

Page 1 of 21

APPLICATION CERTIFICATION FCC Part 15C On Behalf of Nomad Goods, Inc.

Base Station Apple Watch Edition Model No.: NM30011A00

FCC ID: 2AJYRNM3W240K00

Prepared for : Nomad Goods, Inc.

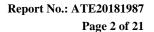
Address : 1187 Coast Village Rd. #638 Suite 1 Santa Barbara, CA

93108, United States

Prepared by : Shenzhen Accurate Technology Co., Ltd.

Address : 1/F., Building A, Changyuan New Material Port, Science &

Industry Park, Nanshan District, Shenzhen, Guangdong, P.R.


China

Tel: +86-755-26503290 Fax: +86-755-26503396

Report No. : ATE20181987

Date of Test : October 27-November 3, 2018

Date of Report : November 5, 2018

TABLE OF CONTENTS

Descrip	ption	Page
Test Re	eport Declaration	
1. TI	EST RESULTS SUMMARY	4
	ENERAL INFORMATION	
2.1.	Description of Device (EUT)	
2.2.	Special Accessory and Auxiliary Equipment	
2.3.	Description of Test Facility	
2.4.	Measurement Uncertainty	
3. M	EASURING DEVICE AND TEST EQUIPMENT	7
3.1.	The Equipment Used to Measure Conducted Disturbance	
3.2.	The Equipment Used to Measure Radiated Emission	
4. PO	OWER LINE CONDUCTED MEASUREMENT	8
4.1.	Block Diagram of Test Setup	8
4.2.	Power Line Conducted Emission Measurement Limits	
4.3.	Configuration of EUT on Measurement	8
4.4.	Operating Condition of EUT	
4.5.	Test Procedure	
4.6.	Data Sample	
4.7.	Power Line Conducted Emission Measurement Results	
5. R A	ADIATED EMISSION MEASUREMENT	
5.1.	Block Diagram of Test	
5.2.	Radiated Emission Limit	
5.3.	EUT Configuration on Measurement	
5.4.	Operating Condition of EUT	
5.5. 5.6.	Test Procedure	
5.6. 5.7.	Radiated Emission Measurement Result	
	NTENNA REQUIREMENT	
6.1.	The Requirement	
U.I.	THE REQUITERIES	

6.2.

Page 3 of 21

Test Report Declaration

Applicant : Nomad Goods, Inc.

Address : 1187 Coast Village Rd. #638 Suite 1 Santa Barbara, CA 93108,

United States

Factory : Zhongshan Zen Factory Ltd.

Address : 6th. Industrial Area, Nanlang Town, Zhongshan City, Guangdong,

China

Product : Base Station Apple Watch Edition

Model No. : NM30011A00

Measurement Procedure Used:

FCC CFR47 Part 15 Subpart C Section 15.207 and 15.209 ANSI C63.10: 2013

The device described above is tested by Shenzhen Accurate Technology Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C limits both radiated and conducted emissions. The measurement results are contained in this test report and Shenzhen Accurate Technology Co., Ltd. is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of Shenzhen Accurate Technology Co., Ltd.

Date of Test:	October 27-November 3, 2018 November 5, 2018 (Star Yang, Eng Gar)	
Date of Report :	November 5, 2018	
Prepared by :	ECHNOLO	
Approved & Authorized Signer: _	L'emily	
	(Sean Liu, Manager)	

Page 4 of 21

1. TEST RESULTS SUMMARY

Test Items	Test Standard	Test Results
Power Line Conducted Emission	FCC Part 15.207	Pass
Radiated Emission	FCC Part 15.209	Pass

2. GENERAL INFORMATION

2.1.Description of Device (EUT)

Product	:	Base Station Apple Watch Edition
Model No.	:	NM30011A00, NM3W240K00 (Note: Above models are identical in schematic, structure and critical components, just is product name and model name different, So we prepare NM30011A00 for test.)
Frequency	:	110-205KHz for Qi wireless protocol 327KHz for apple iWatch protocol
Modulation Type	:	FSK
Type of Antenna	:	Coil Antenna
AC Adapter Rating	:	Model: A361-1203000I Input: 100-240V~50/60Hz 1.5A Output: 12VI==3000mA

