

TEST REPORT

REPORT NUMBER: I22W00026-MPE

ON

Type of Equipment: SIMCom Module

Type of Designation: SIM8260A

Manufacturer: SIMCom Wireless Solutions Limited

Brand Name: SIMCom

FCC ID: 2AJYU-8XN0001

ACCORDING TO

FCC CFR 47 Part 2.1091 《Radiofrequency radiation exposure evaluation: mobile devices》

FCC CFR 47 Part1.1310 《Radiofrequency radiation exposure limits》

Chongqing Academy of Information and Communication Technology

Month date, year

Oct, 14, 2022

Signature

河罗哥

Xiang Luoyong

Director

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of Chongqing Academy of Information and Communications Technology.

Revision Version

Report Number	Revision	Date	Memo
I22W00026-MPE	00	2022-10-14	Initial creation of test report

CONTENTS

1. TEST LABORATORY	3
1.1. TESTING LOCATION	3
1.2. TESTING ENVIRONMENT	3
1.3. PROJECT DATA	3
1.4. SIGNATURE	3
2. CLIENT INFORMATION	4
2.1. APPLICANT INFORMATION	4
2.2. MANUFACTURER INFORMATION	4
3. EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	5
3.1. ABOUT EUT	5
3.2. INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	5
3.3. INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	5
4. REFERENCE DOCUMENTS	6
4.1. APPLICABLE STANDARDS	6
4.2. TEST LIMITS	6
5. TEST RESULTS	7
5.1. TUNE UP POWER AND ANTENNA GAIN	7
5.2. CALCULATION INFORMATION	9
5.3. RESULTS	10
5.4. RESULT OF WCDMA BAND 2	11
5.5. RESULT OF WCDMA BAND 4	11
5.6. RESULT OF WCDMA BAND 5	11
5.7. RESULT OF LTE BAND 2	12
5.8. RESULT OF LTE BAND 4	12
5.9. RESULT OF LTE BAND 5	12

Chongqing Academy of Information and Communication Technology

5.10. RESULT OF LTE BAND 7	13
5.11. RESULT OF LTE BAND 12	13
5.12. RESULT OF LTE BAND 13	13
5.13. RESULT OF LTE BAND 14	14
5.14. RESULT OF LTE BAND 17	14
5.15. RESULT OF LTE BAND 25	14
5.16. RESULT OF LTE BAND 26	15
5.17. RESULT OF LTE BAND 41	15
5.18. RESULT OF LTE BAND 66	15
5.19. RESULT OF LTE BAND 71	16
5.20. RESULT OF NR BAND 2	16
5.21. RESULT OF NR BAND 5	16
5.22. RESULT OF NR BAND 7	17
5.23. RESULT OF NR BAND 12	17
5.24. RESULT OF NR BAND 14	17
5.25. RESULT OF NR BAND 25	18
5.26. RESULT OF NR BAND 26	18
5.27. RESULT OF NR BAND 41	18
5.28. RESULT OF NR BAND 66	19
5.29. RESULT OF NR BAND 71	19
5.30. RESULT OF NR BAND 77	19
5.31. RESULT OF NR BAND 78	20

Chongqing Academy of Information and Communication Technology

1. Test Laboratory

1.1. Testing Location

Company Name:	Chongqing Academy of Information and Communications Technology Building C, Technology Innovation Center, No.8, Yuma Road, Chayuan New Area, Nan'an District, Chongqing, People's Republic of China	
Address:		
Postal Code:	401336	
Telephone:	0086-23-88069965	
Fax:	0086-23-88608777	

1.2. Testing Environment

Normal Temperature:	21.3°C
Relative Humidity:	65.0%

1.3. Project Data

Testing Start Date:	2022-10-10
Testing End Date:	2022-10-10

1.4. Signature

胡坡	2022-10-14
Hu Bo (Prepared this test report)	Date
~ 每	2022-10-14
Yu Chun (Reviewed this test report)	Date
多多	2022-10-14
Xiang Luoyong Director of the laboratory	Date
(Approved this test report)	

