



REPORT No.: SZ19110224S01

# RF EXPOSURE

## ASSESSMENT REPORT

**APPLICANT** : Petasense Inc

**PRODUCT NAME** : Industrial asset reliability IOT sensor

**MODEL NAME** : Vibration Mote Model 3

**BRAND NAME** : Petasense

**FCC ID** : 2AJW7-00002

**STANDARD(S)** : 47CFR 2.1091  
KDB 447498

**RECEIPT DATE** : 2020-03-16

**TEST DATE** : 2020-04-04 to 2020-04-13

**ISSUE DATE** : 2020-04-15

Edited by:

Peng Mi

Peng Mi (Rapporteur)

Approved by:

Peng Huarui

Peng Huarui (Supervisor)

**NOTE:** This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

**MORLAB**

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.  
FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,  
Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 86-755-36698525  
Http://www.morlab.cn E-mail: service@morlab.cn





## DIRECTORY

|                                                         |          |
|---------------------------------------------------------|----------|
| <b>1. Technical Information</b> .....                   | <b>4</b> |
| <b>1.1 Applicant and Manufacturer Information</b> ..... | <b>4</b> |
| <b>1.2 Equipment under Test (EUT) Description</b> ..... | <b>4</b> |
| <b>1.3 Applied Reference Documents</b> .....            | <b>5</b> |
| <b>2. Device Category and RF Exposure Limit</b> .....   | <b>6</b> |
| <b>3. RF Output Power</b> .....                         | <b>7</b> |
| <b>4. RF Exposure Assessment</b> .....                  | <b>8</b> |
| <b>Annex A General Information</b> .....                | <b>9</b> |



REPORT No.: SZ19110224S01

| Change history |            |                   |
|----------------|------------|-------------------|
| Version        | Date       | Reason of changed |
| 1.0            | 2020-04-15 | Original          |
|                |            |                   |

**MORLAB**

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.  
FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,  
Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555      Fax: 86-755-36698525  
[Http://www.morlab.cn](http://www.morlab.cn)      E-mail: [service@morlab.cn](mailto:service@morlab.cn)



# 1. Technical Information

**Note:** Provide by applicant.

## 1.1 Applicant and Manufacturer Information

|                              |                                                                |
|------------------------------|----------------------------------------------------------------|
| <b>Applicant:</b>            | Petasense Inc                                                  |
| <b>Applicant Address:</b>    | 2 North 1st St, 5th Floor, San Jose, California, United States |
| <b>Manufacturer:</b>         | RocketEMS                                                      |
| <b>Manufacturer Address:</b> | 2950 Patrick Henry Dr, Santa Clara CA 95054                    |

## 1.2 Equipment under Test (EUT) Description

|                          |                                                                    |
|--------------------------|--------------------------------------------------------------------|
| <b>Product Name:</b>     | Industrial asset reliability IOT sensor                            |
| <b>Serial No:</b>        | (N/A, marked #1 by test site)                                      |
| <b>Hardware Version:</b> | 1.0                                                                |
| <b>Software Version:</b> | 1.0                                                                |
| <b>Frequency Bands:</b>  | WLAN 2.4GHz: 2412 MHz ~ 2472 MHz<br>Bluetooth: 2402 MHz ~ 2480 MHz |
| <b>Modulation Mode:</b>  | 802.11b: DSSS<br>802.11a/g/n-HT20: OFDM<br>Bluetooth LE: GFSK      |
| <b>Antenna Type:</b>     | WLAN 2.4GHz : Chip Antenna<br>Bluetooth: PCB Antenna               |
| <b>Antenna Gain:</b>     | WLAN 2.4GHz:-0.4dBi<br>Bluetooth:2.0dBi                            |



## 1.3 Applied Reference Documents

Leading reference documents for testing:

| No. | Identity          | Document Title                                                | Method determination /Remark |
|-----|-------------------|---------------------------------------------------------------|------------------------------|
| 1   | 47 CFR§2.1091     | Radio Frequency Radiation Exposure Assessment: mobile devices | No deviation                 |
| 2   | KDB 447498 D01v06 | General RF Exposure Guidance                                  | No deviation                 |

**Note 1:** The test item is not applicable.

**Note 2:** Additions to, deviation, or exclusions from the method shall be judged in the "method determination" column of add, deviate or exclude from the specific method shall be explained in the "Remark" of the above table.



