

RF PERFORMANCE TEST REPORT

Test Report No. : OT-20O-RWD-030

Reception No. : 2010003957

Applicant : Asterisk, Inc.

Address : Shin-Osaka Dainichi Bldg. 201, 5-6-16, Nishinakajima, Yodogawa-ku, Osaka, Japan

Manufacturer : Asterisk, Inc.

: Shin-Osaka Dainichi Bldg. 201, 5-6-16, Nishinakajima, Yodogawa-ku, Osaka, Japan Address

Type of Equipment : AsLock RFID

FCC ID. : 2AJXE-ASR-L70D

Model Name : ASR-L70D

Multiple Model Name : ASR-L71D, ASR-L30D, ASR-L31D

Serial number : N/A

Total page of Report : 19 pages (including this page)

Date of Incoming : October 15, 2020

Date of issue : October 23, 2020

SUMMARY

The equipment complies with the regulation; FCC CFR47 Part 15 Subpart C Section 15.207 and 15.209

This test report only contains the result of a single test of the sample supplied for the examination.

It is not a generally valid assessment of the features of the respective products of the mass-production.

Tested by

/ Youngyong Kim/ Assistant Manager / Ha-Ram Lee / Manager

ONETECH Corp.

Reviewed by

ONETECH Corp.

Approved by

/ Ki-Hong, Nam / General Manager

Report No.: OT-20O-RWD-030

ONETECH Corp.

CONTENTS

	PAGE
1. VERIFICATION OF COMPLIANCE	5
2. TEST SUMMARY	6
2.1 TEST ITEMS AND RESULTS	6
2.2 Additions, deviations, exclusions from standards	6
2.3 RELATED SUBMITTAL(S) / GRANT(S)	6
2.4 PURPOSE OF THE TEST	6
2.5 TEST METHODOLOGY	6
2.6 TEST FACILITY	6
3. GENERAL INFORMATION	7
3.1 PRODUCT DESCRIPTION	7
3.2 ALTERNATIVE TYPE(S)/MODEL(S); ALSO COVERED BY THIS TEST REPORT	7
4. EUT MODIFICATIONS	7
5. SYSTEM TEST CONFIGURATION	8
5.1 JUSTIFICATION	8
5.2 PERIPHERAL EQUIPMENT	8
5.3 MODE OF OPERATION DURING THE TEST	8
5.4 CONFIGURATION OF TEST SYSTEM	9
5.5 ANTENNA REQUIREMENT	9
6. PRELIMINARY TEST	10
6.1 AC POWER LINE CONDUCTED EMISSIONS TESTS	10
6.2 GENERAL RADIATED EMISSIONS TESTS	10
7. 20 DB BANDWIDTH	11
7.1 OPERATING ENVIRONMENT	11
7.2 TEST SET-UP	11
TEST DATE	11
7.3 TEST DATA	12
8. SPURIOUS EMISSION TEST	13
8.1 REGULATION	13
8.2 TEST SET-UP	13
8.3 TEST DATA FOR USING MAX LOAD (1 000 MA)	14

8.3.1 Spurious Radiated Emission Below 30 MHz	14
8.3.2 Spurious Radiated Emission below 1 GHz	15
9. CONDUCTED EMISSION TEST	16
9.1 OPERATING ENVIRONMENT	16
9.2 TEST SET-UP	16
9.3 TEST EQUIPMENT USED.	16
9.4 TEST DATE	16
9.4 TEST DATA	17
10. LIST OF TEST EQUIPMENT	19

Revision History

Issue Report No.	Issued Date	Revisions	Effect Section
OT-20O-RWD-030	October 23, 2020	Initial Release	All

Page 5 of 19 Report No.: OT-200-RWD-030

1. VERIFICATION OF COMPLIANCE

APPLICANT : Asterisk, Inc.

