FCC TEST REPORT

For

Shenzhen Reiie intelligent technology Co., Itd

Dog remote trainer

Test Model: RT505

List Model No.: T01, T02, T01s, T02s, RT505s, RT505+, RT515, RT514, RT514s,

RT515s, ZW-T01, ZW-T02, ZW-505

Prepared for : Shenzhen Reiie intelligent technology Co., Itd

Address : 401, 4F, NO.1 Building, Zhongkenuo Industry Park,

Hezhou Development Zone, Xixiang Street, Baoan

District, Shenzhen City, China

Prepared by : Shenzhen LCS Compliance Testing Laboratory Ltd.

Address : 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an

Avenue, Bao'an District, Shenzhen, Guangdong, China

Tel : (+86)755-82591330 Fax : (+86)755-82591332

Web : www.LCS-cert.com

Mail : webmaster@LCS-cert.com

Date of receipt of test sample : June 14, 2018

Number of tested samples : 1

Serial number : Prototype

Date of Test : June 14, 2018~ July 20, 2018

Date of Report : July 20, 2018

FCC TEST REPORT FCC CFR 47 PART 15C(15.231): 2017

Report Reference No.: LCS180614003AE

Date of Issue: July 20, 2018

Testing Laboratory Name.....: Shenzhen LCS Compliance Testing Laboratory Ltd.

Address......: 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an

Avenue, Bao'an District, Shenzhen, Guangdong, China

Testing Location/ Procedure ...: Full application of Harmonised standards

Partial application of Harmonised standards

Other standard testing method

Applicant's Name.....: Shenzhen Reiie intelligent technology Co., Itd

Address..... : 401, 4F, NO.1 Building, Zhongkenuo Industry Park, Hezhou

Development Zone, Xixiang Street, Baoan District,

Shenzhen City, China

Test Specification

Standard: FCC CFR 47 PART 15C(15.231): 2017

Test Report Form No.: LCSEMC-1.0

TRF Originator: Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF: Dated 2011-03

Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LĆS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test Item Description.....: Dog remote trainer

Trade Mark.....: N/A

Test Model: RT505

Ratings.....: For Transmitter:

DC 3.7V by Rechargeable Li-ion Battery(450mAh)

Power Input DC 5V/350mA;

For Receiver:

DC 3.7V by Rechargeable Li-ion Battery(450mAh)

Power Input DC 5V/350mA

Result: Positive

Compiled by:

Supervised by:

Approved by:

Leo Lee/ Administrators

Calvin Weng/ Technique principal

Gavin Liang/ Manager

FCC TEST REPORT

Test Report No.: LCS180614003AE

July 20, 2018
Date of issue

Test Mode	: RT505
EUT	: Dog remote trainer
Applicant	: Shenzhen Reiie intelligent technology Co., Itd
Address	: 401, 4F, NO.1 Building, Zhongkenuo Industry Park, Hezhou
	Development Zone, Xixiang Street, Baoan District, Shenzhen
	City, China
Telephone	:/
Fax	• /
	• ,
Manufacturer	: Shenzhen Reiie intelligent technology Co., Itd
	: 401, 4F, NO.1 Building, Zhongkenuo Industry Park, Hezhou
	Development Zone, Xixiang Street, Baoan District, Shenzhen
	City, China
Tolophono	•
Telephone	:/
Fax	. /
Fax	. 1
	: Shenzhen Reiie intelligent technology Co., Itd
Address	: 401, 4F, NO.1 Building, Zhongkenuo Industry Park, Hezhou
	Development Zone, Xixiang Street, Baoan District, Shenzhen
	City, China
Telephone	
Fax	

Test Result	Positive
-------------	----------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

FCC ID: 2AJU3-RT505

Report No.: LCS180614003AE

Revision History

Revision	Issue Date	Revisions	Revised By
000	July 20, 2018	Initial Issue	Gavin Liang

