FCC PART 27 TEST REPORT

FCC Part 27

Report Reference No	LCS170707144AE
FCC ID	2AJUZ- RHF2S008
Date of Issue	September 13, 2017
Testing Laboratory Name	Shenzhen LCS Compliance Testing Laboratory Ltd.
Address	1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China
Applicant's name	Ruixing Hengfang Network (Shenzhen) CO., LTD
Address	Room 507, 2nd tower of KangTai biological building, NO.6 KeFa Rd. NanShan District, Shenzhen 518057 China
Test specification:	
Standard:	FCC CFR Title 47 Part 2, Part 27 ANSI C63.26:2015
	KDB 971168 D01
Test Report Form No	
TRF Originator	
Master TRF Shenzhen LCS Compliance Testing	Dated 2011-03 Laboratory Ltd. All rights reserved.
Master TRF Shenzhen LCS Compliance Testing This publication may be reproduced in Shenzhen LCS Compliance Testing L material. Shenzhen LCS Compliance	Dated 2011-03 Laboratory Ltd. All rights reserved. a whole or in part for non-commercial purposes as long as the aboratory Ltd. is acknowledged as copyright owner and source of the
Master TRF Shenzhen LCS Compliance Testing This publication may be reproduced in Shenzhen LCS Compliance Testing L material. Shenzhen LCS Compliance liability for damages resulting from the	Dated 2011-03 Laboratory Ltd. All rights reserved. aboratory Ltd. is acknowledged as copyright owner and source of the Testing Laboratory Ltd. takes no responsibility for and will not assume reader's interpretation of the reproduced material due to its
Master TRF: Shenzhen LCS Compliance Testing This publication may be reproduced in Shenzhen LCS Compliance Testing L material. Shenzhen LCS Compliance liability for damages resulting from the placement and context.	Dated 2011-03 Laboratory Ltd. All rights reserved. aboratory Ltd. is acknowledged as copyright owner and source of the Testing Laboratory Ltd. takes no responsibility for and will not assume reader's interpretation of the reproduced material due to its
Master TRF: Shenzhen LCS Compliance Testing This publication may be reproduced in Shenzhen LCS Compliance Testing La material. Shenzhen LCS Compliance liability for damages resulting from the placement and context. Test item description	Dated 2011-03 Laboratory Ltd. All rights reserved. a whole or in part for non-commercial purposes as long as the aboratory Ltd. is acknowledged as copyright owner and source of the Testing Laboratory Ltd. takes no responsibility for and will not assume reader's interpretation of the reproduced material due to its Industrial LoRaWAN Gateway
Master TRF: Shenzhen LCS Compliance Testing This publication may be reproduced in Shenzhen LCS Compliance Testing Li material. Shenzhen LCS Compliance liability for damages resulting from the placement and context. Test item description Trade Mark	Dated 2011-03 Laboratory Ltd. All rights reserved. whole or in part for non-commercial purposes as long as the aboratory Ltd. is acknowledged as copyright owner and source of the Testing Laboratory Ltd. takes no responsibility for and will not assume reader's interpretation of the reproduced material due to its Industrial LoRaWAN Gateway RisingHF
Master TRF: Shenzhen LCS Compliance Testing This publication may be reproduced in Shenzhen LCS Compliance Testing L material. Shenzhen LCS Compliance liability for damages resulting from the placement and context. Test item description Trade Mark Model/Type reference	Dated 2011-03 Laboratory Ltd. All rights reserved. whole or in part for non-commercial purposes as long as the aboratory Ltd. is acknowledged as copyright owner and source of the Testing Laboratory Ltd. takes no responsibility for and will not assume reader's interpretation of the reproduced material due to its Industrial LoRaWAN Gateway RisingHF RHF2S008 RHF2S008P4G-915
Master TRF: Shenzhen LCS Compliance Testing This publication may be reproduced in Shenzhen LCS Compliance Testing La material. Shenzhen LCS Compliance liability for damages resulting from the placement and context. Test item description: Trade Mark: Model/Type reference Listed Models	Dated 2011-03 Laboratory Ltd. All rights reserved. whole or in part for non-commercial purposes as long as the aboratory Ltd. is acknowledged as copyright owner and source of the Testing Laboratory Ltd. takes no responsibility for and will not assume reader's interpretation of the reproduced material due to its Industrial LoRaWAN Gateway RisingHF RHF2S008 RHF2S008P4G-915
Master TRF: Shenzhen LCS Compliance Testing This publication may be reproduced in Shenzhen LCS Compliance Testing L material. Shenzhen LCS Compliance liability for damages resulting from the placement and context. Test item description Trade Mark Model/Type reference Listed Models Modulation Type	Dated 2011-03 Laboratory Ltd. All rights reserved. whole or in part for non-commercial purposes as long as the aboratory Ltd. is acknowledged as copyright owner and source of the Testing Laboratory Ltd. takes no responsibility for and will not assume reader's interpretation of the reproduced material due to its Industrial LoRaWAN Gateway RisingHF RHF2S008 RHF2S008P4G-915 QPSK, 16QAM Input: AC 100-240 V 50/60Hz 0.8 A Max
Master TRF: Shenzhen LCS Compliance Testing This publication may be reproduced in Shenzhen LCS Compliance Testing Li material. Shenzhen LCS Compliance liability for damages resulting from the placement and context. Test item description Trade Mark Model/Type reference Listed Models Modulation Type Rating	Dated 2011-03 Laboratory Ltd. All rights reserved. whole or in part for non-commercial purposes as long as the aboratory Ltd. is acknowledged as copyright owner and source of the Testing Laboratory Ltd. takes no responsibility for and will not assume reader's interpretation of the reproduced material due to its Industrial LoRaWAN Gateway RisingHF RHF2S008 RHF2S008P4G-915 QPSK, 16QAM Input: AC 100-240 V 50/60Hz 0.8 A Max Output: DC 48 V 30W

Compiled by:

Supervised by:

Approved by:

Peter Xsar

Cash

Calvin Weng/ Administrators

Glin Lu/ Technique principal

Gavin Liang/ Manager

TEST REPORT

Test Report No. :		LCS170707144AE	September 13, 2017
			Date of issue
Equipment under Test	:	Industrial LoRaWAN Ga	teway
Model /Type	:	RHF2S008	
Listed Models	:	RHF2S008P4G-915	
Applicant	:	Ruixing Hengfang Ne	twork (Shenzhen) CO., LTD
Address	:	Room 507, 2nd tower of KangTai biological building, NO.6 KeFa Rd. NanShan District, Shenzhen 518057 China	
Manufacturer	:	Ruixing Hengfang Ne	twork (Shenzhen) CO., LTD
Address	:		⁻ KangTai biological building, NO.6 rict, Shenzhen 518057 China
Factory	:	Ruixing Hengfang Ne	twork (Shenzhen) CO., LTD
Address	:		⁻ KangTai biological building, NO.6 rict, Shenzhen 518057 China

Test Result:	PASS
--------------	------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revison History

Revision	n Issue Date Revisions		Revised By
00	September 13, 2017	Initial Issue	Gavin Liang