Chongqing Academy of Information and Communication Technology

2. Client Information

2.1. Applicant Information

Company Name:	SIMCom Wireless Solutions Limited		
Address /Post:	SIMCom Headquarters Building, Building 3, No.289 Linhong Road, Changning District, Shanghai, China		
Country:	China		
Telephone:	+86 21 3157 5100		
Fax:			
Email:	Yongsheng Li@simcom.com		
Contact Person:	Yongsheng Li		

2.2. Manufacturer Information

Company Name:	SIMCom Wireless Solutions Limited		
Address /Post:	SIMCom Headquarters Building, Building 3, No.289 Linhong Road Changning District, Shanghai, China		
Country:	China		
Telephone:	+86 21 3157 5100		
Fax:	-		
Email:	Yongsheng Li@simcom.com		
Contact Person:	Yongsheng Li		

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

EUT Description:	SIMCom Module	
Model name:	SIM8260A	
WCDMA Frequency Band:	B2/B4/B5	
LTE Frequency Band:	B1/B2/B4/B5/B7/B12/B13/B14/B17/B25/B26/B29/B30/B66/B 71	
NR Frequency Band	B2,B5,B7,B12,B14,B25,B26,B41,B66,B71,B77,B78	
Note: Photographs of EUT are shown in ANNEX A of this test report.		

3.2. Internal Identification of EUT used during the test

	EUT ID*	SN or IMEI	HW Version	SW Version	Date of receipt
ı	S4	864284040456399	V1.02	V1.0.01	2022-03-28

^{*}EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE used during the test

EUT ID*	SN	Description
NA	NA	NA

^{*}AE ID: is used to identify the test sample in the lab internally.

4. Reference Documents

4.1. Applicable Standards

The MPE report was carried out on a sample equipment to demonstrate limited compliance with FCC CFR 47 Part 2.1091.

FCC CFR 47 Part 2.1091: Radiofrequency radiation exposure evaluation: mobile devices

4.2. Test Limits

Systems operating under the provisions of this section shall be operated in a mannerthat ensures that the public is not exposed to radio frequency energy level in excesslimit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2Subpart J, section 2.1091 this device has been defined as a mobile device whereby adistance of 0.2m normally can be maintained between the user and the device.

MPE for the upper tier (people in controlled environments)

		(F F	inconea environmento)			
Frequency Range [MHz]	Electric field	Magnetic field	Power density (mW/cm ²)	Averaging time (minutes)		
	strength	strength				
	(V/m)	(A/m)				
(A) Limits for Occupational/Controlled Exposure						
0.3-3.0	614	1.63	(100)*	6		
3.0-30	1842/f	4.89/f	(900/f ²)*	6		
30-300	61.4	0.163	1.0	6		
300-1500			f/300	6		
1500-100000			5	6		
(B) Limits for General Population/Uncontrolled Exposure						
0.3-1.34	614	1.63	(100)*	30		
1.34-30	824/f	2.19/f	(180/f ²)*	30		
30-300	27.5	0.073	0.2	30		
300-1500			f/1500	30		
1500-100000			1.0	30		

Note: f=frequency in MHz; *Plane-wave equivalent power density

For the DUT, the limits for the general public when an RF safety program is unavailable.

5. Test Results

5.1. Tune up power and Antenna Gain

Frequency Band	Highest Averaged Tune up power(dBm)	Highest Frame-Averaged Tune up power (dBm)	Antenna Gain(dBi)
WCDMA Band 2	24.10	24.10	2.53
WCDMA Band 4	24.20	24.20	2.53
WCDMA Band 5	25.30	25.30	2.86
LTE Band 2	28.40	28.40	1.25
LTE Band 4	28.80	28.80	1.25
LTE Band 5	29.40	29.40	2.86
LTE Band 7	27.70	27.70	1.15
LTE Band 12	28.90	28.90	2.86
LTE Band 13	29.30	29.30	2.86
LTE Band 14	29.00	29.00	2.86
LTE Band 17	29.00	29.00	2.86
LTE Band 25	28.50	28.50	1.25
LTE Band 26	29.00	29.00	2.86
LTE Band 41	25.20	25.20	1.19
LTE Band 66	25.20	25.20	1.25
LTE Band 71	27.20	27.20	2.86