Test mode:

A: Coil A changing

B: Coil B changing

C: Coil C changing

D: Apple watch charging

E: Coil A charging + Coil C Charging

F: Coil A charging + Apple watch charging

G: Coil B charging + Apple watch charging

H: Coil C charging + Apple watch charging

I: Coil A charging + Coil C Charging+ Apple watch charging

We test all test modes and only the worst mode (I) was reported

2.2. Special Accessory and Auxiliary Equipment

Description	Manufacturer	Model	S/N
APPLE WATCH	Apple	Apple Watch Series 4	N/A
Iphone6	Apple	MG4J2 CH/A	F17NTK2QG5MV
Mobile phone	HUAWEI	CUN-AL00	N/A

Page 6 of 21

2.3. Description of Test Facility

EMC Lab Recognition of accreditation by Federal Communications

Commission (FCC)

The Designation Number is CN1189 The Registration Number is 708358

Listed by Innovation, Science and Economic Development

Canada (ISEDC)

The Registration Number is 5077A-2

Accredited by China National Accreditation Service for

Conformity Assessment (CNAS)

The Registration Number is CNAS L3193

Accredited by American Association for Laboratory

Accreditation (A2LA)

The Certificate Number is 4297.01

Name of Firm

Shenzhen Accurate Technology Co., Ltd

Site Location 1/F., Building A, Changyuan New Material Port, Science &

Industry Park, Nanshan District, Shenzhen, Guangdong, P.R.

China

2.4. Measurement Uncertainty

Conducted emission expanded uncertainty U=2.23dB, k=2

Radiated emission expanded uncertainty U=3.08dB, k=2

(9kHz-30MHz)

Radiated emission expanded uncertainty U=4.42dB, k=2

(30MHz-1000MHz)

Radiated emission expanded uncertainty U=4.06dB, k=2

(Above 1GHz)

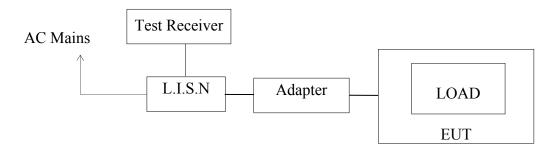
Page 7 of 21

3. MEASURING DEVICE AND TEST EQUIPMENT

3.1. The Equipment Used to Measure Conducted Disturbance

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.		
						Interval		
1.	Test Receiver	Rohde & Schwarz	ESCS30	100307	Jan.06, 2018	1 Year		
2.	L.I.S.N.	Schwarzbeck	NLSK8126	8126431	Jan.06, 2018	1 Year		
3.	Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100305	Jan.06, 2018	1 Year		
4	50Ω Coaxial	Anritsu Corp	MP59B	6200283936	Jan.06, 2018	1 Year		
4.	Switch							
5.	RF Coaxial Cable	SUHNER	N-2m	No.2	Jan.06, 2018	1 Year		
6.	Measurement Software: ES-K1 V1.71							

