00	54.44	74.00	-19.56	Vertical	Peak
2310.00	19.55	28.05	6.62	0.00	54.22	74.00	-19.78	Horizontal	Peak
2390.01	21.19	27.65	6.75	0.00	55.59	74.00	-18.41	Horizontal	Peak
2310.00	11.98	28.05	6.62	0.00	46.65	54.00	-7.35	Vertical	Average
2390.01	12.68	27.65	6.75	0.00	47.08	54.00	-6.92	Vertical	Average
2310.00	11.99	28.05	6.62	0.00	46.66	54.00	-7.34	Horizontal	Average
2390.01	13.16	27.65	6.75	0.00	47.56	54.00	-6.44	Horizontal	Average

802.11g					CH11				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
2483.49	20.01	27.26	6.83	0.00	54.10	74.00	-19.90	Vertical	Peak
2500.00	21.02	27.20	6.84	0.00	55.06	74.00	-18.94	Vertical	Peak
2483.49	20.23	27.26	6.83	0.00	54.32	74.00	-19.68	Horizontal	Peak
2500.00	19.84	27.20	6.84	0.00	53.88	74.00	-20.12	Horizontal	Peak
2483.49	11.55	27.26	6.83	0.00	45.64	54.00	-8.36	Vertical	Average
2500.00	11.56	27.20	6.84	0.00	45.60	54.00	-8.40	Vertical	Average
2483.49	11.59	27.26	6.83	0.00	45.68	54.00	-8.32	Horizontal	Average
2500.00	11.54	27.20	6.84	0.00	45.58	54.00	-8.42	Horizontal	Average

802.11n(HT	20)				CH01				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
2310.00	19.85	28.05	6.62	0.00	54.52	74.00	-19.48	Vertical	Peak
2390.01	20.49	27.65	6.75	0.00	54.89	74.00	-19.11	Vertical	Peak
2310.00	19.09	28.05	6.62	0.00	53.76	74.00	-20.24	Horizontal	Peak
2390.01	20.40	27.65	6.75	0.00	54.80	74.00	-19.20	Horizontal	Peak
2310.00	11.97	28.05	6.62	0.00	46.64	54.00	-7.36	Vertical	Average
2390.01	11.59	27.65	6.75	0.00	45.99	54.00	-8.01	Vertical	Average
2310.00	11.99	28.05	6.62	0.00	46.66	54.00	-7.34	Horizontal	Average
2390.01	11.62	27.65	6.75	0.00	46.02	54.00	-7.98	Horizontal	Average


802.11n(HT	20)				CH11	CH11					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value		
2483.49	19.08	27.26	6.83	0.00	53.17	74.00	-20.83	Vertical	Peak		
2500.00	19.61	27.20	6.84	0.00	53.65	74.00	-20.35	Vertical	Peak		
2483.49	19.61	27.26	6.83	0.00	53.70	74.00	-20.30	Horizontal	Peak		
2500.00	19.80	27.20	6.84	0.00	53.84	74.00	-20.16	Horizontal	Peak		
2483.49	11.56	27.26	6.83	0.00	45.65	54.00	-8.35	Vertical	Average		
2500.00	11.57	27.20	6.84	0.00	45.61	54.00	-8.39	Vertical	Average		
2483.49	11.64	27.26	6.83	0.00	45.73	54.00	-8.27	Horizontal	Average		
2500.00	11.57	27.20	6.84	0.00	45.61	54.00	-8.39	Horizontal	Average		

5.7. Band edge and Spurious Emissions (conducted)

FCC CFR Title 47 Part 15 Subpart C Section15.247 (d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- 2. Establish a reference level by using the following procedure

Center frequency=DTS channel center frequency The span = 1.5 times the DTS bandwidth. RBW = 100 kHz, VBW ≥ 3 x RBW Detector = peak, Sweep time = auto couple, Trace mode = max hold Allow trace to fully stabilize Use the peak marker function to determine the maximum PSD level

Note: the channel found to contain the maximum PSD level can be used to establish the reference level. Emission level measurement

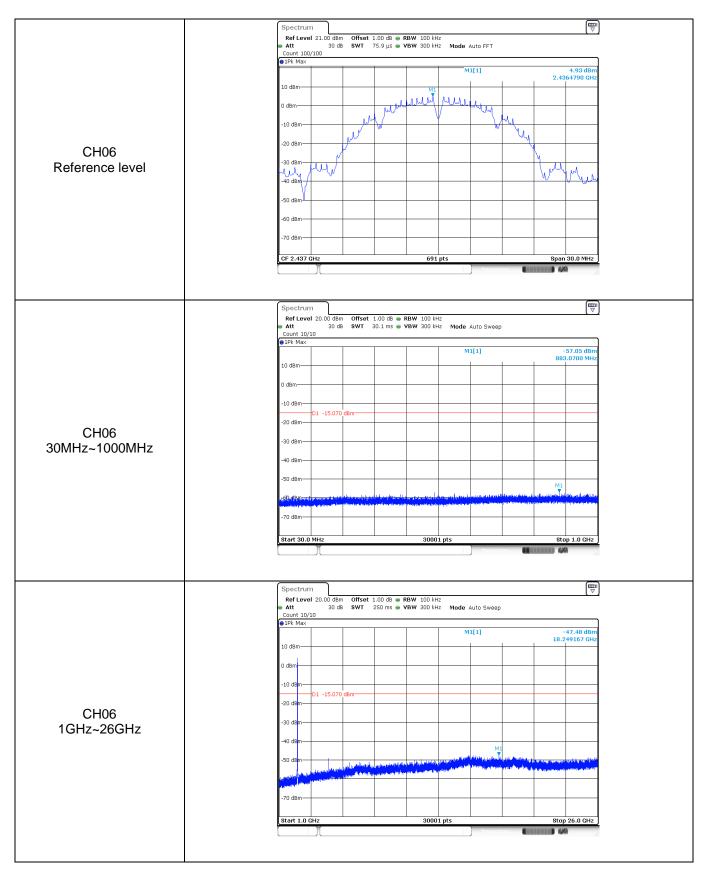
 Emission level measurement Set the center frequency and span to encompass frequency range to be measured RBW = 100 kHz, VBW ≥ 3 x RBW Detector = peak, Sweep time = auto couple, Trace mode = max hold Allow trace to fully stabilize Use the peak marker function to determine the maximum amplitude level.
 Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmit

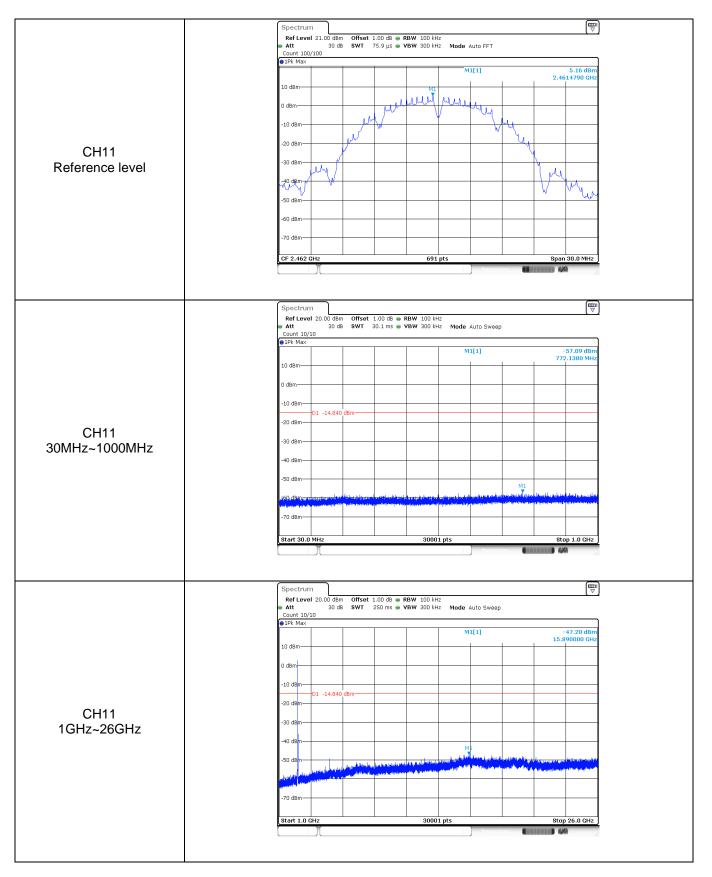
- 4. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.
- Ensure that the amplitude of all unwanted emission outside of the authorized frequency band excluding restricted frequency bands) are attenuated by at least the minimum requirements specified (at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz). Report the three highest emission relative to the limit.

TEST MODE:

