

FCC Measurement/Technical Report on

Oshkosh NGDV SCM2

FCC ID: 2AJW5-SCM2

Simultaneous transmission

Test Report Reference: MDE_CONTI_2308_FCC_03

Test Laboratory: 7layers GmbH Borsigstrasse 11 40880 Ratingen Germany

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbH Borsigstraße 11 40880 Ratingen, Germany T +49 (0) 2102 749 0 F +49 (0) 2102 749 350 Geschäftsführer/ Managing Directors: Sebastian Doose Stefan Kischka Bernhard Retka

Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company

www.7layers.com

Commerzbank AG Account No. 303 016 000 Bank Code 300 400 00 IBAN DE81 3004 0000 0303 0160 00 Swift Code COBADEFF

Table of Contents

1	Applied Standards and Test Summary	3
1.1	Applied Standards	3
1.2	FCC-IC Correlation Table	4
1.3	Measurement Summary	7
2	Revision History / Signatures	8
3	Administrative Data	9
3.1	Testing Laboratory	9
3.2	Project Data	9
3.3	Applicant Data	9
3.4	Manufacturer Data	10
4	Test object Data	11
4.1	General EUT Description	11
4.2	EUT Main components	11
4.3	Ancillary Equipment	12
4.4	Auxiliary Equipment	12
4.5	EUT Setups	12
4.6	Operating Modes / Test Channels	12
4.7	Product labelling	13
5	Test Results	14
5.1	Field strength of spurious radiation	14
5.2	Field strength of spurious radiation	18
5.3	Field strength of spurious radiation	22
6	Test Equipment	26
6.1	Test Equipment Hardware	26
6.2	Test Equipment Software	27
7	Antenna Factors, Cable Loss and Sample Calculations	28
7.1	Antenna R&S HF907 (1 GHz – 18 GHz)	28
7.2	Antenna EMCO 3160-09 (18 GHz – 26.5 GHz)	29
8	Measurement Uncertainties	30
9	Photo Report	31

1 APPLIED STANDARDS AND TEST SUMMARY

1.1 APPLIED STANDARDS

Type of Authorization

Certification for a cellular mobile device.

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2, 22, 24 and 27 (10-1-22 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

Part 22, Subpart H – Cellular Radiotelephone Service

- § 22.905 Channels for cellular service
- § 22.913 Effective radiated power limits
- § 22.917 Emission limitations for cellular equipment

Part 24, Subpart E – Broadband PCS

- § 24.232 Power and antenna height limits
- § 24.235 Frequency stability
- § 24.238 Emission limitations for Broadband PCS equipment

Part 27; Miscellaneous Wireless Communications Services Subpart C – Technical standards

- § 27.50 Power and duty cycle limits
- § 27.53 Emission limits
- § 27.54 Frequency stability

The tests were selected and performed with reference to:

- FCC Public Notice 971168 applying "Measurement guidance for certification of licensed digital transmitters" 971168 D01 v03r01, 2018-04-09
- ANSI C63.26: 2015

1.2 FCC-IC CORRELATION TABLE

Correlation of measurement requirements for Cellular Mobile Devices from FCC and ISED Canada

Measurement	FCC reference	ISED reference
RF Output Power	§ 2.1046 § 22.913	RSS-GEN Issue 5, 6.12 RSS-132 Issue 4, 5.4
Peak-Average-Ratio	-	RSS 132 Issue 4: 5.4
Emission and Occupied bandwidth	§ 2.1049	RSS-GEN Issue 5, 6.7
Spurious Emission at Antenna Terminals	§ 2.1051 § 22.917	RSS-GEN Issue 5, 6.13 RSS-132 Issue 4, 5.5
Band Edge Compliance	§ 2.1051 § 22.917	RSS-GEN Issue 4, 6.13 RSS-132 Issue 4, 5.5
Frequency stability	§ 2.1055 § 22.355	RSS-GEN Issue 5, 6.11 RSS-132 Issue 4: 5.3
Field strength of spurious radiation	§ 2.1053 § 22.917	RSS-GEN Issue 5, 6.13 RSS-132 Issue 4: 5.5

Correlation of measurement requirements for Cellular Mobile Devices from FCC and ISED Canada