Contents

<u>1</u>	TEST STANDARDS	5
<u>2</u>	SUMMARY	6
2.1	General Remarks	6
2.2	Product Description	6
2.3	Equipment under Test	6
2.4	Short description of the Equipment under Test (EUT)	6
2.5	Internal Identification of AE used during the test	
	Error! Bookmark not defined.	
2.6	Normal Accessory setting	7
2.7	EUT configuration	7
2.8	Related Submittal(s) / Grant (s)	7
2.9	Modifications	7
2.10	General Test Conditions/Configurations	7
<u>3</u>	TEST ENVIRONMENT	8
3.1	Address of the test laboratory	8
3.2	Test Facility	8
3.3	Environmental conditions	8
3.4	Test Description	8
3.5	Equipments Used during the Test	9
3.6	Measurement uncertainty	10
<u>4</u>	TEST CONDITIONS AND RESULTS	11
4.1	Output Power	11
4.2	Peak-to-Average Ratio (PAR)	16
4.3	Occupied Bandwidth and Emission Bandwidth	17
4.4	Band Edge compliance	18
4.5	Spurious Emssion on Antenna Port	19
4.6	Radiated Spurious Emssion	20
4.7	Frequency Stability under Temperature & Voltage Variations	28
<u>5</u>	TEST SETUP PHOTOS OF THE EUT ERROR! BOOKMARK	NОТ

<u>DEFINED.</u>

6	EXTERNAL	PHOTOS	OF	THE	EUT	ERROR!	BOOKMARK	ΝΟΤ	DEFINED.

INTERNAL PHOTOS OF THE EUT ERROR! BOOKMARK NOT DEFINED. <u>7</u>

1 <u>TEST STANDARDS</u>

The tests were performed according to following standards: <u>FCC Part 27</u>:MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES <u>47 CFR FCC Part 15 Subpart B</u>: Unintentional Radiators <u>FCC Part 2</u>: FREQUENCY ALLOCA-TIONS AND RADIO TREATY MAT-TERS; GENERAL RULES AND REG-ULATIONS <u>ANSI C63.26:2015</u>: American National Standard for Compliance Testing of Transmitters Used in Licensed

Radio Services. <u>KDB 971168 D01 Power Meas License Digital Systems v03</u>: Measurement Guidance For Certification of Licensed Digital Transmitters

2 <u>SUMMARY</u>

2.1 General Remarks

Date of receipt of test sample	:	July 01, 2017
Testing commenced on	:	July 01, 2017
Testing concluded on	:	September 13, 2017

2.2 Product Description

The **First Class Trade Inc.**'s Model: RHF2S008 the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT.

Name of EUT	Industrial LoRaWAN Gateway
Model Number	RHF2S008
Modulation Type	QPSK,16QAM for LTE
Antenna Gain	5.0dBi (max.) For LTE FDD Band 4; (External Antenna) 2.0 dBi (max.) For 902.5-927.5MHz(Fibre-glass Antenna)
Hardware version	RHF2S008_V4.0
Software version	0.0.7
LTE Operation Frequency Band	LTE FDD band 4
LTE Release Version	R8
LTE Power Class	Class 3
LoraWAN Channel frequency	902.5 – 927.5 MHz
LoraWAN Channel number	10 Channel
Extreme temp. Tolerance	-30°C to +50°C
GPS function	Support and only RX
NFC Function	Not Supported
Extreme vol. Limits	40.8VDC to 55.2VDC (nominal: 48.0VDC)

2.3 Equipment under Test

Power supply system utilised

Power supply voltage	:	0	120V/ 60 Hz	0	115V/60Hz
		0	12 V DC	0	24 V DC
			Other (specified in blank below))

DC 48.0V POE from AC 120V/60Hz

2.4 Short description of the Equipment under Test (EUT)

2.4.1 GeneralDescription

RHF2S008 is subscribere quipmentin the LTE system. LTE frequency band is band 4; Internal it provides micro SD card interface.

NOTE: Unless otherwise noted in the report, the functional boards installed in the units shall be selected from the below list, but not means all the functional boards listed below shall be installed in one unit.

2.5 Internal Identification of AE used during the test

AE ID*	Description
AE1	Charger

AE1 Model: PoE30G-AT INPUT: AC100-240V 50/60Hz 0.8A OUTPUT: DC 51.0V 30W

*AE ID: is used to identify the test sample in the lab internally.

2.6 Normal Accessory setting

N/A

2.7 EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

supplied by the manufacturer

 \bigcirc - supplied by the lab

Ο	Power Cable	Length (m) :	/
		Shield :	/
		Detachable :	/
Ο	Multimeter	Manufacturer :	/
		Model No. :	/

2.8 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: 2AJUZ- RHF2S008 filing to comply with FCC Part 27 Rules

2.9 Modifications

No modifications were implemented to meet testing criteria.

2.10 General Test Conditions/Configurations

2.10.1 Test Environment

EnvironmentParameter	SelectedValuesDuringTests					
Relative Humidity	Ambient					
Temperature	TN Ambient					
	VL	108V				
Voltage	VN	120V				
	VH	132V				

NOTE:VL=lower extreme testvoltageVN=nominalvoltage VH=upperextreme testvoltageTN=normaltemperature

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen LCS Compliance Testing Laboratory Ltd

1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China

The sites are constructed in conformance with the requirements of ANSI C63.4 (2014) and CISPR Publication 22.

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS Registration Number. is L4595. FCC Registration Number. is 899208. Industry Canada Registration Number. is 9642A-1. ESMD Registration Number. is ARCB0108. UL Registration Number. is 100571-492. TUV SUD Registration Number. is SCN1081. TUV RH Registration Number. is UA 50296516-001

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C
Humidity:	30-60 %
Atmospheric pressure:	950-1050mbar

3.4 Test Description

3.4.1 AWS Band (1710-1755MHz pairedwith 2110-2155MHz)

Test Item	FCC Rule No.	Requirements	Verdict
Effective(Isotropic)Radiate dPowerOutputData	§2.1046, §27.50(d)	EIRP ≤ 1W;	PASS
Peak-AverageRatio	§2.1046, §27.50(d)	Limit≤13dB	PASS
ModulationCharacteristics	ulationCharacteristics §2.1047 Digitalmodulation		
Bandwidth	§2.1049	OBW: Nolimit. EBW: Nolimit.	PASS
BandEdgesCompliance	§2.1051, §27.53(h)	≤ -13dBm/1%*EBW,in1 MHz bands immediately outside and adjacent to the frequency block.	PASS
SpuriousEmissionatAnten naTerminals	§2.1051, §27.53(h)	 ≤ -13dBm/1MHz, from 9 KHz to 10th harmonics but outside authorized operating frequency ranges. 	PASS
Frequency Stability	§2.1055, §27.54	Within authorized bands of operation/frequency block.	PASS
Radiatedspurious emission	§2.1053, §27.53(h)	≤ -13dBm/1MHz.	PASS
NOTE 1: For the verdict, the	e "N/A" denotes "no	t applicable", the "N/T" de notes "not tested"	