Notes:

1) Division Factors

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB

2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by $(8/2) \Rightarrow -6.02 dB$

3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB

4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01dB

2) Disclaimers: The Highest Tune up power and antenna gain in the above table are provided by the customer

Frequency Band	Highest Averaged Tune up power(dBm)	Highest Frame-Averaged Tune up power (dBm)	Antenna Gain(dBi)
NR Band 2	23.71	23.71	1.25
NR Band 5	24.40	24.40	2.86
NR Band 7	24.50	24.50	1.15
NR Band 12	23.00	23.00	2.86
NR Band 14	24.00	24.00	1.89
NR Band 25	24.30	24.30	1.25
NR Band 26	24.00	24.00	2.86
NR Band 41	26.70	26.70	1.19
NR Band 66	24.50	24.50	1.25
NR Band 71	24.50	24.50	2.86
NR Band 77	26.80	26.80	2.38
NR Band 78	26.50	26.50	2.38

Notes:

1) Division Factors

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB

2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by $(8/2) \Rightarrow -6.02 dB$

3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB

4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01dB

2) Disclaimers: The Highest Tune up power and antenna gain in the above table are provided by the customer

5.2. Calculation Information

For conservative evaluation consideration, only maximum power of each frequency band based on the tighter limits respectively are used to calculate the boundary power density.

Based on the FCC KDB 447498 D01 and 47 CFR §2.1091, the DUT is evaluated as a mobile device.

$$S = \frac{PG}{4\pi d^2}$$

Where

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power density in milliwatts / square centimeter

5.3. Results

Frequency range	Limit(mW/cm ²)	Results(mW/cm ²)	Verdict
WCDMA Band 2	1.00	0.09	PASS
WCDMA Band 4	1.00	0.09	PASS
WCDMA Band 5	0.55	0.13	PASS
LTE Band 2	1.00	0.18	PASS
LTE Band 4	1.00	0.20	PASS
LTE Band 5	0.55	0.33	PASS
LTE Band 7	1.00	0.15	PASS
LTE Band 12	0.47	0.30	PASS
LTE Band 13	0.33	0.33	PASS
LTE Band 14	0.51	0.31	PASS
LTE Band 17	0.47	0.31	PASS
LTE Band 25	1.00	0.19	PASS
LTE Band 26	0.54	0.31	PASS
LTE Band 41	1.00	0.09	PASS
LTE Band 66	1.00	0.09	PASS
LTE Band 71	0.44	0.20	PASS
NR Band 2	1.00	0.06	PASS
NR Band 5	0.55	0.11	PASS
NR Band 7	1.00	0.07	PASS
NR Band 12	0.47	0.08	PASS
NR Band 14	0.53	0.08	PASS
NR Band 25	1.00	0.07	PASS
NR Band 26	0.54	0.10	PASS
NR Band 41	1.00	0.12	PASS
NR Band 66	1.00	0.07	PASS
NR Band 71	0.44	0.11	PASS
NR Band 77	1.00	0.16	PASS
NR Band 78	1.00	0.15	PASS

Chongqing Academy of Information and Communication Technology
Address: No. 8,Yuma Road, Chayuan New City, Nan'an District, Chongqing, P. R. China,401336 FAX:0086-23-88608777 Tel: 0086-23-88069965

5.4. Result of WCDMA Band 2

Test Results: MPE Limit Calculation: the EUT'S operating frequencies @ 1852.4 MHz ∼ 1907.6 MHz; The maximum conducted is 24.10 dBm. The maximum gain is 2.53 dBi. Therefore, maximum limit for general public RF exposure: 1.00 mW/cm².

$$S = \frac{PG}{4\pi d^2}$$

P= input power of the antenna (mW)

G = antenna gain (numeric)

r = distance to the center of radiation of antenna (in meter)=20 cm

 $S=0..09 \text{mW/cm}^2$

Therefore, at 20 cm the spectral power density is less than the 1.00 mW/cm² limit for uncontrolled exposure.

