**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 1 of 71

**Applicant**: SIMCom Wireless Solutions Limited

Address of Applicant : SIMCom Headquarters Building, Building 3, No.289

Linhong Road, Changning District, Shanghai, China

Product Name : Wi-Fi & BT Module

Brand Name : SIMCom Model Name : W58

Sample Acquisition Method : Sent by Client

**Sample No.** : E22110054-01#05

E22110054-01#08

 FCC ID
 : 2AJYU-8PYA00C

 ISED Number
 : 23761-8PYA010

Standards : FCC CFR47 Part 15, Subpart C

RSS-Gen (Issue 5, Amd.2-Feb 2021) RSS-247 (Issue 2, February 2017)

**Date of Receipt** : 2023-02-15

**Date of Test** : 2023-03-13 ~ 2023-04-17

**Date of Issue** : 2023-04-18

#### Remark:

This report details the results of the testing carried out on one sample, the results contained in this report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

Prepared by:

| The first of the control of the con

**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 2 of 71

# **Contents**

| 1   | GENERAL INFORMATION                                         | 3  |
|-----|-------------------------------------------------------------|----|
| 1.1 | TESTING LABORATORY                                          | 3  |
| 1.2 | DETAILS OF APPLICATION                                      | 3  |
| 1.3 | DETAILS OF EUT                                              | 3  |
| 1.4 | TEST METHODOLOGY                                            | 5  |
| 1.5 | TEST SUMMARY                                                | 5  |
| 2   | TEST CONDITION                                              | 6  |
| 2.1 | ENVIRONMENTAL CONDITIONS                                    | 6  |
| 2.2 | EQUIPMENT LIST                                              | 6  |
| 2.3 | MEASUREMENT UNCERTAINTY                                     | 7  |
| 3   | TEST SET-UP AND OPERATION MODES                             | 8  |
| 3.1 | DETAILS OF TEST MODE                                        | 8  |
| 3.2 | SPECIAL ACCESSORIES AND AUXILIARY EQUIPMENT                 | 8  |
| 3.3 | SUPPORT SOFTWARE                                            | 8  |
| 3.4 | TEST SETUP DIAGRAM                                          | 9  |
| 4   | TEST RESULTS                                                | 11 |
| 4.1 | Transmitter Requirement & Test Suites                       | 11 |
| 4.1 | 1.1 Antenna Requirement                                     | 11 |
| 4.1 |                                                             |    |
| 4.1 | 1.3 20dB Bandwidth and 99% Bandwidth                        |    |
| 4.1 | 1.4 Conducted Spurious Emission & Authorized-band band-edge | 24 |
| 4.1 |                                                             |    |
| 4.1 | 1.6 Band Edge (Restricted-band band-edge)                   | 50 |
| 4.1 |                                                             |    |
| 4.1 | ,, ,                                                        |    |
| 4.1 |                                                             |    |
|     | MAINS EMISSIONS                                             |    |
| 4.2 | 2.1 Conducted Emission on AC Mains                          | 63 |
| 5   | APPENDIXES                                                  | 66 |
|     | PHOTOGRAPHS OF THE SAMPLE                                   |    |
|     | SET-UP FOR CONDUCTED EMISSIONS                              |    |
|     | SET-UP FOR CONDUCTED RF TEST AT ANTENNA PORT                |    |
|     | SET-UP FOR SPURIOUS EMISSIONS BELOW 1GHZ                    |    |
| 55  | SET UP FOR SPURIOUS EMISSIONS AROUS 1CH7                    | 71 |

**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 3 of 71

#### 1 General Information

### 1.1 Testing Laboratory

| ISED CAB identifier # | CN0081                                               |  |
|-----------------------|------------------------------------------------------|--|
| Company Name          | ICAS Testing Technology Service (Shanghai) Co., Ltd. |  |
| Address               | No.1298 Pingan Rd, Minhang District, Shanghai, China |  |
| Telephone             | 0086 21-51682999                                     |  |
| Fax                   | 0086 21-54711112                                     |  |
| Homepage              | www.icasiso.com                                      |  |

### 1.2 Details of Application

| Applicant Company Name    | SIMCom Wireless Solutions Limited                              |  |  |  |  |  |
|---------------------------|----------------------------------------------------------------|--|--|--|--|--|
| Address                   | SIMCom Headquarters Building, Building 3, No.289 Linhong Road, |  |  |  |  |  |
| Address                   | Changning District, Shanghai, China                            |  |  |  |  |  |
| Contact Person            | Yongsheng Li                                                   |  |  |  |  |  |
| Telephone                 | +86 21 3252 3134                                               |  |  |  |  |  |
| Email                     | yongsheng.li@simcom.com                                        |  |  |  |  |  |
| Manufacturer Company Name | SIMCom Wireless Solutions Limited                              |  |  |  |  |  |
| Address                   | SIMCom Headquarters Building, Building 3, No.289 Linhong Road, |  |  |  |  |  |
| Address                   | Changning District, Shanghai, China                            |  |  |  |  |  |
| Factory Company Name      | SIMCom Wireless Solutions Limited                              |  |  |  |  |  |
| Address                   | SIMCom Headquarters Building, Building 3, No.289 Linhong Road, |  |  |  |  |  |
| Audiess                   | Changning District, Shanghai, China                            |  |  |  |  |  |

#### 1.3 Details of EUT

| Product Name              | Wi-Fi & BT Module            |
|---------------------------|------------------------------|
| Brand Name                | SIMCom                       |
| Test Model Name           | W58                          |
| FCC ID                    | 2AJYU-8PYA00C                |
| ISED Number               | 23761-8PYA010                |
| Mode of Operation         | Bluetooth BR/EDR Version 4.0 |
| Frequency Range           | 2402MHz ~ 24830MHz           |
| Number of Channels        | 79 (at intervals of 1 MHz)   |
| Modulation Type           | GFSK, π/4-DQPSK, 8-DPSK      |
| Antenna Type              | External Antenna             |
| Antenna Gain              | 2.97dBi                      |
| Extreme Temperature Range | -40℃~ +85℃                   |
| Test Voltage              | DC 3.3V                      |

**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 4 of 71

| Hardware version            | W58_V2.02_PCB                    |
|-----------------------------|----------------------------------|
| Software version            | LE20B01V04SIM7600G22_MIFI2       |
| Test SW Version             | BL410_R; BL410_E                 |
| RF power setting in TEST SW | QRCT_Power level setting_Default |

#### Note:

- 1. The above information was declared by the manufacture.
- 2. For more details, please refer to the User's manual of the EUT.

#### **Channel List**

| Channel | Frequency | Channel | Frequency | Channel | Frequency |
|---------|-----------|---------|-----------|---------|-----------|
| 0       | 2.402GHz  | 27      | 2.429GHz  | 54      | 2.456GHz  |
| 1       | 2.403GHz  | 28      | 2.430GHz  | 55      | 2.457GHz  |
| 2       | 2.404GHz  | 29      | 2.431GHz  | 56      | 2.458GHz  |
| 3       | 2.405GHz  | 30      | 2.432GHz  | 57      | 2.459GHz  |
| 4       | 2.406GHz  | 31      | 2.433GHz  | 58      | 2.460GHz  |
| 5       | 2.407GHz  | 32      | 2.434GHz  | 59      | 2.461GHz  |
| 6       | 2.408GHz  | 33      | 2.435GHz  | 60      | 2.462GHz  |
| 7       | 2.409GHz  | 34      | 2.436GHz  | 61      | 2.463GHz  |
| 8       | 2.410GHz  | 35      | 2.437GHz  | 62      | 2.464GHz  |
| 9       | 2.411GHz  | 36      | 2.438GHz  | 63      | 2.465GHz  |
| 10      | 2.412GHz  | 37      | 2.439GHz  | 64      | 2.466GHz  |
| 11      | 2.413GHz  | 38      | 2.440GHz  | 65      | 2.467GHz  |
| 12      | 2.414GHz  | 39      | 2.441GHz  | 66      | 2.468GHz  |
| 13      | 2.415GHz  | 40      | 2.442GHz  | 67      | 2.469GHz  |
| 14      | 2.416GHz  | 41      | 2.443GHz  | 68      | 2.470GHz  |
| 15      | 2.417GHz  | 42      | 2.444GHz  | 69      | 2.471GHz  |
| 16      | 2.418GHz  | 43      | 2.445GHz  | 70      | 2.472GHz  |
| 17      | 2.419GHz  | 44      | 2.446GHz  | 71      | 2.473GHz  |
| 18      | 2.420GHz  | 45      | 2.447GHz  | 72      | 2.474GHz  |
| 19      | 2.421GHz  | 46      | 2.448GHz  | 73      | 2.475GHz  |
| 20      | 2.422GHz  | 47      | 2.449GHz  | 74      | 2.476GHz  |
| 21      | 2.423GHz  | 48      | 2.450GHz  | 75      | 2.477GHz  |
| 22      | 2.424GHz  | 49      | 2.451GHz  | 76      | 2.478GHz  |
| 23      | 2.425GHz  | 50      | 2.452GHz  | 77      | 2.479GHz  |
| 24      | 2.426GHz  | 51      | 2.453GHz  | 78      | 2.480GHz  |
| 25      | 2.427GHz  | 52      | 2.454GHz  |         |           |
| 26      | 2.428GHz  | 53      | 2.455GHz  |         |           |

**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 5 of 71

### 1.4 Test Methodology

| 47 CFR Part 15, Subpart C                               | Telecommunication-Radio Frequency Devices-Intentional Radiators       |  |
|---------------------------------------------------------|-----------------------------------------------------------------------|--|
| KDB Publication 558074 D01 v05r02 15.247 Meas Guidance. |                                                                       |  |
| RSS-Gen (Issue 5, Amd.2-Feb 2021)                       | General Requirements for Compliance of Radio Apparatus                |  |
| RSS-247 (Issue 2, February 2017)                        | Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) |  |
| R55-247 (Issue 2, February 2017)                        | and Licence-Exempt Local Area Network (LE-LAN) Devices                |  |
| ANSI C63.10-2013                                        | American National Standard for Testing Unlicensed Wireless Devices    |  |

#### Note(s):

All test items were verified and recorded according to the standards and without any addition/deviation/exclusion during the test.

