

ANNEX C: Calibration Reports

EPGO 348 Probe Calibration Report

SID750 Dipole Calibration Report

SID835 Dipole Calibration Report

SID1800 Dipole Calibration Report

SID1900 Dipole Calibration Report

SID2450 Dipole Calibration Report

SID2600 Dipole Calibration Report

SID5G Dipole Calibration Report

EPGO348 Probe Calibration Report

COMOSAR E-Field Probe Calibration Report

Ref: ACR.349.1.20.MVGB.A

CCIC SOUTHERN TESTING CO., LTD ELECTRONIC TESTING BUILDING, NO. 43 SHAHE ROAD, XILI STREET, NANSHAN DISTRICT SHENZHEN, GUANGDONG, CHINA MVG COMOSAR DOSIMETRIC E-FIELD PROBE SERIAL NO.: SN 36/20 EPG0348

Calibrated at MVG Z.I. de la pointe du diable

Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE

Calibration date: 12/14/2020

Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr

Summary:

This document presents the method and results from an accredited COMOSAR E-Field Probe calibration performed at MVG, using the CALIPROBE test bench, for use with a MVG COMOSAR system only. The test results covered by accreditation are traceable to the International System of Units (SI).

Page: 1/10

Ref: ACR.349.1.20.MVGB.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Technical Manager	12/14/2020	JS
Checked by :	Jérôme LUC	Technical Manager	12/14/2020	JS
Approved by :	Yann Toutain	Laboratory Director	12/15/2020	Gann Toutain
				2020.12.1 5 12:26:45 +01'00'

	Customer Name
Distribution :	CCIC SOUTHERN TESTING CO., LTD

Issue	Name	Date	Modifications
А	Jérôme LUC	12/14/2020	Initial release

Page: 2/10

Ref: ACR.349.1.20.MVGB.A

TABLE OF CONTENTS

1	Devi	ce Under Test4	
2	Prod	uct Description4	
	2.1	General Information	4
3	Mea	surement Method4	
	3.1	Linearity	4
	3.2	Sensitivity	5
	3.3	Lower Detection Limit	5
	3.4	Isotropy	5
	3.1	Boundary Effect	5
4	Mea	surement Uncertainty	
5	Calil	bration Measurement Results	
	5.1	Sensitivity in air	6
	5.2	Linearity	7
	5.3	Sensitivity in liquid	8
	5.4	Isotropy	9
6	List	of Equipment10	

Page: 3/10

Ref: ACR.349.1.20.MVGB.A

DEVICE UNDER TEST 1

Device Under Test		
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE	
Manufacturer	MVG	
Model	SSE2	
Serial Number	SN 36/20 EPGO348	
Product Condition (new / used)	New	
Frequency Range of Probe	0.15 GHz-6GHz	
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.214 MΩ	
	Dipole 2: R2=0.208 MΩ	
	Dipole 3: R3=0.238 MΩ	

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEEE 1528, FCC KDB865664 D01, CENELEC EN62209 and CEI/IEC 62209 standards.

Figure 1 – MVG COMOSAR Dosimetric E field Dipole

Probe Length	330 mm
Length of Individual Dipoles	2 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	2.5 mm
Distance between dipoles / probe extremity	1 mm

3 MEASUREMENT METHOD

The IEEE 1528, FCC KDB865664 D01, CENELEC EN62209 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

Page: 4/10

Ref: ACR.349.1.20.MVGB.A

3.2 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 to 360 degrees in 15-degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis (0°–180°) in 15° increments. At each step the probe is rotated about its axis (0°–360°).

3.1 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

The boundary effect uncertainty can be estimated according to the following uncertainty approximation formula based on linear and exponential extrapolations between the surface and $d_{be} + d_{step}$ along lines that are approximately normal to the surface:

SAR uncertainty
$$[\%] = \delta SAR_{be} \frac{(d_{be} + d_{step})^2}{2d_{step}} \frac{(e^{-d_{st}/(\delta/2)})}{\delta/2}$$
 for $(d_{be} + d_{step}) < 10 \text{ mm}$

where

millere	
SARuncertainty	is the uncertainty in percent of the probe boundary effect
dbe	is the distance between the surface and the closest zoom-scan measurement
	point, in millimetre
Δ_{step}	is the separation distance between the first and second measurement points that
	are closest to the phantom surface, in millimetre, assuming the boundary effect
	at the second location is negligible
δ	is the minimum penetration depth in millimetres of the head tissue-equivalent
	liquids defined in this standard, i.e., $\delta \approx 14$ mm at 3 GHz;
⊿SAR _{be}	in percent of SAR is the deviation between the measured SAR value, at the
	distance dbe from the boundary, and the analytical SAR value.

Page: 5/10

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vH

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.349.1.20.MVGB.A

The measured worst case boundary effect SARuncertainty[%] for scanning distances larger than 4mm is 1.0% Limit ,2%).

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

Uncertainty analysis of the probe calibration in waveguide					
ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Expanded uncertainty 95 % confidence level k = 2					14 %

5 CALIBRATION MEASUREMENT RESULTS

Calibration Parameters		
Liquid Temperature	20 +/- 1 °C	
Lab Temperature	20 +/- 1 °C	
Lab Humidity	30-80 %	

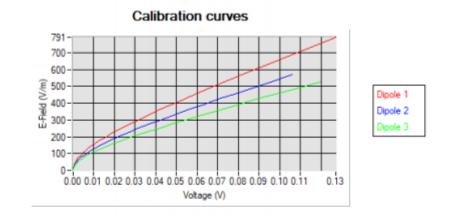
5.1 SENSITIVITY IN AIR

		Normz dipole
$1 (\mu V/(V/m)^2)$	$2 (\mu V/(V/m)^2)$	3 (µV/(V/m)2)
0.45	0.66	0.91

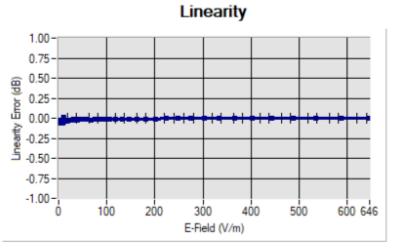
DCP dipole 1	DCP dipole 2	DCP dipole 3	
(mV)	(mV)	(mV)	
104	105	108	

Calibration curves ei=f(V) (i=1,2,3) allow to obtain E-field value using the formula:

$$E = \sqrt{E_1^2 + E_2^2 + E_3^2}$$


Page: 6/10

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vH



COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.349.1.20.MVGB.A

5.2 LINEARITY

Linearity:+/-1.46% (+/-0.06dB)

Page: 7/10

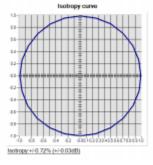
Ref: ACR.349.1.20.MVGB.A

5.3 SENSITIVITY IN LIQUID

Liquid	Frequency	ConvF
	(MHz +/-	
	100MHz)	
HL600	600	1.81
HL750	750	1.85
HL835	835	1.93
HL900	900	1.96
HL1500	1500	2.21
HL1750	1750	2.22
HL1800	1800	2.17
HL1900	1900	2.40
HL2000	2000	2.43
HL2300	2300	2.36
HL2450	2450	2.40
HL2600	2600	2.29
HL3300	3300	2.28
HL3500	3500	2.16
HL3700	3700	2.19
HL3900	3900	2.54
HL4200	4200	2.86
HL4600	4600	2.77
HL4900	4900	2.63
HL5200	5200	2.01
HL5400	5400	2.04
HL5600	5600	2.18
HL5800	5800	2.07

LOWER DETECTION LIMIT: 9mW/kg

Page: 8/10



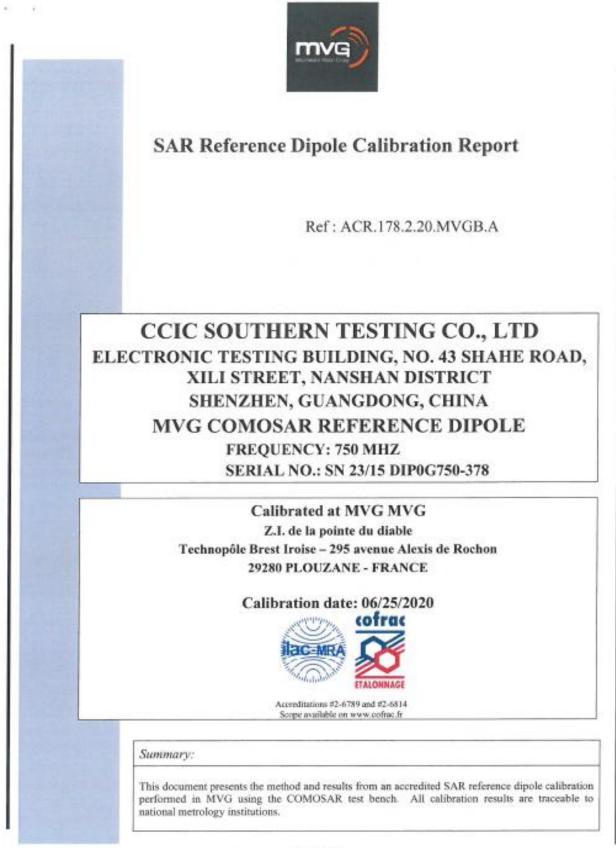
Ref: ACR.349.1.20.MVGB.A

5.4 ISOTROPY

HL1800 MHz

Page: 9/10

Ref: ACR.349.1.20.MVGB.A


	Equi	pment Summary S	Sheet	
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
Flat Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rohde & Schwarz ZVM	100203	05/2019	05/2022
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	05/2019	05/2022
Multimeter	Keithley 2000	1160271	02/2020	02/2023
Signal Generator	Rohde & Schwarz SMB	106589	04/2019	04/2022
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	NI-USB 5680	170100013	05/2019	05/2022
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Waveguide	Mega Industries	069Y7-158-13-712	Validated. No cal required.	Validated. No cal required.
Waveguide Transition	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.
Waveguide Termination	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.
Temperature / Humidity Sensor	Testo 184 H1	44220687	05/2020	05/2023

6 LIST OF EQUIPMENT

Page: 10/10

SID750 Dipole Calibration Report

Page: 1/11

Ref: ACR.178.2.20.MVGB.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Technical Manager	6/26/2020	Te
Checked by :	Jérôme LUC	Technical Manager	6/26/2020	22
Approved by :	Yann Toutain	Laboratory Director	6/26/2020	-the

CCIC SOUTHERN TESTING CO., LTD

Issue	Name	Date	Modifications
А	Jérôme LUC	6/26/2020	Initial release

Page: 2/11

Ref: ACR 178.2.20.MVGB.A

TABLE OF CONTENTS

1	Int	roduction	
2	De	vice Under Test	
3	Pro	oduct Description	
	3.1	General Information	4
4	Me	asurement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Me	asurement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Ca	libration Measurement Results	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	
	6.3	Mechanical Dimensions	6
7	Va	lidation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	10
8	Lis	t of Equipment	

Page: 3/11

Ref: ACR.178.2.20.MVGB.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

D	evice Under Test
Device Type	COMOSAR 750 MHz REFERENCE DIPOLE
Manufacturer	MVG
Model	SID750
Serial Number	SN 23/15 DIP0G750-378
Product Condition (new / used)	Used

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – MVG COMOSAR Validation Dipole

Page: 4/11

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR 178.2.20.MVGB.A

4 MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.08 LIN

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length
0 - 300	0.20 mm
300 - 450	0.44 mm

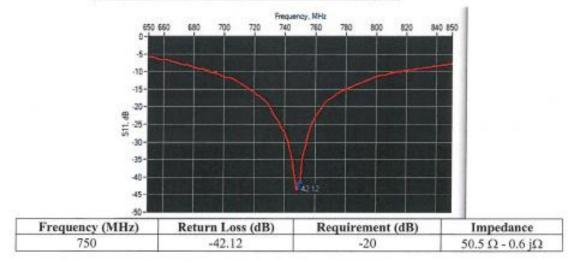
5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

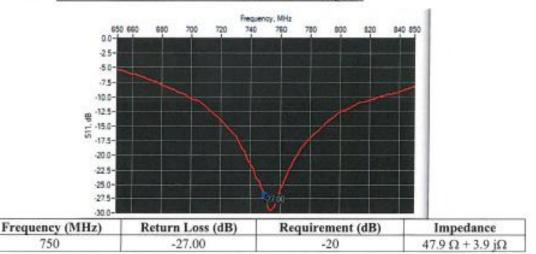
Scan Volume	Expanded Uncertainty

Page: 5/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vG


SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.178.2.20.MVGB.A


1 g	19 % (SAR)
10 g	19 % (SAR)

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

6.3 MECHANICAL DIMENSIONS

Frequency MHz	MHz Lmm		h mm		d mm	
	required	measured	required	measured	required	measured

Page: 6/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipute vG

mvg)

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.178.2.20.MVGB.A.