ADDRESS : Shin-Osaka Dainichi Bldg. 201, 5-6-16, Nishinakajima, Yodogawa-ku, Osaka, Japan

CONTACT PERSON : Naoki Kumamoto / Chief Technical Officer

TELEPHONE NO : +81-50-5536-1185 FCC ID : 2AJXE-ASR-L70D

MODEL NAME : ASR-L70D BRAND NAME : AsReader

SERIAL NUMBER : N/A

DATE : October 23, 2020

EQUIPMENT CLASS	DCD – Part 15 Low Power Transmitter Below 1 705 kHz
KIND OF EQUIPMENT	AsLock RFID
THIS REPORT CONCERNS	Original Grant
MEASUREMENT PROCEDURES	ANSI C63.10: 2013
TYPE OF EQUIPMENT TESTED	Pre-Production
KIND OF EQUIPMENT AUTHORIZATION REQUESTED	Certification
EQUIPMENT WILL BE OPERATED UNDER FCC&IC RULES PART(S)	FCC CFR47 Part 15 Subpart C Section 15.207 and 15.209
MODIFICATIONS ON THE EQUIPMENT TO ACHIEVE COMPLIANCE	No
FINAL TEST WAS CONDUCTED ON	3 m, Semi Anechoic Chamber

^{-.} The above equipment was tested by ONETECH Corp. for compliance with the requirement set forth in the FCC Rules and Regulations. The equipment in the configuration described in this report shows the maximum emission levels emanating from equipment are within the compliance requirements.

2. TEST SUMMARY

2.1 Test items and results

SECTION	TEST ITEMS	RESULTS
15.209, 15.209(a)	Radiated emission, Spurious Emission and Field Strength of Fundamental	Met the Limit / PASS
15.215	20 dB Bandwidth	Met the Limit / PASS
15.207	Transmitter AC Power Line Conducted Emission	Met the Limit / PASS

2.2 Additions, deviations, exclusions from standards

No additions, deviations or exclusions have been made from standard.

2.3 Related Submittal(s) / Grant(s)

Original submittal only

2.4 Purpose of the test

To determine whether the equipment under test fulfills the requirements of the regulation stated in FCC CFR47 Part 15 Subpart C Section 15.207 and 15.209, 15.215

2.5 Test Methodology

Radiated testing was performed according to the procedures in ANSI C63.10: 2013 at a distance of 3 m from EUT to the antenna.

2.6 Test Facility

The ONETECH Corp. has been designated to perform equipment testing in compliance with ISO/IEC 17025.

The Electromagnetic compatibility measurement facilities are located at 301-14, Daessangnyeong-ri, Chowol-eup, Gwangjusi, Gyeonggi-do, 464-862 Korea.

-. Site Filing:

VCCI (Voluntary Control Council for Interference) - Registration No. R-4112/ C-4617/ G-666/ T-1842

ISED (Innovation, Science and Economic Development Canada) - Registration No. Site# 3736A-3

-. Site Accreditation:

KOLAS (Korea Laboratory Accreditation Scheme) - Accreditation NO. KT085

FCC (Federal Communications Commission) - Accreditation No. KR0013

RRA (Radio Research Agency) - Designation No. KR0013

3. GENERAL INFORMATION

3.1 Product Description

The Asterisk, Inc., Model: ASR-L70D (referred to as the EUT in this report) is a AsLock RFID. Product specification information described herein was obtained from product data sheet or user's manual.

DEVICE TYPE	AsLock RFID
OPERATING FREQUENCY	134.20 kHz
RATED RF OUTPUT POWER	72.9 dBμV/m
ANTENNA TYPE	Coil Antenna
MODULATION	ASK
RATED SUPPLY VOLTAGE	DC 5.0 V

3.2 Alternative type(s)/model(s); also covered by this test report.

-. The following lists consist of the added model and their differences.

Model Name	Differences	
ASR-L70D	Basic Model	V
ASR-L71D		
ASR-L30D	This model is identical to the basic model except for the end customer and color of product.	
ASR-L31D	5. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	

Note: 1. Applicant consigns only basic model to test. Therefore, this test report just guarantees the units, which have been tested

2. The Applicant/manufacturer is responsible for the compliance of all variants.

4. EUT MODIFICATIONS

-. None

It should not be reproduced except in full, without the written approval of ONETECH Corp.