TABLE OF CONTENTS

1. GENERAL INFORMATION	6
1.1. DESCRIPTION OF DEVICE (EUT)	
1.2. OBJECTIVE	7
1.3. ENVIRONMENTAL CONDITIONS	7
1.5. EXTERNAL I/O PORT	
1.6. DESCRIPTION OF TEST FACILITY	
1.7. STATEMENT OF THE MEASUREMENT UNCERTAINTY	8
2. TEST METHODOLOGY	9
2.1. EUT CONFIGURATION	9
2.2. EUT EXERCISE	
2.3. GENERAL TEST PROCEDURES	9
2.4. Instrument Calibration	9
2.5. TEST MODE	10
3. SYSTEM TEST CONFIGURATION	11
3.1. JUSTIFICATION	
3.2. EUT EXERCISE SOFTWARE	11
3.3. SPECIAL ACCESSORIES	
3.4. BLOCK DIAGRAM/SCHEMATICS	
3.5. EQUIPMENT MODIFICATIONS	
4. SUMMARY OF TEST RESULTS	12
5. TEST ITEMS AND RESULTS	
5.1. TRANSMISSION CEASE TIME	
5.2. Transmitter Field Strength of Emissions	
5.3. AC Power line conducted emissions	
5.4. 20DB BANDWIDTH EMISSIONS	
5.5. DUTY CYCLE	
5.6. Antenna Requirement	
6. LIST OF MEASURING EQUIPMENTS	

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

EUT : Dog remote trainer

Model Number : RT505, T01, T02, T01s, T02s, RT505s, RT505+, RT515,

RT514, RT514s, RT515s, ZW-T01, ZW-T02, ZW-505

Model Declaration : PCB board, structure and internal of these model(s) are

the same, only model name is different for these models.

Test Model : RT505

Power Supply : For Transmitter:

DC 3.7V by Rechargeable Li-ion Battery(450mAh)

Power Input DC 5V/350mA;

For Receiver:

DC 3.7V by Rechargeable Li-ion Battery(450mAh)

Power Input DC 5V/350mA

For Transmitter :

Hardware Version : V05

Software Version : V03

Transmit Frequency: 868.00MHz

Number of Channels: 1

Modulation Type : FSK

Antenna Description: External Antenna, 2.0dBi(max.)

1.2. Objective

The primary objective of the manufacturer is compliance with Subpart C of Part 15 of FCC

Certification is a procedure where the manufacturer or a contracted laboratory makes measurements and submits the test data and technical information to the FCC. The FCC issues a grant of equipment authorization upon successful completion of their review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

1.3. Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

- Temperature: 15-35°C - Humidity: 30-60 %

- Atmospheric pressure: 86-106kPa

1.4. Host System Configuration List and Details

Manufacturer	Description	Model	Serial Number	Certificate
SHENZHEN TIANYIN ELECTRONIC S CO.,LTD.	Adapter	TPA-4605010 0VU		VOC

Note: The Power Adapter is supplied by lab during the test.

1.5. External I/O Port

I/O Port Description	Quantity	Cable
DC IN Port(For Transmitter)	1	0.8m, unshielded

1.6. Description of Test Facility

FCC Registration Number. is 254912.

Industry Canada Registration Number. is 9642A-1.

ESMD Registration Number. is ARCB0108.

UL Registration Number. is 100571-492.

TUV SUD Registration Number. is SCN1081.

TUV RH Registration Number. is UA 50296516-001

NVLAP Registration Code is 600167-0

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

1.7. Statement of The Measurement Uncertainty

ISO Guide 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with NAMAS document NIS 81.

Test Item		Frequency Range	Uncertainty	Note
		9KHz~30MHz	3.10dB	(1)
Dediction Uppertainty		30MHz~200MHz	2.96dB	(1)
Radiation Uncertainty	•	200MHz~1000MHz	3.10dB	(1)
		1GHz~26.5GHz	3.80dB	(1)
Conduction	••	150kHz~30MHz	1.63dB	(1)
Uncertainty				
Power disturbance	•••	30MHz~300MHz	1.60dB	(1)

(1). This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2. TEST METHODOLOGY

All measurements contained in this report were conducted with ANSI C63.10: 2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

The radiated testing was performed at an antenna-to-EUT distance of 3 meters. All radiated and conducted emissions measurement was performed at Shenzhen LCS Compliance Testing Laboratory Ltd..

2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2. EUT Exercise

The EUT was operated in the normal operating mode. The TX frequency that was fixed which was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.203, 15.205, 15.207, 15.209 and 15.231 under the FCC Rules Part 15 Subpart C.