300	420.0 ±1 %.	250.0 ±1 %.	6.35 ±1 %.	
450	290.0 ±1 %.	166.7 ±1 %.	6.35 ±1 %.	
750	176.0 ±1 %.	- 100.0 ±1 %.	6.35 ±1 %.	3
835	161.0 ±1 %.	89.8 ±1 %.	3.6±1%.	
900	149.0 ±1 %.	83.3±1%.	3.6±1%.	
1450	89.1 ±1 %,	51.7±1%.	3.6 ±1 %.	
1500	80.5 ±1 %.	50.0 ±1 %.	3.6 ±1 %.	
1640	79.0 ±1 %.	45.7±1%.	3.6 ±1 %.	_
1750	75.2 ±1 %.	42.9 ±1 %.	3.6 ±1 %.	
1800	72.0 ±1 %.	41.7±1%.	3.6 ±1 %.	
1900	68.0 ±1 %.	39.5 ±1 %.	3.6±1%.	
1950	66.3 ±1 %.	38.5 ±1 %.	3.6 ±1 %,	
2000	64.5±1%,	37.5 ±1 %.	3.6 ±1 %.	
2100	61.0 ±1 %.	35.7 ±1 %.	3.6 ±1 %.	
2300	55.5 ±1 %.	32.6 ±1 %.	 3.6 ±1 %.	
2450	51.5 ±1 %.	30.4 ±1 %.	3.6±1%.	
2600	48.5±1%.	28.8 ±1 %.	3.6 ±1 %	
3000	41.5 ±1 %.	25.0 ±1 %.	3.6 ±1 %.	
3500	37.0±1 %.	26.4 ±1 %.	3.6 ±1 %.	
3700	34.7±1 %.	26.4 ±1 %.	3.6 ±1 %.	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (ϵ_r ')		Conductivity (a) S/m	
	required	measured	required	measured
300	45.3 ±10 %		0.87 ±10 %	
450	43.5 ±10 %		0.87 ±10 %	
750	41.9 ±10 %	41.8	0.89.±10 %	0.82
835	41.5 ±10 %		0.90 ±10 %	
900	41.5 ±10 %		0.97 ±10 %	
1450	40.5 ±10 %		1.20 ±10 %	
1500	40.4 ±10 %		1.23 ±10 %	
1640	40.2 ±10 %		1.31 ±10 %	

Page: 7/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole v6

Ref: ACR.178.2.20.MVGB.A

1750	40.1 ±10 %	1.37 ±10 %
1800	40.0 ±10 %	1.40 ±10 %
1900	40.0 ±10 %	1.40 ±10 %
1950	40.0 ±10 %	1.40±10%
2000	40.0 ±10 %	1.40 ±10 %
2100	39.8 ±10 %	1.49 ±10 %
2300	39.5 ±10 %	1.67 ±10 %
2450	39.2 ±10 %	1.80 ±10 %
2600	39.0 ±10 %	1.96 ±10 %
3000	38.5 ±10 %	2.40 ±10 %
3500	37.9 ±10 %	2.91 ±10 %

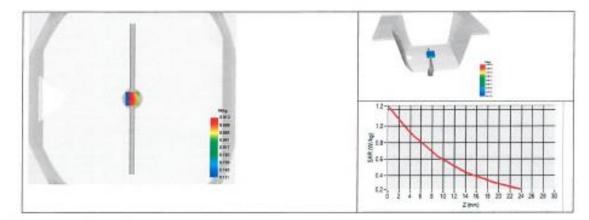
7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	SN 41/18 EPGO333
Liquid	Head Liquid Values: eps' : 41.8 sigma : 0.82
Distance between dipole center and liquid	15.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm
Frequency	750 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR (W/kg/W)	
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8,49	8.73 (0.87)	5.55	5.71 (0.57)
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	

Page: 8/11


Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vG

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref. ACR 178.2.20.MVGB.A

1800	38.4	20.1	
1900	39.7	20.5	
1950	40.5	20.9	
2000	41.1	21.1	
2100	43.6	21.9	
2300	48.7	23.3	
2450	52.4	24	
2600	55.3	24.6	
3000	63.8	25.7	
3500	67.1	25	
3700	67.4	24.2	

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (ϵ_c')	Conductiv	ity (o) S/m
	required	measured	required	measured
150	61.9 ±10 %		0.80 ±10 %	
300	58.2 ±10 %		0.92 ±10 %	
450	56.7 ±10 %		0.94 ±10 %	
750	55.5 ±10 %	52.9	0.96 ±10 %	0.89
835	55.2 ±10 %		0.97 ±10 %	
900	55.0 ±10 %		1.05 ±10 %	
915	55.0 ±10 %		1.06 ±10 %	
1450	54.0 ±10 %		1.30 ±10 %	
1610	53.8 ±10 %		1.40 ±10 %	
1800	53.3 ±10 %		1.52 ±10 %	
1900	53.3 ±10 %		1.52 ±10 %	
2000	53.3 ±10 %		1.52 ±10 %	
2100	53.2 ±10 %		1.62 ±10 %	

Page: 9/11


Ref: ACR.178.2.20.MVGB.A

2300	52.9 ±10 %	1.81 ±10 %
2450	52.7 ±10 %	1.95±10%
2600	52.5 ±10 %	2.15 ±10 %
3000	52.0 ±10 %	2.73±10%
3500	51.3 ±10 %	3.31±10%
3700	51.0 ±10 %	3.55 ±10 %
5200	49.0 ±10 %	5.30 ±10 %
5300	48.9 ±10 %	5.42 ±10 %
\$400	48.7 ±10 %	5.53 ±10 %
5500	48.6 ±10 %	5.65 ±10 %
5600	48.5 ±10 %	5.77 ±10 %
5800	48.2 ±10 %	6.00 ±10 %

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

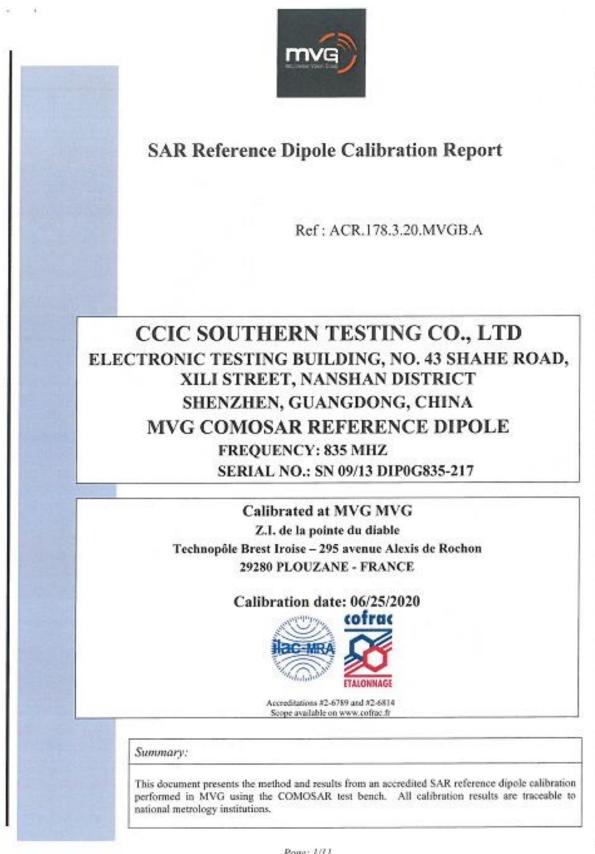
Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	SN 41/18 EPGO333
Liquid	Body Liquid Values: eps' : 52.9 sigma : 0.89
Distance between dipole center and liquid	15.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm
Frequency	750 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
750	8.82 (0.88)	5.91 (0.59)

Page: 10/11

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.178.2.20.MVGB.A


8 LIST OF EQUIPMENT

	Equ	ipment Summary S	Sheet	
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
SAM Phantom	MVG	SN-13/09-SAM68	Validated. No cal required.	Validated. No ca required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.
Network Analyzer	Rohde & Schwarz ZVM	100203	05/2019	05/2022
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	05/2019	05/2022
Calipers	Mitutoyo	SN 0009732	10/2019	10/2022
Reference Probe	MVG	EPGO333 SN 41/18	05/2020	05/2021
Multimeter	Keithley 2000	1160271	02/2020	02/2023
Signal Generator	Rohde & Schwarz SMB	106589	04/2019	04/2022
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	NI-USB 5680	170100013	05/2019	05/2022
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Temperature / Humidity Sensor	Control Company	150798832	11/2017	11/2020

Page: 11/11

SID835 Dipole Calibration Report

Page: 1/11

Ref: ACR.178.3.20.MVGB.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Technical Manager	6/26/2020	17
Checked by :	Jérôme LUC	Technical Manager	6/26/2020	F
Approved by :	Yann Toutain	Laboratory Director	6/26/2020	ette

1	Customer Name
	CCIC SOUTHERN
Distribution :	TESTING CO.,
	LTD

Issue	Name	Date	Modifications
A	Jérôme LUC	6/26/2020	Initial release

Page: 2/11

Templase_ACR.DDD.N.YY.MYGB.ISSUE_SAR Reference Dipole vG This document shall not be reproduced, except in full or in part, without the written approval of MPG. The information constained berein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MPG.