3.5 Equipments Used during the Test

Instrument	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
EMC Receiver	R&S	ESCS 30	100174	Jun 18, 2017	Jun 17, 2018
Signal analyzer	Agilent	E4448A(External mixers to 40GHz)	US44300469	Jul 16, 2017	Jul 15, 2018
LISN	MESS Tec	NNB-2/16Z	99079	Jun 18, 2017	Jun 17, 2018
LISN	EMCO	3819/2NM	9703-1839	Jun 18, 2017	Jun 17, 2018
RF Cable-CON	UTIFLEX	3102-26886-4	CB049	Jun 18, 2017	Jun 17, 2018
ISN	SCHAFFNER	ISN ST08	21653	Jun 18, 2017	Jun 17, 2018
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	Jun 18, 2017	Jun 17, 2018
Amplifier	SCHAFFNER	COA9231A	18667	Apr 18, 2017	Apr 17, 2018
Amplifier	Agilent	8449B	3008A02120	Apr 18, 2017	Apr 17, 2018
Amplifier	MITEQ	AMF-6F-260400	9121372	Apr 18, 2017	Apr 17, 2018
Loop Antenna	R&S	HFH2-Z2	860004/001	Apr 18, 2017	Apr 17, 2018
By-log Antenna	SCHWARZBECK	VULB9163	9163-470	Apr 18, 2017	Apr 17, 2018
Horn Antenna	EMCO	3115	6741	Apr 18, 2017	Apr 17, 2018
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170154	Apr 18, 2017	Apr 17, 2018
RF Cable-R03m	Jye Bao	RG142	CB021	Jun 18, 2017	Jun 17, 2018
RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	Jun 18, 2017	Jun 17, 2018
Power Meter	R&S	NRVS	100444	Jun 18, 2017	Jun 17, 2018
Power Sensor	R&S	NRV-Z51	100458	Jun 18, 2017	Jun 17, 2018
Power Sensor	R&S	NRV-Z32	10057	Jun 18, 2017	Jun 17, 2018
AC Power Source	HPC	HPA-500E	HPA-9100024	Jun 18, 2017	Jun 17, 2018
DC power Source	GW	GPC-6030D	C671845	Jun 18, 2017	Jun 17, 2018
Temp. and Humidigy Chamber	Giant Force	GTH-225-20-S	MAB0103-00	Jun 18, 2017	Jun 17, 2018
RF CABLE-1m	JYE Bao	RG142	CB034-1m	Jun 18, 2017	Jun 17, 2018
RF CABLE-2m	JYE Bao	RG142	CB035-2m	Jun 18, 2017	Jun 17, 2018
Signal Generator	R&S	SMR40	10016	Jul 16, 2017	Jul 15, 2018
Wideband Radia Communication Tester	R&S	CMW500	1201.0002K50	Nov 19, 2016	Nov 18, 2017
PSG Analog Signal Generator	Agilent	N8257D	MY46520521	Nov 19, 2016	Nov 18, 2017
MXA Signal Analyzer	Agilent	N9020A	MY50510140	Oct 27, 2016	Oct 26, 2017
RF Control Unit	Tonscend	JS0806-1	/	Nov 19,2016	Nov 18, 2017
LTE Test Software	Tonscend	JS1120-1	1	N/A	N/A
Test Software	Ascentest	AT890-SW	20141230	N/A	N/A
Splitter/Combiner(Qty: 2)	Mini-Circuits	ZAPD-50W 4.2-6.0 GHz	NN256400424	Oct 27, 2016	Oct 26, 2017
Splitter/Combine(Qty: 2)	MCLI	PS3-7	4463/4464	Oct 27, 2016	Oct 26, 2017
ATT (Qty: 1)	Mini-Circuits	VAT-30+	30912	Oct 27, 2016	Oct 26, 2017
EMC Test Software	Audix	E3	/	/	/

3.6 Measurement uncertainty

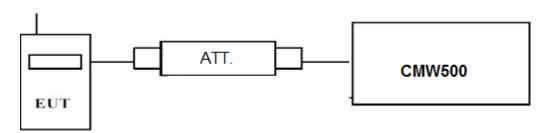
The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to ETSI TR 100 028"Electromagnetic compatibilityand Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics" and is documented in the Shenzhen LCS Compliance Testing Laboratory Ltd.quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen LCS Compliance Testing Laboratory Ltd. is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	3.10 dB	(1)
Radiated Emission	1~18GHz	3.80 dB	(1)
Radiated Emission	18-40GHz	3.90 dB	(1)
Conducted Disturbance	0.15~30MHz	1.63 dB	(1)
Conducted Power	9KHz~18GHz	0.61 dB	(1)
Spurious RF Conducted Emission	9KHz~40GHz	1.22 dB	(1)
Band Edge Compliance of RF Emission	9KHz~40GHz	1.22 dB	(1)
Occuiped Bandwidth	9KHz~40GHz	-	(1)

(1)This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

4 TEST CONDITIONS AND RESULTS


4.1 Output Power

TEST APPLICABLE

During the process of testing, the EUT was controlled via R&S Digital Radio Communication tester (CMW500) to ensure max power transmission and proper modulation. This result contains output power and EIRP measurements for the EUT. In all cases, output power is within the specified limits.

4.1.1. Conducted Output Power

TEST CONFIGURATION

TEST PROCEDURE

Conducted Power Measurement:

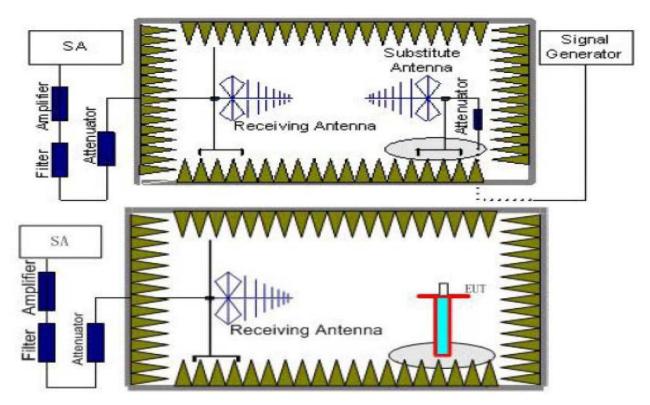
- a) Place the EUT on a bench and set it in transmitting mode.
- b) Connect a low loss RF cable from the antenna port to a CMW500 by an Att.
- c) EUT Communicate with CMW500 then selects a channel for testing.
- d) Add a correction factor to the display CMW500, and then test.

TEST RESULTS

Remark:

- 1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE LTE FDD Band 4;
- 2. For E-UTRA Band 4, please refer to Appendix B: Section B.1

4.1.2. Radiated Output Power


LIMIT

This is the test for the maximum radiated power from the EUT.

Per §22.913(2) Extend coverage on a secondary basis into cellular unserved areas, as those areas are defined in §22.949, the ERP of base transmitters and cellular repeaters of such systems must not exceed 1000 Watts. The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts. Rule Part 24.232(c) specifies, "Mobile/portable stations are limited to 2 watts e.i.r.p. Peak power" and 24.232(e) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage."

Per Part 27.50(d) (4) specifies, Fixed, mobile, and portable (hand-held) stations operating in the 1710-1755MHz band are limited to 1W EIRP. Fixed stations operating in this band are limited to a maximum antenna height of 10 meters above ground. Mobile and portable stations operating in this band must employ a means for limiting power to the minimum necessary for successful communications.