5.5. Result of WCDMA Band 4

Test Results: MPE Limit Calculation: the EUT'S operating frequencies @ 1712.4 MHz ~ 1752.5MHz; The maximum conducted is 24.20 dBm. The maximum gain is 2.53 dBi. Therefore, maximum limit for general public RF exposure: 1.00 mW/cm².

$$S = \frac{PG}{4\pi d^2}$$

P= input power of the antenna (mW)

G = antenna gain (numeric)

r = distance to the center of radiation of antenna (in meter)=20 cm

S=0.09 mW/cm²

Therefore, at 20 cm the spectral power density is less than the 1.00 mW/cm² limit for uncontrolled exposure.

5.6. Result of WCDMA Band 5

Test Results: MPE Limit Calculation: the EUT'S operating frequencies @ 826.4 MHz \sim 846.6 MHz; The maximum conducted is 25.30 dBm. The maximum gain is 2.86 dBi. Therefore, maximum limit for general public RF exposure: 826.4/1500=0.55 mW/cm².

$$S = \frac{PG}{4\pi d^2}$$

P= input power of the antenna (mW)

G = antenna gain (numeric)

r = distance to the center of radiation of antenna (in meter)=20 cm

S=0.13 mW/cm²

Therefore, at 20 cm the spectral power density is less than the 0.55 mW/cm² limit for uncontrolled exposure.

Chongqing Academy of Information and Communication Technology

5.7. Result of LTE Band 2

Test Results: MPE Limit Calculation: the EUT'S operating frequencies @ 1850.00 MHz~1909.90MHz; The maximum conducted is 28.40 dBm. The maximum gain is 1.25 dBi. Therefore, maximum limit for general public RF exposure: 1.00 mW/cm².

$$S = \frac{PG}{4\pi d^2}$$

P= input power of the antenna (mW)

G = antenna gain (numeric)

r = distance to the center of radiation of antenna (in meter)=20 cm

 $S=0.18 \text{ mW/cm}^2$

Therefore, at 20 cm the spectral power density is less than the 1.00 mW/cm² limit for uncontrolled exposure.

5.8. Result of LTE Band 4

Test Results: MPE Limit Calculation: the EUT'S operating frequencies @ 1710.0 MHz ~ 1754.9MHz; The maximum conducted is 28.80dBm. The maximum gain is 1.25 dBi. Therefore, maximum limit for general public RF exposure: 1.00 mW/cm².

$$S = \frac{PG}{4\pi d^2}$$

P= input power of the antenna (mW)

G = antenna gain (numeric)

r = distance to the center of radiation of antenna (in meter)=20 cm

S=0.20 mW/cm²

Therefore, at 20 cm the spectral power density is less than the 1.00 mW/cm² limit for uncontrolled exposure.

5.9. Result of LTE Band 5

Test Results: MPE Limit Calculation: the EUT'S operating frequencies @ 824.0 MHz ~ 848.9MHz; The maximum conducted is 29.40 dBm. The maximum gain is 2.86dBi. Therefore, maximum limit for general public RF exposure: 824.0/1500=0.55 mW/cm².

$$S = \frac{PG}{4\pi d^2}$$

P= input power of the antenna (mW)

G = antenna gain (numeric)

r = distance to the center of radiation of antenna (in meter)=20 cm

 $S=0.33 \text{ mW/cm}^2$

Therefore, at 20 cm the spectral power density is less than the 0.55 mW/cm² limit for uncontrolled exposure.