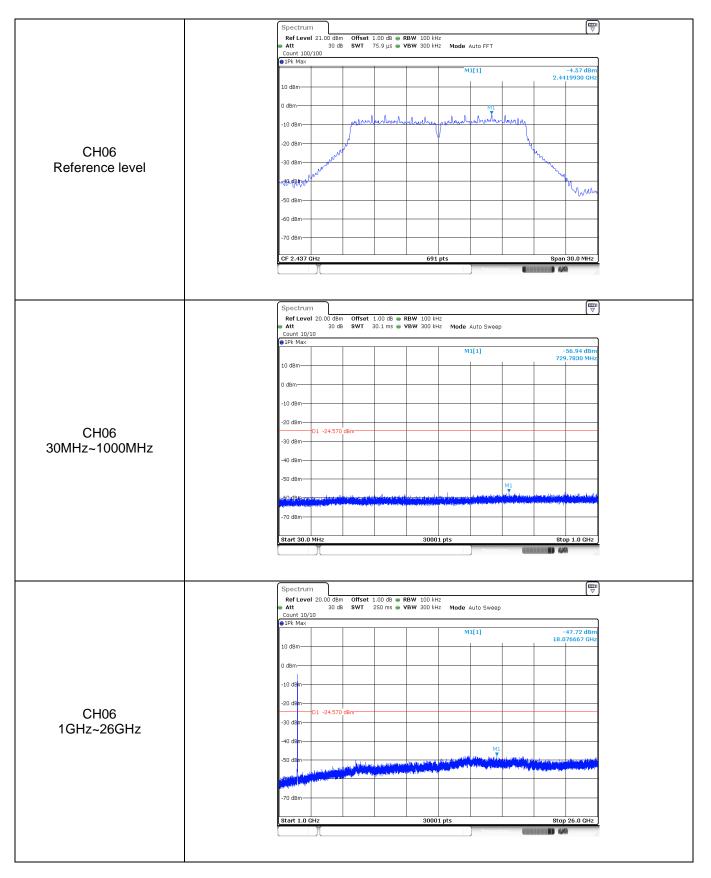
Please refer to the clause 3.3

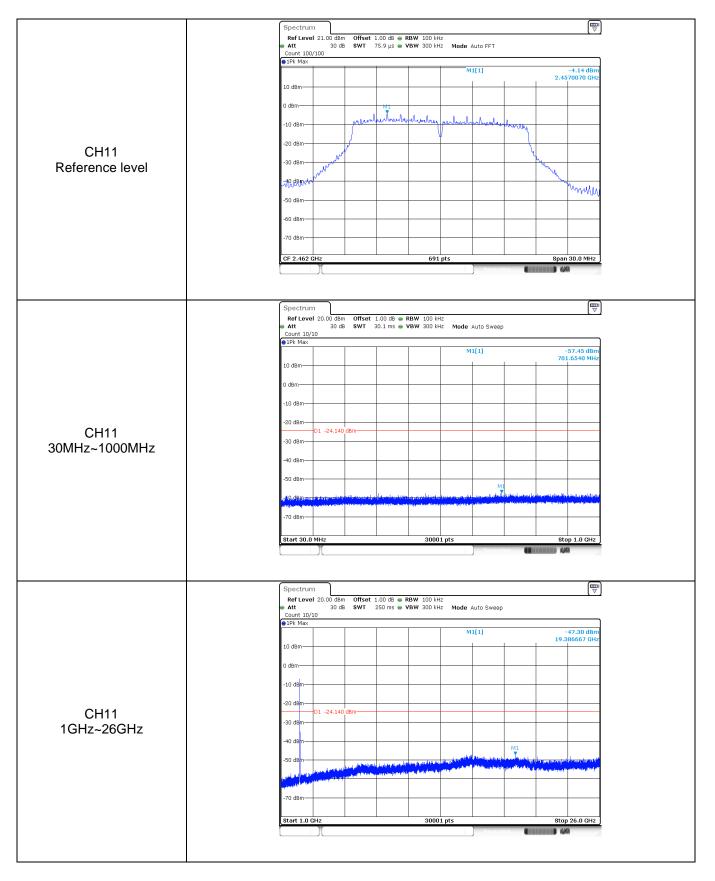
TEST RESULTS

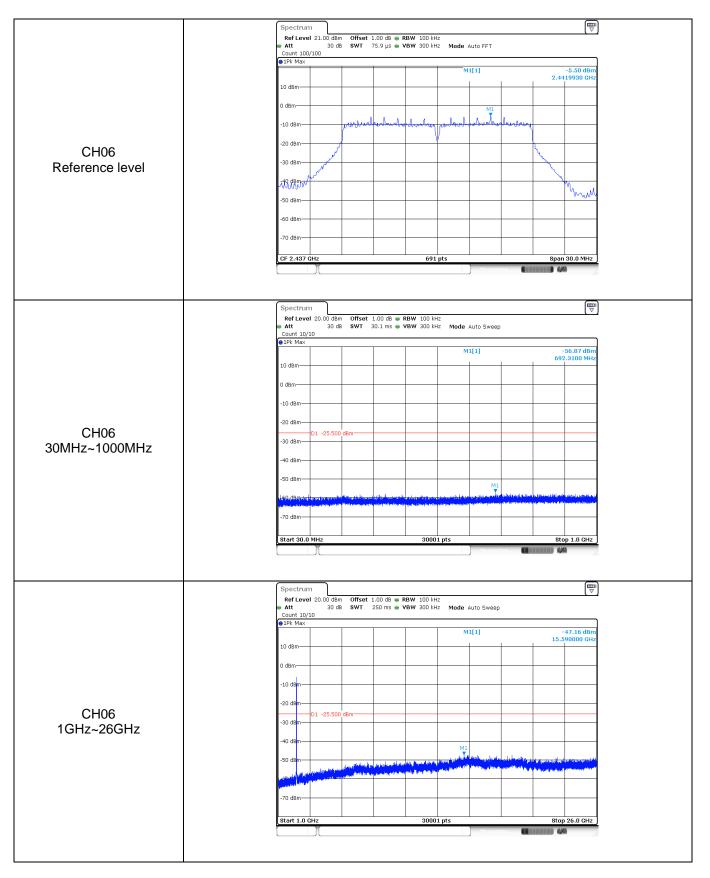

☑ Passed □ Not Applicable

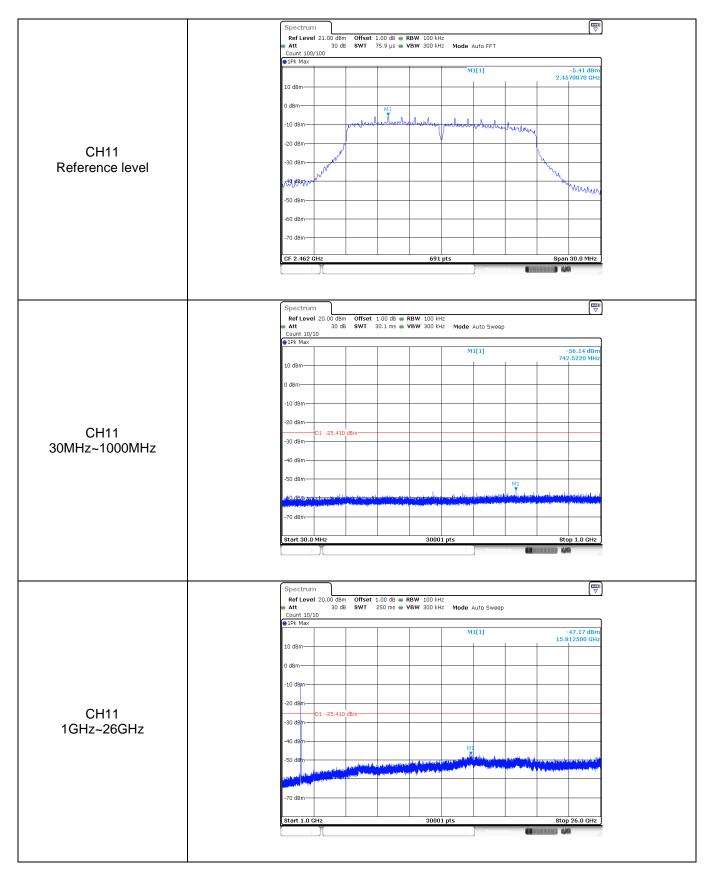

Test Item:	Bandedge	Туре: 802.	.11 b
		Spectrum Ref Level 20.00 dBm Offset 1.00 dB RBW 100 kHz Att 30 dB SWT 246.5 µs VBW 300 kHz Count 300/200 VBW 300 kHz Mode Auto FFT	
		1Pk Max 10 dBm 0 dBm 0 dBm	7.07 dBm 2.411550 GHz 1017 05 dBm 12.400006 GHz
		-10 dBm 01 -12.930 dBm	
CH01		-40 dBm	
		-70 dBm	op 2.422 GHz
		Type Ref TV alue TV alue Function Function M1 1 2.41155 GHz 7.07 dBm M2 1 2.4 GHz -32.05 dBm M3 1 2.99 GHz -47.64 dBm M4 1 2.31 GHz -59.75 dBm M5 1 2.399925 GHz -33.35 dBm	suit
		Spectrum Mreneters Ref Level 20.00 dBm Offset 1.00 dB • RBW 100 kHz Att 30 dB SWT 113.8 µs • VBW 300 kHz Count 300/300 Count 300/300	
		0 dBm W2[1] 3	5.17 dBm 2.4614820 GHz -56.87 dBm 2.4835000 GHz
		-10 dp/ 1 -14.830 dBm 1	
CH11		-40 dBm	م می است
		-70 dBm	Stop 2.5 GHz
		M1 1 2.461482 GHz 5.17 dBm M2 1 2.4835 GHz -56.87 dBm M3 1 2.5 GHz -58.76 dBm	

Ref	trum					
 Att Count 		Offset 1.00 dB ⊜ SWT 246.5 µs ⊜		Mode Auto FFT		
● 1Pk 10 dBi	Max			M1[1] M2[1]	MP	-4.50 dBm .407010 GHz .37.15 dBm .400000 GHz
-10 dE -20 dE	IM	n				ulpuun -
-40 de -50 de 4	im	particular and a second second		M AND BRIDERING	M927 3.Mrr Would a	
-70 dE Start	2.31 GHz		691 pts		Sto	p 2.422 GHz
- <u>Type</u> Mi Mi Mi Mi	Ref Trc 1 1 2 1 3 1 4 1	X-value 2.40701 GHz 2.4 GHz 2.39 GHz 2.31 GHz 2.398301 GHz	Y-value -4.50 dBm -37.15 dBm -50.93 dBm -59.63 dBm -38.23 dBm	Function	Function Rest	
Ref Att Coun	Level 20.00 dBm 30 dB t 300/300			Mode Auto FFT		