2.3. General Test Procedures

2.3.1 Conducted Emissions

According to the requirements in Section 6.2 of ANSI C63.10: 2013, AC power-line conducted emissions shall be measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

2.3.2 Radiated Emissions

The EUT is placed on a turn table and the turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10: 2013

2.4. Instrument Calibration

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

2.5. Test Mode

The EUT has been tested under engineering mode. The field strength of radiation emission was measured in the following position: EUT stand-up position (Y axis), lie-down position (X, Z axis).

The worst case of X axis was reported.

Press the button on the EUT can transmit 868.00MHz control signal. All buttons were tested, only recorded the worst test case(Vibration button A) in this report.

Pre-test AC conducted emission at both voltage AC 120V/60Hz and AC 240V/50Hz, recorded worst case.

The EUT just transmits signal one time when you press the button.

3. SYSTEM TEST CONFIGURATION

3.1. Justification

The system was configured for testing in a continuous transmit condition.

3.2. EUT Exercise Software

N/A

3.3. Special Accessories

N/A

3.4. Block Diagram/Schematics

Please refer to the related document

3.5. Equipment Modifications

Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

3.6. Test Setup

Please refer to the test setup photo.

4. SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.231 (b)	Field Strength Of Fundamental And Harmonics	Compliant
§15.231 (c)	20dB Bandwidth	Compliant
§15.231 (a)(1)	Transmission Cease Time	Compliant
§15.231	Duty cycle Factor	Compliant
§15.207	AC line conducted	Compliant

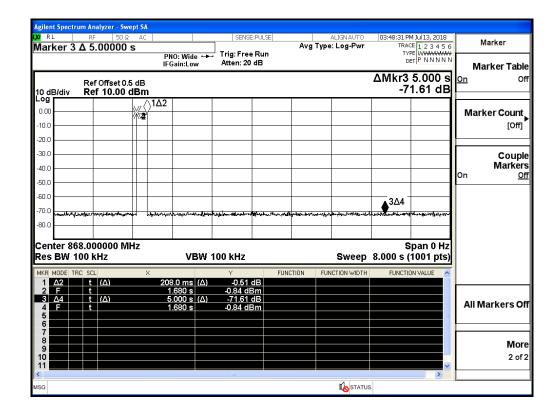
5. TEST ITEMS AND RESULTS

5.1. Transmission Cease Time

FCC 15.231 (a)

5.1.1. Limit

A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.


5.1.2. Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations. The antenna was all opened.

5.1.3. Test Results

Temperature	22.5℃	Humidity	53.6%
Test Engineer	Tom Liu		

Frequency (MHz)	Transmission cease Time (s)	Limit: not more than 5 seconds of being released (s)	Conclusion
868.00	0.208	5	PASS

5.2. Transmitter Field Strength of Emissions

5.2.1. Limit

FCC §15.231 (b)

In addition to the provisions of § 15.205, the field strength of emissions from Intentional radiators operated under this section shall not exceed the following:

Fundamental frequency (MHz)	Field Strength of Fundamental (microvolt/meter)	Field Strength of spurious emissions (microvolt/meter)
40.66-40.70	2,250	225
70-130	1,250	125
130-174	1,250 to 3,370	125 to375
174-260	3,750	375
260-470	3,750 to12, 500	375 to 1,250
Above 470	12,500	1,250

[Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows: for the band 130-174 MHz, μ V/m at 3 meters = 56.81818(F) - 6136.3636; for the band 260-470 MHz, μ V/m at 3 meters = 41.6667(F) - 7083.3333. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.]