Chongqing Academy of Information and Communication Technology

5.10. Result of LTE Band 7

Test Results: MPE Limit Calculation: the EUT'S operating frequencies @ 2500.0MHz ~ 2569.9MHz; The maximum conducted is 27.70 dBm. The maximum gain is 1.15 dBi. Therefore, maximum limit for general public RF exposure: 1.00 mW/cm².

$$S = \frac{PG}{4\pi d^2}$$

P= input power of the antenna (mW)

G = antenna gain (numeric)

r = distance to the center of radiation of antenna (in meter)=20 cm

 $S=0.15 \text{ mW/cm}^2$

Therefore, at 20 cm the spectral power density is less than the 1.00 mW/cm² limit for uncontrolled exposure.

5.11. Result of LTE Band 12

Test Results: MPE Limit Calculation: the EUT'S operating frequencies @ 699.00 MHz ~ 715.90 MHz; The maximum conducted is 28.90 dBm. The maximum gain is 2.86 dBi. Therefore, maximum limit for general public RF exposure: 699.0/1500=0.47 mW/cm².

$$S = \frac{PG}{4\pi d^2}$$

P= input power of the antenna (mW)

G = antenna gain (numeric)

r = distance to the center of radiation of antenna (in meter)=20 cm

S=0.30 mW/cm²

Therefore, at 20 cm the spectral power density is less than the 0.47 mW/cm² limit for uncontrolled exposure.

5.12. Result of LTE Band 13

Test Results: MPE Limit Calculation: the EUT'S operating frequencies @ 746.00 MHz ~ 755.90 MHz; The maximum conducted is 29.30 dBm. The maximum gain is 2.86 dBi. Therefore, maximum limit for general public RF exposure: 746.0/1500=0.50 mW/cm².

$$S = \frac{PG}{4\pi d^2}$$

P= input power of the antenna (mW)

G = antenna gain (numeric)

r = distance to the center of radiation of antenna (in meter)=20 cm

 $S=0.33 \text{ mW/cm}^2$

Therefore, at 20 cm the spectral power density is less than the 0.50 mW/cm² limit for uncontrolled exposure.

Chongqing Academy of Information and Communication Technology

5.13. Result of LTE Band 14

Test Results: MPE Limit Calculation: the EUT'S operating frequencies @ 758.0 MHz ~ 767.9 MHz; The maximum conducted is 29.00 dBm. The maximum gain is 2.86 dBi. Therefore, maximum limit for general public RF exposure: 758.0/1500=0.51 mW/cm².

$$S = \frac{PG}{4\pi d^2}$$

P= input power of the antenna (mW)

G = antenna gain (numeric)

r = distance to the center of radiation of antenna (in meter)=20 cm

 $S=0.31 \text{ mW/cm}^2$

Therefore, at 20 cm the spectral power density is less than the 0.51 mW/cm² limit for uncontrolled exposure.

5.14. Result of LTE Band 17

Test Results: MPE Limit Calculation: the EUT'S operating frequencies @ 704.0 MHz ~ 715.9MHz; The maximum conducted is 29.00 dBm. The maximum gain is 2.86 dBi. Therefore, maximum limit for general public RF exposure: 704.0/1500=0.47 mW/cm².

$$S = \frac{PG}{4\pi d^2}$$

P= input power of the antenna (mW)

G = antenna gain (numeric)

r = distance to the center of radiation of antenna (in meter)=20 cm

S=0.31 mW/cm²

Therefore, at 20 cm the spectral power density is less than the 0.47 mW/cm² limit for uncontrolled exposure.

5.15. Result of LTE Band 25

Test Results: MPE Limit Calculation: the EUT'S operating frequencies @ 1850.0 MHz ~ 1914.9MHz; The maximum conducted is 28.50 dBm. The maximum gain is 1.25 dBi. Therefore, maximum limit for general public RF exposure: 1.00 mW/cm².

$$S = \frac{PG}{4\pi d^2}$$

P= input power of the antenna (mW)

G = antenna gain (numeric)

r = distance to the center of radiation of antenna (in meter)=20 cm

 $S=0.19 \text{mW/cm}^2$

Therefore, at 20 cm the spectral power density is less than the 1.00 mW/cm² limit for uncontrolled exposure.

