Shenzhen Toby Technology Co., Ltd.

Report No.: TB-MPE160834

Page: 1 of 3

RF Exposure Evaluation FCC ID: 2AJWO-REACTORS

1. Client Information

Applicant	i	Pred Technologies USA, Inc.			
Address	-	7855 Fay Avenue, suite 310 La Jolla, California 92037 USA			
Manufacturer	:	Sunstar Digi (H.K.) Co., Ltd.			
Address	:	2-3 Floor F Building, Guanlong 1st Industrial Zone, Xili Town, Nanshan District, Shenzhen, Guangdong, China			

2. General Description of EUT

z. General		Scription of Lot			
EUT Name	÷	TOKK Reactors Wireless Stereo Speakers			
Models No.		TOKK Reactors, TOKK Reactors XL			
Model Difference		All models are in the same PCB layout interior structure and electrical circuits, The only difference is model name.			
Product Description		Operation Frequency:	Bluetooth 4.1(BT): 2402MHz~2480MHz		
		RF Output Power:	GFSK: -2.997dBm π /4-DQPSK: -1.945dBm		
		Antenna Gain:	0.5dBi PCB Antenna		
Power Supply		DC Voltage Supply from USB Port. DC Voltage supplied by Li-ion battery.			
Power Rating		DC 5.0V by USB cable DC 3.7V by 500mAh Li-ion battery			
Software Version		V2.0			
Hardware Version	:	V2.0			
Connecting I/O Port(S)		Please refer to the User's Manual			

Note: More test information about the EUT please refer the RF Test Report.

TB-RF-074-1. 0

Report No.: TB-MPE160834

Page: 2 of 3

SAR Test Exclusion Calculations

1. FCC: According to KDB 447498 D01 Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies v06.

- (1) Clause 4.3: General SAR test reduction and exclusion guidance Sub clause 4.31: Standalone SAR test exclusion considerations
 - 1)The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6GHz at test separation distance≤5 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation, mm)]*[$\sqrt{f_{(GHz)}}$] \leq 3.0 for 1-g SAR

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation, mm)]*[$\sqrt{f_{(GHz)}}$] \leq 7.5.0 for 10-g SAR

Report No.: TB-MPE160834

Page: 3 of 3

2. Calculation:

Test separatio	n: 5mm	1 13				EALL .
		В	luetooth Mode (GFSK)			Control of the Contro
Frequency (GHz)	Conducted Power (dBm)	Turn-up Power Tolerance (dB)	Max power of tune up tolerance (dbm)	Max power of tune up tolerance (mw)	Calculation Value	Threshold Value
2.402	-3.276	-3±1	-2	0.631	0.196	3.0
2.441	-2.997	-3±1	-2	0.631	0.197	3.0
2.480	-3.434	-3±1	-2	0.631	0.199	3.0
		Blue	tooth Mode (π/4-DQPS	SK)		
Frequency (GHz)	Conducted Power (dBm)	Turn-up Power Tolerance (dB)	Max power of tune up tolerance (dbm)	Max power of tune up tolerance (mw)	Calculation Value	Threshold Value
2.402	-2.218	-2±1	-1	0.794	0.246	3.0
2.441	-1.945	-2±1	-1	0.794	0.248	3.0
2.480	-2.326	-2±1	-1	0.794	0.250	3.0

Test separation: 5mm						
The worst RF Exposure Evaluation						
Worst Calculation Value	Threshold Value					
0.250	3.0					

The worst RF Exposure Evaluation is 0.250 / cm2 < limit 3.0, So standalone SAR measurements are not required.

----END OF REPORT----