§15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz MHz		GHz
MHz 0.090 - 0.110 10.495 - 0.505 2.1735 - 2.1905 4.125 - 4.128 4.17725 - 4.17775 4.20725 - 4.20775 6.215 - 6.218 6.26775 - 6.26825 6.31175 - 6.31225 8.291 - 8.294 8.362 - 8.366	MHz 16.42 - 16.423 16.69475 - 16.69525 16.80425 - 16.80475 25.5 - 25.67 37.5 - 38.25 73 - 74.6 74.8 - 75.2 108 - 121.94 123 - 138 149.9 - 150.05 156.52475 -	MHz 399.9 - 410 608 - 614 960 - 1240 1300 - 1427 1435 - 1626.5 1645.5 - 1646.5 1660 - 1710 1718.8 - 1722.2 2200 - 2300 2310 - 2390 2483.5 - 2500	GHz 4.5 - 5.15 5.35 - 5.46 7.25 - 7.75 8.025 - 8.5 9.0 - 9.2 9.3 - 9.5 10.6 - 12.7 13.25 - 13.4 14.47 - 14.5 15.35 - 16.2 17.7 - 21.4
8.37625 - 8.38675 8.41425 - 8.41475 12.29 - 12.293 12.51975 - 12.52025 12.57675 - 12.57725 13.36 - 13.41	156.52525 156.7 - 156.9 162.0125 - 167.17 167.72 - 173.2 240 - 285 322 - 335.4	2655 - 2900 3260 - 3267 3332 - 3339 3345.8 - 3358 3600 - 4400	22.01 - 23.12 23.6 - 24.0 31.2 - 31.8 36.43 - 36.5 (²)

1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2 Above 38.6

§15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490–1.705	24000/F(kHz)	30
1.705–30.0	30	30
30–88	100**	3
88–216	150**	3
216–960	200**	3
Above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54 72 MHz, 76 88 MHz, 174 216 MHz or 470 806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

5.2.2. Instruments Setting

The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average
RB / VB (Emission in non-restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average

Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

5.2.3. Test Procedures

1) Sequence of testing 9 kHz to 30 MHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna height is 1.5 meter.
- --- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

- --- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).
- --- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.
- --- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

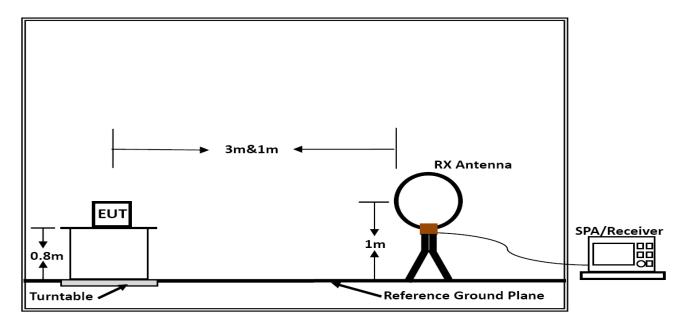
Final measurement:

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter.
- --- The final measurement will be done with QP detector with an EMI receiver.
- --- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

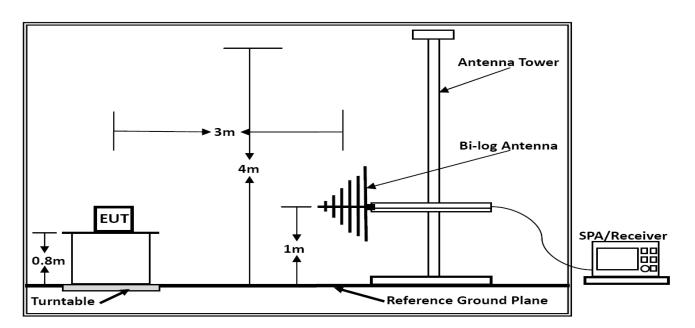
3) Sequence of testing 1 GHz to 12.75 GHz

Setup:

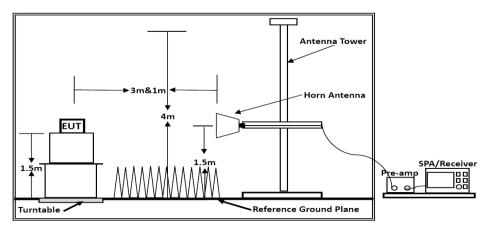
- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.


Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height is 1.5 meter.
- --- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.


Final measurement:

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum found antenna polarisation and turntable position of the premeasurement the software maximizes the peaks by rotating the turntable position (0° to 360°). This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps). This procedure is repeated for both antenna polarisations.
- --- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.


5.2.4. Test Setup Layout

Below 30MHz

Below 1GHz

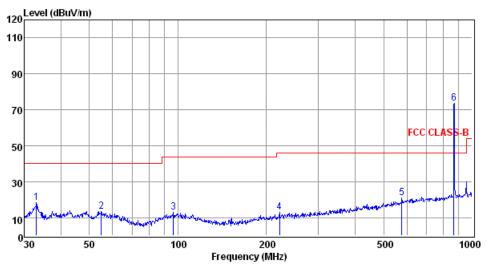
Above 1GHz

5.2.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.2.6. Results of Radiated Emissions (9kHz~30MHz)

The low frequency, which started from 9KHz to 30MHz, was pre-scan and the result was 20dB lower than the limit line per 15.31(o) was not reported.