Chongging Academy of Information and Communication Technology

5.16. Result of LTE Band 26

Test Results: MPE Limit Calculation: the EUT'S operating frequencies @ 807.0 MHz \sim 823.9 MHz; The maximum conducted is 29.00 dBm. The maximum gain is 2.86 dBi. Therefore, maximum limit for general public RF exposure: 807.00/1500=0.54 mW/cm².

$$S = \frac{PG}{4\pi d^2}$$

P= input power of the antenna (mW)

G = antenna gain (numeric)

r = distance to the center of radiation of antenna (in meter)=20 cm

 $S=0.31 \text{ mW/cm}^2$

Therefore, at 20 cm the spectral power density is less than the 0.54 mW/cm² limit for uncontrolled exposure.

5.17. Result of LTE Band 41

Test Results: MPE Limit Calculation: the EUT'S operating frequencies @ 2496.00 MHz~2689.90 MHz; The maximum conducted is 25.20 dBm. The maximum gain is 1.19 dBi. Therefore, maximum limit for general public RF exposure: 1.00 mW/cm².

$$S = \frac{PG}{4\pi d^2}$$

P= input power of the antenna (mW)

G = antenna gain (numeric)

r = distance to the center of radiation of antenna (in meter)=20 cm

S=0.09 mW/cm²

Therefore, at 20 cm the spectral power density is less than the 1.00 mW/cm² limit for uncontrolled exposure.

5.18. Result of LTE Band 66

Test Results: MPE Limit Calculation: the EUT'S operating frequencies @ 1710.0 MHz~1780.0 MHz; The maximum conducted is 25.20 dBm. The maximum gain is 1.25 dBi. Therefore, maximum limit for general public RF exposure: 1.00 mW/cm².

$$S = \frac{PG}{4\pi d^2}$$

P= input power of the antenna (mW)

G = antenna gain (numeric)

r = distance to the center of radiation of antenna (in meter)=20 cm

 $S=0.09 \text{ mW/cm}^2$

Therefore, at 20 cm the spectral power density is less than the 1.00 mW/cm² limit for uncontrolled exposure.

Chongqing Academy of Information and Communication Technology

5.19. Result of LTE Band 71

Test Results: MPE Limit Calculation: the EUT'S operating frequencies @ $663.0 \text{MHz} \sim 698.0 \text{MHz}$; The maximum conducted is 27.20 dBm. The maximum gain is 2.86 dBi. Therefore, maximum limit for general public RF exposure: $663.0/1500 = 0.44 \text{ mW/cm}^2$.

$$S = \frac{PG}{4\pi d^2}$$

P= input power of the antenna (mW)

G = antenna gain (numeric)

r = distance to the center of radiation of antenna (in meter)=20 cm

 $S=0.20 \text{mW/cm}^2$

Therefore, at 20 cm the spectral power density is less than the 0.44 mW/cm² limit for uncontrolled exposure.

5.20. Result of NR Band 2

Test Results: MPE Limit Calculation: the EUT'S operating frequencies @ 1850.0 MHz~1910.0 MHz; The maximum conducted is 23.71 dBm. The maximum gain is 1.25 dBi. Therefore, maximum limit for general public RF exposure: 1.00 mW/cm².

$$S = \frac{PG}{4\pi d^2}$$

P= input power of the antenna (mW)

G = antenna gain (numeric)

r = distance to the center of radiation of antenna (in meter)=20 cm

 $S=0.06 \text{ mW/cm}^2$

Therefore, at 20 cm the spectral power density is less than the 1.00 mW/cm² limit for uncontrolled exposure.

