

FCC TEST REPORT for 3Plus International Inc.

Sports Bracelet Model No.: 3Plus-HR, L38I, L38J, L38K, L38M, L38N, L38P, L38R, L38S, L38T, L38X

Prepared for: 3Plus International Inc.Address: 1661 Fairplex Dr., La Verne, CA 91750, United States

Prepared By Address Shenzhen Anbotek Compliance Laboratory Limited
1/F., Building 1, SEC Industrial Park, No.0409 Qianhai Road, Nanshan District, Shenzhen, Guangdong, China Tel: (86) 755-26066544 Fax: (86) 755-26014772

Report Number:R011609047IDate of Test:Sept. 01~ Oct. 09, 2016Date of Report:Oct. 10, 2016

TABLE OF CONTENT

D	•	. •	
Desc	rin	f10	n
DUSU	up	uυ	11

Т	est	Re	port
	000	1.0	port

Page

1. GENERAL INFORMATION	
1.1. Description of Device (EUT)	
1.2. Auxiliary Equipment Used during Test	
1.3. Description of Test Facility	
1.4. Measurement Uncertainty	
2. TEST METHODOLOGY	
2.1. Summary of Test Results	6
2.2. Description of Test Modes	6
3. CONDUCTED EMISSION TEST	7
3.1. Block Diagram of Test Setup	
3.2. Power Line Conducted Emission Measurement Limits (15.207)	7
3.3. Configuration of EUT on Measurement	
3.4. Operating Condition of EUT	
3.5. Test Procedure	
3.6. Test equipment	
3.7. Power Line Conducted Emission Measurement Results	
4. FCC PART 15.247 REQUIREMENTS FOR DSSS & OFDM MODULATION	
4.1 Test Setup	
4.2 6dB Bandwidth	
4.3. Maximum Peak output power test	
4.4. Band Edges Measurement	
4.5. Peak Power Spectral Density	
4.6. Radiated Emissions	
5. ANTENNA APPLICATION	
5.1. Antenna requirement	
5.2. Result	
6. PHOTOGRAPH	
6.1 Photo of Conducted Emission Test	46
6.2 Photo of Radiation Emission Test	46
APPENDIX I (EXTERNAL PHOTOS)	48
APPENDIX II (INTERNAL PHOTOS)	52

TEST REPORT

Applicant	: 3Plus International Inc.
Manufacturer	: Guangdong Appscomm Co., Ltd.
EUT	: Sports Bracelet
Model No.	: 3Plus-HR, L38I, L38J, L38K, L38M, L38N, L38P, L38R, L38S, L38T, L38X
Serial No.	: N.A.
Trade Mark	3 BLUS
Rating	: DC 5V, 100mA

Measurement Procedure Used: FCC Part15 Subpart C 2015, Paragraph 15.247

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 15 Subpart C requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Test : Sept. 01~ Oct. 09, 2016						
Prepared by :	Burnon Wan.					
	(Tested Engineer / Baron Wen)					
	Amy Ding					
Reviewer :	0 0					
	(Project Manager / Amy Ding)					

Approved & Authorized Signer :

(Manager / Tom Chen)

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

EUT	:	Sports Bracelet
Model Number	:	3Plus-HR, L38I, L38J, L38K, L38M, L38N, L38P, L38R, L38S, L38T, L38X (Note: All samples are the same except the model number and colour, so we prepare "3Plus-HR" for test only.)
Test Power Supply	•	AC 120V, 60Hz for adapter/ AC 240V, 60Hz for adapter/ DC 3.7V Battery inside
Frequency	:	2402~2480MHz
Modulation	:	GFSK
Channel Spacing	:	2MHz
Number of Channels	:	40
Antenna Type	:	Ceramic Antenna
Antenna Gain	:	2.12 dBi
Applicant Address	:	3Plus International Inc. 1661 Fairplex Dr., La Verne, CA 91750, United States
Manufacturer Address	:	Guangdong Appscomm Co., Ltd. Rm 903, Block C3, Chuangxin Building, No.182, Science Road, Science City, LuoGang Zone, Guangzhou 510000, P.R.C.
Factory Address	:	Guangdong Appscomm Co., Ltd. Rm 903, Block C3, Chuangxin Building, No.182, Science Road, Science City, LuoGang Zone, Guangzhou 510000, P.R.C.
Date of receipt Date of Test	:	Sept. 01, 2016 Sept. 01~ Oct. 09, 2016

1.2. Auxiliary Equipment Used during Test

Adapter

: Manufacturer: ZTE M/N: STC-A2050I1000USBA-C S/N: 201202102100876 Input: 100-240V~50/60Hz 0.3A Output: DC 5V, 1000mA

1.3. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 752021

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registed and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 752021, July 06, 2016.

IC-Registration No.: 8058A-1

Shenzhen Anbotek Compliance Laboratory Limited., EMC Laboratory has been registered and fully described in a report filed with the (IC) Industry Canada. The acceptance letter from the IC is maintained in our files. Registration 8058A, Jun. 13, 2016.

Test Location

All Emissions tests were performed at Shenzhen Anbotek Compliance Laboratory Limited. at 1/F., Building 1, SEC Industrial Park, No.0409 Qianhai Road, Nanshan District, Shenzhen, Guangdong, China

1.4. Measurement Uncertainty

Radiation Uncertainty	:	Ur = 4.1 dB (Horizontal) Ur = 4.3 dB (Vertical)
Conduction Uncertainty	:	Uc = 3.4dB

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10: 2013 and FCC Part 15, Paragraph 15.247.

2.1. Summary of Test Results

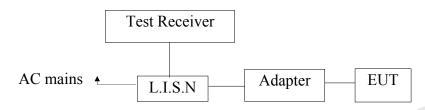
The EUT has been tested according to the following specifications:

The He T has been tested decorang to the tone wing specifications.						
Standard	Test Type	Result	Notes			
FCC Part 15, Paragraph 15.107, 15.207	Conducted Emission Test	PASS	Complies			
FCC Part 15, Paragraph 15.247(b)(1)	Peak Output Power	PASS	Complies			
FCC Part 15, Paragraph 15.247(a)(2)	6dB Bandwidth	PASS	Complies			
FCC Part 15, Paragraph 15.247(c)	100kHz Bandwidth of Frequency Band Edges	PASS	Complies			
FCC Part 15, Paragraph 15.209(a)(f)	Spurious Emission	PASS	Complies			
FCC Part 15, Paragraph 15.247(a)(1)	Frequency Separation	-	N/A			
FCC Part 15, Paragraph 15.247(a)(1)(iii)	Number of Hopping Frequency	- / -	N/A			
FCC Part 15, Paragraph 15.247(a)(1)(iii)	Time of Occupancy	_	N/A			
FCC Part 15, Paragraph 15.247(c)	Peak Power Density	PASS	Complies			

2.2. Description of Test Modes

The EUT has been tested under operating condition.

Software used to control the EUT for staying in continuous transmitting and receiving mode is programmed.


Channel Low(2402MHz), Channel Middle(2440MHz) and Channel High(2480MHz) are chosen for the final testing.

3. Conducted Emission Test

3.1. Block Diagram of Test Setup

3.1.1. Block diagram of connection between the EUT and simulators

3.2. Power Line Conducted Emission Measurement Limits (15.207)

Frequency	Limits	s dB(μV)
MHz	Quasi-peak Level	Average Level
0.15 ~ 0.50	66 ~ 56*	56~46*
0.50 ~ 5.00	56	46
5.00 ~ 30.00	60	50

Notes: 1. *Decreasing linearly with logarithm of frequency. 2. The lower limit shall apply at the transition frequencies.

3.3. Configuration of EUT on Measurement

The following equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner which tends to maximize its emission characteristics in a normal application.