### 1.5 Test Summary

| Test Item                             | FCC Rules                  | ISED Rules                  | Result |
|---------------------------------------|----------------------------|-----------------------------|--------|
| Antenna Requirement                   | FCC Part 15.247(b)(4),     | RSS-247 5.4(f), RSS-GEN 6.8 | PASS   |
| Antenna Nequirement                   | FCC Part 15.203            | 100-247 3.4(I), 100-0EN 0.0 |        |
| Maximum Conducted Peak Output Power   | FCC Part 15.247(b)(1)      | RSS-247 5.1(b)              | DACC   |
| and E.I.R.P                           | FCC Part 15.247(b)(1)      | K33-247 5.1(b)              | PASS   |
| 20dB Bandwidth and 99% Bandwidth      | FCC Part 15.247(a)(1)      | RSS-247 5.1(a), RSS-Gen 6.7 | PASS   |
| Conducted Spurious Emission &         | ECC Dort 15 247(d)         | RSS-247 5.5                 | PASS   |
| Authorized-band band-edge             | FCC Part 15.247(d)         | RSS-247 5.5                 | PASS   |
| Radiated Emission                     | FCC Part 15.247(d),        | RSS-GEN 8.9                 | PASS   |
| Radiated Efflission                   | 15.205, 15.209             | K35-GEN 6.9                 |        |
| Pand Edge (Postricted band band adge) | FCC Part 15.247(d),        | RSS-GEN 8.10                | PASS   |
| Band Edge (Restricted-band band-edge) | 15.205, 15.209             | K33-GEN 6.10                | PASS   |
| Hopping Frequency Separation          | FCC Part 15.247(a)(1)      | RSS-247 5.1(b)              | PASS   |
| Number of Hopping Frequency           | FCC Part 15.247(a)(1)(iii) | RSS-247 5.1(d)              | PASS   |
| Time of Occupancy                     | FCC Part 15.247(a)(1)(iii) | RSS-247 5.1(d)              | PASS   |
| Conducted Emission on AC Mains        | FCC Part 15.207(a)         | RSS-Gen 8.8                 | PASS   |

**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 6 of 71

### 2 Test Condition

### 2.1 Environmental conditions

| Temperature (°C)           | 18-25    |
|----------------------------|----------|
| Humidity (%RH)             | 40-65    |
| Barometric Pressure (mbar) | 960-1060 |

## 2.2 Equipment List

| Name of Equipment               | Manufacturer    | Model     | Serial No.        | Cal. Date  | Cal. Due   |
|---------------------------------|-----------------|-----------|-------------------|------------|------------|
| Spectrum Analyzer               | Keysight        | N9020B    | MY59260184        | 2022-08-02 | 2023-08-01 |
| Spectrum Analyzer               | Keysight        | N9020A    | MY54101709        | 2022-08-02 | 2023-08-01 |
| Spectrum Analyzer               | Rohde & Schwarz | FSV40N    | 101450            | 2022-06-10 | 2023-06-09 |
| Signal Generator                | Rohde & Schwarz | SMR27     | 100184            | 2022-08-02 | 2023-08-01 |
| EMI Test Receiver               | Rohde & Schwarz | ESR 7     | 101911            | 2022-06-10 | 2023-06-09 |
| EMI Test Receiver               | Rohde & Schwarz | ESPI3     | 100173            | 2022-06-10 | 2023-06-09 |
| V-network                       | SCHWARZBECK     | NSLK8127  | 8127-902          | 2022-06-10 | 2023-06-09 |
| Broadband Antenna               | SCHWARZBECK     | VULB9163  | 9163-1037         | 2021-06-08 | 2023-06-07 |
| Horn Antenna                    | SCHWARZBECK     | BBHA9120D | 9120D-1775        | 2021-06-08 | 2023-06-07 |
| Loop Antenna                    | SCHWARZBECK     | FMZB 1513 | /                 | 2022-06-10 | 2023-06-09 |
| Broadband Preamplifier          | SCHWARZBECK     | BBV 9718  | 346               | 2022-06-10 | 2023-06-09 |
| EMC chamber 9*6*6 (L*W*H)       | CHANGNING       | 966       | N/A               | 2022-06-10 | 2023-06-09 |
| Shielded Enclosure 8*5*4(L*W*H) | CHANGNING       | 854       | N/A               | 2022-06-10 | 2023-06-09 |
| Test Software                   | BL              | BL410_E   | Version:1.0.0.117 | N/A        | N/A        |
| Test Software                   | BL              | BL410_R   | Version:2.1.1.409 | N/A        | N/A        |

**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 7 of 71

#### 2.3 Measurement Uncertainty

The uncertainty is calculated using the methods suggested in the "Guide to the Expression of Uncertainty in measurement" (GUM) published by CISPR and ANSI. The reported uncertainty of measurement  $y \pm U$ , where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95.45%.

| Parameter                       | Uncertainty   |           |
|---------------------------------|---------------|-----------|
| Antenna Port Conducted Emission | < 1GHz        | ± 1.5 dB  |
| Antenna Port Conducted Emission | > 1GHz        | ± 1.5 dB  |
|                                 | 9KHz – 30MHz  | ± 3.42 dB |
| Radiated Emission               | 30 MHz – 1GHz | ± 5.00 dB |
|                                 | > 1GHz        | ± 4.88 dB |
| Conducted Emission on AC Mains  | 150kHz-30MHz  | ± 2.68 dB |
| Occupied Channel Bandwidth      |               | ±5 %      |

**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 8 of 71

### 3 Test Set-up and Operation Modes

#### 3.1 Details of Test Mode

Using test software was control EUT work in continuous transmitter and receiver mode. Select test channel as below:

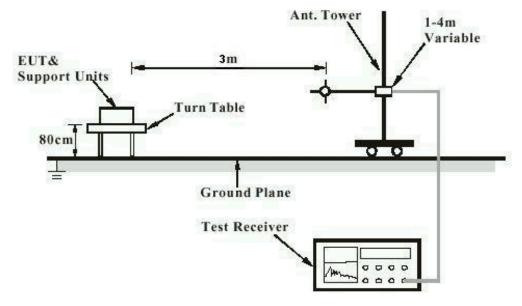
| Channel                    | Frequency |
|----------------------------|-----------|
| The lowest channel (CH0)   | 2402MHz   |
| The middle channel (CH39)  | 2441MHz   |
| The Highest channel (CH78) | 2480MHz   |

The basic operation modes are:

- A. On
  - 1. BR/EDR mode
    - a. Transmitting
      - i. Low Channel
      - ii. Middle Channel
      - iii. High Channel
      - iv. Hopping mode
    - b. Receiving
  - 2. Normal working with Bluetooth on
- B. Standby
- C. Off

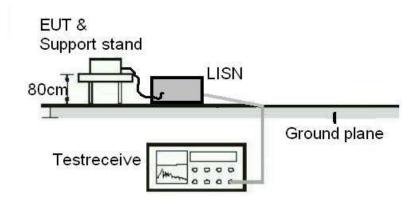
### 3.2 Special Accessories and Auxiliary Equipment

| Description     | Manufacturer                                 | Model Name              | Serial No.       |
|-----------------|----------------------------------------------|-------------------------|------------------|
| Laptop          | Lenovo                                       | TP00083A                | PF-0PRDGN 17/03  |
| Adapter         | Something High Electric(Xiamen) Company Inc. | P-050B-050200EU         | N/A              |
| EVB Debug Board | SIMCom                                       | 8PYA00-SIMCOM-EVB_V1.02 | N/A              |
| USB Cable       | SIMCom                                       | N/A                     | 1.00m Unshielded |


#### 3.3 Support Software

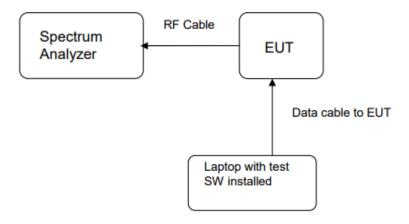
| Description | Manufacturer | Software Name            |
|-------------|--------------|--------------------------|
| Software    | Qualcomm     | QRCT Version 4.0.00166.0 |

**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 9 of 71


#### 3.4 Test Setup Diagram

#### **Diagram of Measurement Configuration for Radiation Test**




Note: Measurements above 1GHz are done with a table height of 1.5m. In addition, there is RF absorbing material on the floor of the test site for above 1GHz measurement.

#### **Diagram of Measurement Configuration for Conduction Test**



**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 10 of 71

### **Diagram of Measurement Configuration for Transmitter Test**



**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 11 of 71

#### 4 Test Results

#### 4.1 Transmitter Requirement & Test Suites

#### 4.1.1 Antenna Requirement

RESULT: PASS

Test standard : FCC Part 15.247(b)(4), Part 15.203

RSS-247 5.4(f), RSS-GEN 6.8

Requirement : The use of approved antennas only with directional

gains that do not exceed 6dBi

According to the manufacturer declaration, the EUT has an antenna with a directional gain of 2.97dBi. The antenna is external antenna with no possibility of replacement with a non-approved antenna by the end-user.

Therefore, the EUT is considered to comply with this provision.