10 dB	m			M1[1] M2[1]		-4.12 dBm 4570360 GHz -55.19 dBm 4835000 GHz
-29 de	Im D1 -24.120 dBr		<u> </u>			
-40 d£ -50 d£	Im		When when when	Martin M2 MA	utreen	
-70 dE Start	2.452 GHz		691 pts			top 2.5 GHz
M2 M2 M3 M3	Ref Trc 1 1 2 1 3 1	2.457036 GHz 2.4835 GHz 2.5 GHz	Y-value -4.12 dBm -55.19 dBm -60.36 dBm -54.80 dBm	Function	Function Rest	alt
	0 dBm -10 dB -20 dB -30 dB -40 dB -50 dB -70 dB	-30 dBm	0 dBm -10 dBm	0 dbm -10 dbm -10 dbm -20 dbm -11 -24.500 dbm -11 -24.500 dbm -30 dbm -11 -24.500 dbm -11 -24.500 dbm -30 dbm -11 -24.500 dbm -11 -24.500 dbm -50 dbm -11 -24.500 dbm -11 -24.500 dbm -70 dbm -11 -24.500 dbm -11 -24.500 dbm Marker -11 -24.40701 GHz -4.50 dbm M2 1 2.40701 GHz -4.500 dbm M3 1 2.39 dbm -59.63 dbm M5 1 2.398301 GHz -59.63 dbm M5 1 2.398301 GHz -38.23 dbm 0 dbm -10 dbm -11 -24.120 dbm -11 -28.95 eVBW 300 HHz -10 dbm -10 dbm -11 -24.120 dbm -11 -28.95 eVBW 300 HHz -20 dbm -10 -24.120 dbm -11 -24.120 dbm -11 -24.120 dbm -30 dbm -11 -24.120 dbm -11 -24.120 dbm -11 -24.120 dbm -30 dbm -11 -24.120 dbm -11 -24.120 dbm -11 -24.120 dbm -30 dbm -11 -24.120 dbm -11 -24.120 dbm -11 -24.120 dbm -30 dbm -11 -24.120 dbm -11 -24.120 dbm	O dbm M2[1] -10 dbm -11 dbm -10 dbm<	0 dBm M2[1] M2[1] 0 dBm 0 M -10 dBm 0 M -20 dBm 0 -10 -30 dBm 0 -10 -30 dBm -10 -10 -30 dBm -10 -10 -40 dBm -10 -10 -50 dBm -10 -10 -70 dBm -10 -10 Marker -10 -10 Type Ref Trc X-value -10 M1 1 2.40701 GHz -450 dBm M1 1 2.40701 GHz -450 dBm M1 1 2.40701 GHz -30 dBm M1 1 2.40701 GHz -30 dBm M1 1 2.40701 GHz -30 dBm M4 1 2.31 GHz -50 dBm M4 1 2.31 GHz -50 dBm M4 1 2.31 GHz -50 dBm M2 1 2.30 GBU -30 dBm M2 0 -30 dBm -40 Marker <t< td=""></t<>

