

FCC TEST REPORT

FCC ID: 2AJZ2-A19

On Behalf of

U-tec Group Inc. Bright A19 Color 1100LM Model No.: A19-WW1, A19-C1

Prepared for	:	U-tec Group Inc.
Address	:	32920 Alvarado-Niles Rd Ste 220, Union City, CA 94587

Prepared By	: Shenzhen Alpha Product Testing Co., Ltd.
Address	Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103, Shenzhen, Guangdong, China

Report Number	:	A2307136-C01-R02
Date of Receipt	:	July 18, 2023
Date of Test	:	July 18, 2023- July 31, 2023
Date of Report	:	July 31, 2023
Version Number	:	VO

ALPHA's reports is using a digital certificate that is trusted on Adobe's official server. If there is no digital certificate or the digital certificate shows damaged in your report. Please do not accept the report. E-mail: service@a-lab.cn Tel: 4008-3008-95 Website: http://www.a-lab.cn

TABLE OF CONTENTS

	Desc	cription	Page
1.	Sum	mary of Standards And Results	5
••	1.1.	Description of Standards and Results	
2.		eral Information	
۷.	2.1.	Description of Device (EUT)	
	2.1.	Accessories of Device (EUT)	
	2.3.	Tested Supporting System Details	<i>1</i>
	2.4.	Block Diagram of connection between EUT and simulators	
	2.5.	Test Mode Description	, 7
	2.6.	Test Conditions	, 8
	2.7.	Test Facility	
	2.8.	Measurement Uncertainty	
	2.9.	Test Equipment List	
3.		rious Emission	
0.	3.1.	Test Limits	
	3.2.	Test Procedure	
	3.3.	Test Setup	
	3.4.	Test Results	
4.	-	er Line Conducted Emission	
	4.1.	Test Limits	
	4.1.	Test Procedure	
	4.3.	Test Setup	
	4.4.	Test Results	
5.		ducted Maximum Output Power	
Ј.	5.1.	Test limits	<u>2</u> 3 25
	5.1. 5.2.	Test Procedure	
	5.2.	Test Setup	
	5.3. 5.4.	Test Results	
c	-		-
6.		C Power Spectral Density Test limits	20
	6.1.	Test limits	
	6.2.	Test Setup	
	6.3. 6.4.	Test Results	
7	-		
7.		dwidth	
	7.1.	Test limits	
	7.2.	Test Procedure	
	7.3.	Test Setup Test Results	
•	7.4.		
8.		d Edge Check	
	8.1.	Test limits	
	8.2.	Test Procedure	
	8.3.	Test Setup	
-	8.4.	Test Results	
9.		nna Requirement	45
	9.1.	Standard Requirement	45
	9.2.	Antenna Connected Construction	
_	9.3.	Results	-
10.	Test	setup photo	46
	10.1.	Photo of Radiated Emission test	46
	10.2.	Photo of Conducted Emission test	47

TEST REPORT DECLARATION

Applicant	:	U-teo	c Group Inc.		
Address	:	3292	32920 Alvarado-Niles Rd Ste 220, Union City, CA 94587		
Manufacturer	:	U-teo	c Group Inc.		
Address	:	3292	0 Alvarado-Niles Rd	Ste 220, Union City, CA 94587	
EUT Description	:	Bright A19 Color 1100LM			
		(A)	Model No.	A19-WW1, A19-C1	
		(B)	Trademark	N/A	

Measurement Standard Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.10-2013

The device described above is tested by Shenzhen Alpha Product Testing Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C limits both conducted and radiated emissions. The test results are contained in this test report and Shenzhen Alpha Product Testing Co., Ltd. is assumed of full responsibility for the accuracy and completeness of these tests.

After the test, our opinion is that EUT compliance with the requirement of the above standards.

This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Shenzhen Alpha Product Testing Co., Ltd.

Tested by (name + signature):	Yannis Wen Project Engineer	Yannis wen
Approved by (name + signature):	Reak Yang Project Manager	Rr. 45
Date of issue	July 31, 2023	

Revision History

Revision	Issue Date	Revisions	Revised By
V0	July 31, 2023	Initial released Issue	Yannis Wen

1. SUMMARY OF STANDARDS AND RESULTS

1.1. Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below:

Test Item	Test Requirement	Standards Paragraph	Result
Conducted Emission	FCC PART 15	15.207	Р
6dB Bandwidth	FCC PART 15	15.247 (a)(2)	Р
Output Power	FCC PART 15	15.247 (b)(3)	Р
Radiated Spurious Emission	FCC PART 15	15.247 (c)	Р
Conducted Spurious & Band Edge Emission	FCC PART 15	15.247 (d)	Р
Power Spectral Density	FCC PART 15	15.247 (e)	Р
Radiated Band Edge Emission	FCC PART 15	15.205	Р
Antenna Requirement	FCC PART 15	15.203	Р

Note: 1. P is an abbreviation for Pass.

2. F is an abbreviation for Fail.

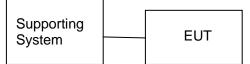
3. N/A is an abbreviation for Not Applicable.

4. The conclusion of this test report is judged by actual test data without considering measurement uncertainty.

2. GENERAL INFORMATION

2.1. Description of Device (EUT)

Description	:	Bright A19 Color 1100LM
Model Number Diff	:	A19-WW1, A19-C1 There is no difference except The number of lamp beads varies. All tests are made with the A19-WW1 model.
Power supply	:	AC 120V/60Hz
Radio Technology	:	Bluetooth BLE
Operation frequency	:	2402-2480MHz
Channel No.	:	40 Channels
Channel spacing	:	2MHz
Rate	:	1Mbps, 2Mbps
Modulation type	:	GFSK
Antenna Type	:	Internal antenna, max gain 2dBi (Antenna information is provided by applicant.)
Software version	:	V1.0
Hardware version	:	V1.0
Connector cable loss	:	N/A
Intend use environment	:	Residential, commercial and light industrial environment


2.2. Accessories of Device (EUT)

Accessories	:	/
Manufacturer	:	/
Model	:	/
Ratings	:	/

2.3. Tested Supporting System Details

No.	Description	Manufacturer	Model	Serial Number	Certification or SDoC
1	Notebook PC	Lenovo	ThinkPad E14	N/A	N/A

2.4. Block Diagram of connection between EUT and simulators

2.5. Test Mode Description

Tested mode, channel, and data rate information				
Mode	Channel	Frequency (MHz)		
	Low :CH1	2402		
GFSK (1M/2Mbps)	Middle: CH20	2440		
	High: CH40	2480		

2.6. Test Conditions

Items	Required	Actual		
Temperature range:	-20-40 ℃	24 ℃		
Humidity range:	25-75%	56%		
Pressure range:	86-106kPa	980kPa		

2.7. Test Facility

Shenzhen Alpha Product Testing Co., Ltd Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103, Shenzhen, Guangdong, China

June 21, 2018 File on Federal Communication Commission Registration Number: 293961

July 25, 2017 Certificated by IC Registration Number: 12135A

2.8. Measurement Uncertainty

(95% confidence levels, k=2)