**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 12 of 71

### 4.1.2 Maximum Conducted Peak Output Power and E.I.R.P

RESULT: PASS

Test standard : FCC Part 15.247(b)(1), RSS-247 5.1(b)

Requirement : ANSI C63.10-2013 clause 7.8.5,

KDB 558074 clause 2.2

Kind of test site : Shielded room

**Test setup** 

Test Channel : Low/Middle/High

Operation Mode : A.1.a

Ambient temperature : 24.9°C

Relative humidity : 57%

**Table 1: Maximum Conducted Peak Output Power** 

| Test Mode | Test Channel Measured Peak Output Power |       | Limit |         |
|-----------|-----------------------------------------|-------|-------|---------|
|           | (MHz)                                   | (dBm) | (mW)  | (W)     |
|           | 2402                                    | 6.323 | 4.288 |         |
| GFSK      | 2441                                    | 8.076 | 6.421 | < 1     |
|           | 2480                                    | 6.652 | 4.626 |         |
|           | 2402                                    | 5.415 | 3.479 |         |
| π/4-DQPSK | 2441                                    | 7.104 | 5.133 | < 0.125 |
|           | 2480                                    | 5.650 | 3.673 |         |
| 8-DPSK    | 2402                                    | 5.669 | 3.689 |         |
|           | 2441                                    | 7.450 | 5.559 | < 0.125 |
|           | 2480                                    | 5.947 | 3.933 |         |

Table 2: E.I.R.P

| Took Made | Test Channel | E.I.R.P |        | Limit |
|-----------|--------------|---------|--------|-------|
| Test Mode | (MHz)        | (dBm)   | (mW)   | (W)   |
|           | 2402         | 9.293   | 8.498  |       |
| GFSK      | 2441         | 11.046  | 12.723 |       |
|           | 2480         | 9.622   | 9.166  |       |
|           | 2402         | 8.385   | 6.894  |       |
| π/4-DQPSK | 2441         | 10.074  | 10.172 | < 4   |
|           | 2480         | 8.620   | 7.278  |       |
| 8-DPSK    | 2402         | 8.639   | 7.310  |       |
|           | 2441         | 10.420  | 11.015 |       |
|           | 2480         | 8.917   | 7.793  |       |

Note: The antenna gain is 2.97dBi

**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 13 of 71

Figure 1:The plots of Maximum Conducted Peak Output Power, 2402MHz, GFSK



Figure 2: The plots of Maximum Conducted Peak Output Power, 2441MHz, GFSK



**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 14 of 71

Figure 3: The plots of Maximum Conducted Peak Output Power, 2480MHz, GFSK



Figure 4: The plots of Maximum Conducted Peak Output Power, 2402MHz, π/4-DQPSK



**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 15 of 71

Figure 5: The plots of Maximum Conducted Peak Output Power, 2441MHz, π/4-DQPSK



Figure 6: The plots of Maximum Conducted Peak Output Power, 2480MHz, π/4-DQPSK



**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 16 of 71

Figure 7: The plots of Maximum Conducted Peak Output Power, 2402MHz, 8-DPSK



Figure 8: The plots of Maximum Conducted Peak Output Power, 2441MHz, 8-DPSK



**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 17 of 71

Figure 9: The plots of Maximum Conducted Peak Output Power, 2480MHz, 8-DPSK



**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 18 of 71

#### 4.1.3 20dB Bandwidth and 99% Bandwidth

RESULT: PASS

Test standard : FCC Part 15.247(a)(1),

RSS-247 5.1(a), RSS-Gen 6.7

Requirement : ANSI C63.10-2013 clause 7.8.7

Kind of test site : Shielded room

**Test setup** 

Test Channel : Low/Middle/High

Operation Mode : A.1.a

Ambient temperature : 24.9°C

Relative humidity : 57%

Table 3: 20dB Bandwidth and 99% Bandwidth

| Test Mode | Test Channel<br>(MHz) | 20dB Bandwidth (MHz) | 99% Bandwidth (MHz) |
|-----------|-----------------------|----------------------|---------------------|
|           | 2402                  | 0.9586               | 0.9006              |
| GFSK      | 2441                  | 0.9590               | 0.9022              |
|           | 2480                  | 0.9583               | 0.9016              |
|           | 2402                  | 1.2820               | 1.1780              |
| π/4-DQPSK | 2441                  | 1.2820               | 1.1762              |
|           | 2480                  | 1.2820               | 1.1749              |
|           | 2402                  | 1.2940               | 1.1801              |
| 8-DPSK    | 2441                  | 1.2950               | 1.1813              |
|           | 2480                  | 1.2930               | 1.1819              |

**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 19 of 71

Figure 10: The plots of 20dB Bandwidth and 99% Bandwidth, 2402MHz, GFSK

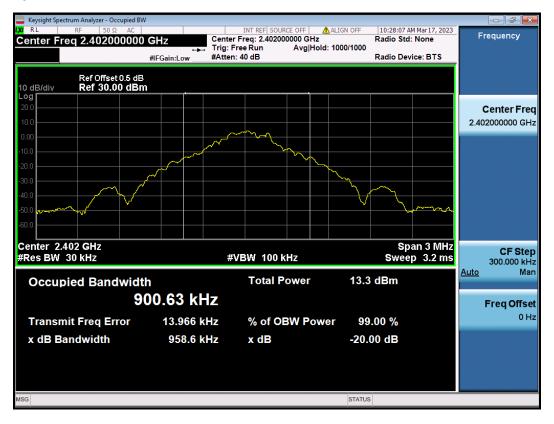



Figure 11: The plots of 20dB Bandwidth and 99% Bandwidth, 2441MHz, GFSK



**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 20 of 71

Figure 12: The plots of 20dB Bandwidth and 99% Bandwidth, 2480MHz, GFSK



Figure 13: The plots of 20dB Bandwidth and 99% Bandwidth, 2402MHz,  $\pi$ /4-DQPSK



**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 21 of 71

Figure 14: The plots of 20dB Bandwidth and 99% Bandwidth, 2441MHz, π/4-DQPSK



Figure 15: The plots of 20dB Bandwidth and 99% Bandwidth, 2480MHz, π/4-DQPSK



**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 22 of 71

Figure 16: The plots of 20dB Bandwidth and 99% Bandwidth, 2402MHz, 8-DPSK

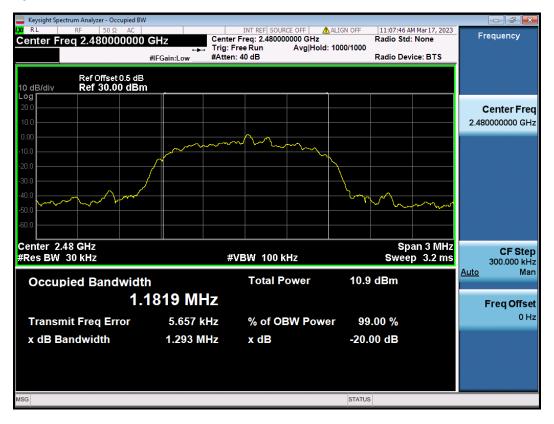




Figure 17: The plots of 20dB Bandwidth and 99% Bandwidth, 2441MHz, 8-DPSK



**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 23 of 71

Figure 18: The plots of 20dB Bandwidth and 99% Bandwidth, 2480MHz, 8-DPSK



**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 24 of 71

### 4.1.4 Conducted Spurious Emission & Authorized-band band-edge

RESULT: PASS

Test standard : FCC Part 15.247(d), RSS-247 5.5 Requirement : ANSI C63.10-2013 clause 7.8.8

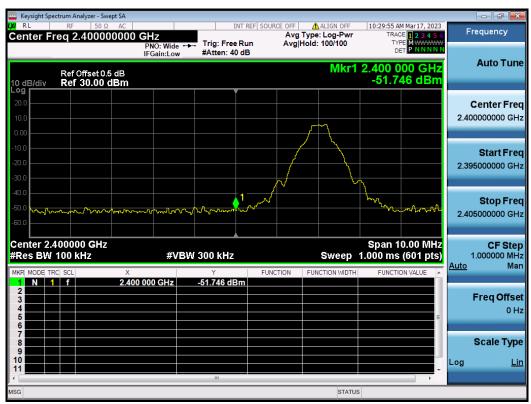
Kind of test site : Shielded room

**Test setup** 

Test Channel : Low/Middle/High for spurious, Low/High for Band

Edge

Operation Mode : A.1.a
Ambient temperature : 24.9°C
Relative humidity : 57%


For details refer to following test plot.

**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 25 of 71

Figure 19: The plots of Conducted Spurious Emission & Authorized-band band-edge, 2402MHz, GFSK Carrier Level



Figure 20: The plots of Conducted Spurious Emission & Authorized-band band-edge, 2402MHz, GFSK Band Edge



**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 26 of 71

Figure 21: The plots of Conducted Spurious Emission & Authorized-band band-edge, 2402MHz, GFSK Conducted spurious emissions 30MHz-3GHz

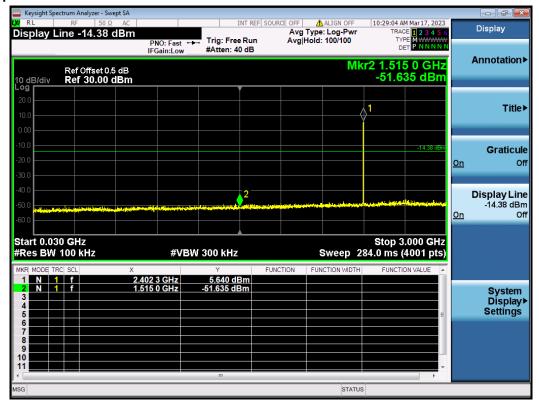
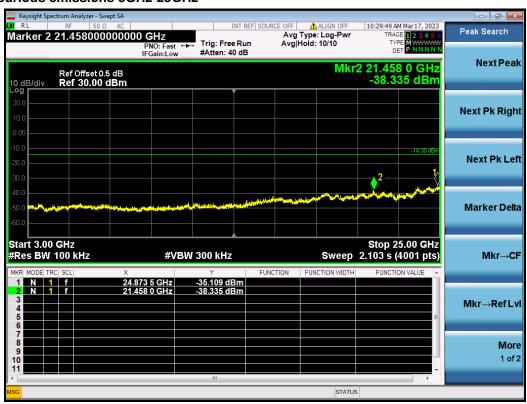
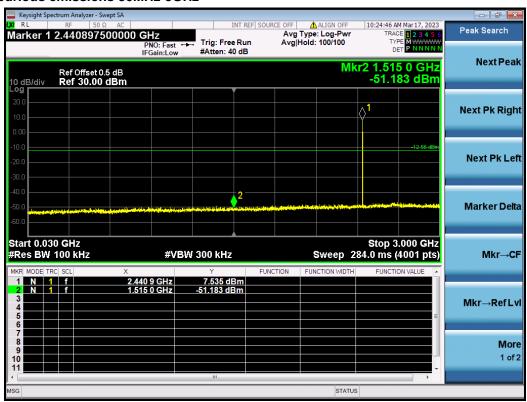




Figure 22: The plots of Conducted Spurious Emission & Authorized-band band-edge, 2402MHz, GFSK Conducted spurious emissions 3GHz-25GHz




**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 27 of 71

Figure 23: The plots of Conducted Spurious Emission & Authorized-band band-edge, 2441MHz, GFSK Carrier Level



Figure 24: The plots of Conducted Spurious Emission & Authorized-band band-edge, 2441MHz, GFSK Conducted spurious emissions 30MHz-3GHz