Note: Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.

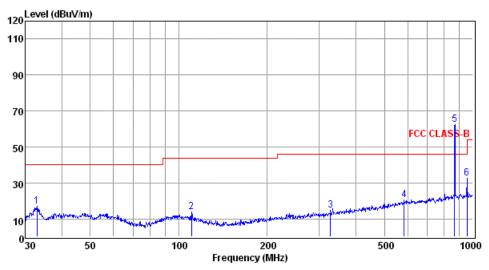
5.2.7. Results of Radiated Emissions (30MHz~1GHz)

Temperatu	re 22.6°C	Humidity	53.6%
Test Engine	eer Tom Liu	Pol	Horizontal
Test Mod	e Tx		

Note: Point 6 is the fundamental, Limit is 101.94 $dB\mu V/m$

pol: HORIZONTAL

	Freq	Reading	CabLos	Antfac	Measured	Limit	Over	Remark
	MHz	dBuV	dВ	dB/m	dBuV/m	dBuV/m	dВ	
1	32.98	5.75	0.37	12.31	18.43	40.00	-21.57	QP
2	54.83	0.01	0.46	13.03	13.50	40.00	-26.50	QP
3	96.44	-0.79	0.58	12.93	12.72	43.50	-30.78	QP
4	221.39	0.60	0.95	11.26	12.81	46.00	-33.19	QP
5	576.64	1.58	1.49	18.01	21.08	46.00	-24.92	QP
6	868.00	50.83	1.87	20.76	73.46	46.00	27.46	Peak


Note: 1. Measured= Reading + Antenna Factor + Cable Loss 2. The emission that ate 20db blow the offficial limit are not reported

	Fundamental Average Result							
Frequenc y (MHz)	Peak Level (dBμV/m)	AV Factor(dBμV/m) (see Section 5.4)	Average Level (dBμV/m)	Limit(dBµV/ m) (average)	Margin(d BμV/m)	Conclusi on		
868.00	73.46	0	73.46	81.94	-8.48	PASS		

Temperature	22.6℃	Humidity	53.6%
Test Engineer	Tom Liu	Pol	Vertical
Test Mode	Tx		

FCC ID: 2AJU3-RT505

Note: Point 5 is the fundamental, Limit is 101.94 $dB\mu V/m$

pol: VERTICAL

	Freq	Reading	CabLos	Antfac	Measured	Limit	Over	Remark
	MHz	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	
1	32.86	4.40	0.37	12.31	17.08	40.00	-22.92	QP
2	110.57	1.09	0.61	12.15	13.85	43.50	-29.65	QP
3	327.89	0.21	1.04	13.64	14.89	46.00	-31.11	QP
4	584.79	0.70	1.50	18.17	20.37	46.00	-25.63	QP
5	868.00	39.80	1.87	20.76	62.43	46.00	16.43	Peak
6	955.44	9.38	1.89	21.45	32.72	46.00	-13.28	QP

Note: 1.Measured= Reading + Antenna Factor + Cable Loss 2.The emission that ate 20db blow the offficial limit are not reported

	Fundamental Average Result							
Frequenc y (MHz)	Peak Level (dBμV/m)	AV Factor(dBμV/m) (see Section 5.4)	Average Level (dBµV/m)	Limit(dBµV/ m) (average)	Margin(d ΒμV/m)	Conclusi on		
868.00	62.43	0	62.43	81.94	-19.51	PASS		

5.2.8. Results of Radiated Emissions (1-5GHz)

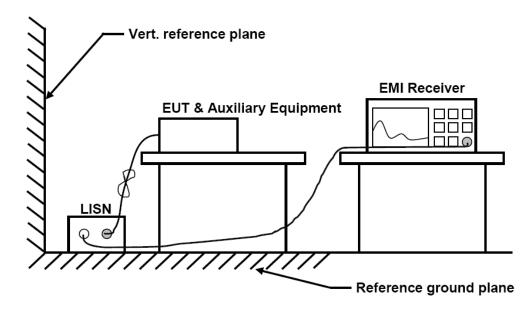
Temperature	22.6℃	Humidity	53.6%
Test Engineer	Tom Liu	Test Mode	Тх