3.2. The Equipment Used to Measure Radiated Emission


Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.			
-	G 4 1	D 1 1 0 C 1	EGYAO	101405	I 06 2010	Interval			
1.	Spectrum Analyzer	Rohde&Schwarz	FSV40	101495	Jan.06, 2018	1 Year			
2.	Test Receiver	Rohde& Schwarz	ESR	101817	Jan.06, 2018	1 Year			
3.	Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan.06, 2018	1 Year			
4.	Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan.06, 2018	1 Year			
5.	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan.06, 2018	1 Year			
6.	Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Jan.06, 2018	1 Year			
7.	RF Switching	Compliance	RSU-M2	38322	Jan.06, 2018	1 Year			
	Unit+PreAMP	Direction			·				
8.	Pre-Amplifier	Agilent	8447D	294A10619	Jan.06, 2018	1 Year			
9.	Pre-Amplifier	Rohde&Schwarz	CBLU11835	3791	Jan.06, 2018	1 Year			
			40-01						
10.	50 Coaxial Switch	Anritsu Corp	MP59B	6200506474	Jan.06, 2018	1 Year			
11.	RF Coaxial Cable	RESENBERGER	N-12m	No.11	Jan.06, 2018	1 Year			
12.	RF Coaxial Cable	RESENBERGER	N-0.5m	No.12	Jan.06, 2018	1 Year			
13.	RF Coaxial Cable	SUHNER	N-2m	No.13	Jan.06, 2018	1 Year			
14.	RF Coaxial Cable	SUHNER	N-0.5m	No.15	Jan.06, 2018	1 Year			
15.	RF Coaxial Cable	SUHNER	N-2m	No.16	Jan.06, 2018	1 Year			
16.	RF Coaxial Cable	RESENBERGER	N-6m	No.17	Jan.06, 2018	1 Year			
17.	17. Measurement Software: EZ_EMC V1.1.4.2								

Page 8 of 21

4. POWER LINE CONDUCTED MEASUREMENT

4.1.Block Diagram of Test Setup

4.2. Power Line Conducted Emission Measurement Limits

Frequency	Limit dB(μV)				
(MHz)	Quasi-peak Level	Average Level			
0.15 - 0.50	66.0 – 56.0 *	56.0 – 46.0 *			
0.50 - 5.00	56.0	46.0			
5.00 - 30.00	60.0	50.0			

NOTE1: The lower limit shall apply at the transition frequencies.

NOTE2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.

4.3. Configuration of EUT on Measurement

The equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

4.4. Operating Condition of EUT

- 4.4.1. Setup the EUT and simulator as shown as Section 4.1.
- 4.4.2. Turn on the power of all equipment.
- 4.4.3. Let the EUT work in test mode and measure it.

Page 9 of 21

4.5. Test Procedure

The EUT is put on the plane 0.8 m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 500hm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.10: 2013 on Conducted Emission Measurement.

The bandwidth of test receiver (R & S ESCS30) is set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

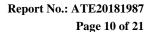
4.6.Data Sample

Frequency	Transducer	QuasiPeak	Average	QuasiPeak	Average	QuasiPeak	Average	Remark
(MHz)	value	Level	Level	Limit	Limit	Margin	Margin	(Pass/Fail)
	(dB)	(dBµV)	(dBµV)	(dBµV)	(dBµV)	(dB)	(dB)	
X.XX	10.6	25.3	17.0	59.0	49.0	33.7	32.0	Pass

Transducer value = Insertion loss of LISN + Cable Loss Result = Quasi-peak Level/Average Level + Transducer value Limit = Limit stated in standard

Calculation Formula:

Margin = Limit – Reading level value – Transducer value


4.7. Power Line Conducted Emission Measurement Results

PASS.

The frequency range from 150kHz to 30MHz is checked.

Emissions attenuated more than 20 dB below the permissible value are not reported.

The spectral diagrams are attached as below.

ACCURATE TECHNOLOGY CO., LTD

CONDUCTED EMISSION STANDARD FCC PART 15 C

Base Station Apple Watch Edition M/N:NM30011A00

Manufacturer: Nomad Goods, Inc.

Operating Condition: Max load

Test Site: 1#Shielding Room

WADE Operator:

Test Specification: N 120V/60Hz Mains port Comment: Start of Test: 10/27/2018 /

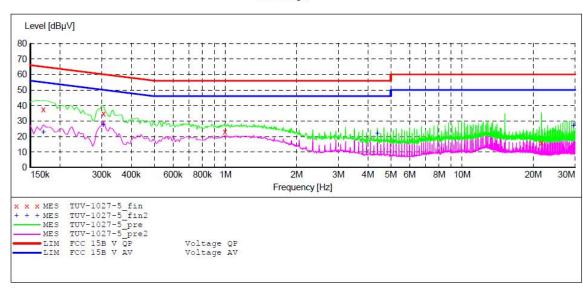
SCAN TABLE: "V 9K-30MHz fin"

_SUB_STD_VTERM2 1.70 Short Description:

UB_STD_vID...