5. SYSTEM TEST CONFIGURATION

5.1 Justification

This device was configured for testing in a typical way as a normal customer is supposed to be used. During the test, the following components were installed inside of the EUT.

DEVICE TYPE	MANUFACTURER	MODEL/PART NUMBER	FCC ID
Main Board	N/A	N/A	N/A
Module	N/A	N/A	N/A

5.2 Peripheral equipment

Model	Manufacturer	Description	Connected to
RFID Reader	N/A	N/A	N/A
RFID Tag	N/A	N/A	N/A
Charging Cable	N/A	N/A	N/A

5.3 Mode of operation during the test

For the testing, software used to control the EUT for staying in continuous transmitting is programmed.

For final testing, the EUT was set at 134.20 kHz for 5V.

To get a maximum emission levels from the EUT, the EUT was moved throughout the XY, XZ, and YZ planes and the worst case is "XY" axis.

Page 9 of 19 Report No.: OT-20O-RWD-030

5.4 Configuration of Test System

Line Conducted Test : The EUT was tested in a charging mode. The EUT was connected to USB and the

power of USB was connected to Adapter. All supporting equipment were connected to

another LISN. Preliminary Power line Conducted Emission test was performed by using

the procedure in ANSI C63.4: 2009 7.3.3 to determine the worse operating conditions.

Radiated Emission Test : Preliminary radiated emissions test were conducted using the procedure in ANSI

C63.10: 2013 to determine the worse operating conditions. Final radiated emission tests

were conducted at 3 m Semi Anechoic Chamber.

The turntable was rotated through 360 degrees and the EUT was tested by positioned three orthogonal planes to obtain the highest reading on the field strength meter. Once

maximum reading was determined, the search antenna was raised and lowered in both

vertical and horizontal polarization.

5.5 Antenna Requirement

According to section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna Construction:

The antenna of the EUT is a Coil Antenna on the main board in the EUT, so no consideration of replacement by the user.

6. PRELIMINARY TEST

6.1 AC Power line Conducted Emissions Tests

During Preliminary Tests, the following operating modes were investigated

Operation Mode	The Worse operating condition (Please check one only)
Charging Mode	X

6.2 General Radiated Emissions Tests

During Preliminary Tests, the following operating modes were investigated

Operation Mode	The Worse operating condition (Please check one only)
Transmitting Mode	X

Report No.: OT-20O-RWD-030

7. 20 dB BANDWIDTH

7.1 Operating environment

Temperature : 23 °C

Relative humidity : 53 % R.H.

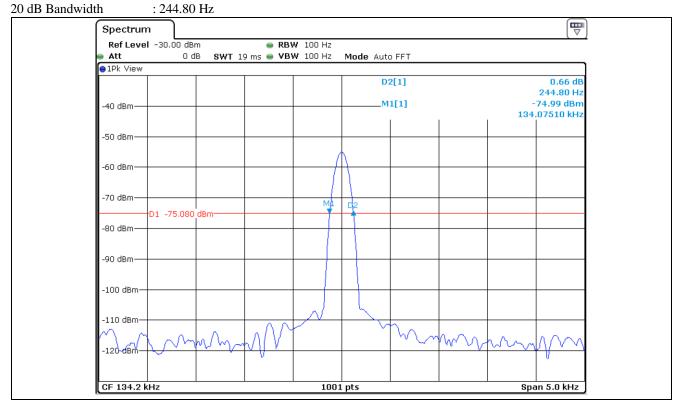
7.2 Test set-up

a. Span = approximately 2 to 3 times the 20 dB bandwidth, RBW = greater than 1 % of the 20 dB bandwidth, VBW = RBW, Sweep = auto, Detector = peak, Trace = max hold.

b. The marker-to-peak function to set the mark to the peak of the emission. Use the marker-delta function to measure 20 dB down one side of the emission. Reset the function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level.

The marker-delta reading at this point is 20 dB bandwidth of the emission.