**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 28 of 71

Figure 25: The plots of Conducted Spurious Emission & Authorized-band band-edge, 2441MHz, GFSK Conducted spurious emissions 3GHz-25GHz

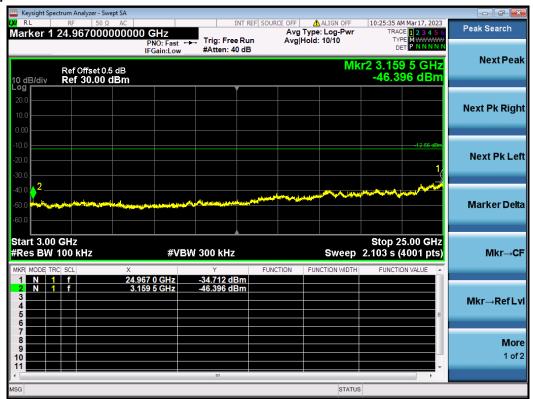
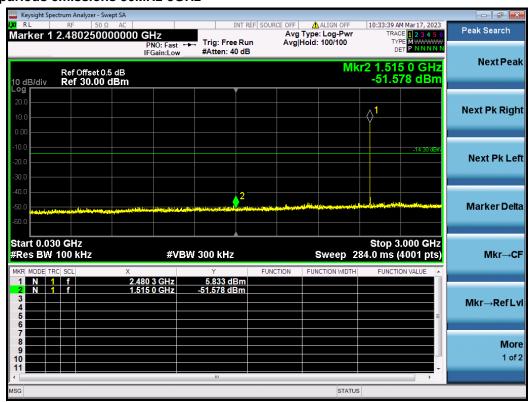



Figure 26: The plots of Conducted Spurious Emission & Authorized-band band-edge, 2480MHz, GFSK Carrier Level




**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 29 of 71

Figure 27: The plots of Conducted Spurious Emission & Authorized-band band-edge, 2480MHz, GFSK Band Edge



Figure 28: The plots of Conducted Spurious Emission & Authorized-band band-edge, 2480MHz, GFSK Conducted spurious emissions 30MHz-3GHz



**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 30 of 71

Figure 29: The plots of Conducted Spurious Emission & Authorized-band band-edge, 2480MHz, GFSK Conducted spurious emissions 3GHz-25GHz

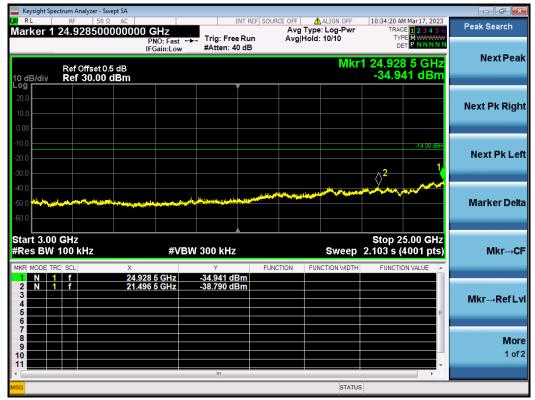
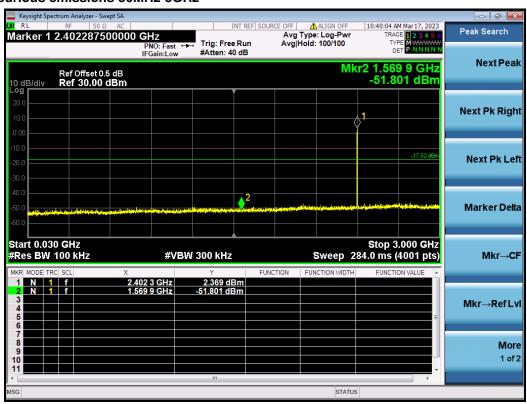



Figure 20: The plots of Conducted Spurious Emission & Authorized-band band-edge, 2402MHz,  $\pi$ /4-DQPSK Carrier Level




**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 31 of 71

Figure 21: The plots of Conducted Spurious Emission & Authorized-band band-edge, 2402MHz,  $\pi$ /4-DQPSK Band Edge



Figure 22: The plots of Conducted Spurious Emission & Authorized-band band-edge, 2402MHz,  $\pi$ /4-DQPSK Conducted spurious emissions 30MHz-3GHz



**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 32 of 71

Figure 23: The plots of Conducted Spurious Emission & Authorized-band band-edge, 2402MHz,  $\pi$ /4-DQPSK Conducted spurious emissions 3GHz-25GHz



Figure 24: The plots of Conducted Spurious Emission & Authorized-band band-edge, 2441MHz,  $\pi$ /4-DQPSK Carrier Level



**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 33 of 71

Figure 25: The plots of Conducted Spurious Emission & Authorized-band band-edge, 2441MHz,  $\pi$ /4-DQPSK Conducted spurious emissions 30MHz-3GHz

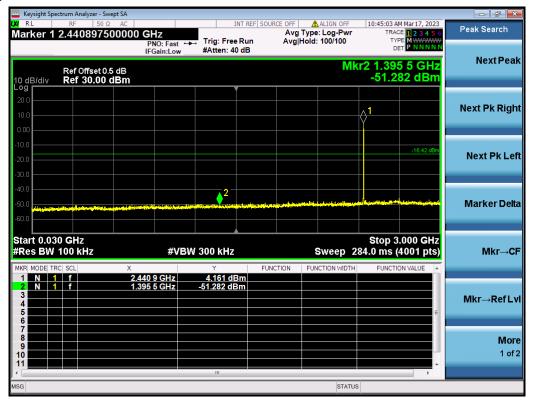



Figure 26: The plots of Conducted Spurious Emission & Authorized-band band-edge, 2441MHz,  $\pi$ /4-DQPSK Conducted spurious emissions 3GHz-25GHz



**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 34 of 71

Figure 37: The plots of Conducted Spurious Emission & Authorized-band band-edge, 2480MHz,  $\pi$ /4-DQPSK Carrier Level



Figure 38: The plots of Conducted Spurious Emission & Authorized-band band-edge, 2480MHz,  $\pi$ /4-DQPSK Band Edge



**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 35 of 71

Figure 39: The plots of Conducted Spurious Emission & Authorized-band band-edge, 2480MHz,  $\pi$ /4-DQPSK Conducted spurious emissions 30MHz-3GHz

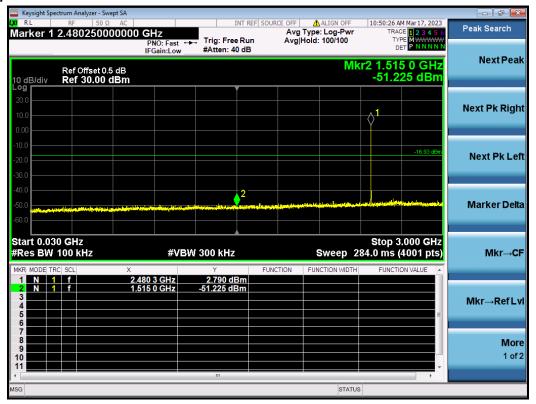
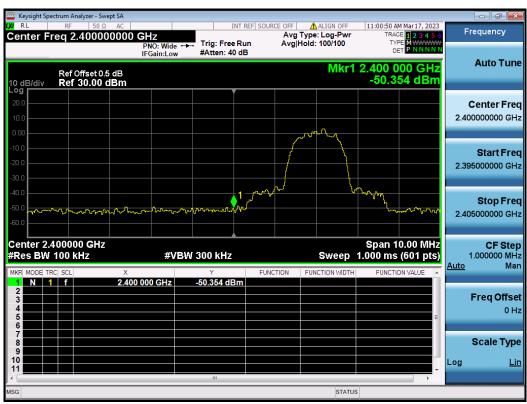



Figure 40: The plots of Conducted Spurious Emission & Authorized-band band-edge, 2480MHz,  $\pi$ /4-DQPSK Conducted spurious emissions 3GHz-25GHz




**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 36 of 71

Figure 41: The plots of Conducted Spurious Emission & Authorized-band band-edge, 2402MHz, 8-DPSK Carrier Level



Figure 42: The plots of Conducted Spurious Emission & Authorized-band band-edge, 2402MHz, 8-DPSK Band Edge



**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 37 of 71

Figure 43: The plots of Conducted Spurious Emission & Authorized-band band-edge, 2402MHz, 8-DPSK Conducted spurious emissions 30MHz-3GHz

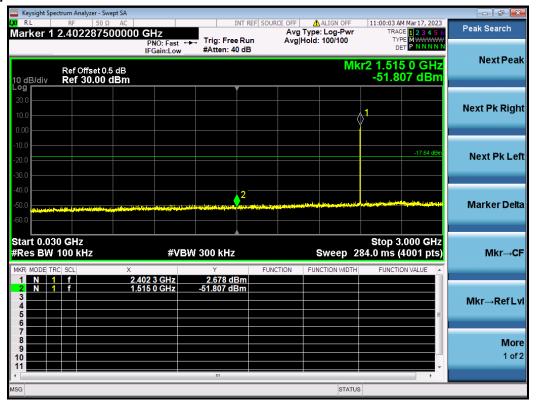
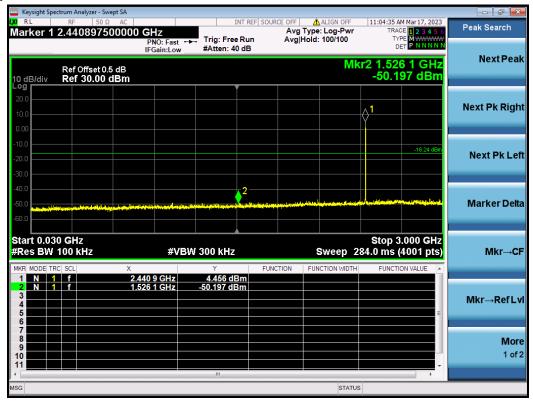



Figure 44: The plots of Conducted Spurious Emission & Authorized-band band-edge, 2402MHz, 8-DPSK Conducted spurious emissions 3GHz-25GHz




**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 38 of 71

Figure 45: The plots of Conducted Spurious Emission & Authorized-band band-edge, 2441MHz, 8-DPSK Carrier Level



Figure 46: The plots of Conducted Spurious Emission & Authorized-band band-edge, 2441MHz, 8-DPSK Conducted spurious emissions 30MHz-3GHz