Item	Uncertainty
Uncertainty for Power point Conducted Emissions Test	2.74dB
Uncertainty for Radiation Emission test in 3m chamber	2.13 dB(Polarize: V)
(below 30MHz)	2.57dB(Polarize: H)
Uncertainty for Radiation Emission test in 3m chamber	3.77dB(Polarize: V)
(30MHz to 1GHz)	3.80dB(Polarize: H)
Uncertainty for Radiation Emission test in 3m chamber	4.13dB(Polarize: H)
(1GHz to 25GHz)	4.16dB(Polarize: V)
Uncertainty for radio frequency	5.4×10-8
Uncertainty for conducted RF Power	0.37dB
Uncertainty for temperature	0.2 °C
Uncertainty for humidity	1%
Uncertainty for DC and low frequency voltages	0.06%

2.9. Test Equipment List

Equipment	Manufacture	Model No.	Firmware version	Serial No.	Last cal.	Cal Interval
9*6*6 anechoic chamber	CHENYU	9*6*6	/	N/A	2022.05.17	3Year
Spectrum analyzer	ROHDE&SCHWARZ	FSV40-N	2.3	102137	2022.08.22	1Year
Spectrum analyzer	Agilent	N9020A	A.14.16	MY499100060	2022.08.22	1Year
Receiver	ROHDE&SCHWARZ	ESR	2.28 SP1	1316.3003K03-10 2082-Wa	2022.08.22	1Year
Receiver	R&S	ESCI	4.42 SP1	101165	2022.08.22	1Year
Bilog Antenna	Schwarzbeck	VULB 9168	/	VULB 9168#627	2021.08.30	2Year
Horn Antenna	SCHWARZBECK	BBHA 9120 D	/	2106	2021.08.30	2Year
Active Loop Antenna	SCHWARZBECK	FMZB 1519B	/	00059	2021.08.30	2Year
RF Cable	Resenberger	Cable 1	/	RE1	2022.08.22	1Year
RF Cable	Resenberger	Cable 2	/	RE2	2022.08.22	1Year
RF Cable	Resenberger	Cable 3	/	CE1	2022.08.22	1Year
Pre-amplifier	HP	HP8347A	/	2834A00455	2022.08.22	1Year
Pre-amplifier	Agilent	8449B	/	3008A02664	2022.08.22	1Year
L.I.S.N.#1	Schwarzbeck	NSLK8126	/	8126-466	2022.08.22	1Year
L.I.S.N.#2	ROHDE&SCHWARZ	ENV216	/	101043	2022.08.23	1 Year
Horn Antenna	SCHWARZBECK	BBHA9170	/	00946	2021.08.30	2 Year
Preamplifier	SKET	LNPA_1840 -50	/	SK2018101801	2022.08.22	1 Year
Power Meter	Agilent	E9300A	/	MY41496628	2022.08.22	1 Year
Power Sensor	DARE	RPR3006W	/	15100041SNO91	2022.08.22	1 Year
Temp. & Humid. Chamber	Teelong	WHTH-1000 -40-880	/	TL-20191205-01	2023.07.25	1 Year
Switching Mode Power Supply	JUNKE	JK12010S	/	20140927-6	2022.08.22	1 Year
Adjustable attenuator	MWRFtest	N/A	/	N/A	N/A	N/A
10dB Attenuator	Mini-Circuits	DC-6G	/	N/A	N/A	N/A

Software Information								
Test Item	Software Name	Manufacturer	Version					
RE	EZ-EMC	Farad	Alpha-3A1					
CE	EZ-EMC	Farad	Alpha-3A1					
RF-CE	MTS 8310	MW	V2.0.0.0					

3. SPURIOUS EMISSION

3.1. Test Limits

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

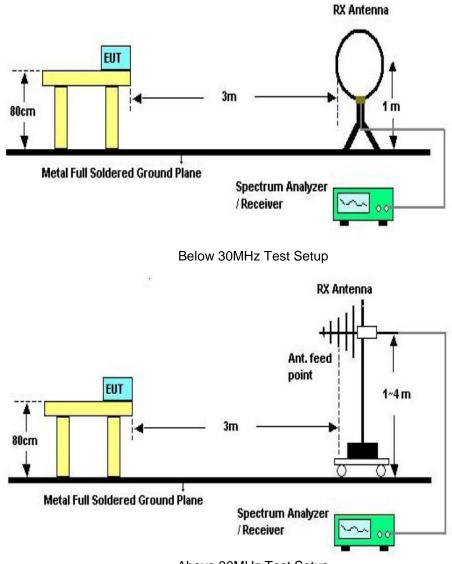
Harmonic emissions limits comply with below 54 dBuV/m at 3m. Other emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or comply with the radiated emissions limits specified in section 15.209(a) limit in the table below has to be followed.

NOTE:

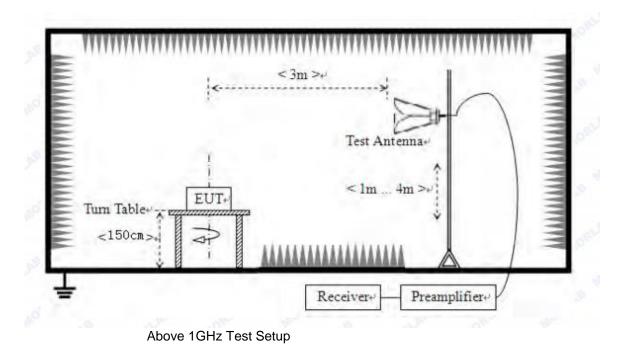
- a) The tighter limit applies at the band edges.
- b) Emission Level(dB uV/m)=20log Emission Level(uv/m)

3.2. Test Procedure

The measuring distance of 3m shall be used for measurements at frequency up to 1GH and above 1GHz, The EUT was placed on a rotating 0.8 m high above ground for below 1GHz and 1.5m high for above1GHz testing, The table was rotated 360 degrees to determine the position of the highest radiation


The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set of make measurement.

The initial step in collecting conducted emission data is a spectrum analyzer Peak detector mode pre-scanning the measurement frequency range. Significant Peaks are then marked. and then Qusia Peak Detector mode premeasured


If Peak value comply with QP limit Below 1GHz. The EUT deemed to comply with QP limit. But the Peak value and average value both need to comply with applicable limit above 1GHz.

For the actual test configuration, please see the test setup photo.

3.3. Test Setup

Above 30MHz Test Setup

3.4. Test Results

Test Condition

Continual Transmitting in maximum power.

9KHz~150KHz	RBW200Hz	VBW1KHz	
150KHz~30MHz	RBW9KHz	VBW 30KHz	
30MHZ~1GHz	RBW120KHz	VBW 300KHz	
Above1GHz	RBW1MHz	VBW 3MHz	

We have scanned the 10th harmonic from 9 kHz to the EUT.

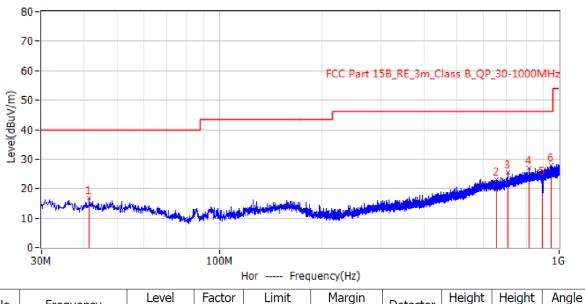
Detailed information please see the following page.