Measurement	FCC reference	ISED reference
RF Output Power	§ 2.1046 § 24.232	RSS-GEN Issue 5, 6.12 RSS-133 Issue 6, 6.4
Peak-Average-Ratio	§ 24.232	RSS 133 Issue 6: 6.4
Emission and Occupied bandwidth	§ 2.1049	RSS-GEN Issue 5, 6.7
Spurious Emission at Antenna Terminals	§ 2.1051 § 24.238	RSS-GEN Issue 5, 6.13 RSS-133 Issue 6, 6.5
Band Edge Compliance	§ 2.1051 § 24.238	RSS-GEN Issue 5, 6.13 RSS-133 Issue 6, 6.5
Frequency stability	§ 2.1055 § 24.235	RSS-GEN Issue 5, 6.11 RSS-133 Issue 6: 6.3
Field strength of spurious radiation	§ 2.1053 § 24.236	RSS-GEN Issue 5, 6.13 RSS-133 Issue 6: 6.5

Correlation of measurement requirements for Cellular Mobile Devices from FCC and ISED Canada

Measurement	FCC reference	ISED reference
RF Output Power	§ 2.1046 § 27.50	RSS-GEN Issue 5, 6.12 RSS-130 Issue 2, 4.6.2/4.6.3 RSS-139 Issue 3, 6.5 RSS-199 Issue 3, 4.4
Peak to Average-Ratio	§ 27.50	RSS-130 Issue 2: 4.6.1 RSS 139 Issue 3: 6.5 RSS-199 Issue 3, 4.4
Emission and Occupied bandwidth	§ 2.1049	RSS-GEN Issue 5, 6.7
Spurious Emission at Antenna Terminals	§ 2.1051 § 27.53	RSS-GEN Issue 5, 6.13 RSS-130 Issue 2: 4.7.1/4.7.2 RSS-139 Issue 3, 6.6 RSS-199 Issue 3, 4.5
Band Edge Compliance	§ 2.1051 § 27.53	RSS-GEN Issue 5, 6.13 RSS-130 Issue 2: 4.7.1/4.7.2 RSS-139 Issue 3, 6.6 RSS-199 Issue 3, 4.5
Frequency stability	§ 2.1055 § 27.54	RSS-GEN Issue 5, 6.11 RSS-130 Issue 2: 4.5 RSS-139 Issue 3: 6.4 RSS-199 Issue 3, 4.3
Field strength of spurious radiation	§ 2.1053 § 27.53	RSS-GEN Issue 5, 6.13 RSS-130 Issue 2: 4.7.1/4.7.2 RSS-139 Issue 3: 6.6 RSS-199 Issue 3, 4.5

1.3 MEASUREMENT SUMMARY

47 CFR CHAPTER I FCC PART 22 Subpart H	§ 2.1053 §	22.917		
Field strength of spurious radiation The measurement was performed accord 5.5.2.3.1	ing to ANSI C63	3.26: 2015;	Final Re	esult
OP-Mode Radio Technology, Measurement range, Measurement method	Setup	Date	FCC	IC
GSM 850 GPRS + WLAN 2,4GHz, 1 -26 GHz, radiated	S01_AA01	2023-10-13	Passed	Passec
47 CFR CHAPTER I FCC PART 24 Subpart E	§ 2.1053 §	24.236		
Field strength of spurious radiation The measurement was performed accord 5.5.2.3.1	ing to ANSI C63	3.26: 2015;	Final Re	esult
OP-Mode Radio Technology, Measurement range,	Setup	Date	FCC	IC
Measurement method GSM 1900 GPRS + WLAN 2,4GHz, 1 -26 GHz, radiated	S01_AA01	2023-10-13	Passed	Passec
47 CFR CHAPTER I FCC PART 27 Subpart C	§ 2.1053 §	27.53		
Field strength of spurious radiation The measurement was performed accord 5.5.2.3.1	ing to ANSI C63	3.26: 2015;	Final Re	esult
OP-Mode Radio Technology, Measurement range, Measurement method	Setup	Date	FCC	IC
eFDD 12 QPSK + WLAN 2,4GHz, 1 -26 GHz,	S01_AA01	2023-10-13	Passed	Passec

N/A: Not applicable N/P: Not performed

2 REVISION HISTORY / SIGNATURES

		Report version control	
Version	Release date	Change Description	Version validity
initial	2023-12-12		valid

COMMENT: -

(responsible for accreditation scope) Dipl.-Ing. Daniel Gall

(responsible for testing and report) BSc. Mhd Mouaz Saad

7 layers GmbH, Borsigstr. 11 40880 Ratingen, Germany Phone +49 (0)2102 749 0

3 ADMINISTRATIVE DATA

3.1 TESTING LABORATORY

7layers GmbH

Address:

Borsigstr. 11 40880 Ratingen Germany

The test facility is accredited by the following accreditation organisation:

Laboratory accreditation no:	DAkkS D-PL-12140-01-01 -02 -03	
FCC Designation Number:	DE0015	
FCC Test Firm Registration:	929146	
ISED CAB Identifier	DE0007; ISED#: 3699A	
Responsible for accreditation scope:	DiplIng. Daniel Gall	
Report Template Version:	2022-05-25	
3.2 PROJECT DATA		
Responsible for testing and report:	BSc. Mhd Mouaz Saad	
Employees who performed the tests:	documented internally at 7Layers	
Date of Report:	2023-10-23	
Testing Period:	2023-12-12	

3.3 APPLICANT DATA

Company Name:	Continental Automotive Technologies GmbH
Address:	Heinrich-Hertz-Str. 45 78052, Villingen- Schwenningen

Germany

Dr. Marion Grüner

3.4 MANUFACTURER DATA

Company Name:

please see Applicant Data

Address:

Contact Person:

4 TEST OBJECT DATA

4.1 GENERAL EUT DESCRIPTION

Kind of Device product description	vehicle mounted telematics device
Product name	Oshkosh NGDV
Туре	SCM2
Declared EUT data by	the supplier
General product description	 TCU is a vehicle mounted telematics device incorporating: GNSS for vehicle location and tracking 2.4 GHz Wi-Fi and dual mode Bluetooth for peripheral connectivity LTE/UMTS/GSM data-modem for offloading data to back-end servers. Internal Bluetooth/WiFi on-board antennas are included. For GNSS and cellular external antennas are required.
Voltage Level	12 V
Voltage Type	DC
Supported Technology	GSM: GSM 850, GSM 1900 UMTS: FDD2, FDD4, FDD5 LTE: eFDD2, eFDD4, eFDD5, eFDD7, eFDD12 eFDD13 Bluetooth: Bluetooth® BDR/EDR, Bluetooth® LE WLAN 2.4 GHz: WLAN mode b, g, n

4.2 EUT MAIN COMPONENTS

Sample Name	Sample Code	Description
EUT A	DE1304048aa01	Radiated Sample
Sample Parameter		Value
Serial No.	FCC003	
HW Version	AAA2358110000	
SW Version	SW Version: LEAP 29.1.0.0	
Comment	-	

NOTE: The short description is used to simplify the identification of the EUT in this test report.

4.3 ANCILLARY EQUIPMENT

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

	Details (Manufacturer, Type Model, OUT Code)	Description
-	-	-

4.4 AUXILIARY EQUIPMENT

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it.

But nevertheless Auxiliary Equipment can influence the test results.

Device	Details (Manufacturer, Type Model, HW, SW, S/N)	Description
AUX 01	Molex, -, -, -, -	Cellular/GNSS Antenna
AUX 02	Continental, Tyco, -, -, 638677	Main Connector 28 PIN
AUX 03	Rosenberger, -, -, -, 5921D	Cellular/GNSS Fakra

4.5 EUT SETUPS

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup	Combination of EUTs	Description and Rationale
S01_AA01	EUT A, AUX 01, AUX 02, AUX 03	Radiated Setup

4.6 OPERATING MODES / TEST CHANNELS

This chapter describes the operating modes of the EUTs used for testing.

- GSM 850: GPRS, mid channel, ChBW = 0.2 MHz
- GSM 1900: GPRS, mid channel, ChBW = 0.2 MHz
- LTE eFDD12: QPSK, mid channel, ChBW = 5 MHz, 1 RB

- WLAN mode b: CH 06, BW 20 MHz, 1 Mbps

4.7 PRODUCT LABELLING

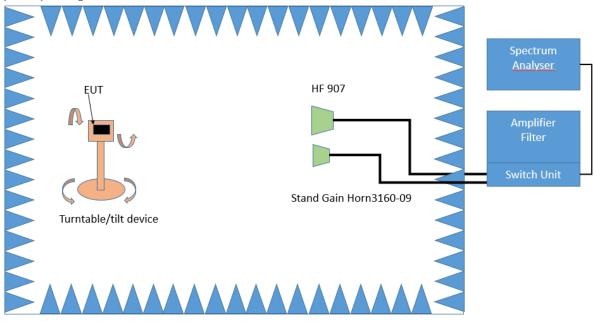
4.7.1 FCC ID LABEL

Please refer to the documentation of the applicant.

4.7.2 LOCATION OF THE LABEL ON THE EUT Please refer to the documentation of the applicant.

5 TEST RESULTS

5.1 FIELD STRENGTH OF SPURIOUS RADIATION


Standard FCC PART 22 Subpart H

The test was performed according to: ANSI C63.26: 2015; 5.5.2.3.1

5.1.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the applicable radiated spurious emission measurements per § 2.1053 and RSS-GEN 6.13. The limit and requirements come from the applicable rule part and ISED RSS-Standard for the operating band of the cellular device.