Detector Meas. IF

Time Bandw. Start Stop Step Transducer

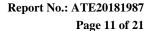

Frequency Frequency Width

9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz NSLK8126 2008

Average

150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008

Average



MEASUREMENT RESULT: "TUV-1027-5 fin"

10/27/2018 Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.170000	37.70	10.5	65	27.3	QP	N	GND
0.305000	34.80	10.6	60	25.3	QP	N	GND
0.995000	23.00	10.8	56	33.0	QP	N	GND
21.655000	15.90	11.4	60	44.1	QP	N	GND

MEASUREMENT RESULT: "TUV-1027-5 fin2"

10/27/2018							
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.170000	22.50	10.5	55	32.5	AV	N	GND
0.305000	27.20	10.6	50	22.9	AV	N	GND
4.390000	21.80	11.1	46	24.2	AV	N	GND
29.560000	27.10	11.5	50	22.9	AV	N	GND

ACCURATE TECHNOLOGY CO., LTD

CONDUCTED EMISSION STANDARD FCC PART 15 C

Base Station Apple Watch Edition M/N:NM30011A00 FIIT:

Manufacturer: Nomad Goods, Inc.

Operating Condition: Max load

Test Site: 1#Shielding Room

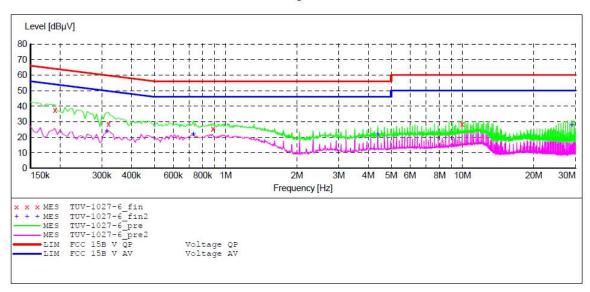
WADE Operator:

Test Specification: L 120V/60Hz Mains port 10/27/2018 / Comment: Start of Test:

SCAN TABLE: "V 9K-30MHz fin"

_SUB_STD_VTERM2 1.70 Short Description:

Detector Meas. IF Time Bandw. Step Transducer Start Stop


Frequency Frequency Width

9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz NSLK8126 2008

Average

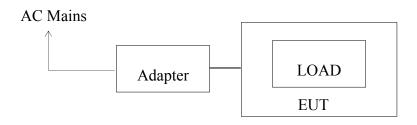
150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008

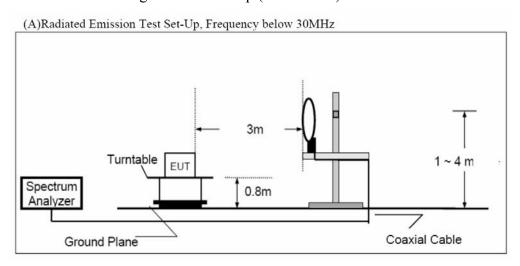
Average

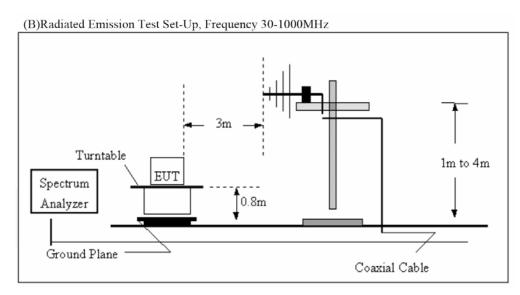
MEASUREMENT RESULT: "TUV-1027-6 fin"