From 9KHz to 30MHz: Conclusion: PASS

- Note: 1.The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
 - 2. Only show the test data of the worst Channel in this report.

deg

212.0


0.0

201.0

0.0

0.0

178.0

Antenna polarity: Horizontal

Margin Level Factor Limit Height Height No. Frequency Detector dBuV/m dB/m dBuV/m dĐ cm cm 16.7 -23.3 41.519MHz 17.5 40.0 ΡK Hor 200.0 655.408MHz 23.1 23.4 46.0 -22.9 PΚ Hor 200.0 705.120MHz 25.5 23.9 46.0 -20.5 ΡK 200.0 Hor 815.579MHz 27.1 25.7 46.0 -18.9 PΚ 200.0 Hor

46.0

46.0

-22.7

-18.0

PΚ

ΡK

Hor

Hor

200.0

200.0

1*

2*

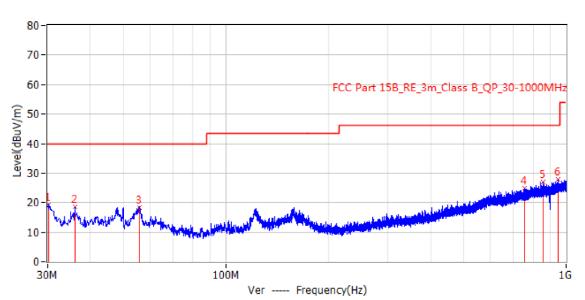
3*

4*

5*

6*

894.513MHz


948.711MHz

23.3

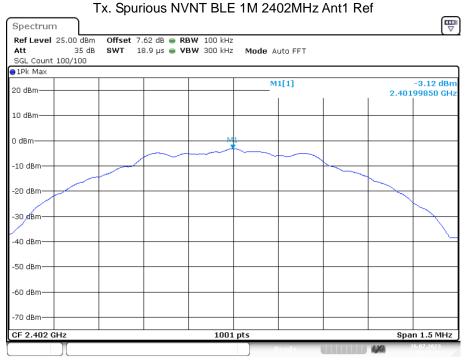
28.0

26.3

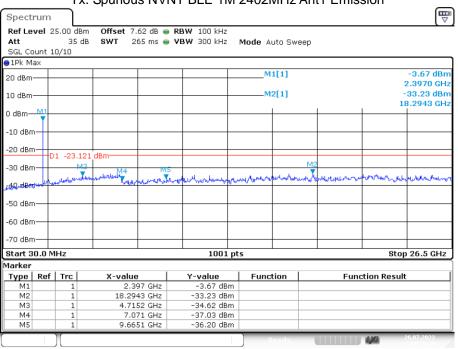
27.3

Antenna polarity: Vertical

No.	Frequency	Level	Factor	Limit	Margin	Detector	Height	Height	Angle
NO.	riequency	dBuV/m	dB/m	dBuV/m	dB	Delector	cm	cm	deg
1*	30.121MHz	19.3	16.6	40.0	-20.7	PK	Ver	100.0	56.0
2*	36.063MHz	18.6	17.0	40.0	-21.4	PK	Ver	100.0	314.0
3*	55.826MHz	18.4	16.9	40.0	-21.6	PK	Ver	100.0	336.0
4*	756.288MHz	24.9	25.0	46.0	-21.1	PK	Ver	100.0	62.0
5*	858.380MHz	27.0	26.0	46.0	-19.0	PK	Ver	100.0	95.0
6*	948.711MHz	27.9	27.3	46.0	-18.1	PK	Ver	100.0	210.0


Notes: Above is below 1GHz test data. This report only shall the worst case mode for TX 2402MHz.

From 1G-25GHz

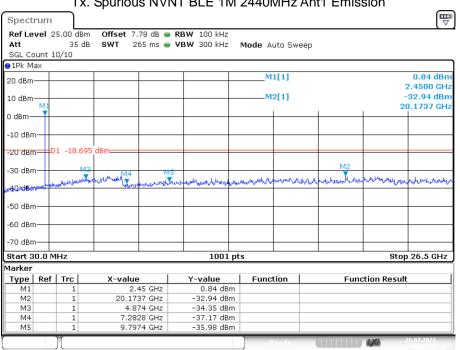

				Test Mo	ode: TX Lov	v			
Freq (MHz)	Read Level (dBuV/m)	Polar (H/V)	Antenna Factor (dB/m)	Cable loss(dB)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4804	45.24	V	33.95	10.18	34.26	55.11	74	-18.89	PK
4804	38.37	V	33.95	10.18	34.26	48.24	54	-5.76	AV
7206	/	/	/	/	/	/	/	/	/
9608	/	/	/	/	/	/	/	/	/
4804	44.30	Н	33.95	10.18	34.26	54.17	74	-19.83	PK
4804	36.52	Н	33.95	10.18	34.26	46.39	54	-7.61	AV
7206	/	/	/	/	/	/	/	/	/
9608	/	/	/	/	/	/	/	/	/
				Test Mo	ode: TX Mic	ł			
4880	42.28	V	33.93	10.2	34.29	52.12	74	-21.88	PK
4880	34.90	V	33.93	10.2	34.29	44.74	54	-9.26	AV
7320	/	/	/	/	/	/	/	/	/
9760	/	/	/	/	/	/	/	/	/
4880	44.44	Н	33.93	10.2	34.29	54.28	74	-19.72	PK
4880	36.51	Н	33.93	10.2	34.29	46.35	54	-7.65	AV
7320	/	/	/	/	/	/	/	/	/
9760	/	/	/	/	/	/	/	/	/
				Test Mo	ode: TX Hig	h			
4960	43.92	V	33.98	10.22	34.25	53.87	74	-20.13	PK
4960	36.88	V	33.98	10.22	34.25	46.83	54	-7.17	AV
7440	/	/	/	/	/	/	/	/	/
9920	/	/	/	/	/	/	/	/	/
4960	42.82	Н	33.98	10.22	34.25	52.77	74	-21.23	PK
4960	33.60	Н	33.98	10.22	34.25	43.55	54	-10.45	AV
7440	/	/	/	/	/	/	/	/	/
9920 Note:	/	/	/	/	/	/	/	/	/

Note: 1, Result = Read level + Antenna factor + cable loss-Amp factor 2, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Conducted RF Spurious Emission



Date: 26.JUL.2023 09:25:11


Tx. Spurious NVNT BLE 1M 2402MHz Ant1 Emission

Date: 26.JUL.2023 09:25:29

Tx. Spurious NVNT BLE 1M 2440MHz Ant1 Ref

Date: 26.JUL.2023 09:27:17

Tx. Spurious NVNT BLE 1M 2440MHz Ant1 Emission

Date: 26.JUL.2023 09:27:35

Spectrum			
Ref Level 25.00 dBm Att 35 dB SGL Count 100/100	Offset 7.60 dB		
●1Pk Max			
20 dBm		M1[1]	3.64 dBm 2.47998950 GHz
10 dBm	M		
0 dBm			
-10 dBm			\rightarrow
-20 dBm			
30 dBm			
-40 dBm			
-50 dBm			
-60 dBm			
-70 dBm			
CF 2.48 GHz	100	L pts	Span 1.5 MHz
		Ready	25.07.2023