- (F)

1

Ref: ACR 178.3.20.MVGB.A

TABLE OF CONTENTS

1	Int	roduction	
2	De	vice Under Test	
3	Pro	oduct Description	
	3.1	General Information	4
4	Me	easurement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Me	asurement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Ca	libration Measurement Results	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	6
7	Va	lidation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	10
8	Lis	t of Equipment	

Page: 3/11

Ref: ACR.178.3.20.MVGB.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

D	evice Under Test
Device Type	COMOSAR 835 MHz REFERENCE DIPOLE
Manufacturer	MVG
Model	SID835
Serial Number	SN 09/13 DIP0G835-217
Product Condition (new / used)	Used

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 - MVG COMOSAR Validation Dipole

Dates	
rage	: 4/11
- M.	

mvq)

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR 178.3.20.MVGB.A

4 MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.08 LIN

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length
0 - 300	0.20 mm
300 - 450	0.44 mm

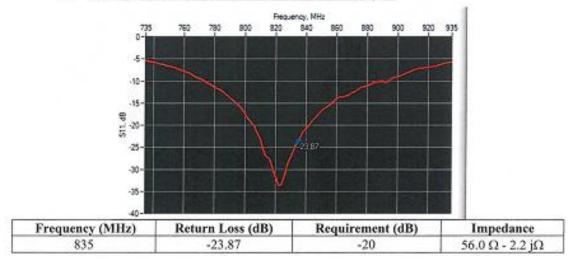
5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty

Page: 5/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vG


SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.178.3.20.MVGB.A


1 g	19 % (SAR)
10 g	19 % (SAR)

CALIBRATION MEASUREMENT RESULTS 6

RETURN LOSS AND IMPEDANCE IN HEAD LIQUID 6.1

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

6.3 MECHANICAL DIMENSIONS

Frequency MHz	L)	mm	hn	nm	d	mm
	required	measured	required	measured	required	measured

Page: 6/11

Ref: ACR.178.3.20.MVGB.A

300	420.0 ±1 %.		250.0 ±1 %.	6.35 ±1 %.
450	290.0 ±1 %.		166.7 ±1 %.	6.35 ±1 %.
750	176.0 ±1 %.		100.0 ±1 %.	6.35 ±1 %.
835	161.0 ±1 %.		89.8±1 %.	 3.6 ±1 %.
900	149.0 ±1 %.		83.3±1%.	3.6 ±1 %.
1450	89.1 ±1 %.		51.7±1%.	3.6±1%.
1500	80.5 ±1 %.		50.0±1%.	3.6 ±1 %.
1640	79.0 ±1 %.		45.7 ±1 %.	3.6 ±1 %.
1750	75.2 ±1 %.		42.9 ±1 %.	3.6±1%.
1800	72.0 ±1 %		41.7 ±1 %.	3.6 ±1 %.
1900	68.0 ±1 %.		39.5 ±1 %.	3.6 ±1 %.
1950	66.3 ±1 %.	_	38.5 ±1 %.	 3.6 ±1 %.
2000	64.5 ±1 %.		37.5 ±1 %.	3.6 ±1 %.
2100	61.0 ±1 %.		35.7 ±1 %.	3.6 ±1 %.
2300	55.5 ±1 %.		32.6 ±1 %.	3.6 ±1 %.
2450	51.5 ±1 %.		30.4 ±1 %.	3.6 ±1 %.
2600	48.5 ±1 %.		28.8±1%.	3.6 ±1 %.
3000	41.5±1%.		25.0 ±1 %.	3.6 ±1 %.
3500	37.0±1 %.		26.4 ±1 %.	3.6 ±1 %.
3700	34.7±1 %.		26.4 ±1 %.	3.6 ±1 %.

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (s,')	Conductivity (a) 5/m		
10000	required	measured	required	measured	
300	45.3 ±10 %		0.87 ±10 %		
450	43.5 ±10 %	-	0.87 ±10 %		
750	41.9 ±10 %		0.89 ±10 %		
835	41.5 ±10 %	40.5	0.90 ±10 %	0.89	
900	41.5 ±10 %	1.10	0.97 ±10 %		
1450	40.5 ±10 %		1.20 ±10 %		
1500	40.4 ±10 %		1.23 ±10 %		
1640	40.2 ±10 %		1.31 ±10 %		

Page: 7/11

Ref: ACR 178.3.20.MVGB.A

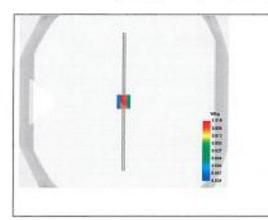
1750	40.1 ±10 %	1.37 ±10 %
1800	40.0 ±10 %	1.40 ±10 %
1900	40.0 ±10 %	1.40 ±10 %
1950	40.0 ±10 %	1.40 ±10 %
2000	40.0 ±10 %	1.40 ±10 %
2100	39.8 ±10 %	1.49 ±10 %
2300	39.5 ±10 %	1.67 ±10 %
2450	39.2 ±10 %	1.80 ±10 %
2600	39.0 ±10 %	1.96 ±10 %
3000	38.5 ±10 %	2.40 ±10 %
3500	37.9 ±10 %	2.91 ±10 %

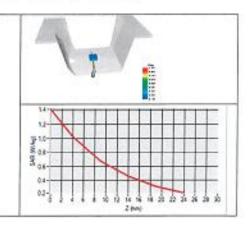
7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	SN 41/18 EPGO333
Liquid	Head Liquid Values: eps' : 40.6 sigma : 0.89
Distance between dipole center and liquid	15.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm
Frequency	835 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR (W/kg/W)	
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.05	
750	8.49		5.55	
835	9.56	9.69 (0.97)	6.22	6.15 (0.61)
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	


Page: 8/11



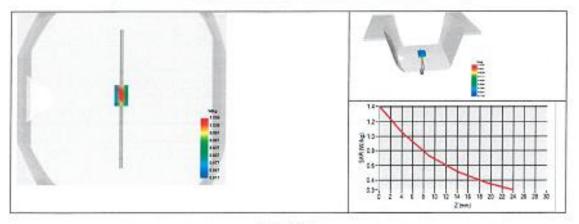
Ref: ACR.178.3.20.MVGB.A

1800	38.4	20.1
1900	39.7	20.5
1950	40.5	20.9
2000	41.1	21.1
2100	43.6	21.9
2300	48.7	23.3
2450	52.4	24
2600	55.3	24.6
3000	63.8	25.7
3500	67.1	25
3700	67.4	24.2

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (ϵ_r)		Conductivity (a) S/m	
	required	measured	required	measured
150	61.9 ±10 %		0.80 ±10 %	0
300	58.2 ±10 %		0.92 ±10 %	î
450	56.7 ±10 %		0.94 ±10 %	
750	55.5 ±10 %		0.95 ±10 %	
835	55.2 ±10 %	52.3	0.97 ±10 %	0.94
900	55.0 ±10 %		1.05 ±10 %	
915	55.0 ±10 %		1.06 ±10 %	
1450	54.0 ±10 %		1.30 ±10 %	
1610	53.8 ±10 %		1.40 ±10 %	
1800	53.3 ±10 %		1.52 ±10 %	
1900	53.3 ±10 %		1.52 ±10 %	
2000	53.3 ±10 %		1.52 ±10 %	
2100	53.2 ±10 %		1.62 ±10 %	

Page: 9/11


Ref: ACR.178.3.20.MVGB.A

2300	52.9±10%	1.81 ±10 %	
2450	52.7 ±10 %	1.95 ±10 %	- 5
2600	52.5 ±10 %	2.16 ±10 %	
3000	52.0 ±10 %	2.73 ±10 %	
3500	51.3 ±10 %	3.31 ±10 %	
3700	51.0 ±10 %	3.55 ±10 %	1
5200	49.0 ±10 %	5.30 ±10 %	
5300	48.9 ±10 %	5.42 ±10 %	
5400	48.7 ±10 %	5.53 ±10 %	
5500	48.6 ±10 %	5.65 ±10 %	
5600	48.5 ±10 %	5.77 ±10 %	
5800	48.2 ±10 %	6.00 ±10 %	

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	SN 41/18 EPGO333
Liquid	Body Liquid Values: eps': 52.3 sigma : 0.94
Distance between dipole center and liquid	15.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm
Frequency	835 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
835	9.97 (1.00)	6.52 (0.65)

Page: 10/11

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.178.3.20.MVGB.A

8 LIST OF EQUIPMENT

		1		
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
SAM Phantom	MVG	SN-13/09-SAM68	Validated. No cal required.	Validated. No ca required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.
Network Analyzer	Rohde & Schwarz ZVM	100203	05/2019	05/2022
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	05/2019	05/2022
Calipers	Mitutoyo	SN 0009732	10/2019	10/2022
Reference Probe	MVG	EPGO333 SN 41/18	05/2020	05/2021
Multimeter	Keithley 2000	1160271	02/2020	02/2023
Signal Generator	Rohde & Schwarz SMB	106589	04/2019	04/2022
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	NI-USB 5680	170100013	05/2019	05/2022
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Temperature / Humidity Sensor	Control Company	150798832	11/2017	11/2020

Page: 11/11

SID1800 Dipole Calibration Report

Page: 1/11

Ref: ACR.178.5.20.MVGB.A

(do	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Technical Manager	6/26/2020	F
Checked by :	Jérôme LUC	Technical Manager	6/26/2020	TE
Approved by :	Yann Toutain	Laboratory Director	6/26/2020	STE

	Customer Name
Distribution :	CCIC SOUTHERN
	TESTING CO.,
	LTD

Issue	Name	Date	Modifications
A	Jérôme LUC	6/26/2020	Initial release
		0	

Page: 2/11

Ref: ACR.178.5.20 MVGB.A

TABLE OF CONTENTS

1	Int	roduction	
2	De	vice Under Test	
3	Product Description		
	3.1	General Information	4
4	Mo	asurement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Me	asurement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Cal	ibration Measurement Results	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	6
7	Val	idation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	10
8	List	of Equipment	

Page: 3/11

Template_ACR.DDD.N.YF.MVGR.ISSUE_SAR Reference Dipole vG This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

mvg

Ref: ACR.178.5.20.MVGB.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

D	evice Under Test
Device Type	COMOSAR 1800 MHz REFERENCE DIPOLE
Manufacturer	MVG
Model	SID1800
Serial Number	SN 09/13 DIP1G800-216
Product Condition (new / used)	Used

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – MVG COMOSAR Validation Dipole

Page: 4/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vG This document shall not be reproduced, encept in full or in part, without the written approval of MVG. The information contained kerein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Ref. ACR.178.5.20.MVGB.A

4 MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards,

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Los		
400-6000MHz	0.08 LIN		

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length
0 - 300	0.20 mm
300 - 450	0.44 mm

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

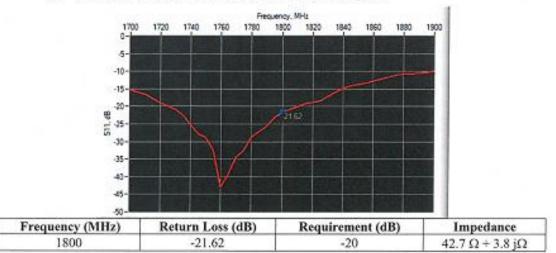
Scan Volume	Expanded Uncertainty		

Page: 5/11.

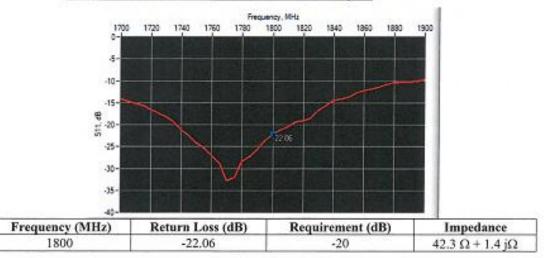
Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole +G

This document shull not be reproduced, except in full or in part, without the written approval of MVG. The information contained kerein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

mvg


SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.178.5.20.MVGB.A


1 g	19 % (SAR)
10 g	19 % (SAR)

CALIBRATION MEASUREMENT RESULTS 6

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

6.3 MECHANICAL DIMENSIONS

Frequency MHz	L	mm	ba	nm	di	mm
	required	measured	required	measured	required	measured

Page: 6/11

Template_ACR.DDD.N, YY.MVGB.ISSUE_SAR Reference Dipole vG This document shall not be reproduced, except in full or in part, without the written approval of MYG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MYG.

mvg

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR:178.5.20 MVGB A

300	420.0 ±1 %.	250.0 ±1.%.	6.35 ±1 %.
450	290.0 ±1 %.	166.7 ±1 %,	6.35 ±1 %.
750	176.0 ±1 %.	100.0 ±1 %.	6.35 ±1 %.
835	161.0 ±1 %.	89.8 ±1 %	3.6 ±1 %.
900	149.0 ±1 %.	83.3 ±1 %.	3.6 ±1 %.
1450	89.1 ±1 %.	51.7 ±1 %.	3.6 ±1 %.
1500	80.5 ±1 %.	50.0 ±1 %.	3.6 ±1 %.
1640	79.0 ±1 %.	45.7 ±1 %.	3.6 ±1 %.
1750	75.2 ±1 %.	42.9 ±1 %.	3.6 ±1 %.
1800	72.0 ±1 %.	41.7 ±1 %.	· 3.6±1%.
1900	68.0 ±1 %.	39.5 ±1 %.	3.6 ±1 %.
1950	66.3 ±1 %.	38.5 ±1 %.	3.6 ±1 %.
2000	64.5±1%.	37.5±1%.	3.6 ±1 %.
2100	61.0 ±1 %.	35.7 ±1 %.	3.6 ±1 %.
2300	55.5 ±1 %.	32.6 ±1 %.	3.6 ±1 %.
2450	51.5 ±1 %.	30.4 ±1 %.	3.6 ±1 %.
2600	48.5 ±1 %.	28.8 ±1 %.	3.6 ±1 %.
3000	41.5 ±1 %.	25.0 ±1 %.	3.6 ±1 %.
3500	37.0±1%.	26.4 ±1 %.	3.6 ±1 %.
3700	34.7±1 %.	26.4 ±1 %.	3.6 ±1 %.