10/27/2018 Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.190000	37.50	10.5	64	26.5	QP	L1	GND
0.320000	28.40	10.6	60	31.3	QP	L1	GND
0.885000	25.30	10.8	56	30.7	QP	L1	GND
9.950000	28.70	11.3	60	31.3	QP	L1	GND

MEASUREMENT RESULT: "TUV-1027-6 fin2"


10/27/2018 Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.315000	23.70	10.6	50	26.1	AV	L1	GND
0.730000	21.90	10.8	46	24.1	AV	L1	GND
4.390000	22.00	11.1	46	24.0	AV	L1	GND
28.975000	27.80	11.5	50	22.2	AV	L1	GND


5. RADIATED EMISSION MEASUREMENT


5.1.Block Diagram of Test

5.1.1.Block diagram of connection between the EUT and simulators

5.1.2.Block diagram of test setup (In chamber)

Page 13 of 21

5.2. Radiated Emission Limit

Frequency	Field Streng Limitation		Field Strength Limitation at 3m Measurement Dist				
(MHz)	(uV/m) Dist		(uV/m)	(dBuV/m)			
0.009 - 0.490	2400 / F(KHz)	300m	10000 * 2400/F(KHz)	20log 2400/F(KHz) + 80			
0.490 - 1.705	24000 / F(KHz)	30m	100 * 24000/F(KHz)	20log 24000/F(KHz) + 40			
1.705 - 30.00	30	30m	100* 30	20log 30 + 40			
30.0 - 88.0	100	3m	100	20log 100			
88.0 – 216.0	150	3m	150	20log 150			
216.0 - 960.0	200	3m	200	20log 200			
Above 960.0	500	3m	500	20log 500			

Limit: 2400/125=19.2uV/m@300m

Distance Correction Factor=40log(test distance/specific distance)

5.3.EUT Configuration on Measurement

The equipments are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

5.4. Operating Condition of EUT

- 5.4.1. Setup the EUT and simulator as shown as Section 5.1.
- 5.4.2. Turn on the power of all equipment.
- 5.4.3. Let the EUT work in test mode and measure it.

Page 14 of 21

5.5.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.10: 2013 on radiated emission measurement.

From 9kHz to 30MHz at distance 3m The EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

From 30MHz to 1000MHz at distance 3m The measuring antenna height varied between 1 and 4m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity. The measurements were performed for both vertical and horizontal antenna polarization.

The final measurement will be performed with an EMI Receiver set to Quasi Peak detector for the frequency bands 9kHz to 90kHz and 110 to 490 kHz where an average detector will be used according to Section 15.209(d)(2).

The final level, expressed in dBuV/m, is arrived at by taking the reading from the EMI receiver(Level dBuV) and adding the antenna correction factor and cable loss factor(Factor dB) to it. This result then has to be compared with the relevant FCC limit. The resolution bandwidth during the measurement is as follows:

9kHz – 150kHz: ResBW: 200Hz 150kHz – 30MHz: ResBW: 9kHz

The bandwidth of the EMI test receiver is set at 120kHz from 30MHz to 1000MHz.

Page 15 of 21

5.6.Data Sample

Frequency(Reading	Factor	Result	Limit	Margin	Remark
MHz)	(dBµv)	(dB/m)	(dBµv/m)	(dBµv/m)	(dB)	
X.XX	49.83	-22.03	27.80	43.50	-15.70	QP

Frequency(MHz) = Emission frequency in MHz

Reading(dBμv) = Uncorrected Analyzer/Receiver reading

Factor (dB/m)= Antenna factor + Cable Loss - Amplifier gain

Result($dB\mu v/m$) = Reading + Factor

Limit (dBµv/m)= Limit stated in standard

Calculation Formula:

 $Margin(dB) = Result (dB\mu v/m) - Limit(dB\mu v/m)$

Result($dB\mu v/m$)= Reading($dB\mu v$)+ Factor(dB/m)

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the limit.

5.7. Radiated Emission Measurement Result

PASS.