Peak Value:							
Frequency (MHz)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dBuV/m)	Polarization			
1736.00	39.86	74	-34.14	Horizontal			
2604.00	41.59	74	-32.41	Horizontal			
3472.00	44.71	74	-29.29	Horizontal			
1736.00	41.61	74	-32.39	Vertical			
2604.00	43.97	74	-30.03	Vertical			
3472.00	45.55	74	-28.45	Vertical			

Average Value:									
Frequency (MHz)	Level (dBuV/m)	Duty cycle factor	Average value (dBuV/m)	Limit Line (dBuV/m)	Margin (dBuV/m)	Polarization			
1736.00	39.86	0	39.86	54	-14.14	Horizontal			
2604.00	41.59	0	41.59	54	-12.41	Horizontal			
3472.00	44.71	0	44.71	54	-9.29	Horizontal			
1736.00	41.61	0	41.61	54	-12.39	Vertical			
2604.00	43.97	0	43.97	54	-10.03	Vertical			
3472.00	45.55	0	45.55	54	-8.45	Vertical			

- 1. Measuring frequencies from 9k~10th harmonic (ex. 5GHz), No emission found between lowest internal used/generated frequency to 30MHz.
- 2. Radiated emissions measured in frequency range from 9k~10th harmonic (ex. 5GHz) were made with an instrument using Peak detector mode.
- 3. Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

5.3. AC Power line conducted emissions

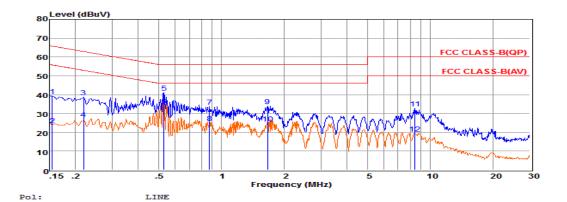

5.3.1 Standard Applicable

According to §15.207 (a): For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Frequency Range	Limits (dBμV)			
(MHz)	Quasi-peak	Average		
0.15 to 0.50	66 to 56	56 to 46		
0.50 to 5	56	46		
5 to 30	60	50		

^{*} Decreasing linearly with the logarithm of the frequency

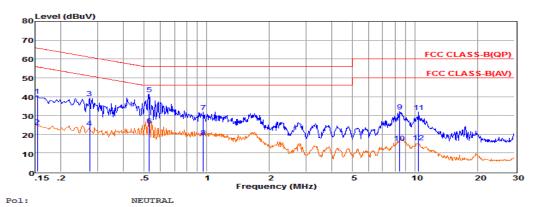
5.3.2 Block Diagram of Test Setup


5.3.3 Test Results

PASS.

The test data please refer to following page.

AC Conducted Emission of AC Mains @ AC 120V/60Hz (worst case)


Line

	Freq	Reading	LISNFac	CabLos	Aux2Fac	Measured	Limit	Over	Remark
	MHz	dBuV	dB	dB	dB	dBuV	dBuV	dB	
1	0.15	19.52	9.58	0.02	10.00	39.12	65.74	-26.62	QP
2	0.15	4.24	9.58	0.02	10.00	23.84	55.73	-31.89	Average
3	0.22	19.06	9.63	0.03	10.00	38.72	62.88	-24.16	QP
4	0.22	7.43	9.63	0.03	10.00	27.09	52.87	-25.78	Average
5	0.53	21.29	9.62	0.04	10.00	40.95	56.00	-15.05	QP
6	0.53	14.59	9.62	0.04	10.00	34.25	46.00	-11.75	Average
7	0.88	14.04	9.63	0.04	10.00	33.71	56.00	-22.29	QP
8	0.88	5.42	9.63	0.04	10.00	25.09	46.00	-20.91	Average
9	1.66	14.21	9.64	0.05	10.00	33.90	56.00	-22.10	QP
10	1.66	4.86	9.64	0.05	10.00	24.55	46.00	-21.45	Average
11	8.46	13.02	9.69	0.08	10.00	32.79	60.00	-27.21	QP
12	8.46	-0.54	9.69	0.08	10.00	19.23	50.00	-30.77	Average

Remarks: 1. Measured = Reading + LISNFac + Cable Loss + Aux2 Fac.
2. The emission levels that are 20dB below the official limit are not reported.