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (ϵ_r')		Conductivity (o) S/m	
	required	measured	required	measured
300	45.3 ±10 %		0.87 ±10 %	
450	43.5 ±10 %		0.87 ±10 %	
750	41.9 ±10 %		0.89 ±10 %	
835	41.5 ±10 %		0.90 ±10 %	1.1.1
900	41.5 ±10 %		0.97 ±10 %	
1450	40.5 ±10 %		1.20 ±10 %	
1500	40.4 ±10 %		1.23 ±10 %	
1640	40.2 ±10 %		1.31 ±10 %	

Page: 7/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vG

This document shall not be reproduced, except to full or to part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not so be released in whole or part without written approval of MVG.

Ref: ACR.178.5.20.MVGB.A

1750	40.1 ±10 %		1.37 ±10 %	
1800	40.0 ±10 %	43.7	1.40 ±10 %	1.34
1900	40.0 ±10 %		1.40 ±10 %	
1950	40.0 ±10 %		1.40 ±10 %	
2000	40.0 ±10 %		1.40 ±10 %	
2100	39.8 ±10 %		1.49 ±10 %	
2300	39.5 ±10 %		1.67 ±10 %	
2450	39.2 ±10 %		1.80 ±10 %	
2600	39.0 ±10 %		1.96 ±10 %	
3000	38.5 ±10 %		2.40 ±10 %	
3500	37.9 ±10 %		2.91 ±10 %	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

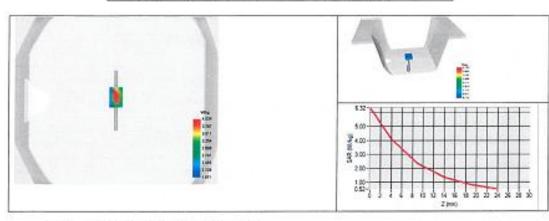
OPENSAR V5
SN 13/09 SAM68
SN 41/18 EPGO333
Head Liquid Values: eps' : 43.7 sigma : 1.34
10.0 mm
dx=8mm/dy=8mm
dx=8mm/dy=8mm/dz=5mm
1800 MHz
20 dBm
20 +/- 1 °C
20 +/- 1 °C
30-70 %

Frequency MHz	cy 1 g SAR (W/kg/W)		10 g SAR	(W/kg/W)
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.05	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	

Page: 8/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vG

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.



mvg

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.178.5.20.MVGB.A

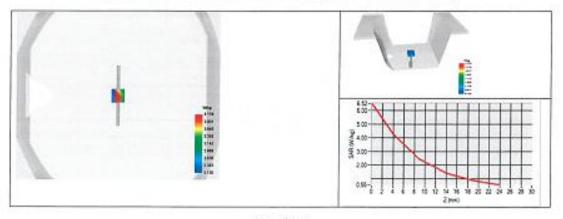
1800	38.4	37.25 (3.73)	20.1	19.72 (1.97)
1900	39.7		20,5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48,7		23.3	
2450	52.4		24	
2600	55.3		24.6	
3000	63.8		25.7	
3500	67.1		25	
3700	67.4		24.2	

7.3 BODY LIQUID MEASUREMNT

Frequency MHz	Relative per	mittivity (c _r ')	Conductiv	ity (a) S/m
	required	measured	required	measured
150	61.9 ±10 %		0.80 ±10 %	
300	58.2 ±10 %		0.92 ±10 %	
450	55.7 ±10 %		0.94 ±10 %	
750	55.5 ±10 %		0.96 ±10 %	
835	55.2 ±10 %		0.97 ±10 %	
900	55.0 ±10 %		1.05 ±10 %	
915	55.0 ±10 %		1.06 ±10 %	
1450	54.0 ±10 %		1.30 ±10 %	
1610	53.8 ±10 %		1.40 ±10 %	
1800	53.3 ±10 %	55.3	1.52 ±10 %	1.49
1900	53.3 ±10 %		1.52 ±10 %	
2000	53.3 ±10 %		1.52 ±10 %	
2100	53.2 ±10 %		1.62 ±10 %	

Page: 9/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vG This document shall not be reproduced, except in full or in part, without the written approval of MPG. The information contained barein is to be used only for the purpose for which it is informitted and is not to be releated in whole or part without written approval of MPG.


Ref: ACR.178.5.20.MVGB.A

2300	52.9 ±10 %	1.81 ±10 %
2450	52.7 ±10 %	1.95 ±10 %
2600	52.5 ±10 %	2.16 ±10 %
3000	52.0±10%	2.73 ±10 %
3500	51.3 ±10 %	3.31 ±10 %
3700	51.0 ±10 %	3.55 ±10 %
5200	49.0 ±10 %	5.30 ±10 %
5300	48.9 ±10 %	5.42 ±10 %
5400	48.7 ±10 %	5.53 ±10 %
5500	48.6 ±10 %	5.65 ±10 %
5600	48.5±10%	5.77 ±10 %
5800	48.2 ±10 %	6.00 ±10 %

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	SN 41/18 EPGO333
Liquid	Body Liquid Values: eps' : 55.3 sigma : 1.49
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm
Frequency	1800 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)	
	measured	measured	
1800	38.57 (3.86)	20.19 (2.02)	

Page: 10/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vG This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is salonited and is not so be released in whole or part without written approval of MVG.

Ref: ACR.178.5.20.MVGB.A

8 LIST OF EQUIPMENT


Equipment Summary Sheet					
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
SAM Phantom	MVG	SN-13/09-SAM68	Validated. No cal required.	Validated. No ca required.	
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.	
Network Analyzer	Rohde & Schwarz ZVM	100203	05/2019	05/2022	
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	05/2019	05/2022	
Calipers	Mitutoyo	SN 0009732	10/2019	10/2022	
Reference Probe	MVG	EPGO333 SN 41/18	05/2020	05/2021	
Multimeter	Keithley 2000	1160271	02/2020	02/2023	
Signal Generator	Rohde & Schwarz SMB	106589	04/2019	04/2022	
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Power Meter	NI-USB 5680	170100013	05/2019	05/2022	
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Temperature / Humidity Sensor	Control Company	150798832	11/2017	11/2020	

Page: 11/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR.Reference Dipute vG This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained keretiv is to be used only for the purpose for whick it is submitted and is not to be released in whole or part without written approval of MVG.

SID1900 Dipole Calibration Report

Page: 1/11

Ref: ACR.178.6.20 MVGB.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Technical Manager	6/26/2020	F
Checked by ;	Jérôme LUC	Technical Manager	6/26/2020	75
Approved by :	Yann Toutain	Laboratory Director	6/26/2020	-

	Customer Name
	CCIC SOUTHERN
Distribution :	TESTING CO.,
	LTD

Issue	Name	Date	Modifications
A	Jérôme LUC	6/26/2020	Initial release

Page: 2/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vG This document shall not be reproduced, except in fall or in part, without the written approval of MPG. The information contained kerein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MPG.

Ref: ACR.178.6.20.MVGB.A

TABLE OF CONTENTS

1	Int	roduction	
2	De	vice Under Test	
3	Pn	aduct Description	
	3.1	General Information	4
4	M	easurement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Me	asurement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Ca	libration Measurement Results	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	
	6.3	Mechanical Dimensions	_6
7	Va	lidation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	
8	Lis	t of Equipment	

Page: 3/11

Template_ACR.DDD:N.VY.MVGB.ISSUE_SAR Reference Dipule vG This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Ref: ACR 178.6.20.MVGB A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test		
Device Type	COMOSAR 1900 MHz REFERENCE DIPOLE	
Manufacturer	MVG	
Model	SID1900	
Serial Number	SN 09/13 DIP1G900-218	
Product Condition (new / used)	Used	

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – MVG COMOSAR Validation Dipole

Page: 4/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole +G

This document shall not be reproduced, except in full or in part, without the written approval of MFG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MFG.

mvg)

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.178.6.20.MVGB.A

4 MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.08 LIN

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length
0 - 300	0.20 mm
300 - 450	0.44 mm

5.3 VALIDATION MEASUREMENT

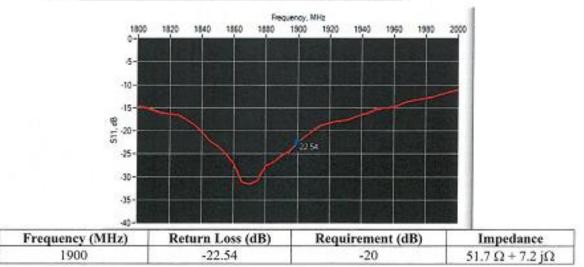
The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty	

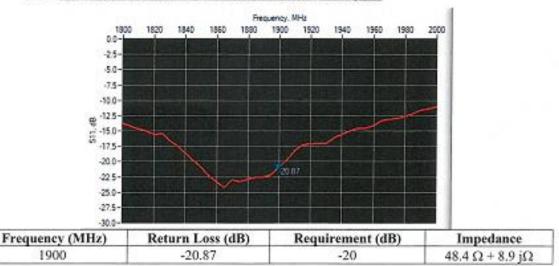
Page: 5/11

This document shall not be reproduced, except in full or in part, without the written approval of MPG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MPG.

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole +G



Ref: ACR.178.6.20.MVGB.A


l g	19 % (SAR)
10 g	19 % (SAR)

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

6.3 MECHANICAL DIMENSIONS

Frequency MHz	L.	nm	hn	nm	di	mm
	required	measured	required	measured	required	measured

Page: 6/11

Templane_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vG This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be avaid only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Ref. ACR.178.6.20.MVGB.A

300	420.0 ±1 %.	250.0 ±1 %.	6.35 ±1 %.
450	290.0 ±1 %.	166.7±1%.	6.35±1%.
750	176.0 ±1 %.	100.0 ±1 %.	6.35 ±1 %.
835	161.0 ±1 %.	89.8±1 %.	3.6 ±1 %.
900	149.0 ±1 %.	83.3 ±1 %.	3.6 ±1 %.
1450	89.1±1%.	51.7 ±1 %.	3.6 ±1 %.
1500	80.5 ±1 %.	50.0 ±1 %.	3.6 ±1 %.
1640	79.0 ±1 %.	45.7 ±1 %.	3.6 ±1 %.
1750	75.2 ±1 %.	42.9 ±1 %.	3.6 ±1 %.
1800	72.0 ±1 %.	41.7 ±1 %.	3.6 ±1 %.
1900	68.0 ±1 %.	- 39.5 ±1 %.	3.6±1%.
1950	66.3 ±1 %.	38.5 ±1 %.	3.6 ±1 %.
2000	64.5±1%.	37.5 ±1 %.	3.6±1 %.
2100	61.0 ±1 %.	35.7 ±1 %.	3.6 ±1 %.
2300	55.5 ±1 %.	32.6 ±1 %.	3.6 ±1 %.
2450	51.5 ±1 %.	30.4 ±1 %.	3.6 ±1 %.
2600	48.5 ±1 %.	28.8 ±1 %.	3.6 ±1 %.
3000	41.5 ±1%.	25.0 ±1 %.	3.6 ±1 %.
3500	37.0±1 %.	26.4 ±1 %.	3.6 ±1 %.
3700	34.7±1 %.	26.4 ±1 %.	3.6 ±1 %.