Emissions attenuated more than 20 dB below the permissible value are not reported.

The spectrum analyzer plots are attached as below.

Page 16 of 21

From 9kHz to 30MHz: TX Mode

ACCURATE TECHNOLOGY CO., LTD

RADIATED EMISSION STANDARD FCC PART 15C

Base Station Apple Watch Edition M/N:NM30011A00

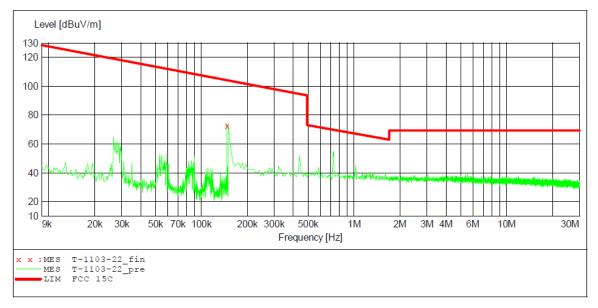
Manufacturer: Nomad Goods, Inc.

Operating Condition: TX

2# Chamber Test Site: Operator: WADE

AC 120V/60Hz Test Specification:

Comment: X


Start of Test: 2018-11-3 /

SCAN TABLE: "LFRE(E) Fin"

_SUB_STD_VTERM2 1.70 Short Description: Step ΙF Start Detector Meas. Transducer Stop

Time Bandw.

Frequency Frequency Width 9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz 1516E 150.0 kHz 30.0 MHz QuasiPeak 1.0 s 9 kHz 5.0 kHz 1516E

MEASUREMENT RESULT: "T-1103-22 fin"

2018-11-3

1 1				_			Azimuth deg	Polarization
0.146400	72.78	20.1	/	/	PK	/	/	X

Page 17 of 21

ACCURATE TECHNOLOGY CO., LTD

RADIATED EMISSION STANDARD FCC PART 15C

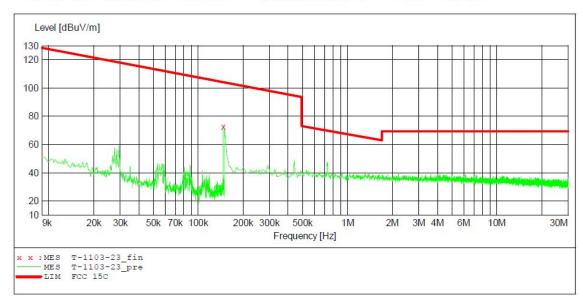
EUT: Base Station Apple Watch Edition M/N:NM30011A00

Manufacturer: Nomad Goods, Inc.

Operating Condition: TX

2# Chamber Test Site:

Operator: WADE


Test Specification: AC 120V/60Hz Comment: Start of Test: 2018-11-3 /

SCAN TABLE: "LFRE(E) Fin"
Short Description:

_SUB_STD_VTERM2 1.70 Step Start Detector Meas. Stop IF Transducer

Bandw.

Frequency Frequency Width Time 9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz 1516E 150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz 1516E

MEASUREMENT RESULT: "T-1103-23 fin"

2018-11-3

Level Transd Limit Margin Det. Height Azimuth Polarization Frequency MHz dBuV/m dB dBuV/m dB cm deg 0.146400 72.76 20.1 / / PK / Y /

Page 18 of 21

ACCURATE TECHNOLOGY CO., LTD

RADIATED EMISSION STANDARD FCC PART 15C

EUT: Base Station Apple Watch Edition M/N:NM30011A00

Manufacturer: Nomad Goods, Inc.