TEST CONFIGURATION

TEST PROCEDURE

- EUT was placed on a 1.50 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.50m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- The EUT is then put into continuously transmitting mode at its maximum power level during the test.Set Test Receiver or Spectrum RBW=1MHz,VBW=3MHz, And the maximum value of the receiver should be recorded as (Pr).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed

to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

- A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (P_{cl}), the Substitution Antenna Gain (G_a) and the Amplifier Gain (P_{Ag}) should be recorded after test. The measurement results are obtained as described below: Power(EIRP)=P_{Mea}+ P_{Ag} - P_{cl} + G_a
- 6. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 7. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.

TEST RESULTS

Radiated Measurement:

Remark:

- 1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE LTE FDD Band 4; recorded worst case for each Channel Bandwidth of LTE,LTE FDD Band 4.
- 2. $EIRP=P_{Mea}(dBm)-P_{cl}(dB)+P_{Ag}(dB)+G_{a}(dBi)$
- 3. ERP = EIRP 2.15dBi as EIRP by subtracting the gain of the dipole.
- 4. Margin = Emission Level Limit
- 5. We test the H direction and V direction recorded worst case

LTE FDD Band 4_Channel Bandwidth 1.4MHz_QPSK

Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Burst Average EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1710.7	-19.46	3.93	9.05	34.96	23.62	33.01	-12.39	V
1732.5	-19.38	3.93	8.89	35.01	23.59	33.01	-12.42	V
1754.3	-18.87	3.94	8.76	35.08	24.03	33.01	-11.98	V

LTE FDD Band 4_Channel Bandwidth 3MHz_QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Ga Antenna Gain(dB)	P _{Ag} (dB)	Burst Average EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1711.5	-19.35	3.93	9.05	34.96	23.73	33.01	-12.28	V
1732.5	-18.98	3.93	8.89	35.01	23.99	33.01	-12.02	V
1753.5	-19.59	3.94	8.76	35.08	23.31	33.01	-12.70	V

LTE FDD Band 4_Channel Bandwidth 5MHz_QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Burst Average EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1712.5	-19.81	3.93	9.05	34.96	23.57	33.01	-12.74	V
1732.5	-19.53	3.93	8.89	35.01	23.84	33.01	-12.57	V
1752.5	-19.91	3.94	8.76	35.08	23.59	33.01	-13.02	V

LTE FDD Band 4_Channel Bandwidth 10MHz_QPSK

Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Burst Average EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1715.0	-19.92	3.93	9.05	34.96	23.56	33.01	-12.85	V
1732.5	-20.05	3.93	8.89	35.01	23.62	33.01	-13.09	V
1750.0	-20.23	3.94	8.76	35.08	23.37	33.01	-13.34	V

LTE FDD Band 4_Channel Bandwidth 15MHz_QPSK

Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Burst Average EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1717.5	-21.25	3.93	9.05	34.96	23.43	33.01	-14.18	V
1732.5	-20.52	3.93	8.89	35.01	23.45	33.01	-13.56	V
1747.5	-21.40	3.94	8.76	35.08	23.20	33.01	-14.51	V

LTE FDD Band 4_Channel Bandwidth 20MHz_QPSK

Frequency (MHz)	v P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Burst Average EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1720.0	-21.88	3.93	9.05	34.96	23.20	33.01	-14.81	V
1732.5	-21.66	3.93	8.89	35.01	23.31	33.01	-14.70	V
1745.0	-21.79	3.94	8.76	35.08	23.11	33.01	-14.90	V

LTE FDD Band 4_Channel Bandwidth 1.4MHz_16QAM

Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Burst Average EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1710.7	-19.50	3.93	9.05	34.96	23.58	33.01	-12.43	V
1732.5	-19.36	3.93	8.89	35.01	23.61	33.01	-12.40	V
1754.3	-19.14	3.94	8.76	35.08	23.76	33.01	-12.25	V

LTE FDD Band 4_Channel Bandwidth 3MHz_16QAM

Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Burst Avergae EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1711.5	-19.83	3.93	9.05	34.96	23.25	33.01	-12.76	V
1732.5	-19.98	3.93	8.89	35.01	23.49	33.01	-13.02	V
1753.5	-20.11	3.94	8.76	35.08	23.39	33.01	-13.22	V

LTE FDD Band 4_Channel Bandwidth 5MHz_16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Ga Antenna Gain(dB)	P _{Ag} (dB)	Burst Average EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1712.5	-20.05	3.93	9.05	34.96	23.13	33.01	-12.98	V
1732.5	-20.42	3.93	8.89	35.01	23.45	33.01	-13.46	V
1752.5	-20.13	3.94	8.76	35.08	23.27	33.01	-13.24	V

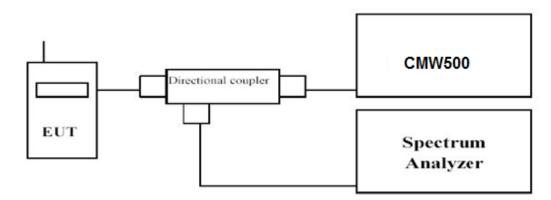
LTE FDD Band 4_Channel Bandwidth 10MHz_16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Burst Avergae EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1715.0	-21.28	3.93	9.05	34.96	23.11	33.01	-14.21	V
1732.5	-21.02	3.93	8.89	35.01	23.29	33.01	-14.06	V
1750.0	-20.52	3.94	8.76	35.08	23.18	33.01	-13.63	V

LTE FDD Band 4_Channel Bandwidth 15MHz_16QAM

Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Burst Average EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1717.5	-21.56	3.93	9.05	34.96	23.02	33.01	-14.49	V
1732.5	-21.50	3.93	8.89	35.01	23.17	33.01	-14.54	V
1747.5	-21.92	3.94	8.76	35.08	23.08	33.01	-15.03	V

LTE FDD Band 4_Channel Bandwidth 20MHz_16QAM


	Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	Ga Antenna Gain(dB)	P _{Ag} (dB)	Burst Avergae EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
Γ	1720.0	-22.19	3.93	9.05	34.96	22.95	33.01	-15.12	V
	1732.5	-22.19	3.93	8.89	35.01	23.08	33.01	-15.23	V
	1745.0	-21.67	3.94	8.76	35.08	22.93	33.01	-14.78	V

4.2 Peak-to-Average Ratio (PAR)

<u>LIMIT</u>

The Peak-to-Average Ratio (PAR) of the transmission may not exceed 13 dB.

TEST CONFIGURATION

TEST PROCEDURE

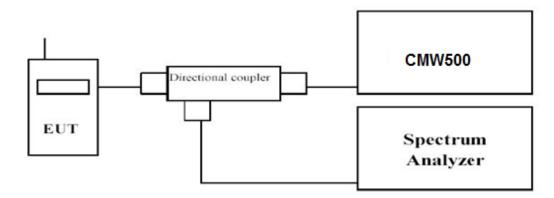
- 1. Refer to instrument's analyzer instruction manual for details on how to use the power statistics/CCDF function;
- 2. Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
- 3. Set the number of counts to a value that stabilizes the measured CCDF curve;
- 4. Set the measurement interval as follows:
 - 1). for continuous transmissions, set to 1 ms,

2). for burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize and set the measurement interval to a time that is less than or equal to the burst duration.