The EUT was connected to the test setup according to the following diagram:

Frequency Range: 1 GHz – 26.5 GHz

Test Setup; Spurious Emission Radiated (FAC), 1 GHz-26.5 GHz

The test set-up was made in accordance to the general provisions of ANSI C63.26 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated.

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered from a DC power source.

Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

Step 1:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only.

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 °.

The turn table step size (azimuth angle) for the preliminary measurement is 45 °.

- Antenna distance: 3 m
- Detector: Peak
- RBW: 1 MHz
- VBW: 3 MHz
- Sweep time: coupled
- Turntable angle range: -180° to 90°
- Turntable step size: 90°
- Polarisation: Horizontal + Vertical

Step 2:

Due to the fact, that in this frequency range the test is performed in a fully anechoic room, the height scan of the receiving antenna instep 2 is omitted. Instead of this, a maximum search with a step size \pm 45° for the elevation axis is performed.

The turn table azimuth will slowly vary by \pm 22.5°.

The elevation angle will slowly vary by $\pm 45^{\circ}$

EMI receiver settings (for all steps):

- Detector: Peak,
- RBW: 1 MHz
- VBW: 3 MHz
- Sweep time: coupled

Step 3:

Spectrum analyser settings for step 3:

- Detector: RMS
- Measured frequencies: in step 1 determined frequencies
- RBW: 1 MHz
- VBW: 3 MHz
- Sweep Time: 1 s

5.1.2 TEST REQUIREMENTS / LIMITS

FCC Part 2.1053; Measurement required: Field strength of spurious radiation:

Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission. For this test, single sideband, independent sideband, and controlled carrier transmitters shall be modulated under the conditions specified in paragraph (c) of §2.1049, as appropriate.

Part 22, Subpart H – Cellular Radiotelephone Service

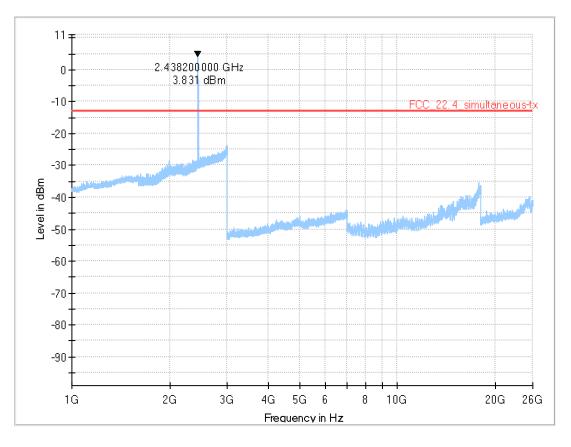
§ 22 917 – Emission limitations for cellular equipment

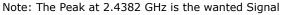
(a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

RSS-132; 5.5 Transmitter Unwanted Emissions

Mobile and base station equipment shall comply with the limits in (i) and (ii) below.

- In the first 1.0 MHz band immediately outside and adjacent to each of the sub-bands specified in Section 5.1, the power of emissions per any 1% of the occupied bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log10p (watts).
- 2. After the first 1.0 MHz immediately outside and adjacent to each of the sub-bands, the power of emissions in any 100 kHz bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log₁₀ p (watts). If the measurement is performed using 1% of the occupied bandwidth, power integration over 100 kHz is required.


5.1.3 TEST PROTOCOL


Ambient tempera Air Pressure: Humidity: GSM 850 + WLAN	1023 hPa 28 %					
Spurious Freq. [MHz]	Spurious Level [dBm]	Detec-tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
-	-	-	-	-	-	-

Remark: Please see next sub-clause for the measurement plot.

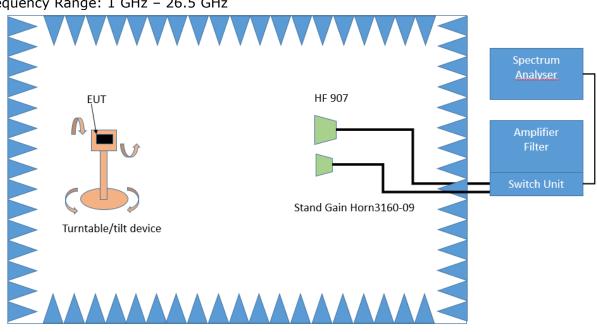
5.1.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = GSM 850 + WLAN 2,4GHz, Measurement method = radiated (S01_AA01)

5.1.5 TEST EQUIPMENT USED

- Radiated Emissions FAR

5.2 FIELD STRENGTH OF SPURIOUS RADIATION


Standard FCC PART 24 Subpart E

The test was performed according to: ANSI C63.26: 2015; 5.5.2.3.1

5.2.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the applicable radiated spurious emission measurements per § 2.1053 and RSS-GEN 6.13. The limit and requirements come from the applicable rule part and ISED RSS-Standard for the operating band of the cellular device.