5.21. Result of NR Band 5

Test Results: MPE Limit Calculation: the EUT'S operating frequencies @ 824.0 MHz ~ 849.0 MHz; The maximum conducted is 24.40 dBm. The maximum gain is 2.86 dBi. Therefore, maximum limit for general public RF exposure: 824.0/1500=0.55 mW/cm².

$$S = \frac{PG}{4\pi d^2}$$

P= input power of the antenna (mW)

G = antenna gain (numeric)

r = distance to the center of radiation of antenna (in meter)=20 cm

S=0.11 mW/cm²

Therefore, at 20 cm the spectral power density is less than the 0.55 mW/cm² limit for uncontrolled exposure.

Chongqing Academy of Information and Communication Technology

5.22. Result of NR Band 7

Test Results: MPE Limit Calculation: the EUT'S operating frequencies @2500.0 MHz ~ 2570.0 MHz; The maximum conducted is 24.50 dBm. The maximum gain is 1.15 dBi. Therefore, maximum limit for general public RF exposure: 1.00 mW/cm².

$$S = \frac{PG}{4\pi d^2}$$

P= input power of the antenna (mW)

G = antenna gain (numeric)

r = distance to the center of radiation of antenna (in meter)=20 cm

 $S=0.07 \text{ mW/cm}^2$

Therefore, at 20 cm the spectral power density is less than the 1.00 mW/cm² limit for uncontrolled exposure.

5.23. Result of NR Band 12

Test Results: MPE Limit Calculation: the EUT'S operating frequencies @ 699.0 MHz \sim 716.0 MHz; The maximum conducted is 23.00 dBm. The maximum gain is 2.86 dBi. Therefore, maximum limit for general public RF exposure: 699.0/1500=0.47 mW/cm².

$$S = \frac{PG}{4\pi d^2}$$

P= input power of the antenna (mW)

G = antenna gain (numeric)

r = distance to the center of radiation of antenna (in meter)=20 cm

S=0.08mW/cm 2

Therefore, at 20 cm the spectral power density is less than the 0.47 mW/cm² limit for uncontrolled exposure.

5.24. Result of NR Band 14

Test Results: MPE Limit Calculation: the EUT'S operating frequencies @ $788.0 \text{ MHz} \sim 798.0 \text{ MHz}$; The maximum conducted is 24.00 dBm. The maximum gain is 1.89 dBi. Therefore, maximum limit for general public RF exposure: $788.0/1500 = 0.53 \text{ mW/cm}^2$.

$$S = \frac{PG}{4\pi d^2}$$

P= input power of the antenna (mW)

G = antenna gain (numeric)

r = distance to the center of radiation of antenna (in meter)=20 cm

 $S=0.08 \text{mW/cm}^2$

Therefore, at 20 cm the spectral power density is less than the 0.53 mW/cm² limit for uncontrolled exposure.

Chongqing Academy of Information and Communication Technology

5.25. Result of NR Band 25

Test Results: MPE Limit Calculation: the EUT'S operating frequencies @ 1850.0 MHz ~ 1915.0 MHz; The maximum conducted is 24.30 dBm. The maximum gain is 1.25 dBi. Therefore, maximum limit for general public RF exposure: 1.00 mW/cm².

$$S = \frac{PG}{4\pi d^2}$$

P= input power of the antenna (mW)

G = antenna gain (numeric)

r = distance to the center of radiation of antenna (in meter)=20 cm

 $S=0.07 \text{mW/cm}^2$

Therefore, at 20 cm the spectral power density is less than the 1.00 mW/cm² limit for uncontrolled exposure.

5.26. Result of NR Band 26

Test Results: MPE Limit Calculation: the EUT'S operating frequencies @ 814.0 MHz ~ 849.0 MHz; The maximum conducted is 24.00 dBm. The maximum gain is 2.86 dBi. Therefore, maximum limit for general public RF exposure: 814.0/1500=0.54 mW/cm².

$$S = \frac{PG}{4\pi d^2}$$

P= input power of the antenna (mW)

G = antenna gain (numeric)

r = distance to the center of radiation of antenna (in meter)=20 cm

S=0.15mW/cm²

Therefore, at 20 cm the spectral power density is less than the 0.54 mW/cm² limit for uncontrolled exposure.