5. Record the maximum PAPR level associated with a probability of 0.1%.

TEST RESULTS

Remark:


- 1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE LTE FDD Band 4;
- 2. For E-UTRA Band 4, please refer to Appendix B: Section B.2

4.3 Occupied Bandwidth and Emission Bandwidth

<u>LIMIT</u>

N/A

TEST CONFIGURATION

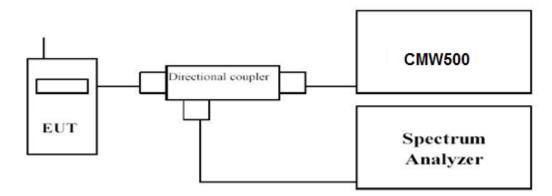
TEST PROCEDURE

The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The occupied bandwidth was measured with the spectrum analyzer at low, middle and high channel in each band. The -26dBc Emission bandwidth was also measured and recorded. Set RBW was set to about 1% of emission BW, VBW≥3 times RBW.

-26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

TEST RESULTS

Remark:


- 1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE LTE FDD Band 4;
- 2. For E-UTRA Band 4, please refer to Appendix B: Section B.3

4.4 Band Edge compliance

<u>LIMIT</u>

For LTE FDD Band 4: Per §27.53(h): For operations in the 1710–1755 MHz and 2110–2155 MHz bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least 43 + 10 log10(P) dB.

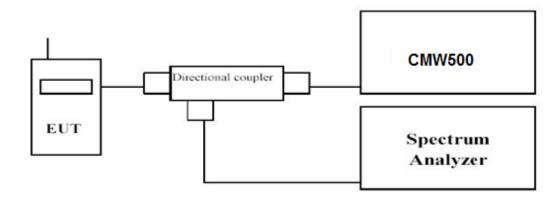
TEST CONFIGURATION

TEST PROCEDURE

- 1. The transmitter output port was connected to base station.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator, the path loss was compensated to the results for each measurement.
- 3. Set EUT at maximum power through base station.
- 4. Select lowestand highest channels for each band and different modulation.
- 5. Measure Band edge using RMS (Average) detector by spectrum

TEST RESULTS

Remark:


- 1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE LTE FDD Band 4;
- 2. For E-UTRA Band 4, please refer to Appendix B: Section B.4

4.5 Spurious Emssion on Antenna Port

<u>LIMIT</u>

For LTE FDD Band 4: Per §27.53(h): For operations in the 1710–1755 MHz and 2110–2155 MHz bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least 43 + 10 log10(P) dB.

TEST CONFIGURATION

TEST PROCEDURE

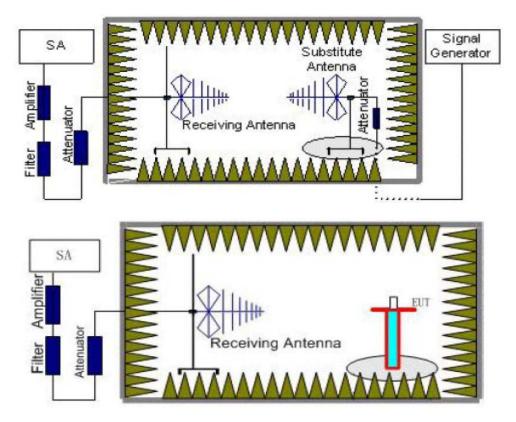
The EUT was setup according to EIA/TIA 603D

- a. Place the EUT on a bench and set it in transmitting mode.
- b. Connect a low loss RF cable from the antenna port to a spectrum analyzer and CMW500 by a Directional Couple.
- c. EUT Communicate with CMW500, then select a channel for testing.
- d. Add a correction factor to the display of spectrum, and then test.
- e. The resolution bandwidth of the spectrum analyzer was setsufficient scans were taken to show the out of band Emission if any up to10th harmonic.
- f. Please refer to following tables for test antenna conducted emissions.

Working Frequency	Sub range (GHz)	RBW	VBW	Sweep time (s)
LTE FDD Band 4	0.000009~0.000015	1KHz	3KHz	Auto
	0.000015~0.03	10KHz	30KHz	Auto
	0.03~26	1 MHz	3 MHz	Auto

TEST RESULTS

Remark:


- 1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE LTE FDD Band 4;
- 2. For E-UTRA Band 4, please refer to Appendix B: Section B.5

4.6 Radiated Spurious Emssion

LIMIT

For LTE FDD Band 4: Per §27.53(h): For operations in the 1710–1755 MHz and 2110–2155 MHz bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least 43 + 10 log10(P) dB.

TEST CONFIGURATION

TEST PROCEDURE

- EUT was placed on a 1.50 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.50m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- The EUT is then put into continuously transmitting mode at its maximum power level during the test.Set Test Receiver or Spectrum RBW=1MHz,VBW=3MHz, And the maximum value of the receiver should be recorded as (Pr).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

- A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (P_{cl}), the Substitution Antenna Gain (G_a) and the Amplifier Gain (P_{Ag}) should be recorded after test. The measurement results are obtained as described below: Power(EIRP)=P_{Mea}+ P_{Ag} - P_{cl} + G_a
- 6. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 7. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi.
- 8. In order to make sure test results more clearly, we set frequency range and sweep time for difference frequency range as follows table:

Working Frequency	Subrange (GHz)	RBW	VBW	Sweep time (s)
	0.00009~0.15	1KHz	3KHz	30
	0.00015~0.03	10KHz	30KHz	10
	0.03~1	100KHz	300KHz	10
	1~2	1 MHz	3 MHz	2
LTE FDD Band 4	2~5	1 MHz	3 MHz	3
LIE FUU Danu 4	5~8	1 MHz	3 MHz	3
	8~11	1 MHz	3 MHz	3
	11~14	1 MHz	3 MHz	3
	14~18	1 MHz	3 MHz	3
	18~20	1 MHz	3 MHz	2

TEST LIMITS

According to 27.53(h) specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$. The specification that emissions shall be attenuated below the transmitter power (P) by at least $43 + 10 \log(P) dB$. (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

Frequency	Channel	Frequency Range	Verdict
	Low	9KHz -20GHz	PASS
LTE FDD Band 4	Middle	9KHz -20GHz	PASS
	High	9KHz -20GHz	PASS

TEST RESULTS

Remark:

1. We tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE LTE FDD Band 4;

2. $EIRP=P_{Mea}(dBm)-P_{cl}(dB)+G_a(dBi)$

3. We were not recorded other points as values lower than limits.

4. Margin = EIRP - Limit

LTE FDD Band 4_Channel Bandwidth 1.4MHz_QPSK_ Low Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3421.40	-43.20	4.62	3.00	9.81	-38.01	-13.00	-25.01	Н
5132.10	-48.46	5.94	3.00	10.86	-43.54	-13.00	-30.54	Н
3421.40	-34.75	4.62	3.00	9.81	-29.56	-13.00	-16.56	V
5132.10	-41.74	5.94	3.00	10.86	-36.82	-13.00	-23.82	V