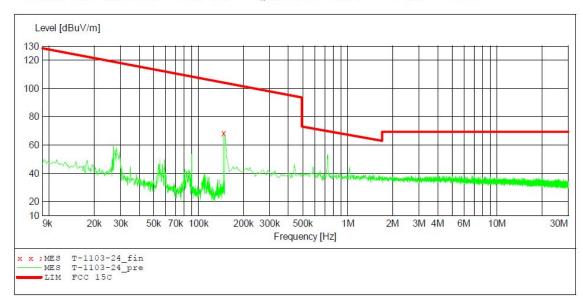
Operating Condition: TX

2# Chamber Test Site:

Operator: WADE

Test Specification: AC 120V/60Hz Comment:

Start of Test: 2018-11-3 /


SCAN TABLE: "LFRE(E) Fin"
Short Description:

_SUB_STD_VTERM2 1.70

Detector Meas. Step Start Stop IF Transducer

Bandw.

Frequency Frequency Width Time
9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz 1516E 150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz 1516E

MEASUREMENT RESULT: "T-1103-24 fin"

2018-11-3

Frequency Level Transd Limit Margin Det. Height Azimuth Polarization dB dBuV/m MHz dBuV/m dB cm dea 68.50 20.1 / PK / / Z 0.146400

From 30MHz to 1000MHz: TX Mode

Report No.: ATE20181987 Page 19 of 21

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: LGW2018 #3016

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: Base Station Apple Watch Edition

Mode: TX

Model: NM30011A00

Manufacturer: Nomad Goods, Inc.

Note:

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 18/10/27/

Time:

Engineer Signature: WADE

Distance: 3m

	0 dBuV/m								limit1:	· —	
60											
50											
40											
30				. M		ألمس	Marie II	W.kW	Mily be derobyte y party	rafter throughout the	
20	Makeyother philips and a second	M^{N}	Many Jur	Walter And	LA JUHNANIA	VAN	- AMMANA	Maria de			
10	The same of the sa		Man								
0.0	30.000 40	50 60 7	0 80			300	0 400	500	600 70	00 1000.0 MH	Ηz
	Freq.	Reading	Factor	Result	Limit	Margin	Detector	Height	Degree	Remark	
	(MHz) 139.3611	(dBuV/m) 43.14	(dB) -14.97	(dBuV/m) 28.17	(dBuV/m) 43.50	(dB) -15.33		(cm)	(deg.)		
			- 1 -1 .37	U. /	TJ.JU	-10.00	S.	I	1	I	

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290

Fax:+86-0755-26503396

Report No.: ATE20181987

Page 20 of 21

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 18/10/27/

Time:

Engineer Signature: WADE

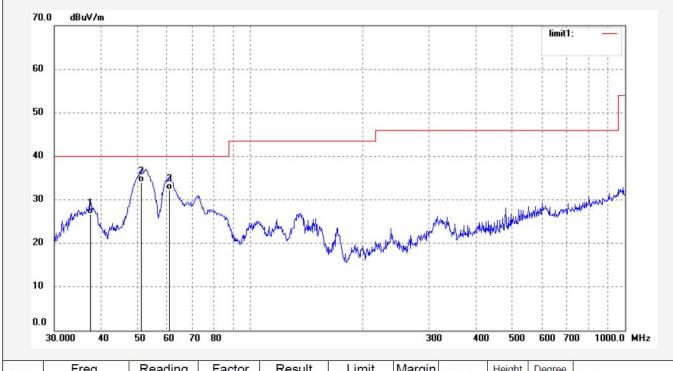
Distance: 3m

Job No.: LGW2018 #3017

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %


EUT: Base Station Apple Watch Edition

Mode: TX

Model: NM30011A00

Manufacturer: Nomad Goods, Inc.

Note:

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	37.4164	37.59	-10.95	26.64	40.00	-13.36	QP			
2	51.3004	46.78	-12.68	34.10	40.00	-5.90	QP			
3	60.9176	46.54	-14.24	32.30	40.00	-7.70	QP			

Page 21 of 21

6. ANTENNA REQUIREMENT

6.1. The Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

6.2. Antenna Construction

Device is equipped with permanent attached antenna, which isn't displaced by other antenna. Therefore, the equipment complies with the antenna requirement of Section 15.203.

**** End of Test Report ****