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

Frequency MHz	Relative permittivity (c,')		Conductiv	ity (a) S/m
	required	measured	required	measured
300	45.3 ±10 %		0.87 ±10 %	
450	43.5 ±10 %		0.87 ±10 %	
750	41.9 ±10 %		0.89 ±10 %	
835	41.5 ±10 %		0.90 ±10 %	
900	41.5 ±10 %		0.97 ±10 %	
1450	40.5 ±10 %		1.20 ±10 %	
1500	40.4 ±10 %		1.23±10%	
1640	40.2 ±10 %		1.31 ±10 %	

7.1 HEAD LIQUID MEASUREMENT

Page: 7/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vG

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

mvq

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.178.6.20.MVGB.A

1750	40.1 ±10 %		1.37 ±10 %	
1800	40.0 ±10 %		1.40 ±10 %	
1900	40.0 ±10 %	43.3	1.40 ±10 %	1.41
1950	40.0 ±10 %		1.40 ±10 %	
2000	40.0 ±10 %		1.40 ±10 %	
2100	39.8 ±10 %		1.49 ±10 %	
2300	39.5 ±10 %		1.67 ±10 %	
2450	39-2 ±10 %		1.80 ±10 %	
2500	39.0 ±10 %		1.96 ±10 %	
3000	38.5 ±10 %		2.40 ±10.%	
3500	37.9 ±10 %		2.91 ±10 %	-

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

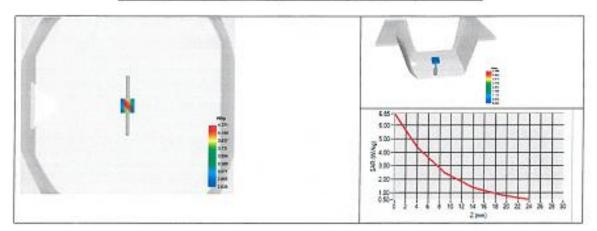
Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	SN 41/18 EPGO333
Liquid	Head Liquid Values: eps' : 43.3 sigma : 1.41
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm
Frequency	1900 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

Frequency MHz	1 g SAR [W/kg/W]		10 g SAR	(W/kg/W)
	required	measured	required	measured
300	2,85		1.94	
450	4.58		3.05	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	

Page: 8/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vG

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.



mvg

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.178.6.20.MVGB.A

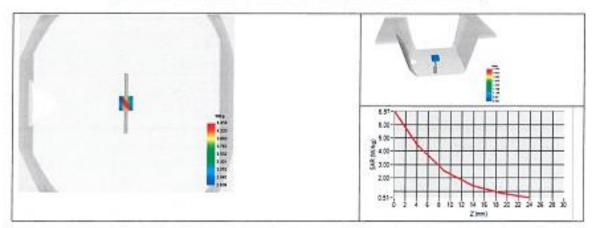
1800	38.4		20.1	
1900	39.7	39.71 (3.97)	20.5	20.45 (2.04)
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4		24	
2600	55.3		24.6	
3000	63.8		25.7	
3500	67.1	1	25	
3700	67.4		24.2	

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (e,')	Conductiv	ity (a) S/m
	required	measured	required	measured
150	61.9 ±10 %		0.80 ±10 %	
300	58.2 ±10 %		0.92 ±10 %	
450	55.7 ±10 %		0.94 ±10 %	
750	55.5±10%		0.96±10%	
835	55.2 ±10 %		0.97 ±10 %	
900	55.0 ±10 %		1.05 ±10 %	
915	55.0 ±10 %		1.06 ±10 %	
1450	54.0 ±10 %		1.30 ±10 %	
1510	53.8 ±10 %		1.40 ±10 %	
1800	53.3 ±10 %		1.52 ±10 %	
1900	53.3 ±10 %	55.0	1.52 ±10 %	1.57
2000	53.3 ±10 %		1.52 ±10 %	
2100	53.2 ±10 %		1.62 ±10 %	

Page: 9/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipute vG This document shall not be reproduced, encept in full or in part, without the written approval of MVG. The information contained kerein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.


Ref: ACR.178.6.20.MVGB.A

2300	52.9 ±10 %	1.81 ±10 %
2450	52.7 ±10 %	1.95 ±10 %
2600	52.5 ±10 %	2.16 ±10 %
3000	52.0 ±10 %	2.73 ±10 %
3500	51.3 ±10 %	3.31 ±10 %
3700	51.0 ±10 %	3.55 ±10 %
5200	49.0 ±10 %	5.30 ±10 %
\$300	48.9 ±10 %	5.42 ±10 %
5400	48.7 ±10 %	5.53 ±10 %
5500	48.6 ±10 %	5.65 ±10 %
5600	48.5 ±10 %	5.77 ±10 %
5800	48.2 ±10 %	6.00 ±10 %

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	SN 41/18 EPGO333
Liquid	Body Liquid Values: eps' : 55.0 sigma : 1.57
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm
Frequency	1900 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/+ 1 °C
Lab Humidity	30-70 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
1900	40.69 (4.07)	20.70 (2.07)

Page: 10/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipute vG This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Ref: ACR 178.6.20 MVGB A

8 LIST OF EQUIPMENT

				1	
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
SAM Phantom	MVG	SN-13/09-SAM68	Validated. No cal required.	Validated. No ca required.	
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.	
Network Analyzer	Rohde & Schwarz ZVM	100203	05/2019	05/2022	
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	05/2019	05/2022	
Calipers	Mitutoyo	SN 0009732	10/2019	10/2022	
Reference Probe	MVG	EPGO333 SN 41/18	05/2020	05/2021	
Multimeter	Keithley 2000	1160271	02/2020	02/2023	
Signal Generator	Rohde & Schwarz SMB	106589	04/2019	04/2022	
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Power Meter	NI-USB 5680	170100013	05/2019	05/2022	
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Temperature / Humidity Sensor	Control Company	150798832	11/2017	11/2020	

Page: 11/11

Template_ACR.DDD.N.YY.MY GB.ISSUE_SAR Reference Dipole vG Dis document shall not be reproduced, except in full or in part, without the written approval of MYG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whale or part without written approval of MYG.

SID2450 Dipole Calibration Report

Page: 1/11

Ref: ACR.178.8.20 MVGB.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Technical Manager	6/26/2020	Te
Checked by :	Jérôme LUC	Technical Manager	6/26/2020	Jes
Approved by :	Yann Toutain	Laboratory Director	6/26/2020	CIE

Customer Name
CCIC SOUTHERN
TESTING CO.,
LTD

Issue	Name	Date	Modifications
A	Jérôme LUC	6/26/2020	Initial release

Page: 2/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipule vG This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be refeased in whole or part without written approval of MVG.

Ref: ACR.178.8.20.MVGB.A

TABLE OF CONTENTS

1	Int	roduction4	
2	De	vice Under Test	
3	Pro	duct Description	
	3.1	General Information	4
4	Me	asurement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Me	asurement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	
	5.3	Validation Measurement	5
б	Cal	ibration Measurement Results	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	6
7	Val	idation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	10
8	Lis	of Equipment	

Page: 3/11

Template_ACR.DDD.N.YY.MV GB.ISSUE_SAR Reference Dipole vG This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained berein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Ref: ACR 178.8.20 MVGB A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test		
Device Type	COMOSAR 2450 MHz REFERENCE DIPOLE	
Manufacturer	MVG	
Model	SID2450	
Serial Number	SN 09/13 DIP2G450-220	
Product Condition (new / used)	Used	

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 - MVG COMOSAR Validation Dipole

Page: 4/11

Template_ACR.DDD.N.YY.MVGR.ISSUE_SAR Reference Dipute vG This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained kerein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

mvq

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.178.8.20.MVGB.A

4 MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.08 LIN

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length	
0 - 300	0.20 mm	
300 - 450	0.44 mm	

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

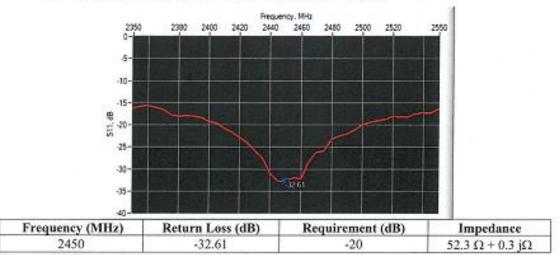
Scan Volume	Expanded Uncertainty

Page: 5/11

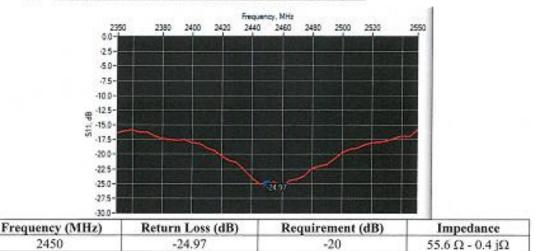
Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vG

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

mvg


SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.178.8.20.MVGB.A


l g	19 % (SAR)
10 g	19 % (SAR)

CALIBRATION MEASUREMENT RESULTS 6

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

6.3 MECHANICAL DIMENSIONS

Frequency MHz	L	τun	hr	nm	d	mm
	required	measured	required	measured	required	measured

Page: 6/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vG This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.178.8.20.MVGB.A

300	420.0 ±1 %.	250.0 ±1 %.		6.35 ±1 %.
450	290.0 ±1 %.	166.7 ±1 %.		6.35 ±1 %.
750	176.0 ±1 %.	100.0 ±1 %.		6.35 ±1 %.
835	161.0 ±1 %.	89.8±1%.		3.6 ±1 %.
900	149.0 ±1 %.	83.3±1%.		3.6 ±1 %.
1450	89.1 ±1 %.	51.7 ±1 %.		3.6 ±1 %.
1500	80.5 ±1 %.	50.0±1%.		3.6 ±1 %.
1640	79.0 ±1 %.	45.7 ±1 %.		3.6 ±1 %.
1750	75.2 ±1 %.	 42.9 ±1 %.		3.6 ±1 %.
1800	72.0 ±1 %.	 41.7 ±1 %.		3.6±1%.
1900	68.0 ±1 %.	39.5 ±1 %.		3.6±1%.
1950	65.3±1%.	38.5 ±1 %.		3.6±1%.
2000	64.5±1%.	37.5 ±1 %.		3.6 ±1 %.
2100	61.0±1%.	35.7±1%.		3.6 ±1 %.
2300	55.5±1%.	32.6 ±1 %.		3.6 ±1 %.
2450	51.5 ±1 %.	30.4 ±1 %.	20	3.6 ±1 %.
2600	48.5±1%	28.8 ±1 %.		3.6 ±1 %.
3000	41.5±1%.	25.0 ±1 %.		3.6 ±1 %.
3500	37.0±1 %.	26.4 ±1 %.		3.6 ±1 %.
3700	34.7±1 %.	26.4 ±1 %.		3.5 ±1 %.