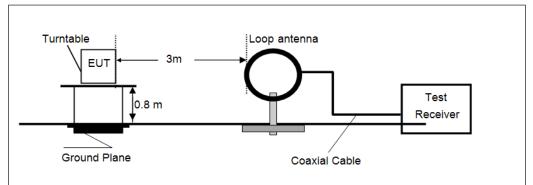

Test Item:	Bandedge	Туре	:	802.11 n(HT20)
	👄 Att	l 20.00 dBm Offset 1.00 dB 30 dB SWT 246.5 µs	 RBW 100 kHz VBW 300 kHz Mode Auto FF 	(₩) T
CH01	Count 300, ● IPK Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	01 -25.330 d8m	M1[1] M2	-5.33 dBm 2.407010 GHz -37.80 dBm M2.400000 GHz -00000 GHz -00000 GHz -00000 GHz -00000 GHz -00000 GHz -0000 GHZ -00
	-50 dbm	Image: second system X-value 1 2.40701 GHz 1 2.4 GHz	691 pts Y-value Function -5.33 dBm -37.80 dBm	Stop 2.422 GHz
	M3 M4 M5 Spectrun Ref Leve	1 2.39 GHz 1 2.31 GHz 1 2.397003 GHz 0 0 0 dBm 0ffset 1.00 dB	-53.11 dBm -60.32 dBm -41.07 dBm	
CH11	● Att Count 300, ● 1Pk Max 10 dBm	30 dB SWT 113.8 µs	vBW 300 kHz Mode Auto FF	T -5.44 dBm 2.4570360 GHz -49.43 dBm 2.4835000 GHz
	-10 dBm	Di -25.440 dBm	Con Manhalana Ma	
	-60 dBm -70 dBm Start 2.45: Marker Type Re M1 M2		691 pts <u> </u>	Stop 2.5 GHz
	M3 M4	1 2.4835826 GHz	-49.43 dBm -60.10 dBm -49.40 dBm	


est Item:	SE	Туре:	802.11 b
		Spectrum	
		RefLevel 21.00 dBm Offset 1.00 dB ● RBW 100 kHz ● Att 30 dB SWT 75.9 μs ● VBW 300 kHz Mode A Count 100/100	uto FFT
			[1] 7.34 dBm
		10 d0 - M1	2.4114790 GHz
		0 dBm WWWW MULL	LA 1 0
		-10 dBm	m tu
		all all	www.
CH01		-20 dBm	
Reference level		-30 dBm	Wery New
		-50 dBm	
		-60 dBm	
		-70 dBm	
		CF 2.412 GHz 691 pts	Span 30.0 MHz
			Measuring (
		Spectrum	
		RefLevel 20.00 dBm Offset 1.00 dB RBW 100 kHz Att 30 dB SWT 30.1 ms VBW 300 kHz Mode A	uto Sweep
		Count 10/10 Plk Max	
		10 dBm	[1] -56.83 dBm 825.5190 MHz
		0 dBm	
		-10 dBm D1 -12.660 dBm	
CH01		-20 dBm	
30MHz~1000MHz		-30 dBm	
		-40 dBm	
		-50 dBm	M1
		-50.dBmas linear and the could be a set of a set of the could be a set of the	nelle la la casa da la
		-70 dBm	
		Start 30.0 MHz 30001 pts	Stop 1.0 GHz
			Measuring
		Spectrum	
		Ref Level 20.00 dBm Offset 1.00 dB ■ RBW 100 kHz ● Att 30 dB SWT 250 ms ● VBW 300 kHz Mode A	
		Count 10/10 1Pk Max	
CH01 1GHz~26GHz		10 dBm	[1] -46.69 dBm 4.824167 GHz
		0 dBm	
		-10 dBm	
		-20 dBm-	
		-30 dBm	
		-40 dBm	
		-50 dgm	And a new part of the life of the second
			"I """ and any of the set of the test of the test of the set of the
		-70 dBm-	
		Start 1.0 GHz 30001 pts	Stop 26.0 GHz