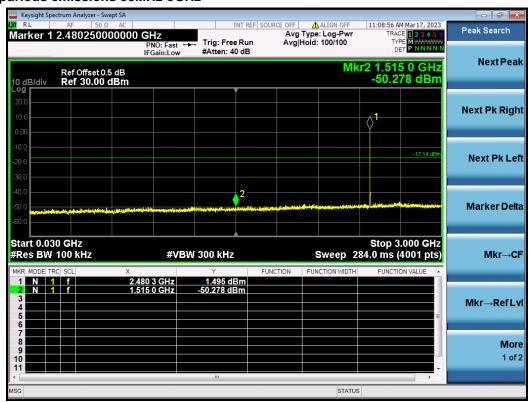


**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 39 of 71

Figure 47: The plots of Conducted Spurious Emission & Authorized-band band-edge, 2441MHz, 8-DPSK Conducted spurious emissions 3GHz-25GHz



Figure 48: The plots of Conducted Spurious Emission & Authorized-band band-edge, 2480MHz, 8-DPSK Carrier Level

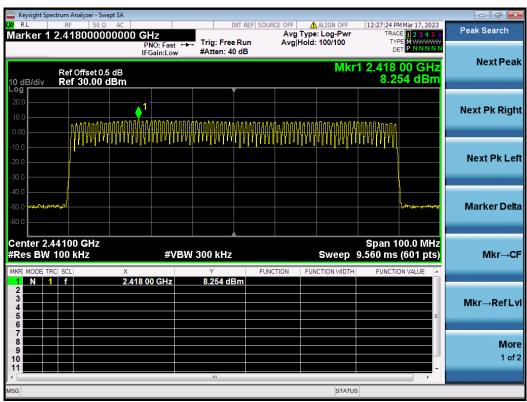



**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 40 of 71

Figure 49: The plots of Conducted Spurious Emission & Authorized-band band-edge, 2480MHz, 8-DPSK Band Edge



Figure 50: The plots of Conducted Spurious Emission & Authorized-band band-edge, 2480MHz, 8-DPSK Conducted spurious emissions 30MHz-3GHz




**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 41 of 71

Figure 51: The plots of Conducted Spurious Emission & Authorized-band band-edge, 2480MHz, 8-DPSK Conducted spurious emissions 3GHz-25GHz



Figure 52: The plots of Conducted Spurious Emission & Authorized-band band-edge, Hopping Mode, GFSK Carrier Level



**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 42 of 71

Figure 53: The plots of Conducted Spurious Emission & Authorized-band band-edge, Hopping Mode, GFSK Band Edge (Low)

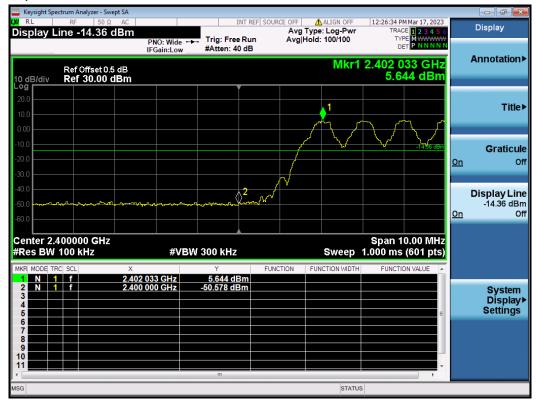



Figure 54: The plots of Conducted Spurious Emission & Authorized-band band-edge, Hopping Mode, GFSK Band Edge (High)



**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 43 of 71

Figure 55: The plots of Conducted Spurious Emission & Authorized-band band-edge, Hopping Mode, GFSK Conducted spurious emissions 30MHz-3GHz

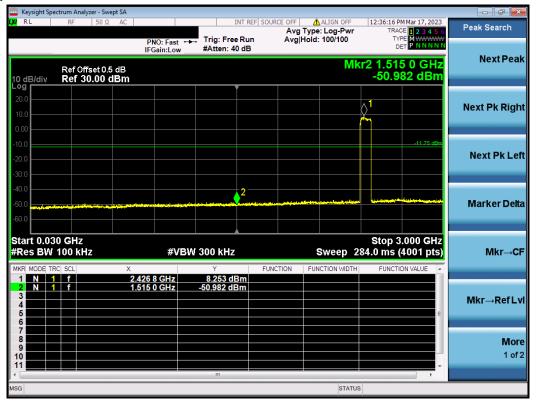
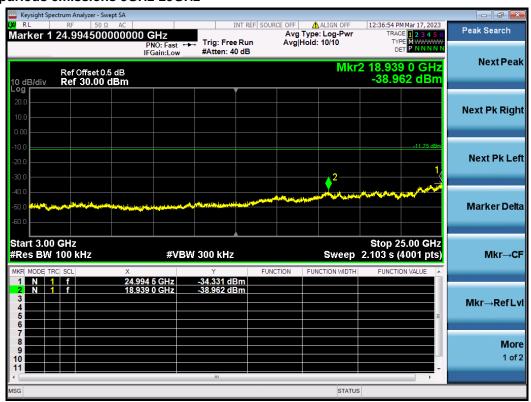




Figure 56: The plots of Conducted Spurious Emission & Authorized-band band-edge, Hopping Mode, GFSK Conducted spurious emissions 3GHz-25GHz



**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 44 of 71

Figure 57: The plots of Conducted Spurious Emission & Authorized-band band-edge, Hopping Mode,  $\pi/4$ -DQPSK , Carrier Level

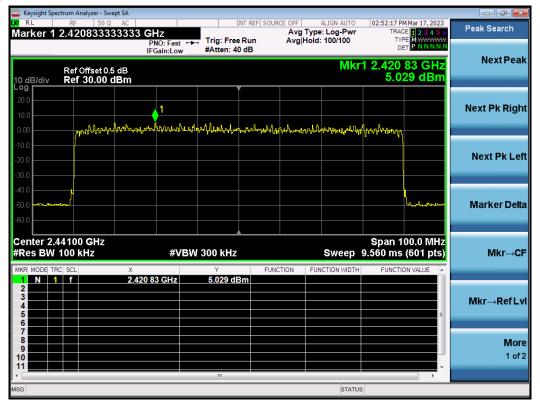
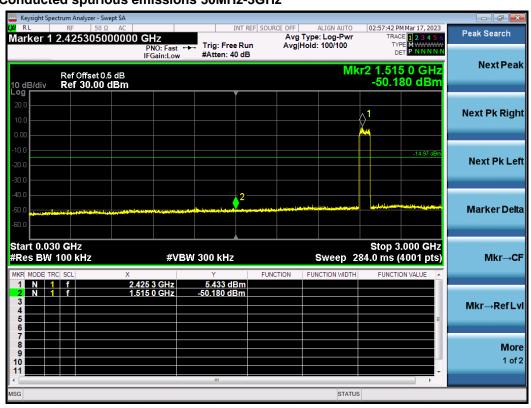



Figure 58: The plots of Conducted Spurious Emission & Authorized-band band-edge, Hopping Mode,  $\pi/4$ -DQPSK, Band Edge (Low)

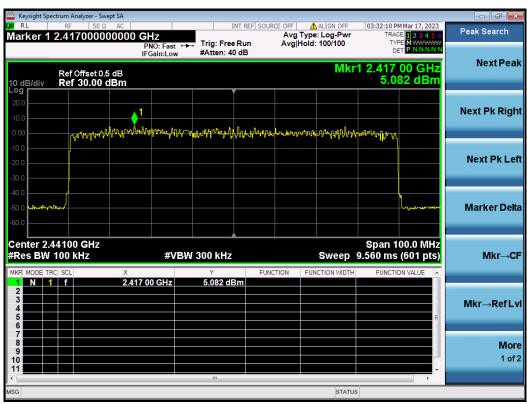



**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 45 of 71

Figure 59: The plots of Conducted Spurious Emission & Authorized-band band-edge, Hopping Mode,  $\pi/4$ -DQPSK, Band Edge (High)



Figure 60: The plots of Conducted Spurious Emission & Authorized-band band-edge, Hopping Mode,  $\pi/4$ -DQPSK, Conducted spurious emissions 30MHz-3GHz




**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 46 of 71

Figure 61: The plots of Conducted Spurious Emission & Authorized-band band-edge, Hopping Mode,  $\pi/4$ -DQPSK, Conducted spurious emissions 3GHz-25GHz



Figure 62: The plots of Conducted Spurious Emission & Authorized-band band-edge, Hopping Mode, 8-DPSK Carrier Level



**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 47 of 71

Figure 63: The plots of Conducted Spurious Emission & Authorized-band band-edge, Hopping Mode, 8-DPSK Band Edge (Low)



Figure 64: The plots of Conducted Spurious Emission & Authorized-band band-edge, Hopping Mode, 8-DPSK Band Edge (High)



**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 48 of 71

Figure 65: The plots of Conducted Spurious Emission & Authorized-band band-edge, Hopping Mode, 8-DPSK Conducted spurious emissions 30MHz-3GHz

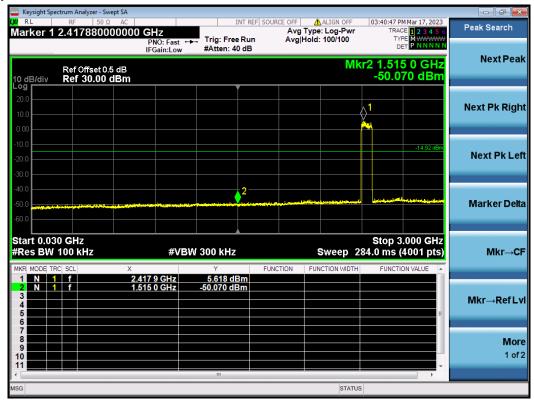
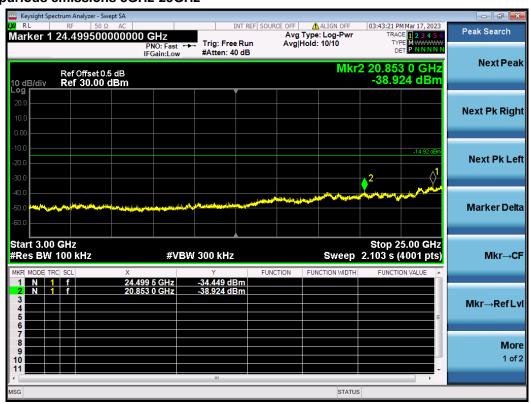




Figure 66: The plots of Conducted Spurious Emission & Authorized-band band-edge, Hopping Mode, 8-DPSK Conducted spurious emissions 3GHz-25GHz



**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 49 of 71

#### 4.1.5 Radiated Emission

RESULT: PASS

Test standard : FCC Part 15.247(d), 15.205, 15.209

RSS-GEN 8.9

Requirement : ANSI C63.10-2013

Kind of test site : 3m Semi-Anechoic Chamber

**Test setup** 

Test Channel : Low/Middle/High/Hopping

Operation Mode : A.1.a
Ambient temperature : 25°C
Relative humidity : 53%

#### Notes

Test plots please refer to the annex document "SHE22110054-02BE DATA BDEDR-TX EXHIBIT A".