VALIDATION MEASUREMENT 7

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (c,')		Conductiv	ity (o) \$/m
	required	measured	required	measured
300	45.3 ±10 %		0.87 ±10 %	
450	43.5 ±10 %		0.87 ±10 %	
750	41.9 ±10 %		0.89 ±10 %	
835	41.5 ±10 %		0.90 ±10 %	
900	41.5 ±10 %		0.97 ±10 %	
1450	40.5 ±10 %		1.20 ±10 %	
1500	40.4 ±10 %		1.23 ±10 %	
1640	40.2 ±10 %		1.31 ±10 %	

Page: 7/11

Temphate_ACR.DDD.N. VY. MVGB.ISSUE_SAR Reference Dipole rG Dris document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained kerein is to be wed only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Ref: ACR.178.8.20, MVGB.A

1750	40.1 ±10 %		1.37 ±10 %	
1800	40.0 ±10 %		1.40 ±10 %	
1900	40.0 ±10 %		1.40 ±10 %	
1950	40.0 ±10 %		1.40 ±10 %	
2000	40.0 ±10 %		1.40 ±10 %	
2100	39.8 ±10 %		1.49 ±10 %	
2300	39.5 ±10 %		1.67 ±10 %	
2450	39.2 ±10 %	41.9	1.80 ±10 %	1.88
2600	39.0 ±10 %		1.96 ±10 %	
3000	38.5 ±10 %		2.40 ±10 %	
3500	37.9 ±10 %		2.91 ±10 %	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

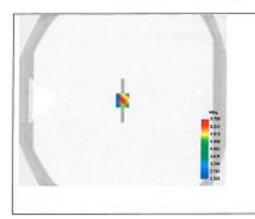
The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

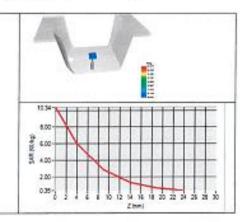
Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	SN 41/18 EPGO333
Liquid	Head Liquid Values: eps' : 41.9 sigma : 1.88
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm
Frequency	2450 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

required measured required measured 300 2.85 1.94 1.94 450 4.58 3.05 1.94 450 4.58 3.05 1.94 750 8.49 5.55 1.95 835 9.56 6.22 1.94 900 10.9 6.99 1.94 1450 29 16 1.94 1500 30.5 16.8 1.94	Frequency MHz	1 g SAR (W/kg/W)		10 g SAR (W/kg/W)	
450 4.58 3.06 750 8.49 5.55 835 9.56 6.22 900 10.9 6.99 1450 29 16 1500 30.5 16.8		required	measured	required	measured
750 8.49 5.55 835 9.56 6.22 900 10.9 6.99 1450 29 16 1500 30.5 16.8	300	2.85		1.94	
835 9.56 6.22 900 10.9 6.99 1450 29 16 1500 30.5 16.8	450	4.58		3.05	
900 10.9 6.99 1450 29 16 1500 30.5 16.8	750	8.49		5.55	
1450 29 16 1500 30.5 16.8	835	9.56		6.22	
1500 30.5 16.8	900	10.9		6.99	
	1450	29		16	
1640 34.2 18.4	1500	30.5		16.8	
	1640	34.2		18.4	
1750 36.4 19.3	1750	36.4		19.3	

Page: 8/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vG This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.




mvg

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.178.8.20,MVGB.A

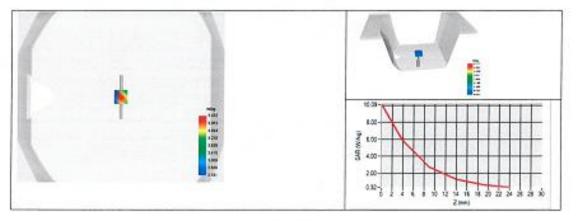
1800	38.4		20.1	
1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4	53.71 (5.37)	24	24.17 (2.42)
2600	55.3		24.6	
3000	63.8		25.7	
3500	67.1		25	
3700	67.4		24.2	

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (c,')	Conductivity (a) S/m		
	required	measured	required	measured	
150	61.9 ±10 %		0.80 ±10 %		
300	58.2 ±10 %		0.92 ±10 %		
450	56.7 ±10 %	1	0.94 ±10 %		
750	55.5±10%		0.96 ±10 %		
835	55.2 ±10 %		0.97 ±10 %		
900	55.0 ±10 %		1.05 ±10 %		
915	55.0 ±10 %		1.06 ±10 %		
1450	54.0 ±10 %		1.30 ±10 %		
1610	53.8 ±10 %		1.40 ±10 %		
1800	53.3 ±10 %	1.1.1	1.52 ±10 %		
1900	53.3 ±10 %		1.52 ±10 %		
2000	53.3 ±10 %		1.52 ±10 %		
2100	53.2 ±10 %		1.62 ±10 %		

Page: 9/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vG This document shall not be reproduced, except in full or in part, without the written approval of MPG. The information contained herein is to be used only for the purpose for whick it is submitted and is not to be released in whole or part without written approval of MVG.


Ref: ACR.178.8.20.MVGB.A

2300	52.9 ±10 %		1.81 ±10 %	
2450	52.7 ±10 %	53.4	1.95 ±10 %	2.14
2600	52.5 ±10 %		2.16 ±10 %	
3000	52.0 ±10 %		2.73 ±10 %	
3500	51.3±10%		3.31 ±10 %	
3700	51.0 ±10 %		3.55 ±10 %	
5200	49.0 ±10 %		5.30 ±10 %	
5300	48.9 ±10 %		5.42 ±10 %	
5400	48.7 ±10 %		5.53 ±10 %	
5500	48.6 ±10 %		5.65 ±10 %	
5600	48.5 ±10 %		5.77±10%	
5800	48.2 ±10 %		6.00 ±10 %	

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	SN 41/18 EPGO333
Liquid	Body Liquid Values: eps" : 53.4 sigma : 2.14
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm
Frequency	2450 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

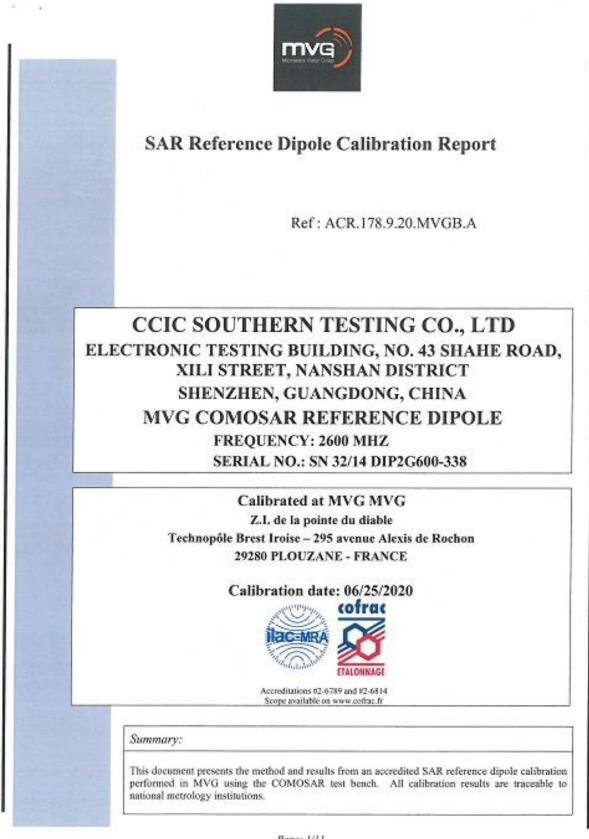
Frequency MH2	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
2450	54.83 (5.48)	23.59 (2.36)

Page: 10/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vG This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Ref: ACR.178.8.20,MVGB.A

8 LIST OF EQUIPMENT


		ipment Summary S		
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
SAM Phantom	MVG	SN-13/09-SAM68	Validated. No cal required.	Validated. No ca required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.
Network Analyzer	Rohde & Schwarz ZVM	100203	05/2019	05/2022
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	05/2019	05/2022
Calipers	Mitutoyo	SN 0009732	10/2019	10/2022
Reference Probe	MVG	EPGO333 SN 41/18	05/2020	05/2021
Multimeter	Keithley 2000	1160271	02/2020	02/2023
Signal Generator	Rohde & Schwarz SMB	106589	04/2019	04/2022
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	NI-USB 5680	170100013	05/2019	05/2022
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Temperature / Humidity Sensor	Control Company	150798832	11/2017	11/2020

Page: 11/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vG This document shall not be reproduced, except in full or in part, without the written approval of MPG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MPG.

SID2600 Dipole Calibration Report

Page: 1/11

e: 11

mvq

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.178.9.20.MVGB.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Technical Manager	6/26/2020	F
Checked by :	Jérôme LUC	Technical Manager	6/26/2020	IN
Approved by :	Yann Toutain	Laboratory Director	6/26/2020	CTT-

	Customer Name
	CCIC SOUTHERN
Distribution :	TESTING CO.,
	LTD

Name	Date	Modifications
Jérôme LUC	6/26/2020	Initial release
		and the state of the

Page: 2/11

Template_ACR.DDD.N.YY.MVGR.ISSUE_SAR Reference Dipole vG
This document shall not be reproduced, except in fall or in part, without the written approval of MPG. The information contained kerein is to be used
only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MPG.

Ref: ACR.178.9.20.MVGB.A

TABLE OF CONTENTS

1	Int	roduction4	
2	De	vice Under Test	
3	Pro	oduct Description	
	3.1	General Information	4
4	Me	asurement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	
5	Me	asurement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	
6	Cal	ibration Measurement Results6	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	
	6.3	Mechanical Dimensions	6
7	Val	idation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	10
8	List	of Equipment	

Page: 3/11

Template_ACR.DDD.N.FY.MVGB.ISSUE_SAR Reference Dipole vG This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained kerein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

÷ .

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR 178.9.20 MVGB A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test		
Device Type	COMOSAR 2600 MHz REFERENCE DIPOLE	
Manufacturer	MVG	
Model	SID2600	
Serial Number	SN 32/14 DIP2G600-338	
Product Condition (new / used)	Used	

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – MVG COMOSAR Validation Dipole

Page: 4/11

Template_ACR.DDD.N. VY.MVGB.ISSUE_SAR Reference Dipole vG This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained kerein is to be used only for the purpose for which is is submitted and is not to be released in whole or part without written approval of MVG.

mvq

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.178.9.20.MVGB.A

4 MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.08 LIN

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length
0 - 300	0.20 mm
300 - 450	0.44 mm

5.3 VALIDATION MEASUREMENT

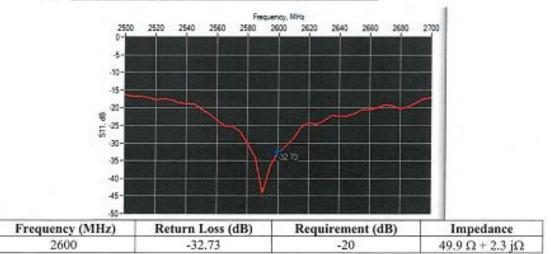
The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty

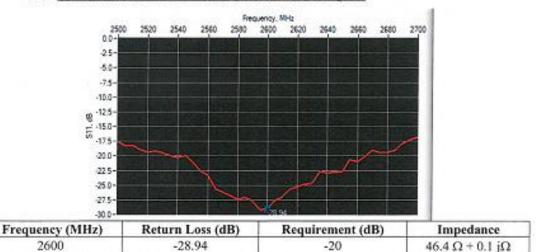
Page: 5/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vG

This document shall not be reproduced, except in fall or in part, without the written approval of MPG. The information contained kerein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MPG.