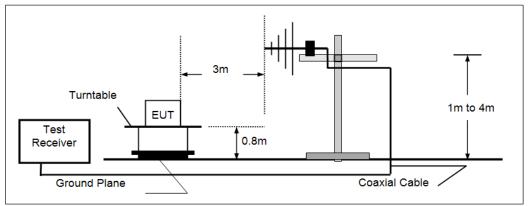



Item:	SE	Туре:	802.11 g
		Ref Level 21.00 dBm Offset 1.00 dB RBW 100 kHz Att 30 dB SWT 75.9 µs VBW 300 kHz Mode Auto FF' Count 100/100 VBW 300 kHz Mode Auto FF'	
			-4.53 dBm 2.4070070 GHz
CH01 Reference level		-10 dBm	lastlanty
		-50 dBm	
		CF 2.412 GHz 691 pts	Span 30.0 MHz
		Spectrum Ref Level 20.00 dsm Offset 1.00 ds RBW 100 kHz att 30 ds SWT 30.1 ms VBW 300 kHz Mode Auto Sw Count 10/10 0 SWT 30.1 ms VBW Mode Auto Sw	weep
		PIPk Max M1[1] 10 dBm	-57.21 dBm 227.2750 MHz
		0 d8m	
CH01 DMHz~1000MHz		-20 dBm	
		-50 d8m	
		-70 dBm Btart 30.0 MHz 30001 pts	Stop 1.0 GHz
			asuding
		Spectrum RefLevel 20.00 dBm Offset 1.00 dB RBW 100 kHz Att 30 dB SWT 250 ms VBW 300 kHz Mode Auto Sw Count 10/10 Gask Max SWT 250 ms VBW 300 kHz Mode Auto Sw	veep
		0 dBm	-46.95 dBm 15.848333 GHz
		-10 dgm	
CH01 1GHz~26GHz		-30 dEm	
		-50 dem	
		-70 dBm	

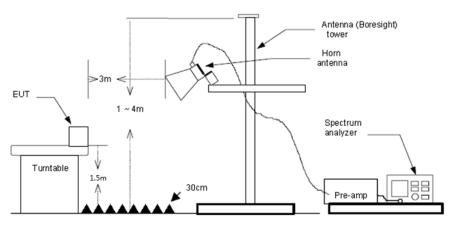
Test Item:	SE	Type: 802.11 n(HT20)
		Spectrum Image: Constraint of the second secon
		0 dBm
CH01 Reference level		-20 dBm
		-So dam
		-60 d8m
		CF 2.412 GHz 691 pts Span 30.0 MHz
		Spectrum Image: Constraint of the sector of t
		Count 10/10 PIPk Max M1[1] -56.39 dBm 10 dBm 856.4290 MHz
		0 dBm
CH01 30MHz~1000MHz		-20 dBm
3011112~100010112		-40 d8m
		-70 dBm
		Stort 30.0 MHz 30001 pts Stop 1.0 GHz
		Spectrum Ref Level 20.00 dBm Offset 1.00 dB ● RBW 100 kHz
		Att 30 dB SWT 250 ms ● VBW 300 kHz Mode Auto Sweep Count 10/10 ●1Fk Max M1[1] -+77.04 dBm 16.133333 GHz
		10 dBm
CH01		-10 dBm
1GHz~26GHz		-30 dBm
		-70 dBm


5.8. Spurious Emissions (radiated) LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.209


Frequency	Limit (dBuV/m @3m)	Value
30MHz-88MHz	40.00	Quasi-peak
88MHz-216MHz	43.50	Quasi-peak
216MHz-960MHz	46.00	Quasi-peak
960MHz-1GHz	54.00	Quasi-peak
Above 1GHz	54.00	Average
	74.00	Peak

TEST CONFIGURATION


> 9kHz ~30MHz

> 30MHz ~ 1GHz

Above 1GHz

TEST PROCEDURE

- 1. The EUT was setup and tested according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1 GHz:
 - RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
 - (3) From 1 GHz to 10th harmonic: RBW=1MHz, VBW=3MHz Peak detector for Peak value. RBW=1MHz, VBW=3MHz RMS detector for Average value.

TEST MODE:

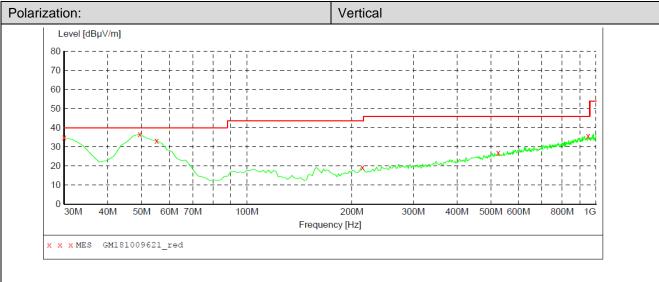
Please refer to the clause 3.3

TEST RESULTS

☑ Passed □ Not Applicable

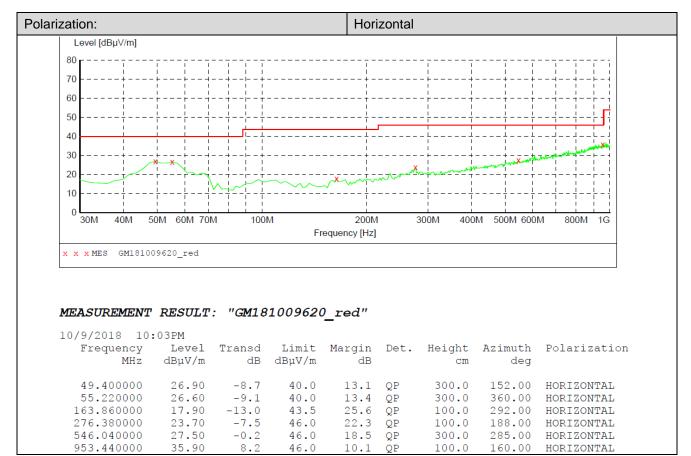
Note:

- 1) Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2) The emission levels of other frequencies are very lower than the limit and not show in test report.