3.4. Operating Condition of EUT

- 3.4.1. Setup the EUT and simulator as shown as Section 3.1.
- 3.4.2. Turn on the power of all equipment.
- 3.4.3. Let the EUT work in test mode (Charging) and measure it.

3.5. Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC ANSI C63.10-2013 on Conducted Emission Measurement.

The bandwidth of test receiver (ESCI) set at 9KHz.

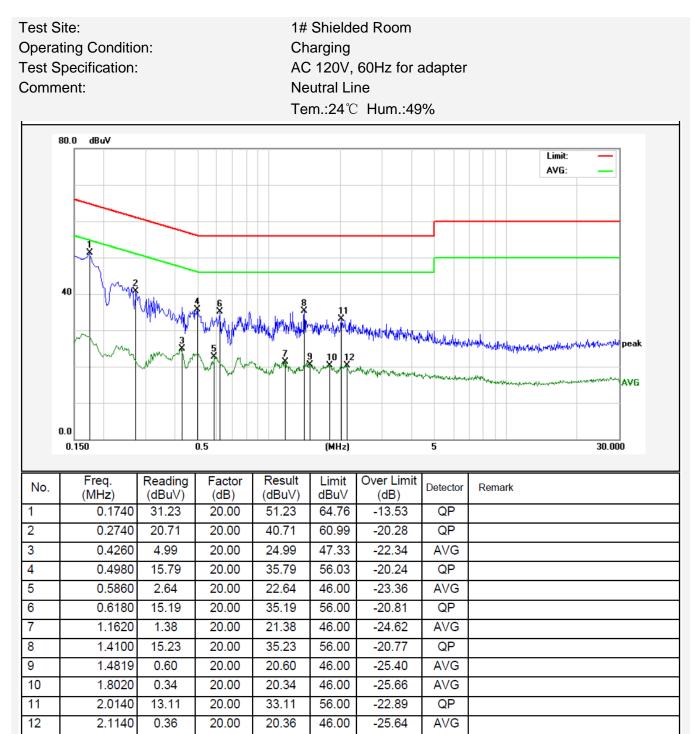
The frequency range from 150KHz to 30MHz is checked.

The test results are reported on Section 3.6.

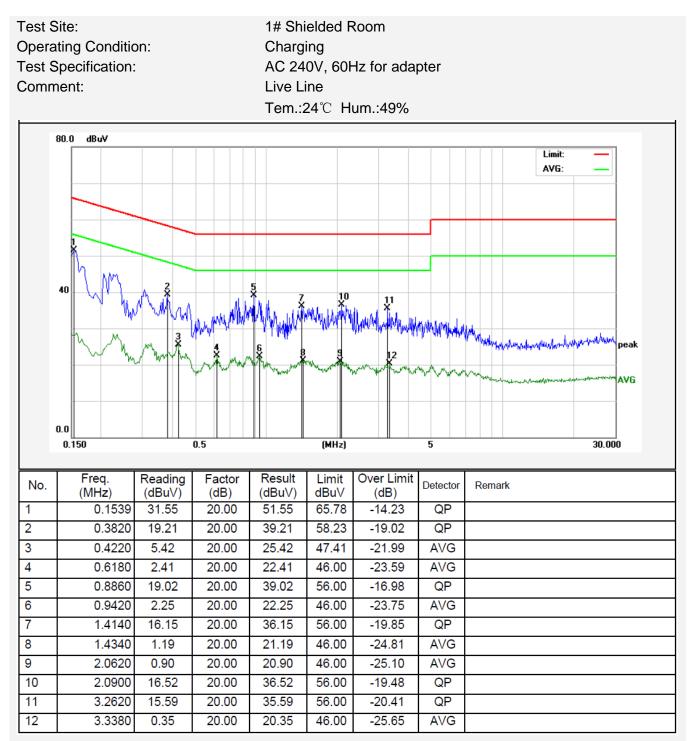
3.6. Test equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Two-Line V-network	Rohde & Schwarz	ENV216	100055	Apr. 16, 2016	1 Year
2.	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	Apr. 16, 2016	1 Year
3.	RF Switching Unit	Compliance Direction	RSU-M2	38303	Apr. 16, 2016	1 Year

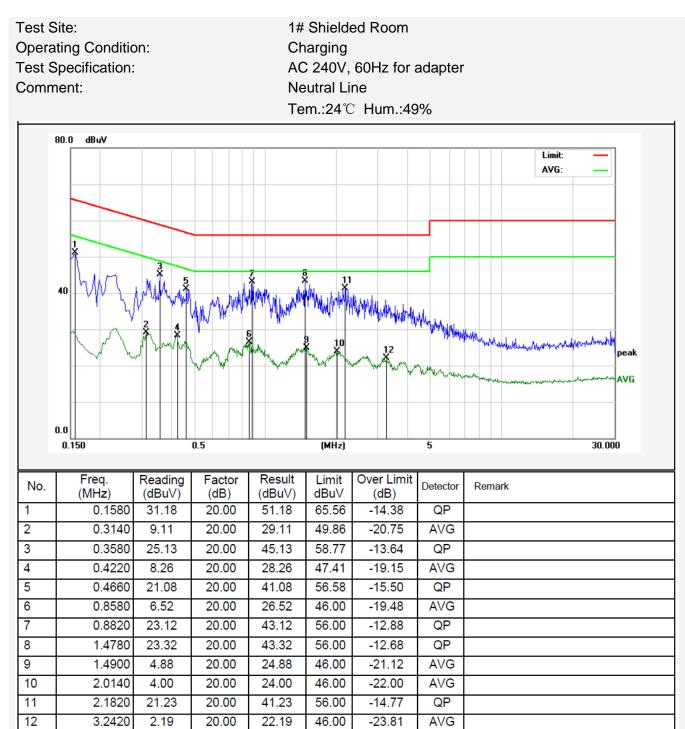
3.7. Power Line Conducted Emission Measurement Results **PASS.**

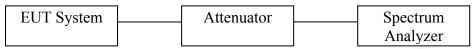

The frequency range from 150KHz to 30 MHz is investigated.

Please refer the following pages.



•	ting Conditic			Chargi AC 12 Live Li	0V, 60ł ne	Room Hz for adap um.:49%	oter			
	80.0 dBu¥									
									Limit: — AVG: —	
	1						-			
	Ň~,									
	40									
		We will and	6 X	9						
	2	- Maharal M	Annulahout	an Amura	handlikhung	handlike warman when	www.	NAMANJA I I	we child be allow more filler	
	- Mary	5	z	ndelware editor.				and adverter laws day	ANNALAINANNANNANNANNANNANNANNANNA	peak
		W	MUN ANNANANANANAN	West and a way of the second	0 11 ///////////////////////////////////	, manyakaya man	12 ************************************	ghim month where	an alathang sport had a short of the	AVG
	0.0									
	0.150		0.5		(MHz)		5		30.00	10
	E re a	D a a dire a	Fastar	Desult	1 too 14	Overtineit				
No.	Freq. (MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Limit dBuV	Over Limit (dB)	Detector	Remark		
1	0.1580	30.29	20.00	50.29	65.56	-15.27	QP			
2	0.1660	8.78	20.00	28.78	55.15	-26.37	AVG			
3	0.2740	21.68	20.00	41.68	60.99	-19.31	QP			
4	0.3940	15.97	20.00	35.97	57.98	-22.01	QP			
5	0.4260	2.56	20.00	22.56	47.33	-24.77	AVG			
6	0.4940	12.38	20.00	32.38	56.10	-23.72	QP			
7	0.5940	-0.30	20.00	19.70	46.00	-26.30	AVG			
8	0.6860	14.93	20.00	34.93	56.00	-21.07	QP			
9	1.0700	12.08	20.00	32.08	56.00	-23.92	QP			
10	1.4420	-2.00	20.00	18.00	46.00	-28.00	AVG			
11	1.7660	-2.31	20.00	17.69	46.00	-28.31	AVG			
12	4.5900	-1.96	20.00	18.04	46.00	-27.96	AVG			





4. FCC Part 15.247 Requirements for DSSS & OFDM Modulation

4.1 Test Setup

4.2 6dB Bandwidth

a. Limit

For the direct sequence systems, the minimum 6dB bandwidth shall be at least 500kHz.

b. Test Procedure

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port
- to the spectrum analyzer.
- 3. Set the spectrum analyzer as:
- RBW = 100kHz, $VBW \ge 3*RBW = 300kHz$,

Detector= Peak

Trace mode= Max hold.