Tx. Spurious NVNT BLE 1M 2480MHz Ant1 Ref

Date: 26.JUL.2023 09:29:50

Spectrum						l
Ref Level 2 Att SGL Count 1	35 c			Mode Auto Sw	еер	
∋1Pk Max						
20 dBm				M1[1]		3.76 dBn 2.4760 GH
10 dBm				M2[1]		-32.99 dBn 6.8063 GH
0 dBm						
-10 dBm		50 dB				
-20 dBm	1 -16.3					
-30 dBm	ا المقام المحاصر والحاصر	M3 M2 M4 W		a is not destate to a	المعالمة المعالم	hundre man when when
the demonstration	whenter	y denter alle the	water to all the weather water the second states of	LOCORY D WANT IN	and an another second second	a new stratter for the former
-50 dBm						
-60 dBm						
-70 dBm						
Start 30.0 M	IHz		1001 pt:	5		Stop 26.5 GHz
Marker						
Type Ref	Trc	X-value	Y-value	Function	Fun	ction Result
M1	1	2.476 GHz	3.76 dBm			
M2	1	6.8063 GHz	-32.99 dBm			
M3 M4	1	4.9534 GHz 7.4416 GHz	-35.29 dBm -36.53 dBm			
M4 M5	1	9.7974 GHz	-35.25 dBm			
	Υ			Ready		25.07.2023

Date: 26.JUL.2023 09:30:08

Spectrum								
Ref Level 20.00 dBm Att 30 dB			3W 100 kHz 3W 300 kHz					
SGL Count 100/100	3WI 10	. э µз 🔲 🖬	3 W 300 KH2	Mode A	uto FFT			
1Pk Max								
				М	1[1]		2.401	-1.67 dBm .99100 GHz
10 dBm								
0 dBm			м	1				
-10 dBm	_	\sim	\sim	\searrow				
	\sim	~				\geq		
-20 dBm								
-30 dBm								5
-40 dBm								
-50 dBm								
-60 dBm								
-70 dBm								
CF 2.402 GHz			1001	pts	_		Spa	n 3.0 MHz

Tx. Spurious NVNT BLE 2M 2402MHz Ant1 Ref

Date: 26.JUL.2023 09:36:39

Spectrum						l ₩
Ref Level 2	20.00 dB	m 🛛 Offset 7.62 dB 🍯	RBW 100 kHz			
Att	30 0	dB SWT 265 m s 🗧	🕨 VBW 300 kHz	Mode Auto Sw	еер	
SGL Count 3	10/10					
1Pk Max						
				M1[1]		-4.15 dBn
10 dBm						2.3970 GH
				M2[1]		-37.51 dBn
0 dBm 🕂 💾						16.9443 GH
10 40-						
-10 dBm						
-20 dBm		70 d0 m				
)1 -21.6	72 dBm				
-30 dBm 🕂				M2		
-40 dBm		M3 M4 M5				
depresentation of	andersa	sher a when the moundaries	and the stand of t	M. M. Barren	A DAY OF A DAY OF A DAY OF A DAY	and the second of the second second
-50 dBm						
-60 dBm						
-70 dBm						
-/0 ubiii—						
Start 30.0 M	4HZ		1001 pt	5		Stop 26.5 GHz
1arker						
	Trc	X-value	Y-value	Function	Func	tion Result
M1	1	2.397 GHz	-4.15 dBm -37.51 dBm			
M2 M3	1	16.9443 GHz 4.9534 GHz	-37.51 dBm -41.14 dBm			
M4	1	7.0446 GHz	-41.72 dBm			
M5	1	9.4533 GHz	-39.77 dBm			
	2			<u> </u>		

Date: 26.JUL.2023 09:36:57


Tx. Spurious NVNT BLE 2M 2440MHz Ant1 Ref

Date: 26.JUL.2023 09:50:03

Spectrum							
Ref Level 3	20.00 de	m Offset 7.78	dB 😑 F	RBW 100 kHz			
Att	30 -	dB SWT 265	ms 👄	/BW 300 kHz	Mode Auto Sw	еер	
SGL Count 3	10/10						
1Pk Max							
					M1[1]		-3.13 dBn
10 dBm							2.4500 GH
					M2[1]		-37.20 dBn
D dBm 🕂 👖				+			16.6532 GH
10.10							
-10 dBm							
-20 dBm							
	01 -21.1	.03 dBm					
-30 dBm 🕂				+	M2		
	M	I3 M4	M5			1.16	
-40 dBm	لمواسمورهمالاسوس	13 M4	and white	- marty manual of	and the state of the second	aller all aller all aller all all all all all all all all all al	and the second second
HL LING LING AND	N .						
-50 dBm							
-50 dBm							
-50 dBm							
-50 dBm							
-50 dBm							
-50 dBm							
-50 dBm				1001 pt			Stop 26.5 GHz
-50 dBm							Stop 26.5 GHz
50 dBm 60 dBm 70 dBm 3tart 30.0 M larker Type Ref		X-value		1001 pt		Fun	Stop 26.5 GHz
-50 dBm -60 dBm -70 dB	MHz Trc	X-value 2.45	GHz	1001 pt <u>Y-value</u> -3.13 dBm	5	Fun	•
-50 dBm -60 dBm -70 dB	MHz Trc 1	X-value 2.45 16.6532	GHz GHZ	1001 pt -3.13 dBm -37.20 dBm	5	Funi	•
-50 dBm -60 dBm -70 dBm Start 30.0 M larker Type Ref M1 M2 M3	MHz Trc 1 1 1	X-value 2.45 16.6532 4.6887	GHz GHz GHz	1001 pt -3.13 dBm -37.20 dBm -41.16 dBm	5	Fun	•
-50 dBm -60 dBm -70 dB	MHz Trc 1	X-value 2.45 16.6532	GHz GHz GHz GHz GHz	1001 pt -3.13 dBm -37.20 dBm	5	Fun	•