➢ 9kHz ~ 30MHz

The EUT was pre-scanned the frequency band (9kHz~30MHz), found the radiated level lower than the limit, so don't show on the report.

➢ 30MHz ~1000MHz


Have pre-scan all modulation mode, found the 802.11b mode CH01 which it was worst case, so only the worst case's data on the test report.

> 30MHz ~ 1GHz

MEASUREMENT RESULT: "GM181009621_red"

10/9/2018 10	:06PM								
Frequency	Level	Transd	Limit	Margin	Det.	Height	Azimuth	Polarization	
MHz	dBµV/m	dB	dBµV/m	dB		cm	deg		
							_		
30.000000	34.90	-13.3	40.0	5.1	QP	100.0	306.00	VERTICAL	
49.400000	36.60	-8.7	40.0	3.4	QP	100.0	79.00	VERTICAL	
55.220000	33.10	-9.1	40.0	6.9	QP	100.0	51.00	VERTICAL	
214.300000	19.30	-10.0	43.5	24.2	QP	100.0	0.00	VERTICAL	
524.700000	27.00	-0.6	46.0	19.0	QP	100.0	79.00	VERTICAL	
949.560000	35.70	8.2	46.0	10.3	QP	100.0	3.00	VERTICAL	

≻ .	1 0	θHz	~	25	GHz	

802.11b					CH01				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
1706.70	37.49	25.21	5.78	37.31	31.17	74.00	-42.83	Vertical	Peak
3192.37	38.17	28.80	7.71	37.40	37.28	74.00	-36.72	Vertical	Peak
4883.52	34.38	31.43	9.59	35.58	39.82	74.00	-34.18	Vertical	Peak
7921.00	33.24	36.78	12.68	33.06	49.64	74.00	-24.36	Vertical	Peak
1179.94	38.05	26.14	4.61	37.24	31.56	74.00	-42.44	Horizontal	Peak
3225.04	36.19	28.65	7.75	37.37	35.22	74.00	-38.78	Horizontal	Peak
5073.59	33.22	31.80	9.73	35.23	39.52	74.00	-34.48	Horizontal	Peak
7527.83	32.90	36.13	12.49	33.02	48.50	74.00	-25.50	Horizontal	Peak

802.11b					CH06				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
1276.82	36.13	26.22	4.79	37.18	29.96	74.00	-44.04	Vertical	Peak
1676.56	38.15	25.13	5.72	37.28	31.72	74.00	-42.28	Vertical	Peak
4858.72	34.71	31.48	9.58	35.63	40.14	74.00	-33.86	Vertical	Peak
7451.57	32.34	36.20	12.24	33.10	47.68	74.00	-26.32	Vertical	Peak
1201.15	37.68	26.30	4.66	37.22	31.42	74.00	-42.58	Horizontal	Peak
3376.24	36.88	28.20	7.93	37.24	35.77	74.00	-38.23	Horizontal	Peak
5138.58	34.46	31.74	9.78	35.10	40.88	74.00	-33.12	Horizontal	Peak
7702.28	33.51	36.10	13.00	33.04	49.57	74.00	-24.43	Horizontal	Peak

802.11b					CH11				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
1283.34	37.19	26.22	4.80	37.18	31.03	74.00	-42.97	Vertical	Peak
2212.68	35.92	27.58	6.46	37.60	32.36	74.00	-41.64	Vertical	Peak
4594.10	36.15	30.89	9.45	36.11	40.38	74.00	-33.62	Vertical	Peak
7820.82	33.61	36.23	13.16	33.05	49.95	74.00	-24.05	Vertical	Peak
1198.10	36.89	26.29	4.66	37.23	30.61	74.00	-43.39	Horizontal	Peak
3143.98	37.17	28.80	7.65	37.45	36.17	74.00	-37.83	Horizontal	Peak
5434.56	33.89	31.64	10.15	34.54	41.14	74.00	-32.86	Horizontal	Peak
7860.74	33.12	36.47	12.97	33.06	49.50	74.00	-24.50	Horizontal	Peak

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.

3. The emission levels of other frequencies(test frequency band is 1GHz to 25GHz) are very lower than the limit and not show in test report.

802.11g					CH01				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
1309.74	36.06	26.17	4.85	37.16	29.92	74.00	-44.08	Vertical	Peak
3393.48	38.46	28.20	7.95	37.23	37.38	74.00	-36.62	Vertical	Peak
5504.17	33.29	31.90	10.20	34.42	40.97	74.00	-33.03	Vertical	Peak
7921.00	32.76	36.78	12.68	33.06	49.16	74.00	-24.84	Vertical	Peak
1316.42	36.75	26.15	4.86	37.16	30.60	74.00	-43.40	Horizontal	Peak
3184.25	37.21	28.80	7.70	37.41	36.30	74.00	-37.70	Horizontal	Peak
5631.73	33.79	31.74	10.32	34.35	41.50	74.00	-32.50	Horizontal	Peak
8615.13	33.52	37.39	12.91	32.94	50.88	74.00	-23.12	Horizontal	Peak