Ref: ACR.178.9.20.MVGB.A


1 g	19 % (SAR)
10 g	19 % (SAR)

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

6.3 MECHANICAL DIMENSIONS

Frequency MHz	Li	mm	ho	nm .	di	mm
	required	measured	required	measured	required	measured

Page: 6/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vG

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained berein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Ref: ACR.178.9.20.MVGB.A

300	420.0 ±1 %.	250.0 ±1 %.	6.35 ±1 %.	
450	290.0±1%.	166.7 ±1 %.	6.35 ±1 %.	
750	176.0 ±1 %.	100.0 ±1 %.	6.35±1%.	
835	161.0 ±1 %.	89.8±1%.	3.6±1%.	
900	149.0 ±1 %.	83.3±1%.	3.6 ±1 %.	
1450	89.1 ±1 %.	51.7 ±1 %.	3.6±1%.	
1500	80.5 ±1 %.	50.0 ±1 %.	3.6 ±1 %.	
1640	79.0 ±1 %.	45.7 ±1 %.	3.6 ±1 %.	
1750	75.2 ±1 %.	42.9 ±1 %.	3.6 ±1 %.	
1800	72.0 ±1 %.	41.7 ±1 %.	3.6 ±1 %.	
1900	68.0 ±1 %.	39.5 ±1 %.	 3.5 ±1 %.	
1950	66.3±1%.	38.5±1%.	3.5±1%.	
2000	64.5±1%.	37.5 ±1 %.	3.6±1%.	
2100	61.0 ±1 %.	35.7 ±1 %.	3.6±1%.	
2300	55.5 ±1 %.	32.6 ±1 %.	3.6 ±1 %.	
2450	51.5 ±1 %.	30.4 ±1 %.	3.6 ±1 %.	
2600	48.5 ±1 %.	28.8 ±1 %.	3.6 ±1 %.	
3000	41.5 ±1 %.	25.0 ±1 %.	3.6 ±1 %.	
3500	37.0±1 %.	26.4±1%.	3.6 ±1 %.	
3700	34.7±1 %.	26.4 ±1 %.	3.6±1%.	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (s.')		Conductivity (a) S/n	
	required	measured	required	measured
300	45.3 ±10 %		0.87 ±10 %	
450	43.5 ±10 %		0.87 ±10 %	
750	41.9 ±10 %		0.89 ±10 %	
835	41.5 ±10 %		0.90 ±10 %	
900	41.5 ±10 %		0.97 ±10 %	Q
1450	40.5 ±10 %		1.20 ±10 %	
1500	40.4 ±10 %		1.23 ±10 %	
1640	40.2 ±10 %		1.31 ±10 %	6

Page: 7/11

Template_ACR. DDD.N. YY.MVGB.ISSUE_SAR Reference Dipole vG This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained kerein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Ref: ACR.178.9.20.MVGB.A

1750	40.1 ±10 %		1.37 ±10 %	
1800	40.0 ±10 %		1.40 ±10 %	
1900	40.0 ±10 %		1.40 ±10 %	
1950	40.0 ±10 %		1.40 ±10 %	
2000	40.0 ±10 %		1.40 ±10 %	
2100	39.8 ±10 %		1.49 ±10 %	
2300	39.5 ±10 %		1.67 ±10 %	
2450	39.2 ±10 %		1.80 ±10 %	
2600	39.0 ±10 %	41.5	1.96 ±10 %	2.03
3000	38.5 ±10 %		2.40 ±10 %	
3500	37.9 ±10 %		2.91 ±10 %	

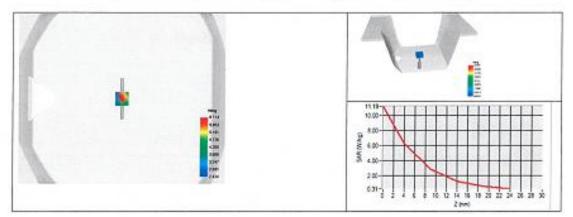
7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	SN 41/18 EPGO333
Liquid	Head Liquid Values: eps' : 41.5 sigma : 2.03
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm
Frequency	2600 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR (W/kg/	
	required	measured	required	measured
300	2.85	12	1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	

Page: 8/11


Template_ACR.DDD.N.YY.MI GB.ISSUE_SAR Reference Dipole vG This document shall not be reproduced, except in fail or in part, without the written approval of MVG. The information contained kerein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Ref: ACR.178.9.20.MVGB.A

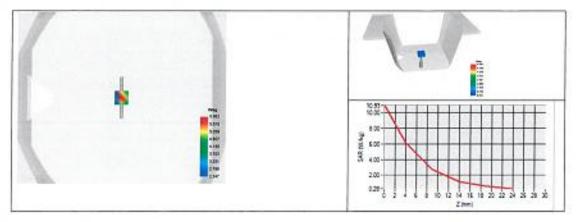
1800	38.4		20.1	
1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4		24	
2600	55.3	\$6.47 (5.65)	24.6	24.75 (2.47)
3000	63.8		25.7	
3500	67.1		25	
3700	67.4		24.2	

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (c.')		Conductivity (a) 5/	
	required	measured	required	measured
150	61.9 ±10 %		0.80 ±10 %	
300	58.2 ±10 %		0.92 ±10 %	
450	56.7 ±10 %	1	0.94 ±10 %	
750	55.5 ±10 %		0.96 ±10 %	
835	55.2 ±10 %		0.97 ±10 %	
900	55.0 ±10 %		1.05 ±10 %	
915	55.0 ±10 %		1.06 ±10 %	
1450	54.0 ±10 %		1.30 ±10 %	
1610	53.8 ±10 %		1.40 ±10 %	
1800	53.3 ±10 %		1.52 ±10 %	
1900	53.3 ±10 %		1.52 ±10 %	
2000	53.3 ±10 %		1.52 ±10 %	
2100	53.2 ±10 %		1.62 ±10 %	

Page: 9/11

Template_ACR. DDD. N. YY. MVGB.JSSUE_SAR Reference Dipude +G This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released to whole or part without written approval of MVG.


Ref: ACR.178.9.20.MVGB.A

2300	52.9 ±10 %		1.81 ±10 %	
2450	52.7 ±10 %		1.95 ±10 %	
2600	52.5 ±10 %	52.7	2.16 ±10 %	2.36
3000	52.0 ±10 %		2.73 ±10 %	
3500	51.3 ±10 %		3.31 ±10 %	
3700	51.0 ±10 %		3.55 ±10 %	
5200	49.0 ±10 %		5.30 ±10 %	
5300	48.9 ±10 %		5.42 ±10 %	
5400	48.7 ±10 %		5.53 ±10 %	
\$500	48.6 ±10 %		5.65 ±10 %	
5600	48.5 ±10 %		5.77 ±10 %	
5800	48.2 ±10 %		6.00 ±10 %	

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	SN 41/18 EPGO333
Liquid	Body Liquid Values: eps' : 52.7 sigma : 2.36
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm
Frequency	2600 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

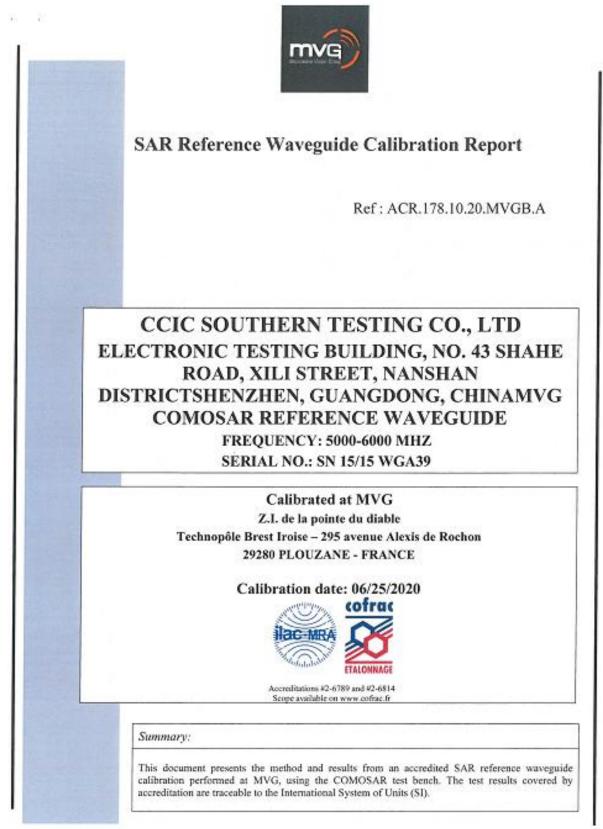
Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
2600	57.16 (5.72)	24.12 (2.41)

Page: 10/11

Template_ACR.DDD.N.VY.MVGB.ISSUE_SAR Reference Dipole vG This document shall not be reproduced, except in full or to part, without the written approval of MVG. The (oformation contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Ref: ACR.178.9.20.MVGB.A

8 LIST OF EQUIPMENT


Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date				
SAM Phantom	MVG	SN-13/09-SAM68	Validated. No cal required.	Validated. No ca required.				
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.				
Network Analyzer	Rohde & Schwarz ZVM	100203	05/2019	05/2022				
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	05/2019	05/2022				
Calipers	Mitutoyo	SN 0009732	10/2019	10/2022				
Reference Probe	MVG	EPGO333 SN 41/18	05/2020	05/2021				
Multimeter	Keithley 2000	1160271	02/2020	02/2023				
Signal Generator	Rohde & Schwarz SMB	106589	04/2019	04/2022				
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.				
Power Meter	NI-USB 5680	170100013	05/2019	05/2022				
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.				
Temperature / Humidity Sensor	Control Company	150798832	11/2017	11/2020				

Page: 11/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vG This document shall not be reproduced, except in fail or in part, without the written approval of MVG. The information contained kerwin is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

SID5G Dipole Calibration Report

Page: 1/13

Ref: ACR 178.10.20.MVGB.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Technical Manager	6/26/2020	12
Checked by ;	Jérôme LUC	Technical Manager	6/26/2020	22
Approved by :	Yann Toutain	Laboratory Director	6/26/2020	The

	Customer Name	
Distribution :	CCIC SOUTHERN	
	TESTING CO.,	
	LTD	

Issue	Name	Date	Modifications
A	Jérôme LE GALL	6/26/2020	Initial release

Page: 2/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Waveguide vG This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MPG.

Ref: ACR.178.10.20.MVGB.A

TABLE OF CONTENTS

1	Intr	oduction	
2	Dev	ice Under Test	
3	Pro	duct Description	
	3.1	General Information	4
4	Mea	surement Method	
	4.1	Return Loss Requirements	4
	4.2	Mechanical Requirements	
5	Mea	surement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Cali	bration Measurement Results	
	6.1	Return Loss	5
	6.2	Mechanical Dimensions	
7	Vali	dation measurement	
	7.1	Head Liquid Measurement	7
	7.2	Measurement Result	
	7.3	Body Measurement Result	
8	List	of Equipment	

Page: 3/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Waveguide vG This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information consained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Ref: ACR.178.10.20, MVGB.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528 and CEI/IEC 62209 standards for reference waveguides used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

	Device Under Test
Device Type	COMOSAR 5000-6000 MHz REFERENCE WAVEGUIDE
Manufacturer	MVG
Model	SWG5500
Serial Number	SN 15/15 WGA39
Product Condition (new / used)	Used

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Waveguides are built in accordance to the IEEE 1528 and CEI/IEC 62209 standards.

4 MEASUREMENT METHOD

The IEEE 1528 and CEI/IEC 62209 standards provide requirements for reference waveguides used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The waveguide used for SAR system validation measurements and checks must have a return loss of -8 dB or better. The return loss measurement shall be performed with matching layer placed in the open end of the waveguide, with the waveguide and matching layer in direct contact with the phantom shell as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

4.2 MECHANICAL REQUIREMENTS

The IEEE 1528 and CEI/IEC 62209 standards specify the mechanical dimensions of the validation waveguide, the specified dimensions are as shown in Section 6.2. Figure 1 shows how the dimensions relate to the physical construction of the waveguide. A direct method is used with a ISO17025 calibrated caliper.

Page: 4/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Waveguide vG

This document shall not be reproduced, except in fail or in part, without the written approval of MPG. The information contained kercin is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MPG.