7.3 Test date


October 19, 2020

7.4 Test data

Frequency : 134.20 KHz

8. Spurious Emission Test

8.1 Regulation

According to §15.209(a), for an intentional device, the general requirement of field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency [MHz]	Field strength	Field strength [dBµ V/m]	Measurement distance [m]
0.009 ~ 0.490	2 400 / F (kHz)	48.52 ~ 13.80	300
0.490 ~ 1.705	24 000 / F (kHz)	33.8 ~ 22.97	30
1.705 ~ 30	30	29.50	30
30 ~ 88	*100	40.00	3
88 ~ 216	*150	43.52	3
216 ~ 960	*200	46.02	3
Above 960	500	53.98	3

^{*}Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands $54 \sim 72$ MHz, $76 \sim 88$ MHz, $174 \sim 216$ MHz or $470 \sim 806$ MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

8.2 Test set-up

The radiated emissions measurements were on the 3 m semi anechoic chamber. The EUT and other support equipment were placed on a non-conductive turntable above the ground plane. The interconnecting cables from outside test site were inserted into ferrite clamps at the point where the cables reach the turntable.

The frequency spectrum from 30 kHz to 1 GHz was scanned and maximum emission levels at each frequency recorded. The system was rotated 360°, and the antenna was varied in the height between 1.0 m and 4.0 ms in order to determine the maximum emission levels. This procedure was performed for horizontal and vertical polarization of the receiving antenna.

Page 14 of 19 Report No.: OT-200-RWD-030

8.3 Test data

8.3.1 Spurious Radiated Emission Below 30 MHz

Humidity Level : <u>53 % R.H.</u> Temperature: <u>23 °C</u>

Limits apply to : FCC CFR 47, PART 15, SUBPART C, SECTION 15.209

Frequency Range : 9 kHz ~ 30 MHz

Result : <u>PASSED</u>

EUT : AsLock RFID

Operating Condition: Transmitting Mode

Frequency (MHz)	Detector	Ant. Pol. (H/V)	Reading (dBµV)	Ant. Factor (dB/m)	Cable Loss	Emission Level at 3m (dBµV/m)	Emission Level at 300m (dBµV/m)	Limit at 300m (dBµV/m)	Margin (dB)
0.015	QP	Н	37.7	20.3	0.0	58.0	-22.0	44.1	66.1
0.031	QP	Н	41.2	18.6	0.0	59.8	-20.2	37.8	58.0
*0.134	QP	Н	53.4	19.3	0.2	72.9	-7.1	25.1	32.2
*0.134	QP	V	36.6	19.3	0.2	56.1	-23.9	25.1	49.0

Frequency (MHz)	Detector	Ant. Pol. (H/V)	Reading (dBµV)	Ant. Factor (dB/m)	Cable Loss	Emission Level at 3m (dBµV/m)	Emission Level at 30m (dBµV/m)	Limit at 30m (dBµV/m)	Margin (dB)
18.597	AV	V	34.0	19.3	0.2	53.5	13.5	30.0	16.5

- -. Remark: "H" Horizontal, "V" Vertical
- -. "*" Means Fundamental frequency
- -. Emission Level at 3m [dB μ V/m] = Reading [dB μ V] + Ant. Factor [dB/m] + Cable Loss [dB]
- -. Margin [dB] = Emission Level at 300m [dB μ V/m] Limit at 300m [dB μ V/m]
 - = Emission Level at 300m [$dB\mu V/m$] Limit at 30m [$dB\mu V/m$]
- -. Emission Level at $300 \text{m} \left[\text{dB}\mu\text{V/m} \right] = \text{Emission Level}$ at $3 \text{m} \left[\text{dB}\mu\text{V/m} \right] 40 \log (300/3)$, 80 dB for up to 0.49 MHz
- -. Emission Level at 30m [dB μ V/m] = Emission Level at 3m [dB μ V/m] 40log (30/3), 40 dB for above 0.49 MHz, Below 30 MHz

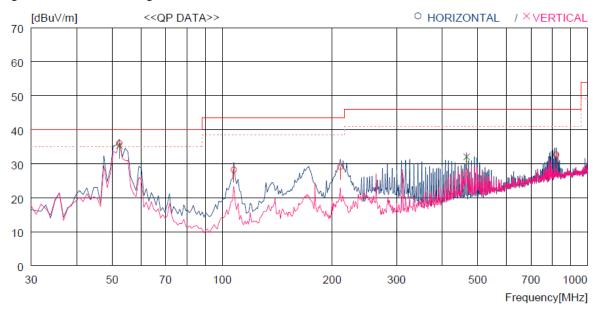
It should not be reproduced except in full, without the written approval of ONETECH Corp.