## 2. Device Category and RF Exposure Limit

Per user manual, Based on 47CFR 2.1091, this device belongs to mobile device category with General Population/Uncontrolled exposure.

### Mobile Devices:

#### 47CFR 2.1091(b)

For purposes of this section, a mobile device is defined as a transmitting device designed to be used in other than fixed locations and to generally be used in such a way that a separation distance of at least 20 centimeters is normally maintained between the transmitter's radiating structure(s) and the body of the user or nearby persons. In this context, the term "fixed location" means that the device is physically secured at one location and is not able to be easily moved to another location. Transmitting devices designed to be used by consumers or workers that can be easily re-located, such as wireless devices associated with a personal computer, are considered to be mobile devices if they meet the 20 centimeter separation requirement.

### General Population/Uncontrolled Exposure:

The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity. Warning labels placed on low-power consumer devices such as cellular telephones are not considered sufficient to allow the device to be considered under the occupational/controlled category, and the general population/uncontrolled exposure limits apply to these devices.

Table 1—Limits for Maximum Permissible Exposure (MPE)

| Frequency range (MHz)                                          | Electric field strength (V/m) | Magnetic field strength (A/m) | Power density (mW/cm <sup>2</sup> ) | Averaging time (minutes) |
|----------------------------------------------------------------|-------------------------------|-------------------------------|-------------------------------------|--------------------------|
| <b>(B) Limits for General Population/Uncontrolled Exposure</b> |                               |                               |                                     |                          |
| 0.3-1.34                                                       | 614                           | 1.63                          | *(100)                              | 30                       |
| 1.34-30                                                        | 824/f                         | 2.19/f                        | *(180/f <sup>2</sup> )              | 30                       |
| 30-300                                                         | 27.5                          | 0.073                         | 0.2                                 | 30                       |
| 300-1500                                                       | -                             | -                             | f/1500                              | 30                       |
| 1500-100,000                                                   | -                             | -                             | 1.0                                 | 30                       |

f = frequency in MHz \* = Plane-wave equivalent power density



### 3. RF Output Power

#### <WLAN 2.4GHz>

| 2.4GHz<br>WLAN | Mode                  | Channel | Frequency (MHz) | Average power (dBm) | Tune-up Power | Duty Cycle % |
|----------------|-----------------------|---------|-----------------|---------------------|---------------|--------------|
|                | 802.11b<br>1Mbps      | CH 1    | 2412            | <b>8.50</b>         | 9.0           | 100.00       |
|                |                       | CH 7    | 2442            | 7.45                | 7.5           |              |
|                |                       | CH 13   | 2472            | 7.81                | 8.0           |              |
|                | 802.11g<br>6Mbps      | CH 1    | 2412            | 3.17                | 3.5           | 98.62        |
|                |                       | CH 7    | 2442            | 4.13                | 4.5           |              |
|                |                       | CH 13   | 2472            | 6.22                | 6.5           |              |
|                | 802.11n-HT2<br>0 MCS0 | CH 1    | 2412            | 2.13                | 2.5           | 98.16        |
|                |                       | CH 7    | 2442            | 2.38                | 2.5           |              |
|                |                       | CH 13   | 2472            | 4.81                | 5.0           |              |