LTE FDD Band 4_Channel Bandwidth 1.4MHz_QPSK_ Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	Ga Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3465.00	-40.29	4.63	3.00	9.84	-35.08	-13.00	-22.08	Н
5197.50	-47.90	5.94	3.00	10.86	-42.98	-13.00	-29.98	Н
3465.00	-35.15	4.63	3.00	9.84	-29.94	-13.00	-16.94	V
5197.50	-41.62	5.94	3.00	10.86	-36.70	-13.00	-23.70	V

LTE FDD Band 4_Channel Bandwidth 1.4MHz_QPSK_ High Channel

Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3508.60	-43.44	4.65	3.00	9.90	-38.19	-13.00	-25.19	Н
5262.90	-45.53	5.95	3.00	10.91	-40.57	-13.00	-27.57	Н
3508.60	-34.71	4.65	3.00	9.90	-29.46	-13.00	-16.46	V
5262.90	-40.12	5.95	3.00	10.91	-35.16	-13.00	-22.16	V

LTE FDD Band 4_Channel Bandwidth 3MHz_QPSK_ Low Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3423.00	-42.37	4.62	3.00	9.81	-37.18	-13.00	-24.18	Н
5134.50	-48.34	5.94	3.00	10.86	-43.42	-13.00	-30.42	Н
3423.00	-33.92	4.62	3.00	9.81	-28.73	-13.00	-15.73	V
5134.50	-39.59	5.94	3.00	10.86	-34.67	-13.00	-21.67	V

LTE FDD Band 4_Channel Bandwidth 3MHz_QPSK_ Middle Channel

Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3465.00	-41.35	4.63	3.00	9.84	-36.14	-13.00	-23.14	Н
5197.50	-47.55	5.94	3.00	10.86	-42.63	-13.00	-29.63	Н
3465.00	-35.50	4.63	3.00	9.84	-30.29	-13.00	-17.29	V
5197.50	-41.08	5.94	3.00	10.86	-36.16	-13.00	-23.16	V

LTE FDD Band 4_Channel Bandwidth 3MHz_QPSK_ High Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	Ga Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3507.00	-42.23	4.65	3.00	9.90	-36.98	-13.00	-23.98	Н
5260.50	-47.19	5.95	3.00	10.91	-42.23	-13.00	-29.23	Н
3507.00	-33.52	4.65	3.00	9.90	-28.27	-13.00	-15.27	V
5260.50	-40.35	5.95	3.00	10.91	-35.39	-13.00	-22.39	V

LTE FDD Band 4_Channel Bandwidth 5MHz_QPSK_ Low Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	Ga Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3425.00	-40.71	4.62	3.00	9.81	-35.52	-13.00	-22.52	Н
5137.50	-45.50	5.94	3.00	10.86	-40.58	-13.00	-27.58	Н
3425.00	-36.84	4.62	3.00	9.81	-31.65	-13.00	-18.65	V
5137.50	-40.60	5.94	3.00	10.86	-35.68	-13.00	-22.68	V

LTE FDD Band 4_Channel Bandwidth 5MHz_QPSK_ Middle Channel

Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3465.00	-41.61	4.63	3.00	9.84	-36.40	-13.00	-23.40	Н
5197.50	-46.18	5.94	3.00	10.86	-41.26	-13.00	-28.26	Н
3465.00	-35.32	4.63	3.00	9.84	-30.11	-13.00	-17.11	V
5197.50	-40.72	5.94	3.00	10.86	-35.80	-13.00	-22.80	V

LTE FDD Band 4_Channel Bandwidth 5MHz_QPSK_ High Channel

Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3505.00	-40.18	4.65	3.00	9.90	-34.93	-13.00	-21.93	Н
5257.50	-47.92	5.95	3.00	10.91	-42.96	-13.00	-29.96	Н
3505.00	-36.52	4.65	3.00	9.90	-31.27	-13.00	-18.27	V
5257.50	-39.56	5.95	3.00	10.91	-34.60	-13.00	-21.60	V

LTE FDD Band 4_Channel Bandwidth 10MHz_QPSK_ Low Channel

Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3430.00	-42.69	4.62	3.00	9.81	-37.50	-13.00	-24.50	Н
5145.00	-45.92	5.94	3.00	10.86	-41.00	-13.00	-28.00	Н
3430.00	-34.26	4.62	3.00	9.81	-29.07	-13.00	-16.07	V
5145.00	-41.09	5.94	3.00	10.86	-36.17	-13.00	-23.17	V

LTE FDD Band 4_Channel Bandwidth 10MHz_QPSK_ Middle Channel

Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	Diatance	Ga Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3465.00	-41.64	4.63	3.00	9.84	-36.43	-13.00	-23.43	Н
5197.50	-48.58	5.94	3.00	10.86	-43.66	-13.00	-30.66	Н
3465.00	-35.07	4.63	3.00	9.84	-29.86	-13.00	-16.86	V
5197.50	-40.86	5.94	3.00	10.86	-35.94	-13.00	-22.94	V

LTE FDD Band 4_Channel Bandwidth 10MHz_QPSK_ High Channel

Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3500.00	-40.23	4.65	3.00	9.90	-34.98	-13.00	-21.98	Н
5250.00	-45.15	5.95	3.00	10.91	-40.19	-13.00	-27.19	Н
3500.00	-35.91	4.65	3.00	9.90	-30.66	-13.00	-17.66	V
5250.00	-39.86	5.95	3.00	10.91	-34.90	-13.00	-21.90	V

LTE FDD Band 4_Channel Bandwidth 15MHz_QPSK_ Low Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3435.00	-40.50	4.62	3.00	9.81	-35.31	-13.00	-22.31	Н
5152.50	-46.24	5.94	3.00	10.86	-41.32	-13.00	-28.32	Н
3435.00	-35.52	4.62	3.00	9.81	-30.33	-13.00	-17.33	V
5152.50	-41.43	5.94	3.00	10.86	-36.51	-13.00	-23.51	V

LTE FDD Band 4_Channel Bandwidth 15MHz_QPSK_ Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3465.00	-43.87	4.63	3.00	9.84	-38.66	-13.00	-25.66	Н
5197.50	-48.72	5.94	3.00	10.86	-43.80	-13.00	-30.80	Н
3465.00	-35.46	4.63	3.00	9.84	-30.25	-13.00	-17.25	V
5197.50	-40.12	5.94	3.00	10.86	-35.20	-13.00	-22.20	V

LTE FDD Band 4_Channel Bandwidth 15MHz_QPSK_ High Channel

Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3495.00	-41.02	4.65	3.00	9.90	-35.77	-13.00	-22.77	Н
5242.50	-47.84	5.95	3.00	10.91	-42.88	-13.00	-29.88	Н
3495.00	-35.41	4.65	3.00	9.90	-30.16	-13.00	-17.16	V
5242.50	-40.71	5.95	3.00	10.91	-35.75	-13.00	-22.75	V