The EUT was connected to the test setup according to the following diagram:

Frequency Range: 1 GHz – 26.5 GHz

Test Setup; Spurious Emission Radiated (FAC), 1 GHz-26.5 GHz

The test set-up was made in accordance to the general provisions of ANSI C63.26 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated.

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered from a DC power source.

Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

Step 1:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only.

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 °.

The turn table step size (azimuth angle) for the preliminary measurement is 45 °.

- Antenna distance: 3 m
- Detector: Peak
- RBW: 1 MHz
- VBW: 3 MHz
- Sweep time: coupled
- Turntable angle range: -180° to 90°
- Turntable step size: 90°
- Polarisation: Horizontal + Vertical

Step 2:

Due to the fact, that in this frequency range the test is performed in a fully anechoic room, the height scan of the receiving antenna instep 2 is omitted. Instead of this, a maximum search with a step size \pm 45° for the elevation axis is performed.

The turn table azimuth will slowly vary by \pm 22.5°.

The elevation angle will slowly vary by \pm 45°

EMI receiver settings (for all steps):

- Detector: Peak,
- RBW: 1 MHz
- VBW: 3 MHz
- Sweep time: coupled

Step 3:

Spectrum analyser settings for step 3:

- Detector: RMS
- Measured frequencies: in step 1 determined frequencies
- RBW: 1 MHz
- VBW: 3 MHz
- Sweep Time: 1 s

5.2.2 TEST REQUIREMENTS / LIMITS

FCC Part 2.1053; Measurement required: Field strength of spurious radiation:

Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission. For this test, single sideband, independent sideband, and controlled carrier transmitters shall be modulated under the conditions specified in paragraph (c) of §2.1049, as appropriate.

Part 24, Subpart E – Broadband PCS

§ 24 238 – Emission limitations for Broadband PCS equipment

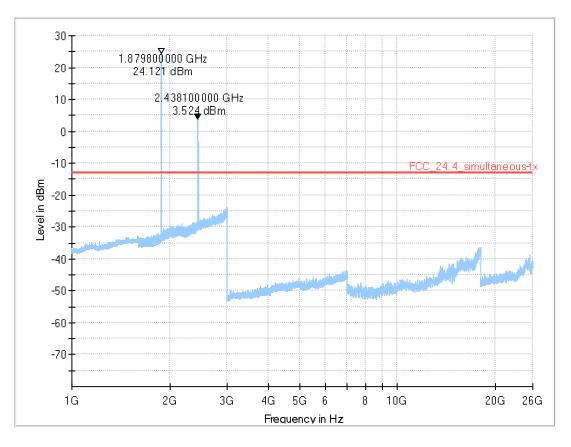
- a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.
- b) Measurement procedure. Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 1 MHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

RSS-133; 6.5 Transmitter Unwanted Emissions

Mobile and base station equipment shall comply with the limits in (1) and (2) below.

- 1. In the 1.0 MHz bands immediately outside and adjacent to the equipment's operating frequency block, the emission power per any 1% of the emission bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log₁₀p (watts).
- After the first 1.0 MHz, the emission power in any 1 MHz bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log₁₀p (watts). If the measurement is performed using 1% of the emission bandwidth, power integration over 1.0 MHz is required.

5.2.3 TEST PROTOCOL


Ambient temperature:	23 °C
Air Pressure:	1023 hPa
Humidity:	28 %
$GSM 1900 + WI \Delta N 2 4G$	H7

Spurious Freq. [MHz]	Spurious Level [dBm]	Detec-tor	RBW [kHz]	-	Margin to Limit [dB]	Limit Type
-	-	-	-	-	-	-

Remark: Please see next sub-clause for the measurement plot.

5.2.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

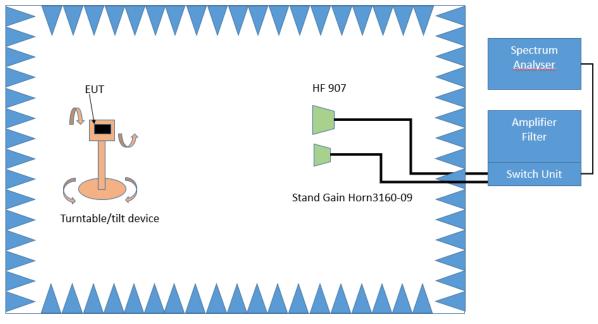
Radio Technology = GSM 1900 + WLAN 2,4GHz, Measurement method = radiated (S01_AA01)

Note: The Peaks at 1.8798 and 2.4381 GHz are the wanted Signals

5.2.5 TEST EQUIPMENT USED

- Radiated Emissions FAR

5.3 FIELD STRENGTH OF SPURIOUS RADIATION


Standard FCC PART 27 Subpart C

The test was performed according to: ANSI C63.26: 2015; 5.5.2.3.1

5.3.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the applicable radiated spurious emission measurements per § 2.1053 and RSS-GEN 6.13. The limit and requirements come from the applicable rule part and ISED RSS-Standard for the operating band of the cellular device.

