

Statement of compliance to Maximum Permissible Exposure (MPE)

Applicant	:	Qingdao Intelligent&Precise Electronics Co., Ltd No.218, Qianwangang Road, Qingdao Economic&Technological Development Zone, Shandong, China.
Manufacturer site : Qingdao Int No.218, Qia Developme		Qingdao Intelligent&Precise Electronics Co., Ltd No.218, Qianwangang Road, Qingdao Economic&Technological Development Zone, Shandong, China.
Product Name	:	Wireless Module
Type/Model	:	ZDGFMT7668AU
TEST RESULT	:	PASS

According to §2.1091, §2.1093 and §1.1307(b), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Date of issue: December 19, 2017

Prepared by:

Neme li

Approved by:

Nemo Li (Project engineer)

Daniel Zhao (Reviewer)

Power density (S) is calculated according to the formula:

 $S = PG / (4\pi R^2)$

Where $S = power density in mW/cm^2$

P = transmit power in mW

G = numeric gain of transmit antenna (numeric gain=Log-1(dB antenna gain/10))

R = distance (cm)

As we can see from the test report 171001524SHA-001, 171001524SHA-002, 171001524SHA-003 and 171001524SHA-004:

The calculations in the table below use the highest gain of antenna for client EUT. These calculations represent worst case in terms of the exposure levels.

The 2.4G Band WiFi and 5G Band WiFi cannot can support simultaneous transmission, the Bluetooth and WiFi can support simultaneous transmission.

Mode	Frequency band	Max Power	Antenna Gain	R	S	Limits
	(MHz)	dBm	dBi	(cm)	(mW/cm2)	(mW/cm2)
Bluetooth	2400 -2483.5	7.063	0.29	20	0.0011	1
WiFi	2400 -2483.5	15.43	3.14	20	0.0143	1
	5150-5250	13.80	3.17	20	0.0099	1
	5250-5350	13.74	3.43	20	0.0104	1
	5470-5725	14.67	3.30	20	0.0125	1
	5725-5850	16.24	3.30	20	0.0179	1

Note: 1 mW/cm2 from 1.310 Table 1

For the device can support simultaneous transmission, according to 447498 D01 General RF Exposure Guidance v06,

For the device consider simultaneous transmission of WiFi and Bluetooth:

The worst MPE = 0.0011 + 0.0179 = **0.0190** mW/cm2 < **1** mW/cm2.

Appendix I

Definition below must be outlined in the User Manual:

To satisfy FCC RF exposure requirements, a separation distance of 20 cm or more should be maintained between the antenna of this device and persons during device operation. To ensure compliance, operations at closer than this distance is not recommended.