Date: 26.JUL.2023 09:50:20

Tx. Spurious NVNT BLE 2M 2480MHz Ant1 Ref

Date: 26.JUL.2023 09:44:53

Spectru	m											
Ref Leve	l 20.00	dBm O	ffset 7	.60 dB 🧉	RBW 1	.00 kHz						
Att	31	d B S	WT 2	65 ms 🧉	VBW 3	300 kHz - 1	Mode A	uto Sw	еер			
SGL Cour	t 10/10											
⊖1Pk Max												
							M	1[1]				0.60 dBm
10 dBm—												2.4760 GHz
N	11						M	2[1]				-38.35 dBm
0 dBm	Y											18.2414 GHz
-10 dBm—												
-20 dBm-		.596 dBn										
20 000	TUI -20	1.596 dBn	n									
-30 dBm—												
		мз	M4	M	5				M2			
-40 dBm—	i	Anna Barrela	which the	the state	hymanitelia	www.www.	ht washing	وري العرب <mark>ا</mark> لمريكي الم	white	الدواديريورية الروانع	and the stands	Arech Handry with war
-50 dBm-	- Alexandre											
-50 aBm—												
-60 dBm—												
00 00												
-70 dBm—								<u> </u>				
Start 30.	0 MHz					1001 pt	5					stop 26.5 GHz
Marker												
Type R	ef Trc	1	X-value	e	Y-v	alue	Func	tion		Fu	nction Re	sult
M1	1			76 GHz	(0.60 dBm		-				
M2	1		18.24	14 GHz	-38	8.35 dBm						
MЗ	1		4.95	34 GHz	-4(0.90 dBm						
M4	1	-		75 GHz		1.54 dBm						
M5	1		9.79	74 GHz	-4(D.44 dBm						
								teady	-		1,00	26.07.2023

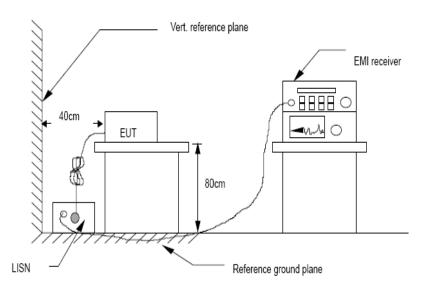
Date: 26.JUL.2023 09:45:11

4. POWER LINE CONDUCTED EMISSION

4.1. Test Limits

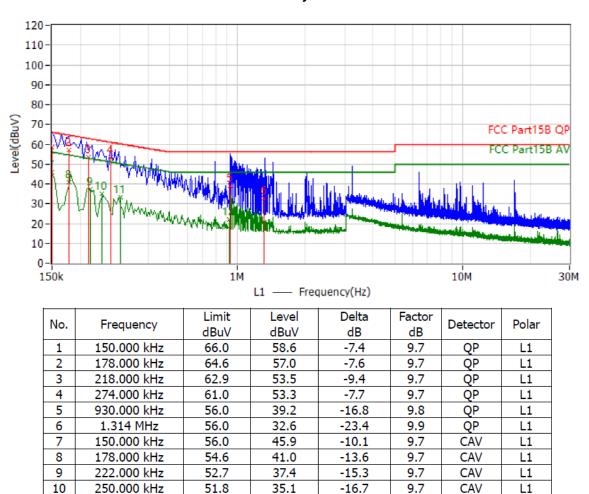
Frequency	Limits c	IB(μV)
MHz	Quasi-peak Level	Average Level
0.15 -0.50	66 -56*	56 - 46*
0.50 -5.00	56	46
5.00 -30.00	60	50

Notes: 1. *Decreasing linearly with logarithm of frequency.


- 2. The lower limit shall apply at the transition frequencies.
 - 3. The limit decreases in line with the logarithm of the frequency in rang of 0.15 to 0.50 MHz.

4.2. Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.10:2013 on Conducted Emission Measurement.


The bandwidth of test receiver is set at 9 kHz.

4.3. Test Setup

4.4. Test Results

Pass

33.1

22.1

-17.1

-23.9

9.7

9.8

CAV

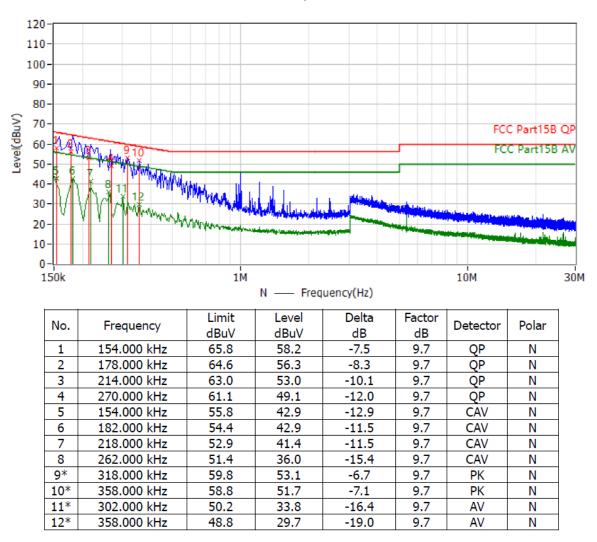
CAV

L1

L1

11

12


302.000 kHz

922.000 kHz

50.2

46.0

Polarity: L

Polarity: N

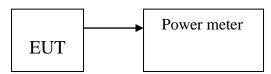
Note: All modes and channels have been tested and only the BLE 2402MHz(1Mbps) mode with the worst data is listed.

5. CONDUCTED MAXIMUM OUTPUT POWER

5.1. Test limits

Please refer section RSS-247 & 15.247.

5.2. Test Procedure


Details see the KDB 558074 D01 15.247 Meas Guidance v05r02

5.2.1 Place the EUT on the table and set it in transmitting mode.

5.2.2 Measure out each mode and each bands peak output power of EUT.

Note: The cable loss and attenuator loss were offset into measure device as amplitude offset.

5.3. Test Setup

5.4. Test Results

GFSK(1M)

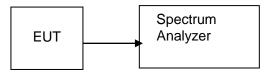
0.0.0	·/							
Condition	Mode	Frequency	Antenna	Conducted	Duty	Total	Limit	Verdict
		(MHz)		Power (dBm)	Factor	Power	(dBm)	
				. ,	(dB)	(dBm)	. ,	
NVNT	BLE 1M	2402	Ant1	-3.367	0	-3.367	30	Pass
NVNT	BLE 1M	2440	Ant1	0.759	0	0.759	30	Pass
NVNT	BLE 1M	2480	Ant1	3.871	0	3.871	30	Pass

GFSK(2M)

Condition	Mode	Frequency	Antenna	Conducted	Duty	Total	Limit	Verdict
		(MHz)		Power (dBm)	Factor	Power	(dBm)	
					(dB)	(dBm)		
NVNT	BLE 2M	2402	Ant1	-2.191	0	-2.191	30	Pass
NVNT	BLE 2M	2440	Ant1	-0.914	0	-0.914	30	Pass
NVNT	BLE 2M	2480	Ant1	-0.402	0	-0.402	30	Pass

6. PEAK POWER SPECTRAL DENSITY

6.1. Test limits

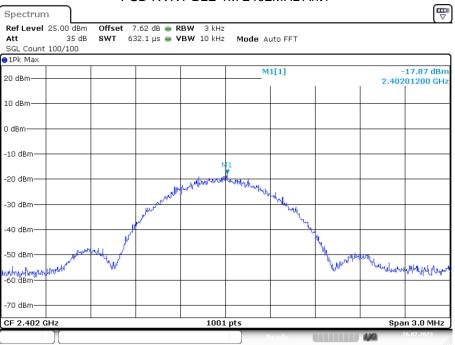

- 6.1.1 Please refer section RSS-247 & 15.247.
- 6.1.2 For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band during any time interval of continuous transmission.
- 6.1.3 The direct sequence operating of the hybrid system, with the frequency hopping operation turned off, shall comply with the power density requirements of paragraph (d) of this section.