802.11g					CH06				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
1276.82	36.97	26.22	4.79	37.18	30.80	74.00	-43.20	Vertical	Peak
3192.37	38.92	28.80	7.71	37.40	38.03	74.00	-35.97	Vertical	Peak
5532.26	34.27	31.87	10.22	34.40	41.96	74.00	-32.04	Vertical	Peak
7921.00	33.00	36.78	12.68	33.06	49.40	74.00	-24.60	Vertical	Peak
1176.94	37.72	26.12	4.61	37.24	31.21	74.00	-42.79	Horizontal	Peak
1693.75	36.68	25.18	5.75	37.29	30.32	74.00	-43.68	Horizontal	Peak
4065.71	35.87	29.83	8.83	36.69	37.84	74.00	-36.16	Horizontal	Peak
8063.40	33.21	37.04	12.45	33.05	49.65	74.00	-24.35	Horizontal	Peak

802.11g					CH11				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
1303.09	36.52	26.19	4.84	37.17	30.38	74.00	-43.62	Vertical	Peak
2229.65	36.21	27.68	6.49	37.60	32.78	74.00	-41.22	Vertical	Peak
3384.85	38.82	28.20	7.94	37.24	37.72	74.00	-36.28	Vertical	Peak
7394.88	33.42	36.30	12.06	33.20	48.58	74.00	-25.42	Vertical	Peak
1442.76	36.51	25.86	5.12	37.10	30.39	74.00	-43.61	Horizontal	Peak
3384.85	37.15	28.20	7.94	37.24	36.05	74.00	-37.95	Horizontal	Peak
4785.08	35.74	31.54	9.53	35.76	41.05	74.00	-32.95	Horizontal	Peak
7585.53	32.84	36.19	12.67	33.03	48.67	74.00	-25.33	Horizontal	Peak

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies(test frequency band is 1GHz to 25GHz) are very lower than the limit and not show in test report.

802.11n(HT	20)				CH01				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
1750.70	37.09	25.30	5.86	37.35	30.90	74.00	-43.10	Vertical	Peak
3192.37	37.09	28.80	7.71	37.40	36.20	74.00	-37.80	Vertical	Peak
4797.27	37.80	31.59	9.54	35.74	43.19	74.00	-30.81	Vertical	Peak
7547.01	33.64	36.15	12.55	33.02	49.32	74.00	-24.68	Vertical	Peak
1219.64	36.93	26.28	4.69	37.21	30.69	74.00	-43.31	Horizontal	Peak
1737.38	36.43	25.28	5.84	37.34	30.21	74.00	-43.79	Horizontal	Peak
3653.46	35.96	29.30	8.33	37.02	36.57	74.00	-37.43	Horizontal	Peak
7682.70	32.87	36.12	12.94	33.04	48.89	74.00	-25.11	Horizontal	Peak

802.11n(HT	20)				CH06				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
1176.94	37.19	26.12	4.61	37.24	30.68	74.00	-43.32	Vertical	Peak
3192.37	36.94	28.80	7.71	37.40	36.05	74.00	-37.95	Vertical	Peak
5151.68	33.80	31.69	9.79	35.08	40.20	74.00	-33.80	Vertical	Peak
7981.72	32.57	37.03	12.39	33.07	48.92	74.00	-25.08	Vertical	Peak
1138.63	37.70	25.82	4.52	37.26	30.78	74.00	-43.22	Horizontal	Peak
3033.91	37.29	28.67	7.52	37.55	35.93	74.00	-38.07	Horizontal	Peak
5532.26	34.06	31.87	10.22	34.40	41.75	74.00	-32.25	Horizontal	Peak
7604.87	33.30	36.20	12.73	33.03	49.20	74.00	-24.80	Horizontal	Peak

802.11n(HT		CH11							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
1204.21	37.96	26.30	4.67	37.22	31.71	74.00	-42.29	Vertical	Peak
3192.37	37.51	28.80	7.71	37.40	36.62	74.00	-37.38	Vertical	Peak
4785.08	35.25	31.54	9.53	35.76	40.56	74.00	-33.44	Vertical	Peak
7394.88	33.14	36.30	12.06	33.20	48.30	74.00	-25.70	Vertical	Peak
1388.71	36.11	25.93	4.98	37.12	29.90	74.00	-44.10	Horizontal	Peak
3873.75	36.44	29.67	8.60	36.85	37.86	74.00	-36.14	Horizontal	Peak
6219.51	33.39	32.94	11.01	33.91	43.43	74.00	-30.57	Horizontal	Peak
7981.72	33.57	37.03	12.39	33.07	49.92	74.00	-24.08	Horizontal	Peak

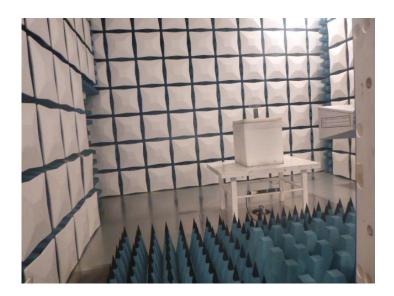
Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.

3. The emission levels of other frequencies(test frequency band is 1GHz to 25GHz) are very lower than the limit and not show in test report.

6. TEST SETUP PHOTOS


Conducted Emissions (AC Mains)

Radiated Emissions

7. EXTERANAL AND INTERNAL PHOTOS

Reference to the test report No.: TRE1809020701

-----End of Report------