- 1. For 9 kHz  $\sim$  30 MHz, the amplitude of spurious emissions that are attenuated by more than 20dB below the permissible. The value has no need to be reported.
- 2. The spurious above 18GHz is noise only and 20dB below the limit. The value has no need to be reported.
- 3. All test modes had been pre-tested, but only the GFSK-hopping mode of below 1 GHz is the worst case and recorded in the report.
- 4. The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 50 of 71

### 4.1.6 Band Edge (Restricted-band band-edge)

RESULT: PASS

Test standard : FCC Part 15.247(d), 15.205, 15.209

**RSS-GEN 8.10** 

Requirement : ANSI C63.10-2013

Kind of test site : 3m Semi-Anechoic Chamber

**Test setup** 

Test Channel : Low/High/Hopping

Operation Mode : A.1
Ambient temperature : 25°C
Relative humidity : 53%

Notes

Test plots please refer to the annex document "SHE22110054-02BE DATA BDEDR-TX EXHIBIT A".

**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 51 of 71

### 4.1.7 Hopping Frequency Separation

RESULT: PASS

Test standard : FCC Part 15.247(a)(1), RSS-247 5.1(b)

Requirement : ANSI C63.10-2013 clause 7.8.2

KDB 558074 clause 2.2

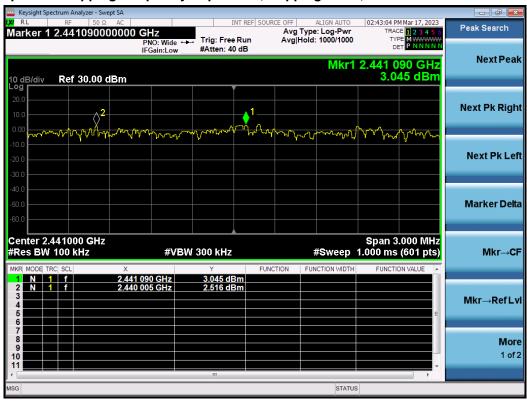
Kind of test site : Shielded room

**Test setup** 

Test Channel : Hopping
Operation Mode : A.1.a.iv
Ambient temperature : 24.9°C
Relative humidity : 57%

**Table 4: Hopping Frequency Separation** 

| Mode      | Frequency<br>(MHz) | Channel Separation (MHz) | Limit<br>(MHz)                             |  |
|-----------|--------------------|--------------------------|--------------------------------------------|--|
| GFSK      | 2441               | 0.995                    | > OFILLIZ or two thirds of                 |  |
| π/4-DQPSK | 2441               | 1.085                    | ≥ 25kHz or two-thirds of<br>20dB bandwidth |  |
| 8-DPSK    | 2441               | 1.015                    | ZOOD DANOWIGHT                             |  |


\*Note: The systems operate with an output power no greater than 125mW.

**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 52 of 71

Figure 27: The plots of Hopping Frequency Separation, Hopping Mode, GFSK

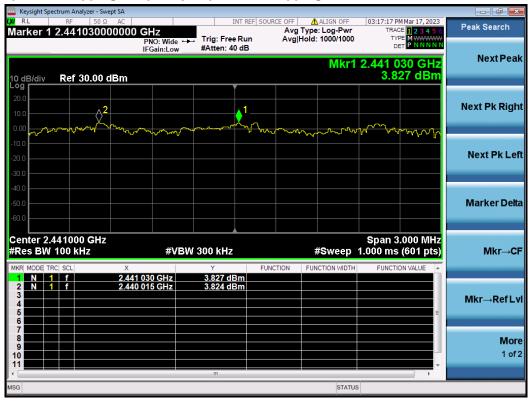



Figure 68: The plots of Hopping Frequency Separation, Hopping Mode,  $\pi/4$ -DQPSK



**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 53 of 71

Figure 69: The plots of Hopping Frequency Separation, Hopping Mode, 8-DPSK



**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 54 of 71

### 4.1.8 Number of Hopping Frequency

RESULT: PASS

Test standard : FCC Part 15.247(a)(1)(iii), RSS-247 5.1(d)

Requirement : ANSI C63.10-2013 clause 7.8.3

KDB 558074 clause 2.2

Kind of test site : Shielded room

**Test setup** 

Test Channel : Hopping
Operation Mode : A.1.a.iv
Ambient temperature : 24.9°C
Relative humidity : 57%

#### **Table 5: Number of Hopping Frequency**

| Mode      | Frequency Range  Measured Quantity of Hopping Channel |    | Limit |  |
|-----------|-------------------------------------------------------|----|-------|--|
| GFSK      | 2400 – 2483.5                                         | 79 | ≥15   |  |
| π/4-DQPSK | 2400 – 2483.5                                         | 79 | ≥15   |  |
| 8-DPSK    | 2400 – 2483.5                                         | 79 | ≥15   |  |

**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 55 of 71

Figure 70: The plots of Number of Hopping Frequency, Hopping Mode, GFSK

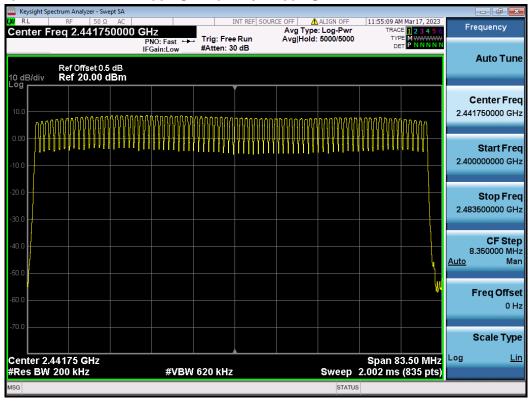
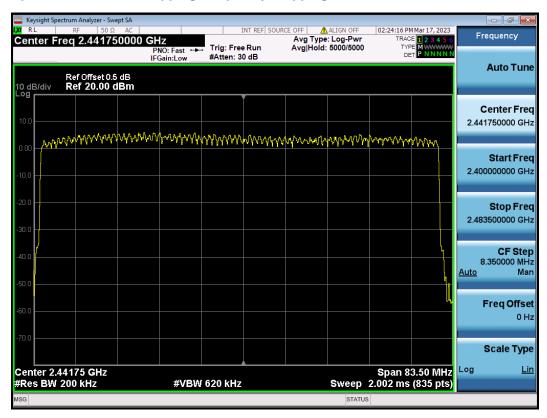




Figure 71: The plots of Number of Hopping Frequency, Hopping Mode,  $\pi/4$ -DQPSK



**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 56 of 71

Figure 72: The plots of Number of Hopping Frequency, Hopping Mode, 8-DPSK



**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 57 of 71

#### 4.1.9 Time of Occupancy

RESULT: PASS

Test standard : FCC Part 15.247(a)(1)(iii), RSS-247 5.1(d)

Requirement : ANSI C63.10-2013 clause 7.8.4,

KDB 558074 clause 2.2

Kind of test site : Shielded room

**Test setup** 

Test Channel : Middle
Operation Mode : A.1.a
Ambient temperature : 24.9°C
Relative humidity : 57%

#### **Table 6: Time of Occupancy**

| Mode      | Pookot Typo | Pulse Time | Total of Dwell | Limit |  |
|-----------|-------------|------------|----------------|-------|--|
| Wode      | Packet Type | (ms)       | (ms)           | (s)   |  |
|           | DH1         | 0.4033     | 129.056        | 0.4   |  |
| GFSK      | DH3         | 1.6650     | 266.400        | 0.4   |  |
|           | DH5         | 2.9330     | 312.854        | 0.4   |  |
| π/4-DQPSK | DH1         | 0.4083     | 130.656        | 0.4   |  |
|           | DH3         | 1.6700     | 267.200        | 0.4   |  |
|           | DH5         | 2.9270     | 312.214        | 0.4   |  |
| 8-DPSK    | DH1         | 0.4067     | 130.144        | 0.4   |  |
|           | DH3         | 1.6700     | 267.200        | 0.4   |  |
|           | DH5         | 2.9200     | 311.467        | 0.4   |  |

Note:

For DH1 package type:

Total of Dwell = Pulse Time\*(1600/2)/Number of Hopping Frequency\*Period

Period = 0.4\* Number of Hopping Frequency

For DH3 package type:

Total of Dwell = Pulse Time\*(1600/4)/Number of Hopping Frequency\*Period

Period = 0.4\* Number of Hopping Frequency

For DH5 package type:

Total of Dwell = Pulse Time\*(1600/6)/Number of Hopping Frequency\*Period

Period = 0.4\* Number of Hopping Frequency

**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 58 of 71

Figure 73: The plots of Time of Occupancy, 2441MHz, GFSK DH1

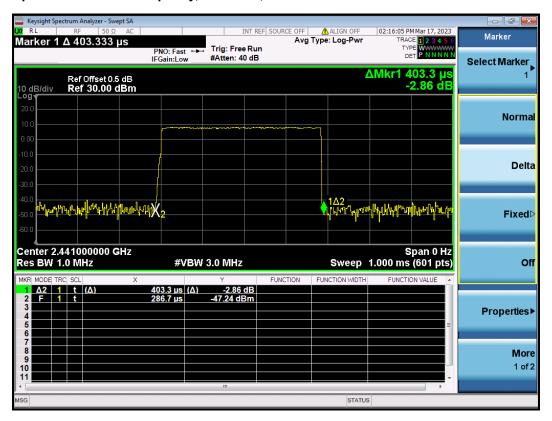
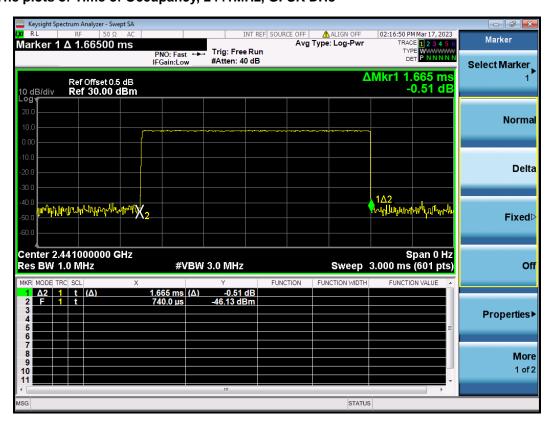