6.2. Test Procedure

Details see the KDB 558074 D01 15.247 Meas Guidance v05r02

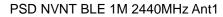
- 6.2.1 Place the EUT on the table and set it in transmitting mode.
- 6.2.2 Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 6.2.3 Set the spectrum analyzer as RBW = 3kHz(Set the RBW to: 3 kHz≤RBW≤100 kHz.), VBW = 10kHz(Set the VBW≥3×RBW), span=1.5×DTS bandwidth., detail see the test plot.
- 6.2.4 Record the max reading.
- 6.2.5 Repeat the above procedure until the measurements for all frequencies are completed.

6.3. Test Setup


6.4. Test Results

Pass

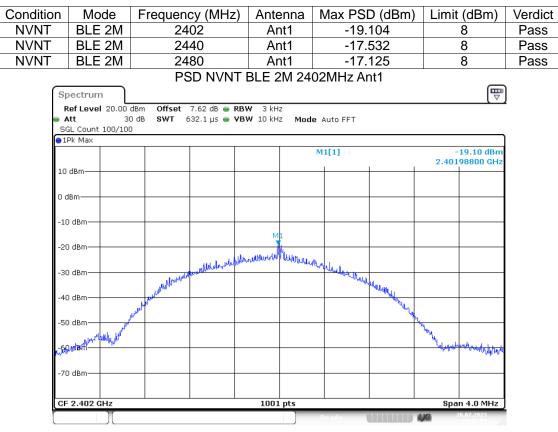
The test results are listed in next pages.


	GFSK	(1M)
--	------	------

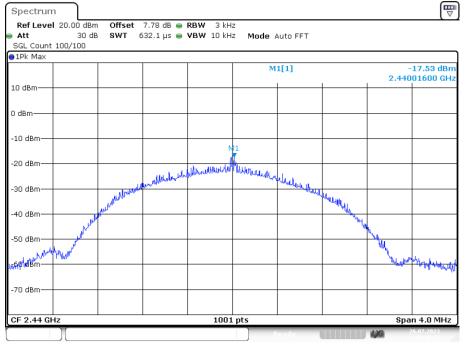
Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	-17.873	8	Pass
NVNT	BLE 1M	2440	Ant1	-13.795	8	Pass
NVNT	BLE 1M	2480	Ant1	-10.853	8	Pass


PSD NVNT BLE 1M 2402MHz Ant1

Date: 26.JUL.2023 09:24:52



Date: 26.JUL.2023 09:27:10


PSD NVNT BLE 1M 2480MHz Ant1

Date: 26.JUL.2023 09:29:29



Date: 26.JUL.2023 09:36:21

PSD NVNT BLE 2M 2440MHz Ant1

Date: 26.JUL.2023 09:49:55

PSD NVNT BLE 2M 2480MHz Ant1

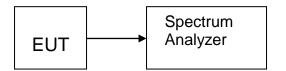
Date: 26.JUL.2023 09:44:31

7. BANDWIDTH

7.1. Test limits

Please refer section RSS-247 & 15.247

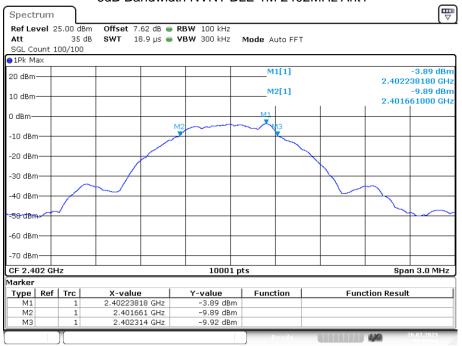
For direct sequence systems, the minimum 6dB bandwidth shall be at least 500 kHz.


7.2. Test Procedure

Details see the KDB 558074 D01 15.247 Meas Guidance v05r02

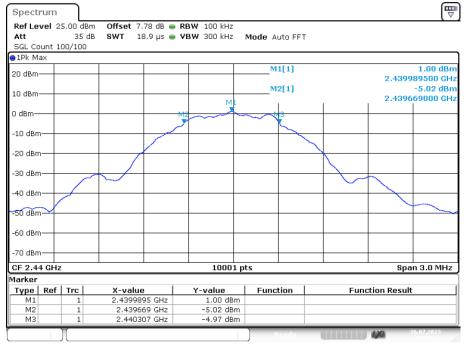
a) The bandwidth is measured at an amplitude level reduced 20dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency.
Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst-case (i.e. the widest) bandwidth.

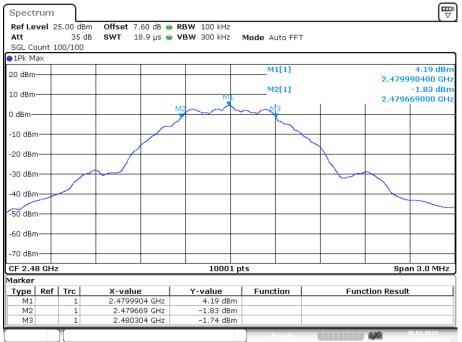
b) The test receiver set RBW = 100kHz, VBW≥3*RBW =300kHz, sweep time set auto, detail see the test plot.


7.3. Test Setup

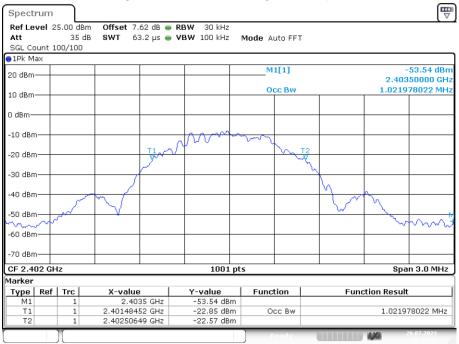
7.4. Test Results

GFSK(1M)

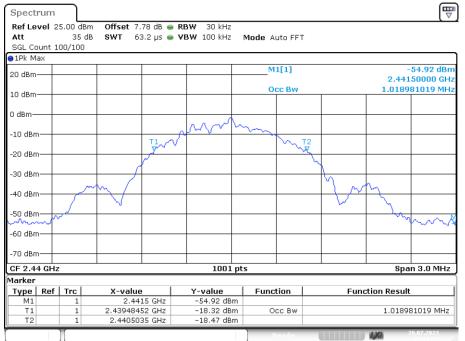

Condition	Mode	Frequency	Antenna	99% OBW	-6 dB Bandwidth	Limit -6 dB	Verdict
		(MHz)		(MHz)	(MHz)	Bandwidth (MHz)	
NVNT	BLE	2402	Ant 1	1.022	0.653	0.5	Pass
NVNT	BLE	2440	Ant 1	1.019	0.638	0.5	Pass
NVNT	BLE	2480	Ant 1	1.025	0.635	0.5	Pass