LTE FDD Band 4_Channel Bandwidth 20MHz_QPSK_ Low Channel

Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	Diatance	Ga Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3440.00	-42.75	4.62	3.00	9.81	-37.56	-13.00	-24.56	Н
5160.00	-46.71	5.94	3.00	10.86	-41.79	-13.00	-28.79	Н
3440.00	-34.57	4.62	3.00	9.81	-29.38	-13.00	-16.38	V
5160.00	-39.36	5.94	3.00	10.86	-34.44	-13.00	-21.44	V

LTE FDD Band 4_Channel Bandwidth 20MHz_QPSK_ Middle Channel

Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3465.00	-43.28	4.63	3.00	9.84	-38.07	-13.00	-25.07	Н
5197.50	-47.17	5.94	3.00	10.86	-42.25	-13.00	-29.25	Н
3465.00	-33.86	4.63	3.00	9.84	-28.65	-13.00	-15.65	V
5197.50	-38.84	5.94	3.00	10.86	-33.92	-13.00	-20.92	V

LTE FDD Band 4_Channel Bandwidth 20MHz_QPSK_ High Channel

Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3490.00	-42.89	4.65	3.00	9.90	-37.64	-13.00	-24.64	Н
5235.00	-46.69	5.95	3.00	10.91	-41.73	-13.00	-28.73	Н
3490.00	-36.86	4.65	3.00	9.90	-31.61	-13.00	-18.61	V
5235.00	-38.36	5.95	3.00	10.91	-33.40	-13.00	-20.40	V

LTE FDD Band 4_Channel Bandwidth 1.4MHz_16QAM _ Low Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3421.40	-44.57	4.62	3.00	9.81	-39.38	-13.00	-26.38	Н
5132.10	-50.04	5.94	3.00	10.86	-45.12	-13.00	-32.12	Н
3421.40	-39.57	4.62	3.00	9.81	-34.38	-13.00	-21.38	V
5132.10	-44.21	5.94	3.00	10.86	-39.29	-13.00	-26.29	V

LTE FDD Band 4_Channel Bandwidth 1.4MHz_16QAM Middle Channel

Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3465.00	-46.83	4.63	3.00	9.84	-41.62	-13.00	-28.62	Н
5197.50	-49.79	5.94	3.00	10.86	-44.87	-13.00	-31.87	Н
3465.00	-37.77	4.63	3.00	9.84	-32.56	-13.00	-19.56	V
5197.50	-42.81	5.94	3.00	10.86	-37.89	-13.00	-24.89	V

LTE FDD Band 4_Channel Bandwidth 1.4MHz_16QAM _ High Channel

Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3508.60	-43.47	4.65	3.00	9.90	-38.22	-13.00	-25.22	Н
5262.90	-51.23	5.95	3.00	10.91	-46.27	-13.00	-33.27	Н
3508.60	-36.97	4.65	3.00	9.90	-31.72	-13.00	-18.72	V
5262.90	-43.14	5.95	3.00	10.91	-38.18	-13.00	-25.18	V

LTE FDD Band 4_Channel Bandwidth 3MHz_16QAM _ Low Channel

Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	Diatance	Ga Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3423.00	-45.41	4.62	3.00	9.81	-40.22	-13.00	-27.22	Н
5134.50	-49.19	5.94	3.00	10.86	-44.27	-13.00	-31.27	Н
3423.00	-39.87	4.62	3.00	9.81	-34.68	-13.00	-21.68	V
5134.50	-41.58	5.94	3.00	10.86	-36.66	-13.00	-23.66	V

LTE FDD Band 4_Channel Bandwidth 3MHz_16QAM _ Middle Channel

Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3465.00	-45.99	4.63	3.00	9.84	-40.78	-13.00	-27.78	Н
5197.50	-51.80	5.94	3.00	10.86	-46.88	-13.00	-33.88	Н
3465.00	-36.22	4.63	3.00	9.84	-31.01	-13.00	-18.01	V
5197.50	-44.07	5.94	3.00	10.86	-39.15	-13.00	-26.15	V

LTE FDD Band 4_Channel Bandwidth 3MHz_16QAM _ High Channel

Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3507.00	-43.76	4.65	3.00	9.90	-38.51	-13.00	-25.51	Н
5260.50	-48.16	5.95	3.00	10.91	-43.20	-13.00	-30.20	Н
3507.00	-38.62	4.65	3.00	9.90	-33.37	-13.00	-20.37	V
5260.50	-44.55	5.95	3.00	10.91	-39.59	-13.00	-26.59	V

LTE FDD Band 4_Channel Bandwidth 5MHz_16QAM _ Low Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3425.00	-43.66	4.62	3.00	9.81	-38.47	-13.00	-25.47	Н
5137.50	-48.87	5.94	3.00	10.86	-43.95	-13.00	-30.95	Н
3425.00	-36.33	4.62	3.00	9.81	-31.14	-13.00	-18.14	V
5137.50	-43.90	5.94	3.00	10.86	-38.98	-13.00	-25.98	V

LTE FDD Band 4_Channel Bandwidth 5MHz_16QAM _ Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3465.00	-46.68	4.63	3.00	9.84	-41.47	-13.00	-28.47	Н
5197.50	-49.75	5.94	3.00	10.86	-44.83	-13.00	-31.83	Н
3465.00	-36.79	4.63	3.00	9.84	-31.58	-13.00	-18.58	V
5197.50	-41.44	5.94	3.00	10.86	-36.52	-13.00	-23.52	V

LTE FDD Band 4_Channel Bandwidth 5MHz_16QAM _ High Channel

Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3505.00	-46.59	4.65	3.00	9.90	-41.34	-13.00	-28.34	Н
5257.50	-50.84	5.95	3.00	10.91	-45.88	-13.00	-32.88	Н
3505.00	-39.89	4.65	3.00	9.90	-34.64	-13.00	-21.64	V
5257.50	-41.66	5.95	3.00	10.91	-36.70	-13.00	-23.70	V

LTE FDD Band 4_Channel Bandwidth 10MHz_16QAM _ Low Channel

Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	Diatance	Ga Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3430.00	-43.43	4.62	3.00	9.81	-38.24	-13.00	-25.24	Н
5145.00	-50.46	5.94	3.00	10.86	-45.54	-13.00	-32.54	Н
3430.00	-39.10	4.62	3.00	9.81	-33.91	-13.00	-20.91	V
5145.00	-42.04	5.94	3.00	10.86	-37.12	-13.00	-24.12	V

LTE FDD Band 4_Channel Bandwidth 10MHz_16QAM _ Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	Ga Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3465.00	-44.87	4.63	3.00	9.84	-39.66	-13.00	-26.66	Н
5197.50	-50.36	5.94	3.00	10.86	-45.44	-13.00	-32.44	Н
3465.00	-36.24	4.63	3.00	9.84	-31.03	-13.00	-18.03	V
5197.50	-41.86	5.94	3.00	10.86	-36.94	-13.00	-23.94	V

LTE FDD Band 4_Channel Bandwidth 10MHz_16QAM _ High Channel

Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3500.00	-44.54	4.65	3.00	9.90	-39.29	-13.00	-26.29	Н
5250.00	-49.82	5.95	3.00	10.91	-44.86	-13.00	-31.86	Н
3500.00	-36.44	4.65	3.00	9.90	-31.19	-13.00	-18.19	V
5250.00	-44.73	5.95	3.00	10.91	-39.77	-13.00	-26.77	V