Figure 74: The plots of Time of Occupancy, 2441MHz, GFSK DH3



**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 59 of 71

Figure 75: The plots of Time of Occupancy, 2441MHz, GFSK DH5

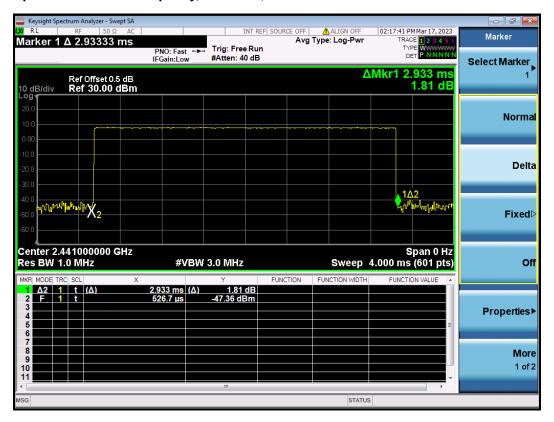
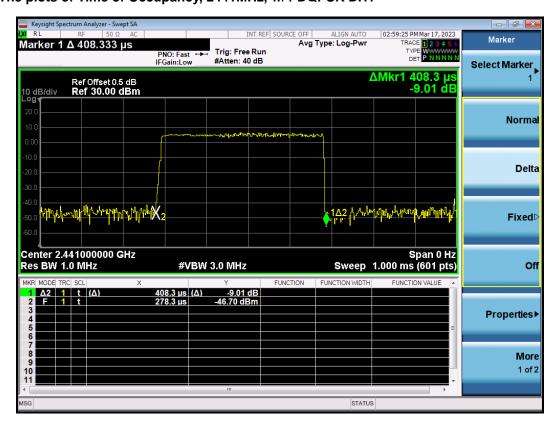




Figure 76: The plots of Time of Occupancy, 2441MHz, π/4-DQPSK DH1



**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 60 of 71

Figure 77: The plots of Time of Occupancy, 2441MHz, π/4-DQPSK DH3

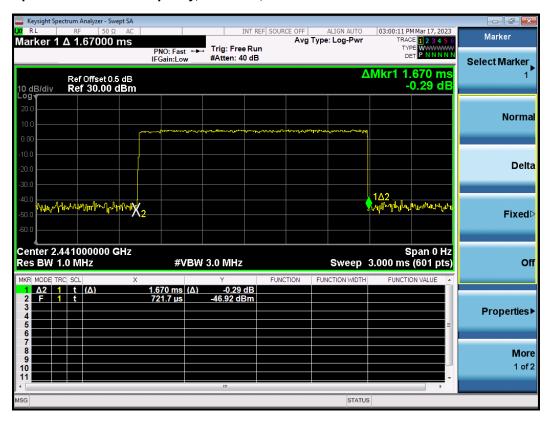
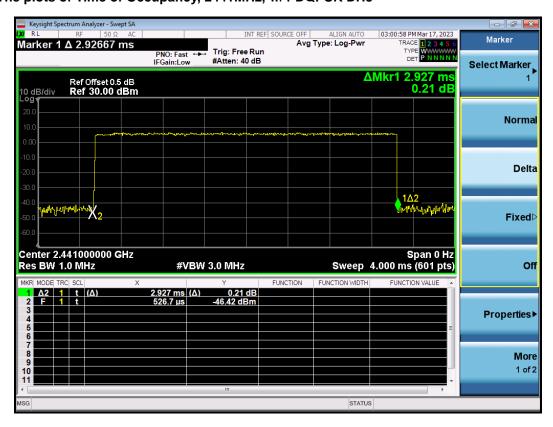




Figure 78: The plots of Time of Occupancy, 2441MHz, π/4-DQPSK DH5



**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 61 of 71

Figure 79: The plots of Time of Occupancy, 2441MHz, 8-DPSK DH1

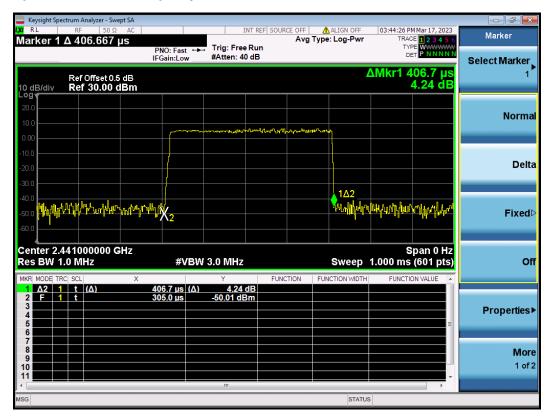
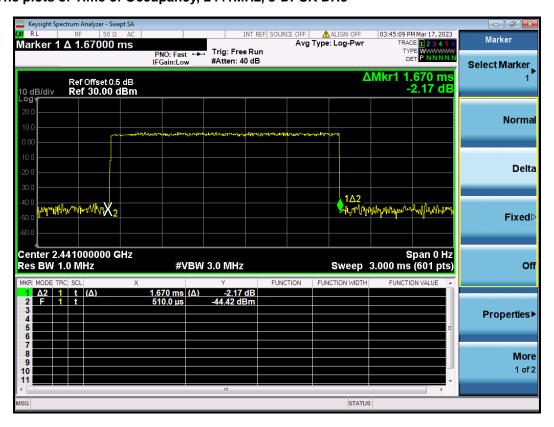
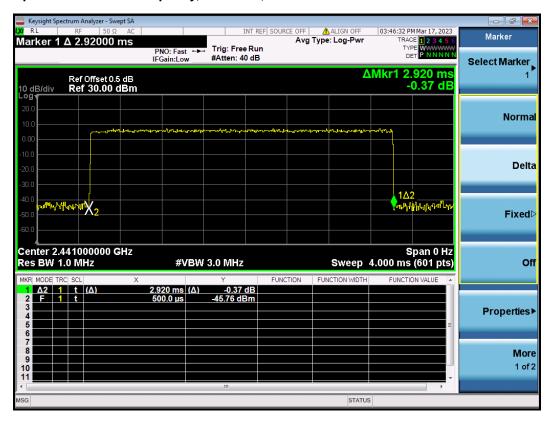





Figure 80: The plots of Time of Occupancy, 2441MHz, 8-DPSK DH3



**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 62 of 71

Figure 81: The plots of Time of Occupancy, 2441MHz, 8-DPSK DH5



**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 63 of 71

#### 4.2 Mains Emissions

#### 4.2.1 Conducted Emission on AC Mains

RESULT: PASS

Test standard : FCC Part 15.207(a), RSS-Gen 8.8
Requirement : ANSI C63.10-2013 clause 6.2

Kind of test site : Shielded room

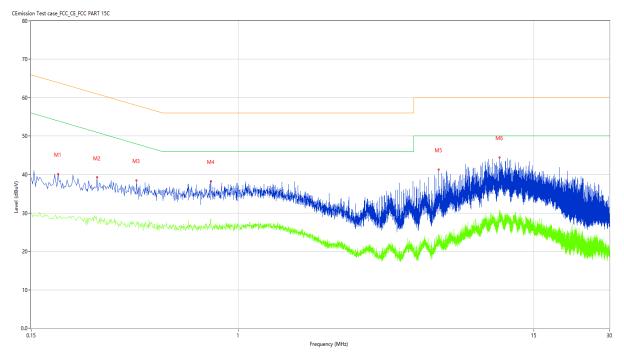
**Test setup** 

Input Voltage : which received AC 120V, 60Hz Power

Operation Mode : A.1.a

Earthing : Not Connected

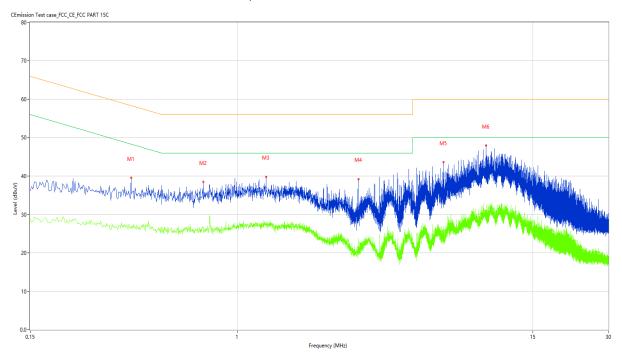
Ambient temperature : 23.5°C Relative humidity : 41%


For details refer to following test plot.

**Report No.**: SHE22110054-02BE Date: 2023-04-18 Page 64 of 71

#### Note:

The all configurations were tested respectively, but only the worst configuration (GFSK, hopping) shown here.