Sweep- auto couple.

- 4. Mark the peak frequency and –6dB (upper and lower) frequency.
- 5. Repeat until all the rest channels are investigated.

c. Test Setup See 4.1

d. Test Equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Spectrum Analysis	Agilent	E4407B	US39390582	Apr. 16, 2016	1 Year
2.	Preamplifier	Instruments corporation	EMC01183 0	980100	Apr. 16, 2016	1 Year
3.	EMI Test Receiver	Rohde & Schwarz	ESPI	101604	Apr. 16, 2016	1 Year
4.	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	Apr. 19, 2016	1 Year
5.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Apr. 19, 2016	1 Year
6.	Pre-amplifier	SONOMA	310N	186860	Apr. 16, 2016	1 Year
7.	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A	N/A
8	Power Sensor	DAER	RPR3006 W	15I00041SN0 46	Jun 30, 2016	1 Year
9	MXA Spectrum Analysis	Agilent	N9020A	MY51170037	Jun 30, 2016	1 Year
10	MXG RF Vector Signal Generator	Agilent	N5182A	MY48180656	Jun 30, 2016	1 Year
11	Signal Generator	Agilent	E4421B	MY41000743	Jun 30, 2016	1 Year
12	DC Power supply	IV	IV-8080	YQSB0096	Jun 30, 2016	1 Year
13	TEMP&HUMI PROGRAMMAB LE CHAMBER	Bell Group	BE-THK-1 50M8	SE-0137	Mar. 16, 2016	1 Year

e. Test Results

Pass.

f. Test Data

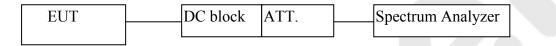
Channel	Frequency (MHz)	Bandwidth (kHz)	Limit (kHz)	Results
Low	2402	507.3		Pass
Mid	2440	508.1	>500	Pass
High	2480	502.7		Pass

Test Plots See the following page.

ilent Spectru	m Analyzer - Occupied RF 50 Ω AC	BW		SENSE:INT		ALIGNAUTO		-
enter Fro	eq 2.40200000	0 GHz #IFGain:Lov	Trig: F	r Freq: 2.40200 Free Run h: 10 dB	00000 GHz Avg Hol	d:>10/10	Radio Std: No Radio Device:	
dB/div	Ref 20.00 dB	m						
) (Center Fred
00								2.402000000 GHz
0.0								
.0								
.0							\sim	
.0				_				
.0								— I
0			_					CF Step 300.000 kH
enter 2.4 Res BW			#	VBW 300 I	KHZ		Span Sweep	3 MHz Auto Mar
Occup	ied Bandwid	th		Total P	ower	5.61	l dBm	Freq Offse
	9	958.80	kHz					он
Transm	it Freq Error	1.92	2 kHz	OBW P	ower	99	9.00 %	
x dB Ba	ndwidth	507	3 kHz	x dB		-6.	00 dB	

CH Mid

CH High


4.3. Maximum Peak output power test

a. Limit

The maximum peak output power of the intentional radiator shall not exceed the following: 1. For systems using digital modulation in the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz: 1 watt (30dBm).

2. Except as shown in paragraphs (b)(3) (i), (ii) and (iii) of this section, if transmitting antenna of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

b. Configuration of Measurement

c. Test Procedure

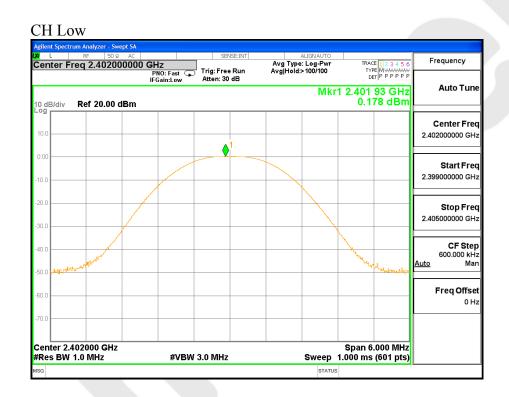
This test was according the kDB 558074 D01 DTS Meas Guidance v03r05 9.1.1:

1. This procedure shall be used when the measurement instrument has available a resolution bandwidth that is greater than the DTS bandwidth.

- 2. Set the RBW \geq DTS bandwidth.
- 3. Set the VBW \geq 3*RBW.
- 4. Set the span \geq 3*RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use peak marker function to determine the peak amplitude level.

d. Test Equipment

Same as the equipment listed in 4.2.


e. Test Results

Pass.

g. Test Data

Channel	Frequency	Maximum transmit power Limit		Dogult	
Channel	(MHz)	(dBm)	(dBm)	(watts)	Result
Low	2402	0.178			Pass
Mid	2440	-0.117	30	1	Pass
High	2480	1.818			Pass

CH Mid

4.4. Band Edges Measurement

a. Limit

According to §15.247(c), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in15.209(a).

b. Test Procedure

- 1. Conducted Method:
- 1) Set RBW=100KHz, VBW=300KHz
- 2) Detector=peak
- 3) Sweep time= auto
- 4) Trace mode=max hold.
- 2. Radiated Method:
- 1) For below 1GHz: The EUT is placed on a turntable, which is 0.8m above the ground plane. The EUT is tested in 9*6*6 Chamber.

For above 1GHz: The EUT is placed on a turntable, which is 1.5m above the ground plane. The EUT is tested in 9*6*6 Chamber.

- 2) The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3) EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4) Set both RBW and VBW of spectrum analyzer to 100kHz with a convenient frequency span including 100kHz bandwidth from band edge, check the emission of EUT. If pass then set Spectrum Analyzer as below:

For below 1GHz:

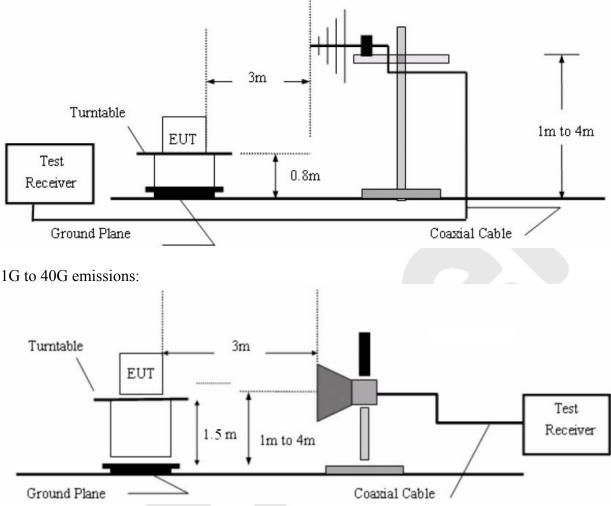
The resolution bandwidth and video bandwidth of test receiver/ spectrum analyzer is 120kHz. Detector: **Quasi-Peak**

For above 1GHz Peak measurement:

The resolution bandwidth of test receiver/ spectrum analyzer is 1MHz and video bandwidth is 3MHz.

Detector: Peak

For above 1GHz average measurement:


The resolution bandwidth of test receiver/ spectrum analyzer is 1MHz and the video bandwidth is 1kHz.