Ref: ACR.178.10.20.MVGB.A

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

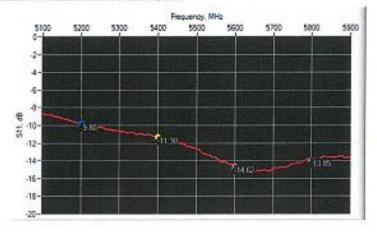
The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return I		
400-6000MHz	0.08 LIN		

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length
0 - 300	0.20 mm
	SVS CONTRACTOR


5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

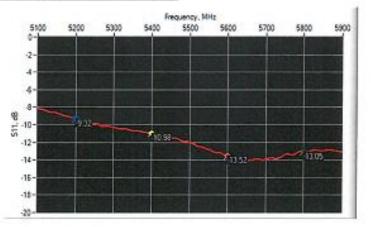
Scan Volume	Expanded Uncertainty
1 g	19 % (SAR)
10 g	19 % (SAR)

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS IN HEAD LIQUID

Page: 5/13

Template ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Waveguide vG This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained kerein is to be used only for the purpose for which it is submitted and is not to be released in whole or part mithout written approval of MVG.



Ref: ACR.178.10.20.MVGB.A

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
5200	-9.80	-8	22.19 Ω + 10.27 jΩ
5400	-11.30	-8	75.26 Ω + 2.27 jΩ
5600	-14.62	-8	34.93 Ω - 10.02 jΩ
5800	-13.85	-8	55.11 Ω + 19.16 jΩ

6.2 RETURN LOSS IN BODY LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
5200	-9.32	-8	20.88 Ω + 10.83 jΩ
5400	-10.98	-8	76.16 Ω - 0.57 jΩ
5600	-13.52	-8	31.86 Ω - 9.17 jΩ
5800	-13.05	-8	57.79 Ω + 20.13 jΩ

6.3 MECHANICAL DIMENSIONS

Frequency	LO	L (mm)		W (mm)		mm)	Wr	mm)
(MHz)	Required	Measured	Required	Measured	Required	Measured	Required	Measured
5800	40.39 ± 0.13		20.19 ± 0.13		81.03 ± 0.13	*	61.98 ± 0.13	

Page: 6/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Waveguide vG

This document shall not be reproduced, except in full or in part, without the written approval of MPG. The information contained herein is to be ased only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MPG.

Ref: ACR.178.10.20.MVGB.A

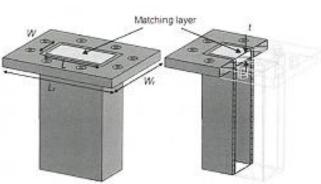


Figure 1: Validation Waveguide Dimensions

7 VALIDATION MEASUREMENT

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference waveguide meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed with the matching layer placed in the open end of the waveguide, with the waveguide and matching layer in direct contact with the phantom shell.

7.1 HEAD LIQUID MEASUREMENT

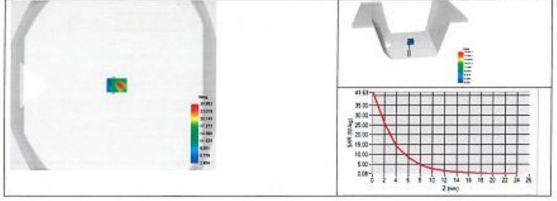
Frequency MHz	Relative permittivity (c.')		Conductivity (a) S/m	
	required	measured	required	measured
5000	36.2 ±10 %		4.45 ±10 %	
5100	36.1 ±10 %		4.56 ±10 %	
5200	36.0 ±10 %	34.60	4.65 ±10 %	4.55
5300	35.9 ±10 %		4.76 ±10 %	
5400	35.8 ±10 %	34.02	4.86 ±10 %	4.88
5500	35.6 ±10 %		4.97 ±10 %	
5600	35.5 ±10 %	33.46	5.07 ±10 %	5.25
5700	35.4 ±10 %		5.17 ±10 %	
5800	35.3 ±10 %	32.78	5.27 ±10 %	5.64
5900	35.2 ±10 %		5.38 ±10 %	
6000	35.1 ±10 %		5.48 ±10 %	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

At those frequencies, the target SAR value can not be generic. Hereunder is the target SAR value defined by MVG, within the uncertainty for the system validation. All SAR values are normalized to 1 W net power. In bracket, the measured SAR is given with the used input power.

Page: 7/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Waveguide vG This document shall not be reproduced, except in full or in part, without the written approval of MVG. The teformation contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.



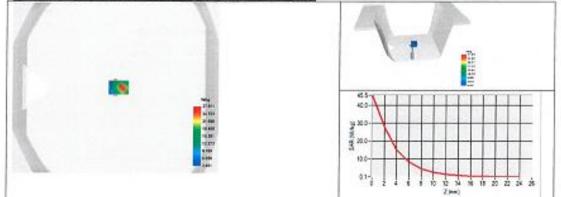
Ref: ACR.178.10.20.MVGB.A

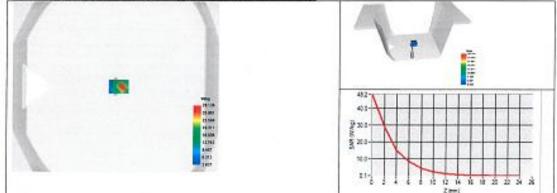
Software	OPENSAR V5	
Phantom	SN 13/09 SAM68	
Probe	SN 41/18 EPGO333	
Liquid	Head Liquid Values 5200 MHz: eps' :34.60 sigma : 4.55 Head Liquid Values 5400 MHz: eps' :34.02 sigma : 4.88 Head Liquid Values 5600 MHz: eps' :33.46 sigma : 5.25 Head Liquid Values 5800 MHz: eps' :32.78 sigma : 5.64	
Distance between dipole waveguide and liquid	0 mm	
Area scan resolution	dx=8mm/dy=8mm	
Zoon Scan Resolution	dx=4mm/dy=4m/dz=2mm	
Frequency	5200 MHz 5400 MHz 5600 MHz 5800 MHz	
Input power	20 dBm	
Liquid Temperature	20 +/- 1 °C	
Lab Temperature	20 +/- 1 °C	
Lab Humidity	30-70 %	

Frequency (MHz)	1 g SAR (W/kg)		10 g SAR (W/kg)	
	required	measured	required	measured
5200	159.00	151.11 (15.11)	56.90	54.03 (5.40)
5400	166.40	159.92 (15.99)	58.43	56.78 (5.68)
5600	173.80	165.99 (16.60)	59.97	58.35 (5.83)
5800	181.20	176.86 (17.69)	61.50	61.84 (6.18)

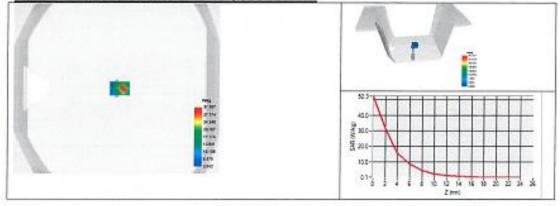
SAR MEASUREMENT PLOTS @ 5200 MHz

Page: 8/13


Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Waveguilde vG This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.



Ref: ACR.178.10.20.MVGB.A


SAR MEASUREMENT PLOTS @ 5400 MHz

SAR MEASUREMENT PLOTS @ 5600 MHz

SAR MEASUREMENT PLOTS @ 5800 MHz

Page: 9/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Waveguide vG This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Ref: ACR.178.10.20.MVGB.A

measured 5.42

5.80

6.20

6.56

5.53 ±10 %

5.65 ±10 %

5.77 ±10 %

6.00 ±10 %

Frequency MHz	Relative per	mittivity (8.')	Conductiv	ity (c) S/m
	required	measured	required	measure
5200	49.0 ±10 %	45.25	5.30 ±10 %	5.42
5300	48.9 ±10 %		5.42 ±10 %	

48.7 ±10 %

48.6±10%

48.5 ±10 %

48.2 ±10 %

7.3 BODY LIQUID MEASUREMENT

5400

5500

5600

5800

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	SN 41/18 EPGO333
Liquid	Body Liquid Values 5200 MHz: eps':45.25 sigma : 5.42 Body Liquid Values 5400 MHz: eps':45.09 sigma : 5.80 Body Liquid Values 5600 MHz: eps':44.84 sigma : 6.20 Body Liquid Values 5800 MHz: eps':44.59 sigma : 6.56
Distance between dipole waveguide and liquid	0 mm
Area scan resolution	dx-8mm/dy-8mm
Zoon Scan Resolution	dx=4mm/dy=4m/dz=2mm
Frequency	5200 MHz 5400 MHz 5600 MHz 5800 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

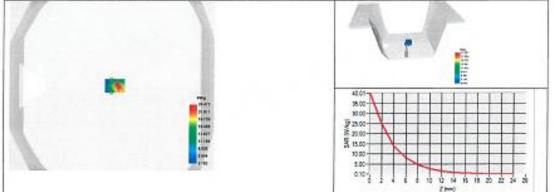
45.09

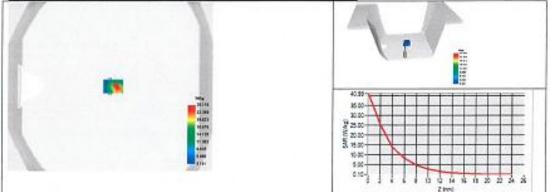
44.84

44.59

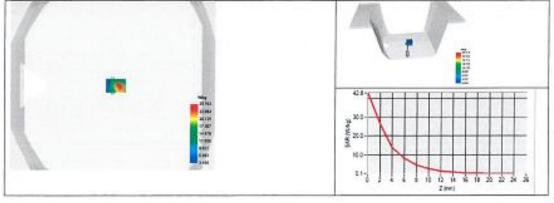
Frequency (MHz)	1 g SAR (W/kg)	10 g SAR (W/kg)
	measured	measured
5200	150.13 (15.01)	55.47 (5.55)
5400	152.16 (15.22)	55.69 (5.57)
5600	154.92 (15.49)	56.02 (5.60)
5800	158.10 (15.81)	54.64 (5.46)

Page: 10/13


Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Waveguide vG This document shall not be reproduced, except in full or in part, without the written approval of MPG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MPG.



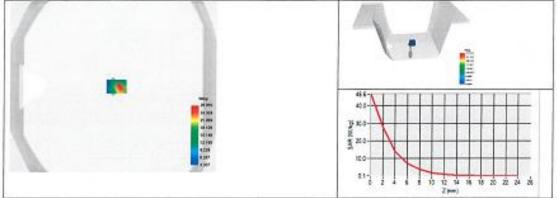
Ref: ACR.178.10.20.MVGB.A


BODY SAR MEASUREMENT PLOTS @ 5200 MHz

BODY SAR MEASUREMENT PLOTS @ 5400 MHz

BODY SAR MEASUREMENT PLOTS @ 5600 MHz

Page: 11/13


Template_ACR.DDD.N.VY.MVG8.ISSUE_SAR Reference Waveguide rG This document shall not be reproduced, except in full or in part, without the written approval of MPG. The information contained kerein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MPG.

Ref: ACR.178.10.20.MVGB.A

BODY SAR MEASUREMENT PLOTS @ 5800 MHz

Page: 12/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Waveguide vG This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained kerein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Ref. ACR 178.10.20.MVGB.A

8 LIST OF EQUIPMENT

Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
Flat Phantom	MVG	SN-13/09-SAM68	Validated. No cal required.	Validated. No ca required.	
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.	
Network Analyzer	Rohde & Schwarz ZVM	100203	05/2019	05/2022	
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	05/2019	05/2022	
Calipers	Mitutoyo	SN 0009732	10/2019	10/2022	
Reference Probe	MVG	EPGO333 SN 41/18	05/2020	05/2021	
Multimeter	Keithley 2000	1160271	02/2020	0 02/2023	
Signal Generator	Rohde & Schwarz SMB	106589	04/2019	04/2022	
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Power Meter	NI-USB 5680	170100013	05/2019	05/2022	
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Temperature and Humidity Sensor	Control Company	150798832	11/2017	11/2020	

Page: 13/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Waveguide vG This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained berein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

-End of the Report-