5.27. Result of NR Band 41

Test Results: MPE Limit Calculation: the EUT'S operating frequencies @ 2496.0 MHz ~ 2690.0 MHz; The maximum conducted is 26.70 dBm. The maximum gain is 1.19 dBi. Therefore, maximum limit for general public RF exposure: 1.00 mW/cm².

$$S = \frac{PG}{4\pi d^2}$$

P= input power of the antenna (mW)

G = antenna gain (numeric)

r = distance to the center of radiation of antenna (in meter)=20 cm

 $S=0.10 \text{ mW/cm}^2$

Therefore, at 20 cm the spectral power density is less than the 1.00 mW/cm² limit for uncontrolled exposure.

Chongqing Academy of Information and Communication Technology

5.28. Result of NR Band 66

Test Results: MPE Limit Calculation: the EUT'S operating frequencies @ 1710.0 MHz ~ 1780.0 MHz; The maximum conducted is 24.50 dBm. The maximum gain is 1.25 dBi. Therefore, maximum limit for general public RF exposure: 1.00 mW/cm².

$$S = \frac{PG}{4\pi d^2}$$

P= input power of the antenna (mW)

G = antenna gain (numeric)

r = distance to the center of radiation of antenna (in meter)=20 cm

 $S=0.07 \text{ mW/cm}^2$

Therefore, at 20 cm the spectral power density is less than the 1.00 mW/cm² limit for uncontrolled exposure.

5.29. Result of NR Band 71

Test Results: MPE Limit Calculation: the EUT'S operating frequencies @ 663.0 MHz ~ 698.0 MHz; The maximum conducted is 24.50 dBm. The maximum gain is 2.86 dBi. Therefore, maximum limit for general public RF exposure:663.0/1500=0.44mW/cm².

$$S = \frac{PG}{4\pi d^2}$$

P= input power of the antenna (mW)

G = antenna gain (numeric)

r = distance to the center of radiation of antenna (in meter)=20 cm

S=0.11 mW/cm²

Therefore, at 20 cm the spectral power density is less than the 0.44 mW/cm² limit for uncontrolled exposure.

5.30. Result of NR Band 77

Test Results: MPE Limit Calculation: the EUT'S operating frequencies @ 3300.0 MHz ~ 4200.0 MHz; The maximum conducted is 26.80 dBm. The maximum gain is 2.38 dBi. Therefore, maximum limit for general public RF exposure: 1.00 mW/cm².

$$S = \frac{PG}{4\pi d^2}$$

P= input power of the antenna (mW)

G = antenna gain (numeric)

r = distance to the center of radiation of antenna (in meter)=20 cm

S=0.16 mW/cm²

Therefore, at 20 cm the spectral power density is less than the 1.00 mW/cm² limit for uncontrolled exposure.

Chongqing Academy of Information and Communication Technology

5.31. Result of NR Band 78

Test Results: MPE Limit Calculation: the EUT'S operating frequencies @ 3300.0 MHz ~ 3800.0 MHz; The maximum conducted is 26.50 dBm. The maximum gain is 2.38 dBi. Therefore, maximum limit for general public RF exposure: 1.00 mW/cm².

$$S = \frac{PG}{4\pi d^2}$$

P= input power of the antenna (mW)

G = antenna gain (numeric)

r = distance to the center of radiation of antenna (in meter)=20 cm

 $S=0.15 \text{ mW/cm}^2$

Therefore, at 20 cm the spectral power density is less than the 1.00 mW/cm² limit for uncontrolled exposure.

ANNEX A: EUT photograph See the document" SIMCom Module Photos".

END OF REPORT