Page 15 of 19 Report No.: OT-20O-RWD-030

8.3.2 Spurious Radiated Emission below 1 GHz

The following table shows the highest levels of radiated emissions on both polarizations of horizontal and vertical.

Humidity Level : <u>53 % R.H.</u> Temperature: <u>23 °C</u>


Limits apply to : FCC CFR 47, PART 15, SUBPART C, SECTION 15.209

Frequency range : 30 MHz ~ 1 000 MHz

Result : <u>PASSED</u>

EUT : AsLock RFID

Operating Condition: Transmitting Mode

No.	FREQ	READING QP	ANT FACTOR	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
	[MHz]	[dBu∀]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[DEG]
H	orizontal -									
1 2 3 4	52.310 107.600 210.420 820.541		19.6 15.5 15.7 28.4	1.1 1.7 2.5 5.0	33.2 33.1 33.0 33.3	36.0 28.2 29.1 32.6	40.0 43.5 43.5 46.0	4.0 15.3 14.4 13.4	300 300 100 100	189 0 0 0
Ve	ertical									
5 6	52.310 466.501	47.8 38.1	19.6 23.2	1.1 3.7	33.2 33.0	35.3 32.0	40.0 46.0	4.7 14.0	100 100	113 164

Page 16 of 19 Report No.: OT-20O-RWD-030

9. CONDUCTED EMISSION TEST

9.1 Operating environment

Temperature : $23 \, ^{\circ}\text{C}$

Relative humidity : 53 % R.H

9.2 Test set-up

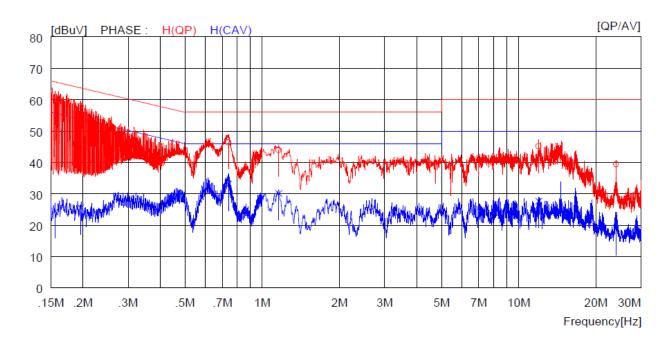
The EUT was placed on a wooden table, 0.8 m height above the floor. Power was fed to the EUT through a 50 Ω / 50 μ H + 5 Ω Artificial Mains Network (AMN). The ground plane was electrically bonded to the reference ground system and all power lines were filtered from ambient.

9.3 Test equipment used

All test equipment used is calibrated on a regular basis.