The EUT was connected to the test setup according to the following diagram:

Frequency Range: 1 GHz – 26.5 GHz

Test Setup; Spurious Emission Radiated (FAC), 1 GHz-26.5 GHz

The test set-up was made in accordance to the general provisions of ANSI C63.26 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated.

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered from a DC power source.

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

Step 1:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only.

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 °.

The turn table step size (azimuth angle) for the preliminary measurement is 45 °.

- Antenna distance: 3 m
- Detector: Peak
- RBW: 1 MHz
- VBW: 3 MHz
- Sweep time: coupled
- Turntable angle range: -180° to 90°
- Turntable step size: 90°
- Polarisation: Horizontal + Vertical

Step 2:

Due to the fact, that in this frequency range the test is performed in a fully anechoic room, the height scan of the receiving antenna instep 2 is omitted. Instead of this, a maximum search with a step size \pm 45° for the elevation axis is performed.

The turn table azimuth will slowly vary by \pm 22.5°.

The elevation angle will slowly vary by \pm 45°

EMI receiver settings (for all steps):

- Detector: Peak,
- RBW: 1 MHz
- VBW: 3 MHz
- Sweep time: coupled

Step 3:

Spectrum analyser settings for step 3:

- Detector: RMS
- Measured frequencies: in step 1 determined frequencies
- RBW: 1 MHz
- VBW: 3 MHz
- Sweep Time: 1 s

5.3.2 TEST REQUIREMENTS / LIMITS

FCC Part 2.1053; Measurement required: Field strength of spurious radiation:

Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission. For this test, single sideband, independent sideband, and controlled carrier transmitters shall be modulated under the conditions specified in paragraph (c) of §2.1049, as appropriate.

FCC Part 27; Miscellaneous Wireless Communication Services

Subpart C – Technical standards

§27.53 – Emission limits

Band 12:

(g) For operations in the 600 MHz band and the 698-746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

RSS-130; 4.7.1 General unwanted emissions limits

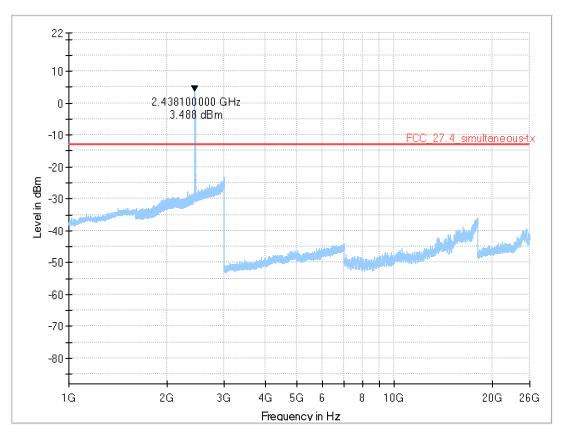
The unwanted emissions in any 100 kHz bandwidth on any frequency outside the low frequency edge and the high frequency edge of each frequency block range(s), shall be attenuated below the transmitter power, P (dBW), by at least $43 + 10 \log_{10} p$ (watts), dB. However, in the 100 kHz band immediately outside of the equipment's frequency block range, a resolution bandwidth of 30 kHz may be employed.

RSS-130; 4.7.2 Additional unwanted emissions limits

In addition to the limit outlined in section 4.7.1 above, equipment operating in the frequency bands 746-756 MHz and 777-787 MHz shall also comply with the following restrictions:

- a. the power of any unwanted emissions in any 6.25 kHz bandwidth for all frequencies between 763-775 MHz and 793-806 MHz shall be attenuated below the transmitter power, P (dBW), by at least:
 - i. 76 + 10 log_{10} p (watts), dB, for base and fixed equipment and
 - ii. $65 + 10 \log_{10} p$ (watts), dB, for mobile and portable equipment
- b. the e.i.r.p. in the band 1559-1610 MHz shall not exceed -70 dBW/MHz for wideband signal and -80 dBW for discrete emission with bandwidth less than 700 Hz.