Detector: Peak

5) Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.

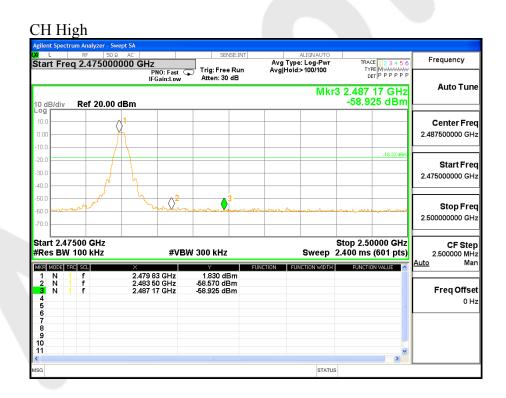
30M to 1G emissions:

c. Test Equipment

Same as the equipment listed in 4.2.

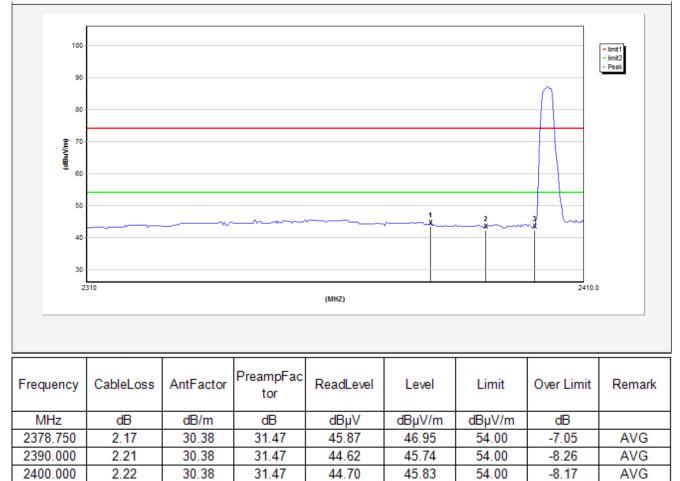
d. Test Results

Pass.

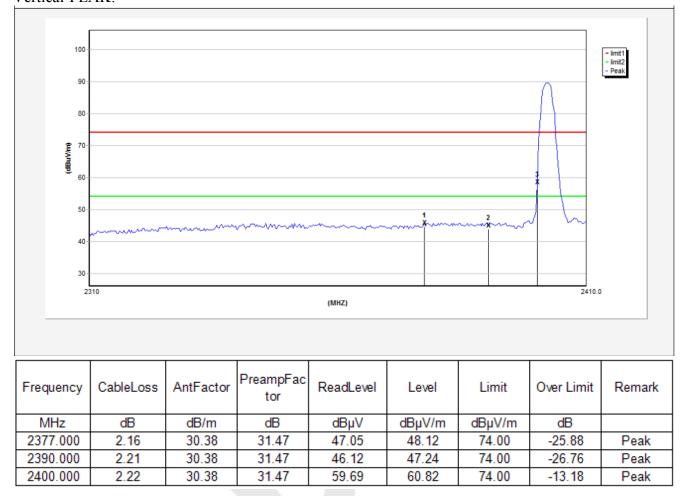

e. Test Plots

See the following page.

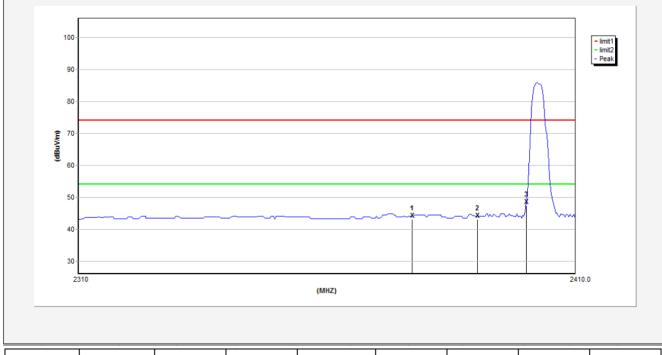
CH Low



2402MHz Horizontal-PEAK:

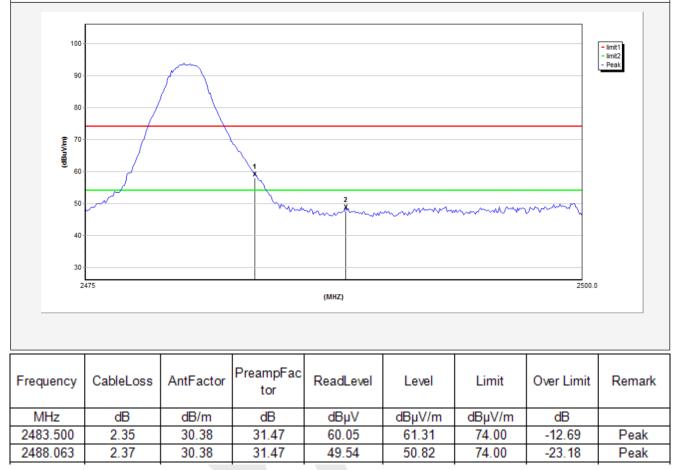


Horizontal-AV:

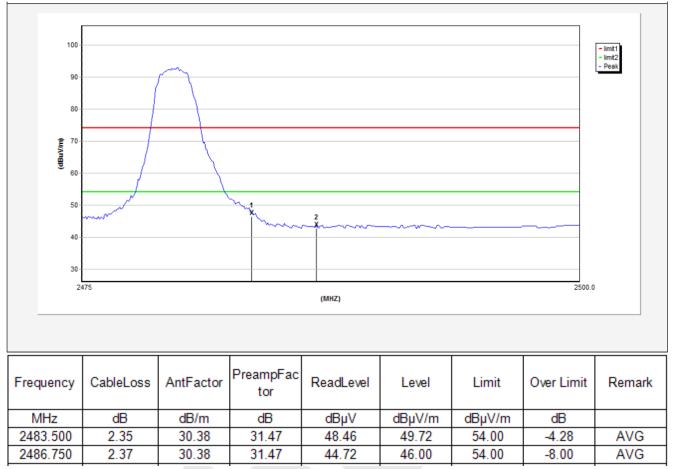


2402MHz Vertical-PEAK:

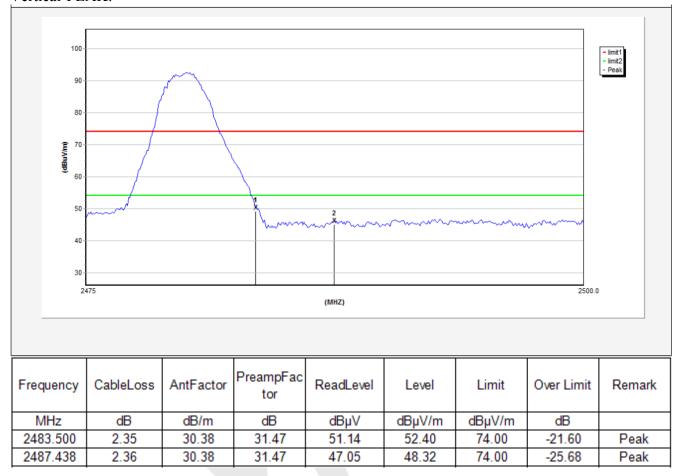
Vertical-AV:



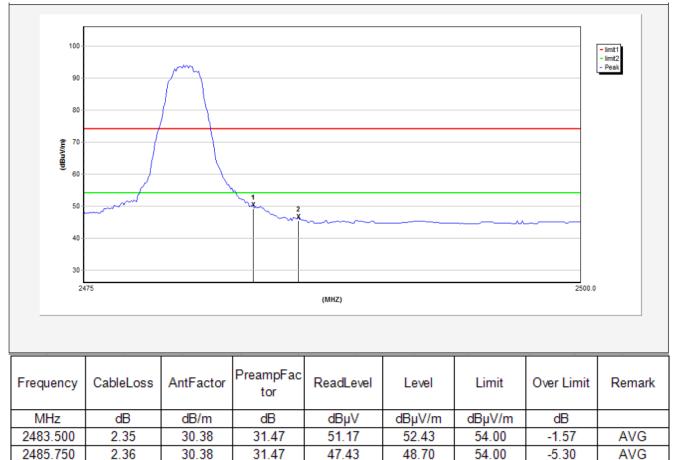
Frequency	CableLoss	AntFactor	PreampFac tor	ReadLevel	Level	Limit	Over Limit	Remark
MHz	dB	dB/m	dB	dBµV	dBµV/m	dBµV/m	dB	
2376.750	2.15	30.38	31.47	45.46	46.52	54.00	-7.48	AVG
2390.000	2.21	30.38	31.47	45.48	46.60	54.00	-7.40	AVG
2400.000	2.22	30.38	31.47	49.77	50.90	54.00	-3.10	AVG


2480MHz

Horizontal-PEAK:



Horizontal-AV:



2480MHz Vertical-PEAK:

Vertical-AV:

4.5. Peak Power Spectral Density

a. Limit

1. For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band during any time interval of continuous transmission.

2. The direct sequence operating of the hybrid system, with the frequency hopping operation turned off, shall comply with the power density requirements of paragraph (d) of this section.

b. Test Procedure

1. Place the EUT on the table and set it in transmitting mode. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.

2. Set the spectrum analyzer as RBW = 3kHz, VBW = 10kHz, Span = 1.5xDTS BW

3. Record the max. reading.

4. Repeat the above procedure until the measurements for all frequencies are completed.

c. Test Equipment

Same as the equipment listed in 4.2.

d. Test Setup See 3.1

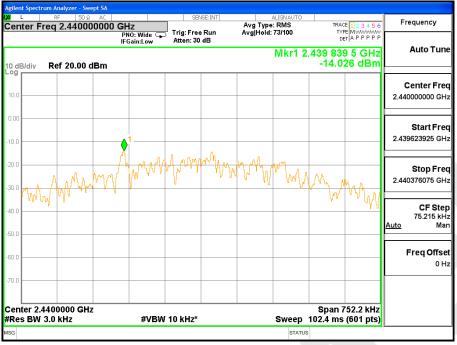
e. Test Results

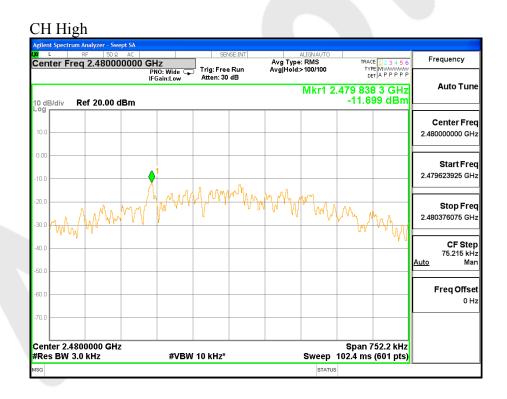
Pass

f. Test Data

Please refer to the following data.

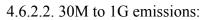
g. Test Plot See the following pages

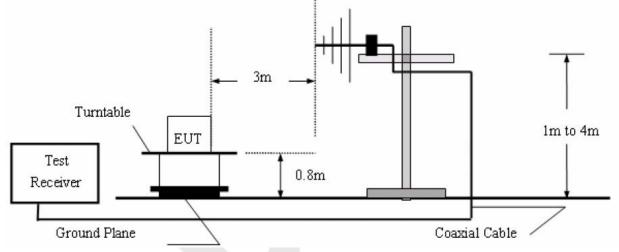

Test mode: IEE	EE 802.11b					
Channel	Frequency	PPSD	∑PPSD	Limit	Result	
Channel	(MHz)	(dBm/3KHz)	(dBm/3KHz)	(dBm)	Result	
Low	2402	-13.382	-	8.00	Pass	
Mid	2440	-14.026	-	8.00	Pass	
High	2480	-11.699	-	8.00	Pass	

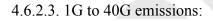


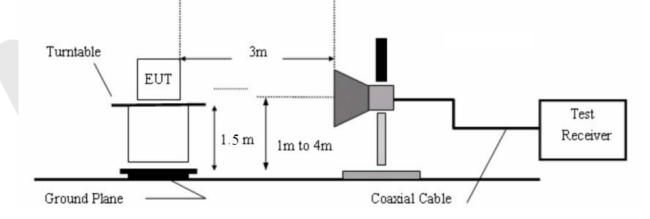
CH Mid

4.6. Radiated Emissions


4.6.1.1. Test Limits (< 30 MHZ)						
Frequency	Field Strength	Measureme	ent Distance			
(MHz)	(microvolts/meter)	(meter)				
0.009-0.490	2400/F(kHz)	300				
0.490-1.705	24000/F(kHz)	30				
1.705-30.0	30	30				
4.6.1.2. Test Limits (≥ 30 MHZ) FIELD STRENGTH FIELD STRENGTH S15.209						
of Fundamental: (a)3M	of Harmor		30 - 88 MHz	40 dBuV/m		
902-928 MHZ 2.4-2.4835 GHz 94 dBµV/m @3m	$54 \text{ dB}\mu\text{V}/\text{s}$	m @3m	88 - 216 MHz 216 - 960 MHz ABOVE 960 MHz	43.5 46 54dBuV/m		


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).


_	Test Equipment					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Spectrum Analysis	Agilent	E4407B	US39390582	Apr. 16, 2016	1 Year
2.	Preamplifier	Instruments corporation	EMC011830	980100	Apr. 16, 2016	1 Year
3.	EMI Test Receiver	Rohde & Schwarz	ESPI	101604	Apr. 16, 2016	1 Year
4.	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	Apr. 19, 2016	1 Year
5.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Apr. 19, 2016	1 Year
6.	Pre-amplifier	SONOMA	310N	186860	Apr. 16, 2016	1 Year
7.	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A	N/A
8	Power Sensor	DAER	RPR3006W	15I00041SN04 6	Jun 30, 2016	1 Year
9	MXA Spectrum Analysis	Agilent	N9020A	MY51170037	Jun 30, 2016	1 Year
10	MXG RF Vector Signal Generator	Agilent	N5182A	MY48180656	Jun 30, 2016	1 Year
11	Signal Generator	Agilent	E4421B	MY41000743	Jun 30, 2016	1 Year
12	DC Power supply	IV	IV-8080	YQSB0096	Jun 30, 2016	1 Year
13	TEMP&HUMI PROGRAMMABL E CHAMBER	Bell Group	BE-THK-15 0M8	SE-0137	Mar. 16, 2016	1 Year



- Turntable EUT 0.8 m Ground Plane
- 4.6.2. Test Configuration: 4.6.2.1. 9k to 30MHz emissions:

4.6.3. Test Procedure

For below 1GHz: The EUT is placed on a turntable, which is 0.8m above the ground plane. For above 1GHz: The EUT is placed on a turntable, which is 1.5m above the ground plane. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. Both horizontal and vertical polarization of the antenna are set on test.

Measurements are made on 9KHz to 30MHz and 30MHz to 26GHz range with the transmitter set to the lowest, middle, and highest channels.

All readings from 30MHz to 1GHz are quasi-peak values with a resolution bandwidth of 120kHz. All reading are above 1GHz, peak & average values with a resolution bandwidth of 1MHz.

The EUT is tested in 9*6*6 Chamber. The device is evaluated in xyz orientation.

The test results are listed in Section 4.6.4.

4.6.4. Test Results

PASS.