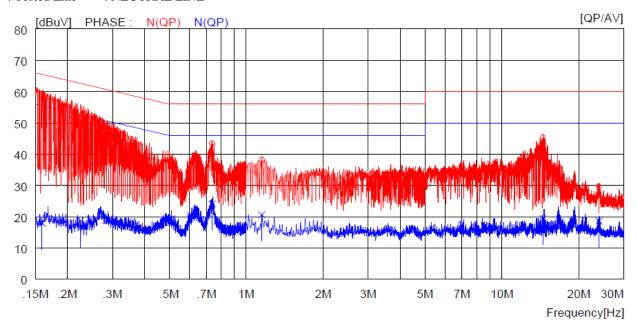
9.4 Test date

October 19, 2020



9.4 Test data

-. Resolution bandwidth : 9 kHz


-. Frequency range : 0.15 MHz ~ 30 MHz

-. Tested Line : HOT LINE

NC	FREQ	READ	ING	C.FACTOR	RES	ULT	LIM	IIT	MAF	RGIN	PHASE
		QP	ΑV		QP	VA	QP	ΑV	QP	VA	
	[MHz]	[dBuV]	[dBuV]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	
1	0.15600	50.6		10.0	60.6		65.7		5.1		H(QP)
2	0.19600	48.0		10.0	58.0		63.8		5.8		H(QP)
3	0.73800	36.4		10.0	46.4		56.0		9.6		H(QP)
4	1.16000	33.9		10.1	44.0		56.0		12.0		H(QP)
5	11.96000	35.0		10.2	45.2		60.0		14.8		H(QP)
6	23.98000	28.9		10.5	39.4		60.0		20.6		H(QP)
7	0.15600		14.4	10.0		24.4		55.7		31.3	H(CAV)
8	0.19600		15.5	10.0		25.5		53.8		28.3	H(CAV)
9	0.73800		23.1	10.0		33.1		46.0		12.9	H(CAV)
10	1.16000		20.0	10.1		30.1		46.0		15.9	H(CAV)
11	11.96000		17.4	10.2		27.6		50.0		22.4	H(CAV)
12	23.98000		8.4	10.5		18.9		50.0		31.1	H(CAV)

-. Tested Line : NEUTRAL LINE

N	O FREQ	READ	ING	C.FACTOR	RES	ULT	LIM	IIT	MAF	RGIN	PHASE	
		QP	VA		QP	AV	QP	AV	QP	VA		
	[MHz]	[dBuV]	[dBuV]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dBuV]		
1	0.15900	48.8		10.0	58.8		65.5		6.7		N(QP)	
2	0.22500			9.9	53.6		62.6				N(QP)	
3	0.73700	33.3		10.0	43.3		56.0		12.7		N(QP)	
4	1.15200	28.0		10.1	38.1		56.0		17.9		N(QP)	
5	14.48000	35.1		10.2	45.3		60.0		14.7		N(QP)	
6	24.03000	19.1		10.5	29.6		60.0		30.4		N(QP)	
7	0.15900		8.0	10.0		18.0		55.5		37.5	N(CAV)	
8	0.22500		8.7	9.9		18.6		52.6		34.0	N(CAV)	
9	0.73700		14.1	10.0		24.1		46.0		21.9	N(CAV)	
10	1.15200		10.6	10.1		20.7		46.0		25.3	N(CAV)	
11	14.48000		9.3	10.2		19.5		50.0		30.5	N(CAV)	
12	24.03000		8.1	10.5		18.6		50.0		31.4	N(CAV)	

Remark: Margin (dB) = Limit - Level (Result)

The emission level in above table is included the transducer factor that means insertion loss (LISN), cable loss and attenuator.

10. LIST OF TEST EQUIPMENT

Model Number	Manufacturer	Description	Serial Number	Last Cal. (Interval)	
FSV30	R/S	Spectrum analyzer	101199	Feb. 20, 2020 (1Y)	
ESR	R/S	Test receiver	101470	Oct. 20, 2021 (1Y)	
VULB9168	Schwarzbeck	TRILOG Broadband Antenna	01088	Dec. 09, 2020 (1Y)	
310N	Sonoma Instrument	Amplifier	312544	Mar. 16, 2020 (1Y)	
CO3000	Innco Systems GmbH	Controller	N/A	N/A	
DT5000	Innco Systems GmbH	Turn Table	N/A	N/A	
MA-4640-XPET	Innco Systems GmbH	Antenna Master	MA4640/652/43100318/P	N/A	
ESCI	R/S	Test Receiver	101012	Oct. 19, 2020 (1Y)	
ESH3-Z2	R/S	PULSE LIMITER	100655	Mar. 16, 2020 (1Y)	
NSLK8128	Schwarzbeck	LISN	8128-216	Mar. 16, 2020 (1Y)	
FMZB 1513	Schwarzbeck	Loop Antenna	1513-235	Mar 24, 2020 (2Y)	
PSL-2KP	ESPEC	Environmental Test Chamber	14009407	Feb 21, 2020 (1Y)	