-6dB Bandwidth NVNT BLE 1M 2402MHz Ant1

Date: 26.JUL.2023 09:24:44

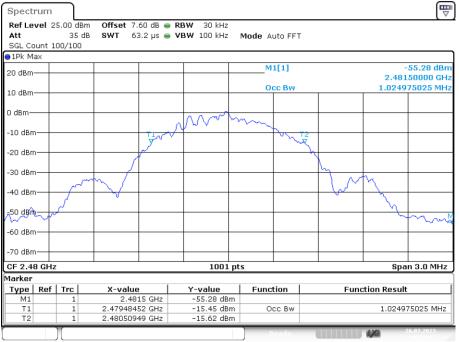


Date: 26.JUL.2023 09:27:01


-6dB Bandwidth NVNT BLE 1M 2480MHz Ant1

Date: 26.JUL.2023 09:29:20

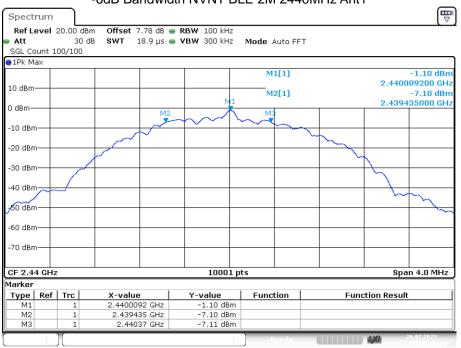
OBW NVNT BLE 1M 2402MHz Ant1


Date: 26.JUL.2023 09:24:36

OBW NVNT BLE 1M 2440MHz Ant1


Date: 26.JUL.2023 09:26:52

OBW NVNT BLE 1M 2480MHz Ant1

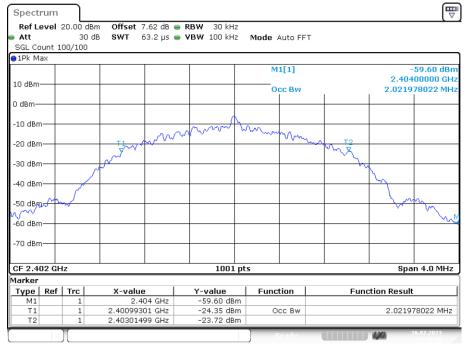


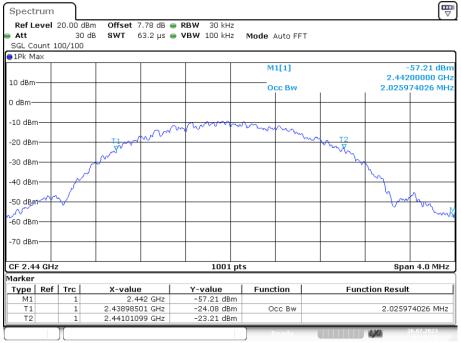
Date: 26.JUL.2023 09:29:11

GFSK(2M)							
Condition	Mode	Frequency	Antenna	99% OBW	-6 dB Bandwidth	Limit -6 dB	Verdict
		(MHz)		(MHz)	(MHz)	Bandwidth (MHz)	
NVNT	BLE	2402	Ant 1	2.022	0.916	0.5	Pass
NVNT	BLE	2440	Ant 1	2.026	0.934	0.5	Pass
NVNT	BLE	2480	Ant 1	2.018	1.007	0.5	Pass

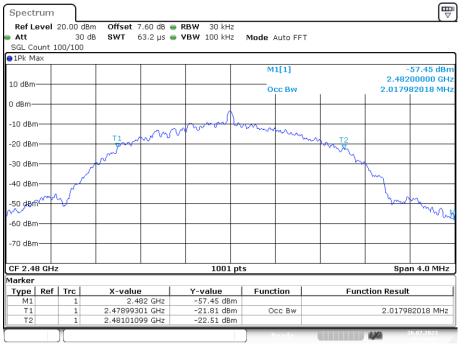
Date: 26.JUL.2023 09:36:13

-6dB Bandwidth NVNT BLE 2M 2440MHz Ant1


Date: 26.JUL.2023 09:49:45


Date: 26.JUL.2023 09:44:20

OBW NVNT BLE 2M 2402MHz Ant1



Date: 26.JUL.2023 09:36:05

OBW NVNT BLE 2M 2440MHz Ant1

Date: 26.JUL.2023 09:49:35

OBW NVNT BLE 2M 2480MHz Ant1

Date: 26.JUL.2023 09:44:09

8. BAND EDGE CHECK

8.1. Test limits

Please refer section RSS-GEN&15.247.

8.2. Test Procedure

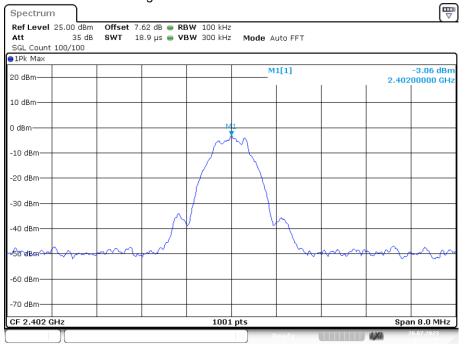
Details see the KDB 558074 D01 15.247 Meas Guidance v05r02

8.2.1 Put the EUT on a 0.8m high table, power on the EUT. Emissions were scanned and measured rotating the EUT to 360 degrees, Find the maximum Emission

8.2.2 Check the spurious emissions out of band.

8.2.3 RBW 1MHz, VBW 3MHz, peak detector for peak value, RBW 1MHz, VBW 3MHz, RMS detector for AV value.

8.3. Test Setup

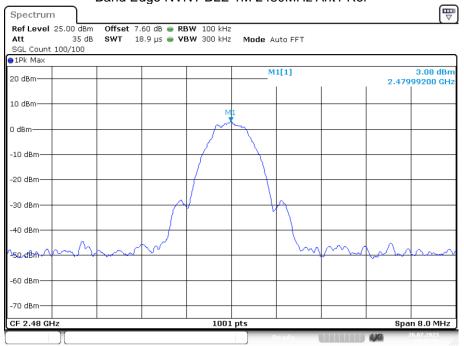

Same as 5.2.2.

8.4. Test Results

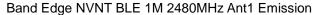
Pass The test results are listed in next pages.

GFSK (1M)