The EUT was tested on (Charging, BT Mode) modes, only the worst data of (Charging) is attached in the following pages. Only the worst case (x orientation).

The test results of above 18000MHz are attenuated more than 20dB below the permissible limits, so the results don't record in the report.

ob No	0.:		0116090	47I		Plai	rization:			Ho	orizo	ontal				
tanda	ard:		(RE)FC	C PART1	5 C _3m	Pow	Power Source:					AC 120V, 60Hz for adapte				
'est it	em:		Radiatio	on Test		Ten	np.(C)/Hun	n.(%RH)	:	24.	24.4(C)/50%RH					
'est N	lode:		Chargin	g		Dist	ance:			3m	ı					
	80.0 dB	.V/m														
												mit: argin:				
											_					
											_					
											-		1			
	40										_					
	Į	2									_	_	1 A LAND			
	N. J	Ň.								1	6 X	- Alana	Annaland			
	W	murth	3		4		5		mound	non the shall be						
			a northe state of the state of	m	p. M. M. Marine Marine	hand have been a	WHANNIN WHEN H	www.								
				When the start of												
	0.0															
	30.000	40	50 60	70 80		(MHz)		300	400	500	600	700	1000.000			
	00.000					()			100				1000.000			
			Deseller	Factor	Result	Limit	Over Limit	Detector	Height	deg		Por	nark			
No	Fre		Reading					DERCIO	(000)	(do	g)	Ref	IICIN			
No.	(MF	lz)	(dBuV/m)	(dB/m)	(dBuV/m)		(dB)		(cm)	(de	9/					
1	(MF 30	iz) .2111	(dBuV/m) 44.48	(dB/m) -16.84	(dBuV/m) 27.64	40.00	-12.36	peak	(cm)	(de	97					
1	(MF 30	lz)	(dBuV/m)	(dB/m)	(dBuV/m)				(cm)	(de	.97					
1	(MF 30 36	iz) .2111	(dBuV/m) 44.48	(dB/m) -16.84	(dBuV/m) 27.64	40.00	-12.36	peak	(cm)	(de	97					
1 2 3	(MH 30 36 45	iz) 0.2111 0.3814	(dBuV/m) 44.48 39.48	(dB/m) -16.84 -13.21	(dBuV/m) 27.64 26.27	40.00 40.00	-12.36 -13.73	peak peak	(cm)	(de	37					
No. 1 2 3 4 5	(MH 30 36 45 109	iz) 0.2111 0.3814 0.5348	(dBuV/m) 44.48 39.48 31.54	(dB/m) -16.84 -13.21 -12.56	(dBuV/m) 27.64 26.27 18.98	40.00 40.00 40.00	-12.36 -13.73 -21.02	peak peak peak		(de	3/					

0.0 1 1	0.:		01160904	47I		P	larization:			Ve	ertic	al				
tand	ard:		(RE)FCO	C PART15	5 C _3m	Р	Power Source:					AC 120V, 60Hz for adapt				
'est it	tem:		Radiation Test				emp.(C)/H	um.(%R	H):	24	.4(C)/50%	%RH			
'est N	Aode:		Charging	g		D	istance:			3n	n					
	80.0	dBuV/m														
	80.0	16U¥7M									Lin	nit:	_			
											Ma	irgin:				
	40										_					
	-															
	\	n twan	Mary Contraction		3	4	5		here de partition for gand	and the second	hadarad	6XM	Runnahm			
	\	w wayn	humit in the second	M June Maryhand	A.M.M.M.M.M.M.M.M.M.M.M.M.M.M.M.M.M.M.M	A way way	Juliu mala Marin	Howard	Address and	sakwani	hadland	6. X.	a window			
	0.0	av ¹ av an	hunder	Marantan	A. MMMMMM	A way we	Manna	levelet and the	Address and a second	salter and	land and	S.	a sub-rhidowr			
	0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50 60	70 80	3 M.M.M.M.M.M.M.M.M.M.M.M.M.M.M.M.M.M.M.	(MHz)	Millionada	300	400	3.4 ⁴ W ⁻⁴¹	600		1000.			
	30.00		50 60	70 80		(MHz)		300	400	500	600					
No.	30.00	req.	50 60 Reading	70 80 Factor	Result	(MHz)	Over Limit	300	400 Height	500 deg	600	700				
	30.00	req. /IHz)	50 60 Reading (dBuV/m)	70 80 Factor (dB/m)	Result (dBuV/m)	(MHz) Limit (dBuV/	Over Limit (dB)	300 Detector	400	500	600	700	1000.			
1	30.00	req. /Hz) 36.2541	50 60 Reading (dBuV/m) 41.65	70 80 Factor (dB/m) -13.31	Result (dBuV/m) 28.34	(MHz) Limit (dBuV/ 40.00	Over Limit (dB) -11.66	300 Detector peak	400 Height	500 deg	600	700	1000.			
1	30.00	req. /Hz) 36.2541 50.0566	50 60 Reading (dBuV/m) 41.65 41.61	70 80 Factor (dB/m) -13.31 -14.57	Result (dBuV/m) 28.34 27.04	(MHz) Limit (dBuV/ 40.00 40.00	Over Limit (dB) -11.66 -12.96	300 Detector peak peak	400 Height	500 deg	600	700	1000.			
1 2 3	30.00	req. /Hz) 36.2541	50 60 Reading (dBuV/m) 41.65	70 80 Factor (dB/m) -13.31	Result (dBuV/m) 28.34	(MHz) Limit (dBuV/ 40.00	Over Limit (dB) -11.66	300 Detector peak peak peak	400 Height	500 deg	600	700	1000.			
No. 1 2 3 4 5	30.00	req. /Hz) 36.2541 50.0566 97.4560	50 60 Reading (dBu∀/m) 41.65 41.61 35.38	70 80 Factor (dB/m) -13.31 -14.57 -15.89	Result (dBuV/m) 28.34 27.04 19.49	(MHz) Limit (dBuV/ 40.00 40.00 43.50	Over Limit (dB) -11.66 -12.96 -24.01	300 Detector peak peak	400 Height	500 deg	600	700	1000.			

lob No.:		0116090)47I		Pl	arization:		Ho	rizontal		
Standard	:	(RE)FC	CC PART1	5 C _3m	Po	ower Sourc	e:	DC	3.7V		
Fest item	Radiation Test				Те	emp.(C)/H	um.(%RH	I): 24.4	4(C)/50%	6RH	
Note:		2402MI	Hz		Di	stance:		3m			
	100									7	
										- limit1 - limit2	
	90 -									- Peak	
	80									-	
	70										
	Ê 60										
	60				į	,				-	
	50		man	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							
	40			h		min	man	mund	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	×	
	30										
	20										
	10										
	1000		2000.000	3000.000	4000.000 (MHZ)	5000.000 6000.000	7000.0(8000.0900	10.10000.000		18000.0	
No.	Freq.	Reading	Antenna	Amp.	Cable	Result	Limit	Over Limit	Detector	Height	degree
	(MHz)	(dBuV/m)		(dB/m)	(dB/m)	(dBuV/m)		(dB)		(cm)	(deg)
1	4782.5000		3.26 3.26	16.75 16.75	16.75 16.75	47.15 36.99	74.00 54.00	-23.59 -13.75	peak AVG		
2	4/02.5000	40.25	3.20	10.75	10.75	30.99	54.00	-13.75	AVG		

ob No.:	:	0116090	47I		Pl	arization:		Vei	rtical				
tandar	d:	(RE)FC	C PART1	5 C _3m	Po	wer Sourc	e:	DC	3.7V				
'est iten	n:	Radiatio	on Test		Те	emp.(C)/Hu	ım.(%RH	I): 24.4	24.4(C)/50%RH				
ote:		2402MH	Iz		Di	stance:		3m					
											1		
	100									- limit1			
	90									- limit2 - Peak			
	80												
	70-									-			
	(E 60 E 60									_			
	9 ₅₀		-		1 ×								
	40		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		mint	mon	mm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mm				
	30												
	20												
	10		2000.000	3000.000	4000.000 (MHZ)	5000.000 6000.000	7000.0(8000.0900	0.10000.000		18000.0			
_					(
No.	Freq. (MHz)	Reading (dBuV/m)	Antenna (dB/m)	Amp. (dB/m)	Cable (dB/m)	Result (dBuV/m)	Limit (dBu\//m	Over Limit (dB)	Detector	Height (cm)	degre (deg)		
1	4660.5010		3.05	16.05	16.05	44.24	74.00	-26.71	peak				
2	4660.5010	37.13	3.05	16.05	16.05	34.08	54.00	-16.87	AVG				