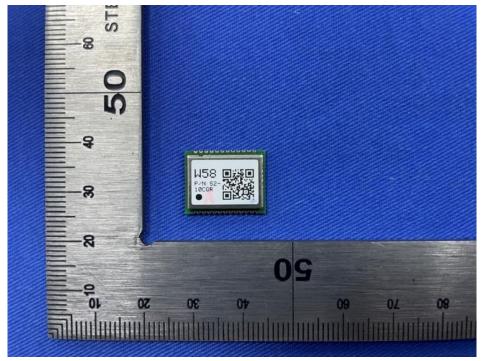

Figure 82: Conducted Emission on AC Mains, L Phase



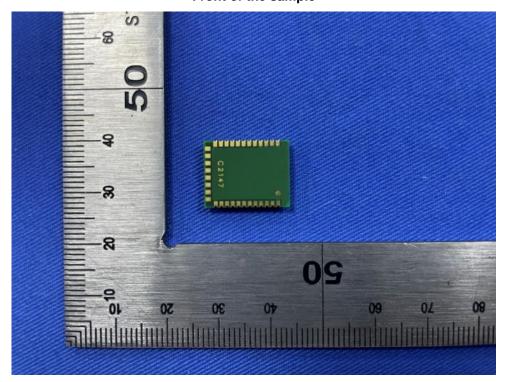
| No. | Frequency | Results (dBuV) | Factor | Limit (dBuV) | Margin (dB) | Detector | Line | Verdict |
|-----|-----------|----------------|--------|--------------|-------------|----------|------|---------|
|     | (MHz)     |                | (dB)   |              |             |          |      |         |
| 1   | 0.192     | 40.15          | 10.18  | 63.95        | 23.80       | Peak     | L    | Pass    |
| 1** | 0.192     | 29.01          | 10.18  | 53.95        | 24.94       | AV       | L    | Pass    |
| 2   | 0.274     | 39.25          | 10.23  | 61.00        | 21.75       | Peak     | L    | Pass    |
| 2** | 0.274     | 27.62          | 10.23  | 51.00        | 23.38       | AV       | L    | Pass    |
| 3   | 0.394     | 38.49          | 10.23  | 57.98        | 19.49       | Peak     | L    | Pass    |
| 3** | 0.394     | 26.99          | 10.23  | 47.98        | 20.99       | AV       | L    | Pass    |
| 4   | 0.778     | 38.24          | 10.19  | 56.00        | 17.76       | Peak     | L    | Pass    |
| 4** | 0.778     | 28.39          | 10.19  | 46.00        | 17.61       | AV       | L    | Pass    |
| 5   | 6.266     | 41.31          | 10.40  | 60.00        | 18.69       | Peak     | L    | Pass    |
| 5** | 6.266     | 24.38          | 10.40  | 50.00        | 25.62       | AV       | L    | Pass    |
| 6   | 10.950    | 44.47          | 10.54  | 60.00        | 15.53       | Peak     | L    | Pass    |
| 6** | 10.950    | 28.68          | 10.54  | 50.00        | 21.32       | AV       | L    | Pass    |

**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 65 of 71

Figure 83: Conducted Emission on AC Mains, N Phase

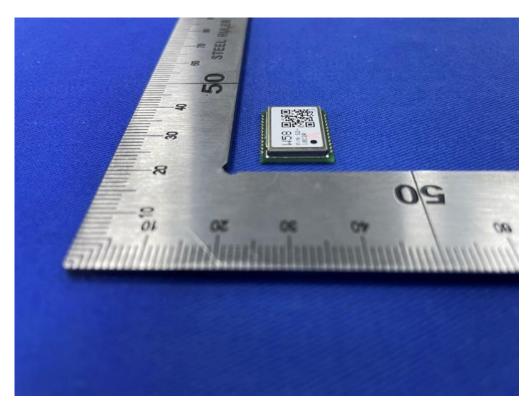



| No. | Frequency<br>(MHz) | Results (dBuV) | Factor (dB) | Limit (dBuV) | Margin (dB) | Detector | Line | Verdict |
|-----|--------------------|----------------|-------------|--------------|-------------|----------|------|---------|
| 1   | 0.378              | 39.47          | 10.26       | 58.32        | 18.85       | Peak     | N    | Pass    |
| 1** | 0.378              | 27.02          | 10.26       | 48.32        | 21.30       | AV       | N    | Pass    |
| 2   | 0.732              | 38.43          | 10.34       | 56.00        | 17.57       | Peak     | N    | Pass    |
| 2** | 0.732              | 26.70          | 10.34       | 46.00        | 19.30       | AV       | N    | Pass    |
| 3   | 1.302              | 39.80          | 10.21       | 56.00        | 16.20       | Peak     | N    | Pass    |
| 3** | 1.302              | 28.00          | 10.21       | 46.00        | 18.00       | AV       | N    | Pass    |
| 4   | 3.036              | 39.21          | 10.18       | 56.00        | 16.79       | Peak     | N    | Pass    |
| 4** | 3.036              | 23.72          | 10.18       | 46.00        | 22.28       | AV       | N    | Pass    |
| 5   | 6.620              | 43.57          | 10.34       | 60.00        | 16.43       | Peak     | N    | Pass    |
| 5** | 6.620              | 26.81          | 10.34       | 50.00        | 23.19       | AV       | N    | Pass    |
| 6   | 9.754              | 47.91          | 10.39       | 60.00        | 12.09       | Peak     | N    | Pass    |
| 6** | 9.754              | 31.07          | 10.39       | 50.00        | 18.93       | AV       | N    | Pass    |

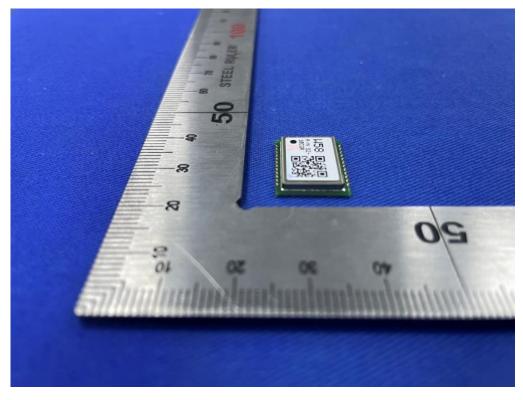

**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 66 of 71

### 5 Appendixes

### 5.1 Photographs of the Sample

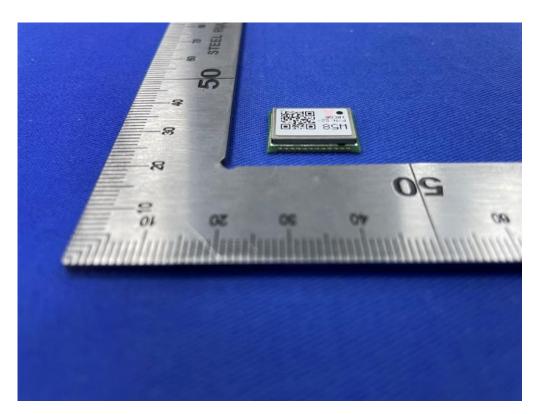



Front of the sample

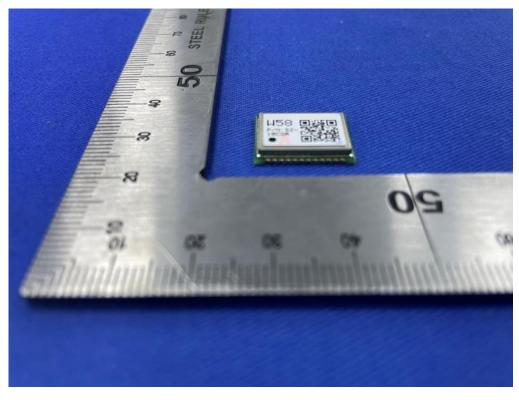



Rear of the sample

**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 67 of 71

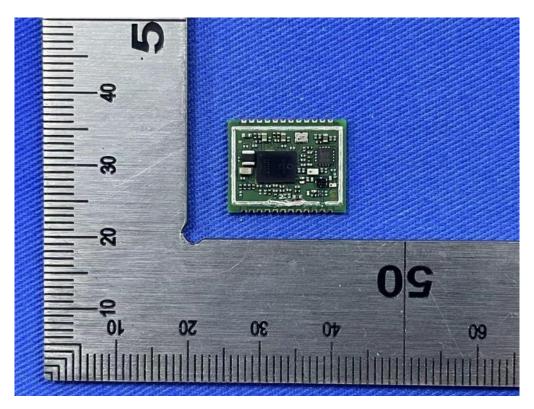



Left of the sample

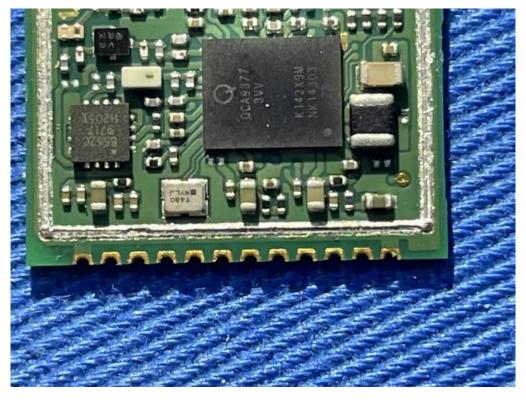



Right of the sample

**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 68 of 71




Top of the sample



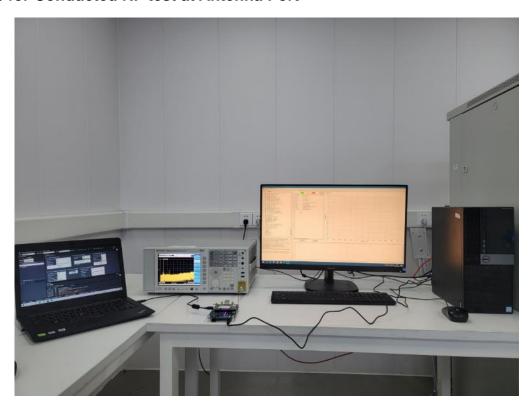

**Bottom of the sample** 

**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 69 of 71



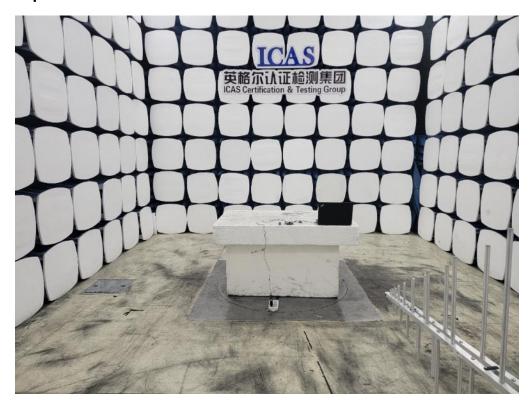
Internal-1 of the sample




Internal-2 of the sample

**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 70 of 71

### 5.2 Set-up for Conducted Emissions




### 5.3 Set-up for Conducted RF test at Antenna Port



**Report No.:** SHE22110054-02BE Date: 2023-04-18 Page 71 of 71

### 5.4 Set-up for Spurious Emissions below 1GHz



### 5.5 Set-up for Spurious Emissions above 1GHz



\*\*\*End of the report\*\*\*