Band Edge NVNT BLE 1M 2402MHz Ant1 Ref



Date: 26.JUL.2023 09:24:58

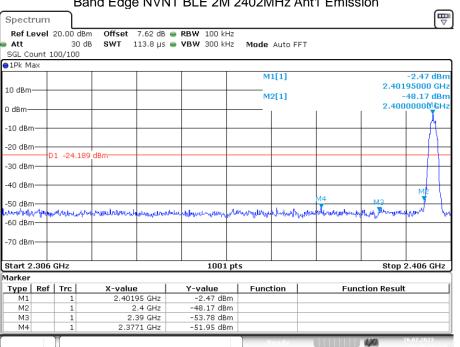

Band Edge NVNT BLE 1M 2402MHz Ant1 Emission

Date: 26.JUL.2023 09:25:04

Band Edge NVNT BLE 1M 2480MHz Ant1 Ref

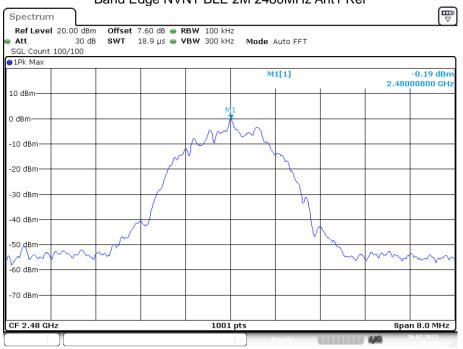
Date: 26.JUL.2023 09:29:36

Specti	rum			-											₽
Ref Le	vel :	25.00 d	lBm	Offset 7	.60 dB	e R	3W 100 kH	z							
Att			dB	SWT 11	L3.8 μs ι	VI	BW 300 kH	z	Mode /	Auto FR	FΤ				
SGL Co		100/10	0												
⊖1Pk Ma	ax														
20 dBm-	\rightarrow							<u> </u>	M	1[1]					2.84 dBm
										0[1]					995000 GHz -47.86 dBm
10 dBm	+					-			IYI.	2[1]					-47.86 uBm 350000 GHz
										1				2.400	
-10 dBm	∖														
		D1 -16.	021	d0											
-20 cBm	י—+	51 -10.	921	ubm				-							
-30 dBm															
-40 dBm	<u> </u>			h-1-1											
J IN	12			Т МЗ											
VSO dBiff	1 mg	Kolonaugh	allow	MMPULAHA	elment ()UM	ungle,	perfortablition	pline	MAN MAN	withing	1741-144	MARINA	while	Any provide	Mulhunghaushik
-60 dBm	ר-י														
-70 dBm	$ \perp$														
Start 2	.476	GHz					1001	. pts						Stop	2.576 GHz
Marker		1							_						
Type	Ref	Trc		X-value			Y-value		Func	tion		F	unc	tion Result	t
M1 M2		1			95 GHz 35 GHz		2.84 dB -47.86 dB								
M3		1			.5 GHz		-48.51 dB								
M4		1			79 GHz		-45.03 dB								
_		1				_		1					117	4.965	26.07.2023
														ayes	

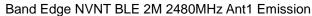

Date: 26.JUL.2023 09:29:42

GFSK (2M)

Band Edge NVNT BLE 2M 2402MHz Ant1 Ref

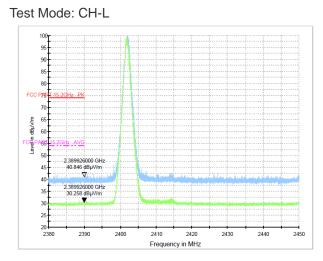


Date: 26.JUL.2023 09:36:27

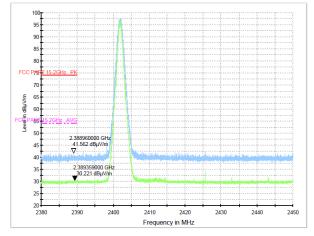

Band Edge NVNT BLE 2M 2402MHz Ant1 Emission

Date: 26.JUL.2023 09:36:33

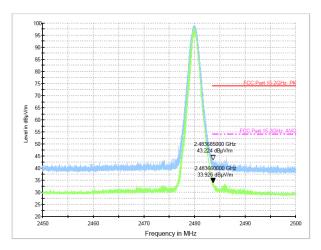
Band Edge NVNT BLE 2M 2480MHz Ant1 Ref

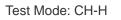

Date: 26.JUL.2023 09:44:38

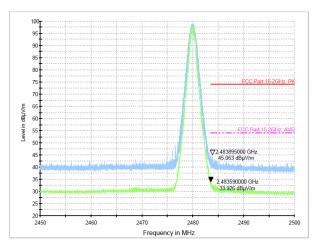
Spectro	Jm			-													(₩
Ref Le [.] Att SGL Cou		30	db sw				RBW 1 VBW 3			de	Auto F	FT					,	
●1Pk Ma																		
10 dBm—										М	1[1]					2.479	-2.49 d 95000 (
										М	2[1]						-53.05 d 350000 (
-10 dBm-																		
-20 dBm-		1 -20.	186 dBm															
-30 dBm-	+		_					-										
-40 d6m-	+		M4					+										
-90 dB	2 Imm	upulmu	MAMA	nutua	nhandha	adapta	rowayohy	Muner	Annaly	derstu	nunum	h.	wan	mun	withdow	wvw	hamen	MNN.
-70 dBm-																		
Start 2.	176	GHz					1	1001	ots							Stop	_ 2.576 GI	Hz
Marker																		_
	Ref	Trc		value			Y-valu			inc	tion			Fund	tion	Result	t	
M1		1	2	2.4799				9 dBm										
M2		1		2.483				5 dBm										_
M3 M4		1		2.497	5 GHz 9 GHz			7 dBm 4 dBm										-
		1									te ady		1111		1XI	_	26.07.2023	


Date: 26.JUL.2023 09:44:44

Radiated Method: GFSK(1M)




Radiated Method: GFSK(2M)


Test Mode: CH-L

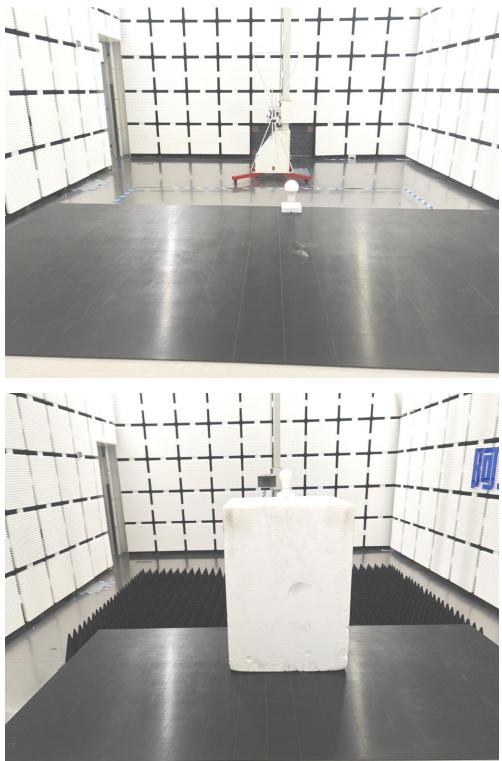
Test Mode: CH-H

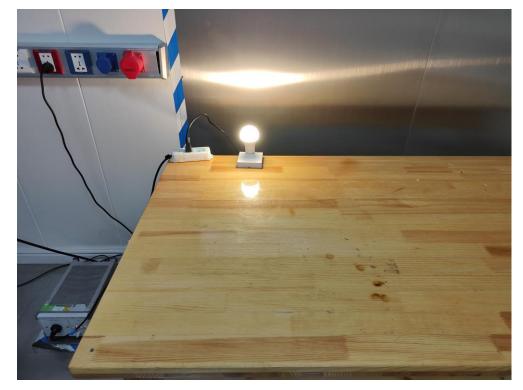
9. ANTENNA REQUIREMENT

9.1. Standard Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

9.2. Antenna Connected Construction


The antenna is internal antenna and no consideration of replacement. Please see EUT photo for details.


9.3. Results

The EUT antenna is Internal Antenna. It complies with the standard requirement.

10. TEST SETUP PHOTO

10.1.Photo of Radiated Emission test

10.2.Photo of Conducted Emission test

-----END OF REPORT-----