LTE FDD Band 4_Channel Bandwidth 15MHz_16QAM _ Low Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3435.00	-46.23	4.62	3.00	9.81	-41.04	-13.00	-28.04	Н
5152.50	-50.70	5.94	3.00	10.86	-45.78	-13.00	-32.78	Н
3435.00	-36.43	4.62	3.00	9.81	-31.24	-13.00	-18.24	V
5152.50	-41.10	5.94	3.00	10.86	-36.18	-13.00	-23.18	V

LTE FDD Band 4_Channel Bandwidth 15MHz_16QAM _ Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3465.00	-44.01	4.63	3.00	9.84	-38.80	-13.00	-25.80	Н
5197.50	-48.09	5.94	3.00	10.86	-43.17	-13.00	-30.17	Н
3465.00	-37.98	4.63	3.00	9.84	-32.77	-13.00	-19.77	V
5197.50	-44.36	5.94	3.00	10.86	-39.44	-13.00	-26.44	V

LTE FDD Band 4_Channel Bandwidth 15MHz_16QAM _ High Channel

Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3495.00	-45.24	4.65	3.00	9.90	-39.99	-13.00	-26.99	Н
5242.50	-49.70	5.95	3.00	10.91	-44.74	-13.00	-31.74	Н
3495.00	-38.77	4.65	3.00	9.90	-33.52	-13.00	-20.52	V
5242.50	-43.31	5.95	3.00	10.91	-38.35	-13.00	-25.35	V

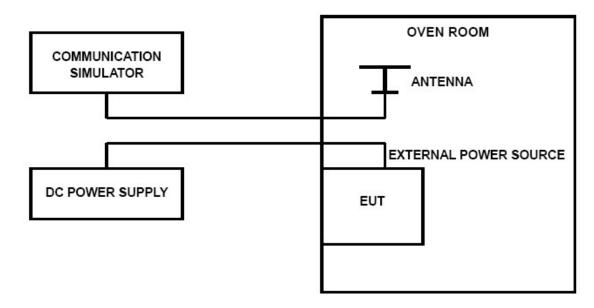
LTE FDD Band 4_Channel Bandwidth 20MHz_16QAM _ Low Channel

Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	Diatance	Ga Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3440.00	-45.02	4.62	3.00	9.81	-39.83	-13.00	-26.83	Н
5160.00	-49.43	5.94	3.00	10.86	-44.51	-13.00	-31.51	Н
3440.00	-38.03	4.62	3.00	9.81	-32.84	-13.00	-19.84	V
5160.00	-43.20	5.94	3.00	10.86	-38.28	-13.00	-25.28	V

LTE FDD Band 4_Channel Bandwidth 20MHz_16QAM _ Middle Channel

Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3465.00	-43.05	4.63	3.00	9.84	-37.84	-13.00	-24.84	Н
5197.50	-50.30	5.94	3.00	10.86	-45.38	-13.00	-32.38	Н
3465.00	-38.25	4.63	3.00	9.84	-33.04	-13.00	-20.04	V
5197.50	-43.91	5.94	3.00	10.86	-38.99	-13.00	-25.99	V

LTE FDD Band 4_Channel Bandwidth 20MHz_16QAM _ High Channel


Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3490.00	-44.09	4.65	3.00	9.90	-38.84	-13.00	-25.84	Н
5235.00	-49.63	5.95	3.00	10.91	-44.67	-13.00	-31.67	Н
3490.00	-37.63	4.65	3.00	9.90	-32.38	-13.00	-19.38	V
5235.00	-41.41	5.95	3.00	10.91	-36.45	-13.00	-23.45	V

4.7 Frequency Stability under Temperature & Voltage Variations

<u>LIMIT</u>

According to FCC §2.1055, §22.355, §24.235 and §27.54 requirement, the frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation and should not exceed 2.5ppm.

TEST CONFIGURATION

TEST PROCEDURE

The EUT was setup according to EIA/TIA 603D

Frequency Stability Under Temperature Variations:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMW500 DIGITAL RADIO COMMUNICATION TESTER.

1. Measure the carrier frequency at room temperature.

2. Subject the EUT to overnight soak at -30 $^\circ\!\mathbb{C}.$

3. With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on middle channel for LTE band 4, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.

4. Repeat the above measurements at 10° C increments from -30° C to $+50^{\circ}$ C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements.

5. Re-measure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments re-measuring carrier frequency at each voltage. Pause at nominal voltage for 1.5 hours unpowered, to allow any self-heating to stabilize, before continuing. 6. Subject the EUT to overnight soak at +50 ℃.

7. With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.

8. Repeat the above measurements at 10 $^{\circ}$ C increments from +50 $^{\circ}$ C to -30 $^{\circ}$ C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements

9. At all temperature levels hold the temperature to +/- $0.5\,^\circ\!\mathrm{C}$ during the measurement procedure.

Frequency Stability Under Voltage Variations:

Set chamber temperature to 20° C. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.

Reduce the input voltage to specify extreme voltage variation (±15%) and endpoint, record the maximum frequency change.

TEST RESULTS

Remark:

1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE LTE FDD Band 4;

	LTE FDD Band 4										
AC Power	Temperature (℃)	Frequency error (Hz)	Frequency error (ppm)	Limit (ppm)	Verdict						
	()	· · · /									
108	20	46	0.027	2.50	PASS						
120	20	59	0.034	2.50	PASS						
132	20	14	0.008	2.50	PASS						
120	-10	98	0.057	2.50	PASS						
120	-20	16	0.009	2.50	PASS						
120	-10	55	0.032	2.50	PASS						
120	0	-33	0.019	2.50	PASS						
120	10	47	0.027	2.50	PASS						
120	20	89	0.051	2.50	PASS						
120	30	-55	0.032	2.50	PASS						
120	40	-34	0.020	2.50	PASS						
120	50	26	0.015	2.50	PASS						

LTE Band 4, 1.4MHz bandwidth, QPSK (worst case of all bandwidths)

LTE Band 4, 1.4MHz bandwidth, 16QAM (worst case of all bandwidths)

	LTE FDD Band 4										
AC Power	Temperature (℃)	Frequency error (Hz)	Frequency error (ppm)	Limit (ppm)	Verdict						
108	20	-91	0.053	2.50	PASS						
120	20	26	0.015	2.50	PASS						
132	20	56	0.032	2.50	PASS						
120	-10	-17	0.010	2.50	PASS						
120	-20	-82	0.047	2.50	PASS						
120	-10	36	0.021	2.50	PASS						
120	0	-57	0.033	2.50	PASS						
120	10	41	0.024	2.50	PASS						
120	20	-63	0.036	2.50	PASS						
120	30	29	0.017	2.50	PASS						
120	40	-84	0.048	2.50	PASS						
120	50	66	0.038	2.50	PASS						

5 <u>Test Setup Photos of the EUT</u>

Please refer to separated files for Test Setup Photos of the EUT.

6 External Photos of the EUT

Please refer to separated files for External Photos of the EUT.

7 Internal Photos of the EUT

Please refer to separated files for Internal Photos of the EUT.