#### <Bluetooth>

| Mode          | Channel | Frequency (MHz) | Average power (dBm) |              |         |         |
|---------------|---------|-----------------|---------------------|--------------|---------|---------|
|               |         |                 | 1Mbps               | 2Mbps        | 125Kbps | 500Kbps |
| BLE           | CH 00   | 2402            | -4.99               | -4.62        | -5.05   | -4.63   |
|               | CH 19   | 2440            | -4.56               | -4.18        | -4.49   | -4.53   |
|               | CH 39   | 2480            | -4.14               | <b>-3.80</b> | -4.04   | -4.22   |
| Tune-up Limit |         |                 | -4.0                | -3.0         | -4.0    | -4.0    |

**Note 1:** The output power of WLAN and Bluetooth is derived from the report SZ19110224W01/W02.



## 4. RF Exposure Assessment

### ➤ Standalone Transmission Assessment:

| Bands       | Frequency (MHz) | Maximum Tune-up Power (dBm) | Antenna Gain (dBi) | EIRP (mW) | Power Density (mW/cm <sup>2</sup> ) | Limit for MPE (mW/cm <sup>2</sup> ) |
|-------------|-----------------|-----------------------------|--------------------|-----------|-------------------------------------|-------------------------------------|
| WLAN 2.4GHz | 2412            | 9.0                         | -0.4               | 7.24      | 0.001                               | 1.0                                 |
| Bluetooth   | 2480            | -3.0                        | 2.0                | 0.79      | 0.000                               | 1.0                                 |

**Note:**

1. According to KDB 447498, SAR test exclusion conditions are based on source-based time-averaged maximum conducted output power of the RF channel requiring assessment, adjusted for tune-up tolerance, and the minimum test separation distance required for the exposure conditions.

2. MPE calculate method

$$\text{Power Density} = \text{EIRP}/4\pi R^2$$

Where: EIRP = P+G

P = Output Power (dBm)

G = Antenna Gain (dBi)

R = Separation Distance (20cm)

### ➤ Simultaneous Transmission Assessment:

#### Multi-Band Simultaneous Transmission Consideration

| Simultaneous Transmission Consideration | Position  | Applicable Combination |
|-----------------------------------------|-----------|------------------------|
|                                         | Hand/Body | WLAN 2.4GHz+ Bluetooth |

1. This device contains transmitters that may operate simultaneously, therefore simultaneous transmission analysis is required.
2. The worst condition for WLAN & Bluetooth will be calculated for transmitting simultaneously.

Formula: Result=Power density<sub>1</sub>/ limit<sub>1</sub> + Power density<sub>2</sub>/ limit<sub>2</sub> ≤ 1.

| Transmission Bands | Power Density/ SAR | Limit | Simultaneous Transmission Result |
|--------------------|--------------------|-------|----------------------------------|
| WLAN 2.4GHz        | 0.001              | 1     | 0.001                            |
| Bluetooth          | 0.000              | 1     |                                  |

### ➤ Conclusion:

According to 47 CFR §2.1091, this device complies with human exposure basic restrictions.



## Annex A General Information

### 1. Identification of the Responsible Testing Laboratory

|                            |                                                                                                                                        |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| <b>Laboratory Name:</b>    | Shenzhen Morlab Communications Technology Co., Ltd.<br>Morlab Laboratory                                                               |
| <b>Laboratory Address:</b> | FL.3, Building A, FeiYang Science Park, No.8 LongChang<br>Road, Block 67, BaoAn District, ShenZhen, GuangDong<br>Province, P. R. China |
| <b>Telephone:</b>          | +86 755 36698555                                                                                                                       |
| <b>Facsimile:</b>          | +86 755 36698525                                                                                                                       |

### 2. Identification of the Responsible Testing Location

|                 |                                                                                                                                        |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------|
| <b>Name:</b>    | Shenzhen Morlab Communications Technology Co., Ltd.<br>Morlab Laboratory                                                               |
| <b>Address:</b> | FL.3, Building A, FeiYang Science Park, No.8 LongChang<br>Road, Block 67, BaoAn District, ShenZhen, GuangDong<br>Province, P. R. China |

---

END OF REPORT

---