5.3.3 TEST PROTOCOL


Ambient temperature:	23 °C
Air Pressure:	1023 hPa
Humidity:	28 %
eFDD 12 + WI AN 2 4GHz	

Spurious Freq.	Spurious Level	Detec-tor	RBW	Limit	Margin to	Limit
[MHz]	[dBm]		[kHz]	[dBµV/m]	Limit [dB]	Type
-	-	-	-	-	-	-

Remark: Please see next sub-clause for the measurement plot.

5.3.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = eFDD 12 + WLAN 2,4GHz, Measurement method = radiated (S01_AA01)

Note: The Peak at 2.4381 GHz is the wanted Signal

5.3.5 TEST EQUIPMENT USED

- Radiated Emissions FAR

6 TEST EQUIPMENT

6.1 TEST EQUIPMENT HARDWARE

1 Radiated Emissions FAR Radiated Emissions in a fully anechoic room

Ref.No.	Device Name	Description	Manufacturer	Serial Number		Calibration
					Calibration	Due
1.1	Opus10 TPR (8253.00)		Lufft Mess- und Regeltechnik GmbH	13936		
1.2	Innco Systems CO3000	Controller for bore sight mast FAC		CO3000/1460/54 740522/P		
1.3	AMF- 7D00101800- 30-10P-R	Broadband Amplifier 100 MHz - 18 GHz	Miteq			
1.4	5HC2700/12750 -1.5-KK	High Pass Filter	Trilithic	9942012		
1.5	ASP 1.2/1.8-10 kg	Antenna Mast	Maturo GmbH	-		
1.6	Anechoic Chamber 03	FAR, 8.80m x 4.60m x 4.05m (l x w x h)	Albatross Projects	P26971-647-001- PRB		
1.7	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2023-08	2025-08
1.8	JS4-18002600- 32-5P	Broadband Amplifier 18 GHz - 26 GHz	Miteq	849785		
1.9	FSW43		Rohde & Schwarz GmbH & Co. KG	103779	2023-04	2025-04
1.10	3160-09		EMCO Elektronic GmbH	00083069		
1.11	WHKX 7.0/18G- 8SS		Wainwright Instruments GmbH	09		
1.12	4HC1600/12750 -1.5-КК	High Pass Filter	Trilithic	9942011		
1.13		Bore Sight Antenna Mast				
1.14	TT 1.5 WI	Turn Table	Maturo GmbH	-		
1.15	5HC3500/18000 -1.2-KK		Trilithic	200035008		
1.16		ThermoHygro	Lufft Mess- und Regeltechnik GmbH	115.0318.0802.0 33	2023-08	2025-08
1.17	TD1.5-10kg	EUT Tilt Device (Rohacell)		TD1.5- 10kg/024/37907 09		
1.18	AFS42- 00101800-25-S- 42		Miteq	2035324		
1.19	HF 907		Rohde & Schwarz	102444	2021-09	2024-09

The calibration interval is the time interval between "Last Calibration" and "Calibration Due"

6.2 TEST EQUIPMENT SOFTWARE

Fully-Anechoic Chamber:	
Software	Version
EMC32 Measurement Software	10.60.10
MATURO Turn-Unit Cotrolller	11.10
MATURO Mast Controller	12.10
MATURO Turntable Controller	12.11