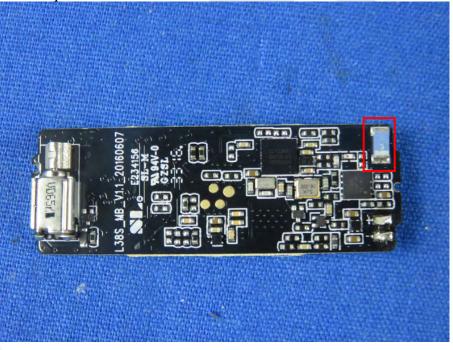
ob No.:		0116090	47I		Pla	arization:		Ног	rizontal				
tandar	d:	(RE)FC	C PART15	5 C _3m	Po	wer Source	e:	DC	DC 3.7V 24.4(C)/50%RH				
est iten	n:	Radiatio	on Test		Те	mp.(C)/Hu	m.(%RH	I): 24.4					
ote:		2440MH	[z		Dis	stance:		3m					
	100									- limit1			
	90									- limit2 - Peak			
	80												
	70												
	<u>و</u> 60									_			
	(LL) 60 -			lann		1							
	40				m	In m	La many	www.		A			
	30					Î	~ ~						
	20									_			
	10												
	1000		2000.000	3000.000	4000.000 (MHZ)	5000.000 6000.000	7000.0(8000.(90)	00.10000.000		18000.0			
No.	Freq. (MHz)	Reading (dBuV/m)	Antenna (dB/m)	Amp. (dB/m)	Cable (dB/m)	Result (dBuV/m)	Limit (dBuV/m	Over Limit (dB)	Detector	Height (cm)	degre (deg		
	4995.0000	46.71	3.64	17.96	17.96	43.07	74.00	-27.29	peak				
2	4995.0000	36.14	3.64	17.96	17.96	32.50	54.00	-17.86	AVG				

ob No.:		011609(Plarization		Ver					
tandar	d: (RE)FCC PART15 C _3m				F	Power Sour	·ce:	DC	DC 3.7V				
'est iten	1:	Radiati	on Test		T	Temp.(C)/H	Ium.(%R	H): 24.4	(C)/50%	RH			
ote:		2440MI		Ι	Distance:		3m						
										7			
	100-									- limit1			
	90 -									- limit2 - Peak			
	80 -												
										-			
	70-												
	(m) 60 50 50									-			
	9 ₅₀			Mnew	1	(
	40		~		2	home	nom	mon	~~~~~	~			
	30 -				m								
	20-												
	10									-			
	1000		2000.000	3000.000	4000.000 (MHZ)	5000.000 6000.000	7000.0(8000.090	00./10000.000		18000.0			
No.	Freq.	Reading	Antenna	Amp.	Cable	Result	Limit	Over Limit	Detector	Height (cm)	degre (deg		
1	(MHz) 4782.5000	(dBuV/m) 48.73	(dB/m) 3.26	(dB/m) 16.75	(dB/m) 16.75	(dBuV/m) 45.47	(dBuV/m 74.00	(dB) -25.27	peak	(cm)	(ueg		
-									· · ·		1		

ob No.:		01160904	71		Pla	arization:		Hor	izontal				
tandard	d:	(RE)FCC PART15 C _3m				wer Sourc	e:	DC	DC 3.7V				
'est iten	1:	Radiatio	n Test		Te	mp.(C)/Hu	m.(%RH): 24.4	24.4(C)/50%RH				
lote:		2480MH	Z		Dis	stance:		3m					
	100 -]			
	90 -									- limit1 - limit2 - Peak			
										- Feak			
	80-												
	70												
	(W) 60 50									_			
	9 50 -					1							
	40		m	~~~	mon	2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	man	m	~				
	30 -												
	20												
	10-		2000.000	3000.000	4000.000	5000.000 6000.00	7000.0(8000.090	0.10000.000		18000.0			
	1000		2000.000	5555.555	(MHZ)	0000.000 0000.000				10000.0			
No.	Freq. (MHz)	Reading (dBuV/m)	Antenna (dB/m)	Amp. (dB/m)	Cable (dB/m)	Result (dBuV/m)	Limit (dBuV/m	Over Limit (dB)	Detector	Height (cm)	degre (deg		
1	4867.500	0 49.45	3.41	17.23	17.23	46.04	74.00	-24.55	peak				
2	4867.500	0 39.16	3.41	17.23	17.23	35.75	54.00	-14.84	AVG				

ob No	.:	011609	90471		Pla	rization:		Ver	tical				
standa	rd:	(RE)F	CC PART	15 C _3m	Po	wer Source	e:	DC	DC 3.7V 24.4(C)/50%RH				
lest ite	em:	Radia	tion Test		Te	mp.(C)/Hu	m.(%RH): 24.4					
Note:		2480N	ſHz		Dis	stance:		3m					
	100									- limit1			
	90 -									- limit2 - Peak			
	80 -									_			
	70-									-			
	(m/ngp) 50									-			
	ế 50		hanne	Im	1								
	40	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	n		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	www.	mon	mm	~~~~~	Z			
	30 -									-			
	20-									-			
	10-		2000.000	3000.000	4000.000	5000.000 6000.000	7000 0(8000 (900	0.10000.000		18000.0			
	1000		2000.000	5665.555	(MHZ)					10000.0			
No.	Freq. (MHz)	Reading (dBuV/m)	Antenna (dB/m)	Amp. (dB/m)	Cable (dB/m)	Result (dBuV/m)	Limit (dBuV/m	Over Limit (dB)	Detector	Height (cm)	degree (deg)		
1	4740.0000	· · · · · ·	3.19	16.5	16.5	45.60	74.00	-25.21	peak				
2	4740.0000	38.36	3.19	16.5	16.5	35.17	54.00	-15.64	AVG				

5. ANTENNA APPLICATION

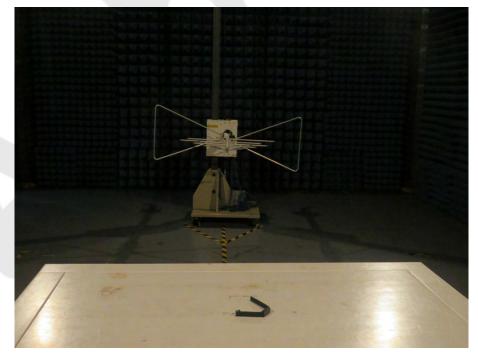

5.1. Antenna requirement

The EUT'S antenna is met the requirement of FCC part 15C section 15.203.

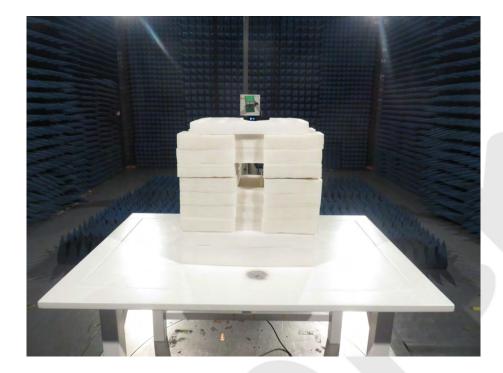
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

5.2. Result

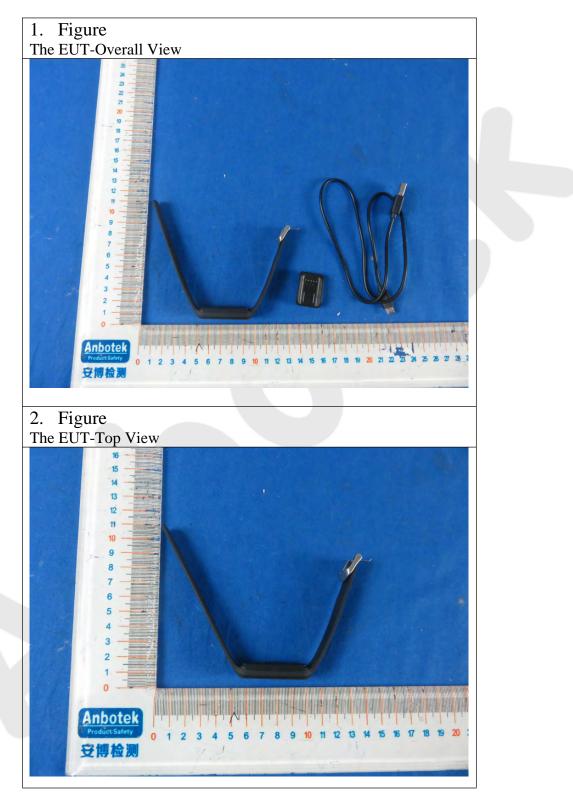
The EUT's antenna used a ceramic antenna which is permanently attached, The antenna's gain is 2.12dBi and meets the requirement.



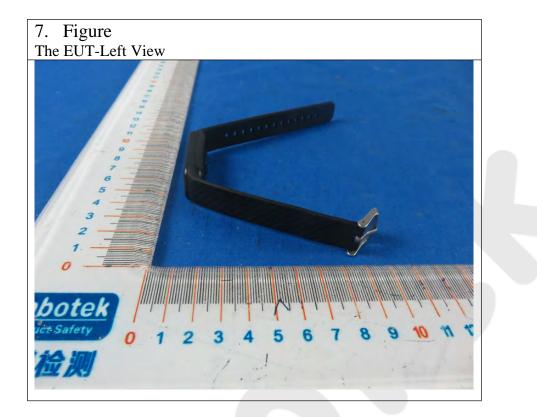
6. PHOTOGRAPH

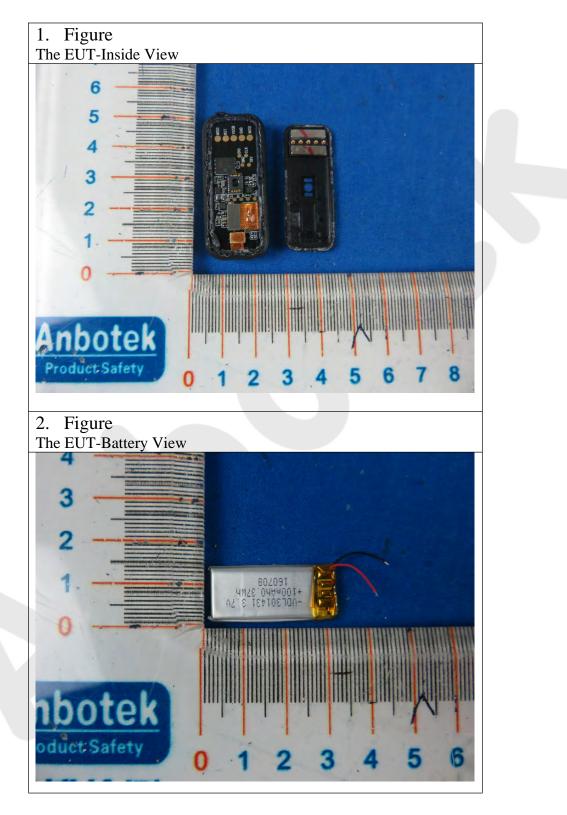

6.1 Photo of Conducted Emission Test

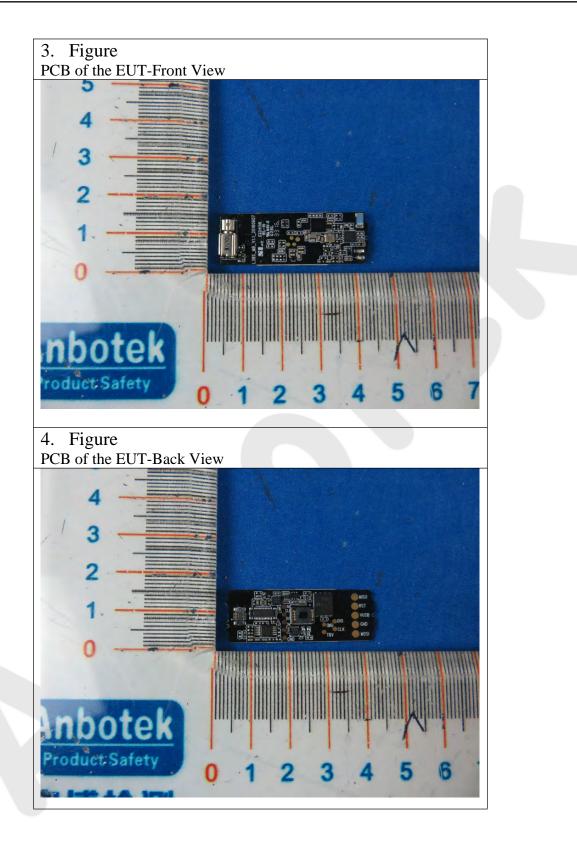
6.2 Photo of Radiation Emission Test



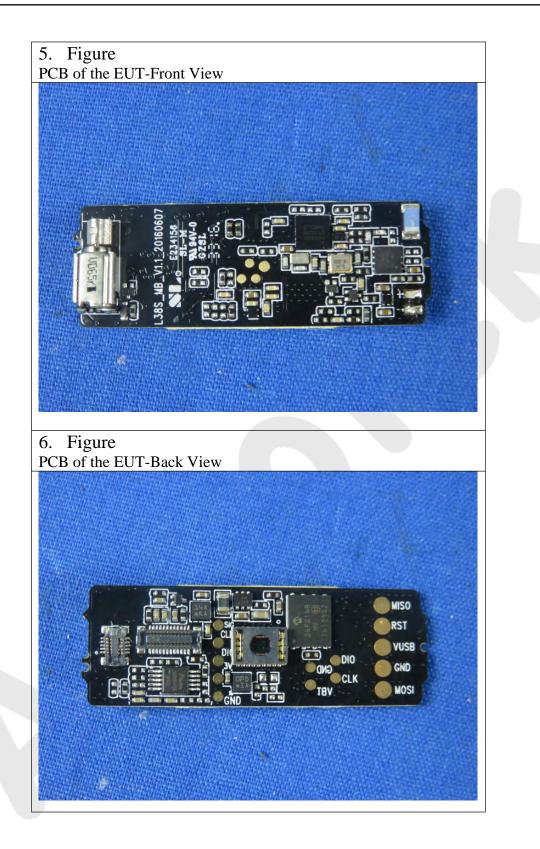
APPENDIX I (EXTERNAL PHOTOS)







APPENDIX II (INTERNAL PHOTOS)



Shenzhen Anbotek Compliance Laboratory Limited FCC ID: 2AJVH-3PLUS-HR Page 54 of 54 Report No.: R011609047I