7 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

		5 11 507	(-	0112 1	0 0112)				
Frequency MHz 1000 2000 3000 4000 5000 6000 7000	AF R&S HF907 dB (1/m) 24.4 28.5 31.0 33.1 34.4 34.7 35.6	Corr. dB -19.4 -17.4 -16.1 -14.7 -13.7 -12.7 -11.0		cable loss 1 (relay + cable inside chamber) dB 0.99 1.44 1.87 2.41 2.78 2.74 2.82	cable loss 2 (outside chamber) dB 0.31 0.44 0.53 0.67 0.86 0.90 0.86	cable loss 3 (switch unit, atten- uator & pre-amp) dB -21.51 -20.63 -19.85 -19.13 -18.71 -17.83 -16.19	cable loss 4 (to receiver) dB 0.79 1.38 1.33 1.31 1.40 1.47 1.46		
7000	55.0	-11.0		2.02	0.00	-10.19	1.40		
Frequency	AF R&S HF907	Corr.		cable loss 1 (relay inside chamber)	cable loss 2 (inside chamber)	cable loss 3 (outside chamber)	cable loss 4 (switch unit, atten- uator & pre-amp)	cable loss 5 (to receiver)	used for FCC 15.247
MHz	dB (1/m)	dB		dB	dB	dB	dB	dB	
3000	31.0	-23.4		0.47	1.87	0.53	-27.58	1.33	
4000	33.1	-23.3		0.56	2.41	0.67	-28.23	1.31	
5000	34.4	-21.7		0.61	2.78	0.86	-27.35	1.40	
6000	34.7	-21.7		0.51	2.78	0.80	-26.89	1.40	
7000	35.6	-19.8		0.56	2.74	0.90	-25.58	1.47	
7000	55.0	19.0		0.00	2.02	0.00	25.50	1.40	
Eroquerer	AF R&S	60		cable loss 1 (relay inside	cable loss 2 (High	cable loss 3 (pre-	cable loss 4 (inside	cable loss 5 (outside	cable loss 6 (to
Frequency	HF907	Corr.		chamber)	Pass)	amp)	chamber)	chamber)	receiver)
MHz	dB (1/m)	dB		dB	dB	dB	dB	dB	dB
7000	35.6	-57.3		0.56	1.28	-62.72	2.66	0.94	1.46
8000	36.3	-56.3		0.69	0.71	-61.49	2.84	1.00	1.53
9000	37.1	-55.3		0.68	0.65	-60.80	3.06	1.09	1.60
	37.5	-56.2		0.70	0.54	-61.91	3.28	1.20	1.67
11000	37.5	-55.3		0.80	0.61	-61.40	3.43	1.27	1.70
12000	37.6	-53.7		0.84	0.42	-59.70	3.53	1.26	1.73
13000	38.2	-53.5		0.83	0.44	-59.81	3.75	1.32	1.83
14000	39.9	-56.3		0.91	0.53	-63.03	3.91	1.40	1.77
15000	40.9	-54.1		0.98	0.54	-61.05	4.02	1.44	1.83
16000 17000	41.3 42.8	-54.1 -54.4		1.23	0.49	-61.51	4.17 4.34	1.51	1.85
18000	42.8			1.36	0.76	-62.36		1.53	2.00
18000	44.2	-54.7		1.70	0.53	-62.88	4.41	1.55	1.91

ANTENNA R&S HF907 (1 GHZ - 18 GHZ) 7.1

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table. Tables show an extract of values.

TEST REPORT REFERENCE: MDE_CONTI_2308_FCC_03

			 · · ·		- /		
			cable	cable	cable	cable	cable
	AF		loss 1	loss 2	loss 3	loss 4	loss 5
	EMCO		(inside	(pre-	(inside	(switch	(to
requency	3160-09	Corr.	chamber)	amp)	chamber)	unit)	receiver)
MHz	dB (1/m)	dB	dB	dB	dB	dB	dB
18000	40.2	-23.5	0.72	-35.85	6.20	2.81	2.65
18500	40.2	-23.2	0.69	-35.71	6.46	2.76	2.59
19000	40.2	-22.0	0.76	-35.44	6.69	3.15	2.79
19500	40.3	-21.3	0.74	-35.07	7.04	3.11	2.91
20000	40.3	-20.3	0.72	-34.49	7.30	3.07	3.05
20500	40.3	-19.9	0.78	-34.46	7.48	3.12	3.15
21000	40.3	-19.1	0.87	-34.07	7.61	3.20	3.33
21500	40.3	-19.1	0.90	-33.96	7.47	3.28	3.19
22000	40.3	-18.7	0.89	-33.57	7.34	3.35	3.28
22500	40.4	-19.0	0.87	-33.66	7.06	3.75	2.94
23000	40.4	-19.5	0.88	-33.75	6.92	3.77	2.70
23500	40.4	-19.3	0.90	-33.35	6.99	3.52	2.66
24000	40.4	-19.8	0.88	-33.99	6.88	3.88	2.58
24500	40.4	-19.5	0.91	-33.89	7.01	3.93	2.51
25000	40.4	-19.3	0.88	-33.00	6.72	3.96	2.14
25500	40.5	-20.4	0.89	-34.07	6.90	3.66	2.22
26000	40.5	-21.3	0.86	-35.11	7.02	3.69	2.28
26500	40.5	-21.1	0.90	-35.20	7.15	3.91	2.36

7.2 ANTENNA EMCO 3160-09 (18 GHZ - 26.5 GHZ)

Sample calculation

Freq

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

8 MEASUREMENT UNCERTAINTIES

Test Case(s)	Parameter	Uncertainty
- Field strength of spurious radiation	Field Strength	± 5.5 dB
- Emission and Occupied Bandwidth	Power Frequency	± 2.9 dB ± 11.2 kHz
RF Output PowerPeak to Average Ratio	Power	± 2.2 dB
 Band Edge Compliance Spurious Emissions at Antenna Terminal 	Power Frequency	± 2.2 dB ± 11.2 kHz
- Frequency Stability	Frequency	± 25 Hz

9 PHOTO REPORT

Please see separate photo report.