Neutral

	Freq	Reading	LISNFac	CabLos	Aux2Fac	Measured	Limit	Over	Remark
	MHz	dBuV	dB	dB	dB	dBuV	dBuV	dB	
1	0.15	20.75	9.69	0.02	10.00	40.46	65.78	-25.32	QP
2	0.15	4.47	9.69	0.02	10.00	24.18	55.77	-31.59	Average
3	0.27	19.77	9.60	0.03	10.00	39.40	60.98	-21.58	QP
4	0.27	3.84	9.60	0.03	10.00	23.47	50.98	-27.51	Average
5	0.53	21.56	9.62	0.04	10.00	41.22	56.00	-14.78	QP
6	0.53	5.16	9.62	0.04	10.00	24.82	46.00	-21.18	Average
7	0.96	12.12	9.63	0.05	10.00	31.80	56.00	-24.20	QP
8	0.96	-1.29	9.63	0.05	10.00	18.39	46.00	-27.61	Average
9	8.46	12.25	9.71	0.08	10.00	32.04	60.00	-27.96	QP
10	8.46	-4.40	9.71	0.08	10.00	15.39	50.00	-34.61	Average
11	10.40	12.04	9.72	0.08	10.00	31.84	60.00	-28.16	QP
12	10.40	-4.08	9.72	0.08	10.00	15.72	50.00	-34.28	Average

Remarks: 1. Measured = Reading + LISNFac + Cable Loss + Aux2 Fac.
2. The emission levels that are 20dB below the official limit are not reported.

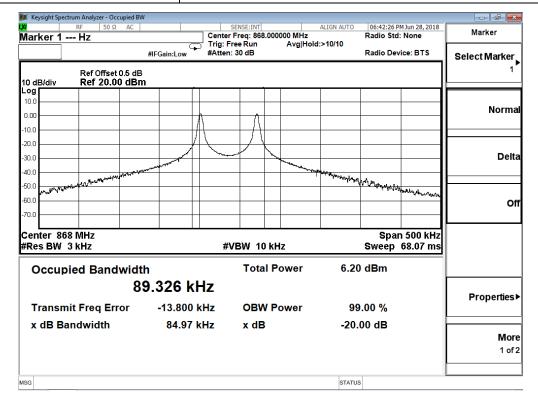
^{***}Note: Pre-scan all modes and recorded the worst case results in this report;

5.4. 20dB Bandwidth Emissions

FCC 15.231 (c)

5.4.1. Limit

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. Bandwidth is determined at the points 20 dB down from the modulated carrier.


5.4.2. Test Procedure

With the EUT's antenna attached, the EUT's 20dB Bandwidth power was received by the test antenna which was connected to the spectrum analyzer with the START and STOP frequencies set to the EUT's operation band.

5.4.3. Test Data

Temperature	22.5℃	Humidity	53.6%
Test Engineer	Tom Liu	Test Mode	Тх

Transmit Frequency	Limit	20dB Bandwidth	Result		
(MHz)	(kHz)	(kHz)			
868.00	2170.0	84.97	PASS		
Maximum allowed bandwidth:					
Maximum anowed bandwidth.	□0.5% of the centre operating frequency				
RBW:	⊠10kHz □100kHz □other kHz				
VBW:	⊠30kHz □300kHz □other kHz				

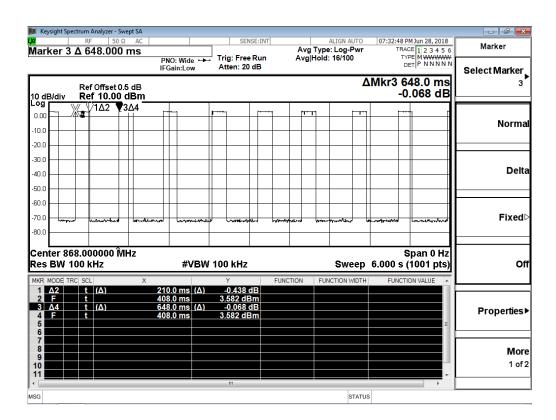
5.5. Duty cycle

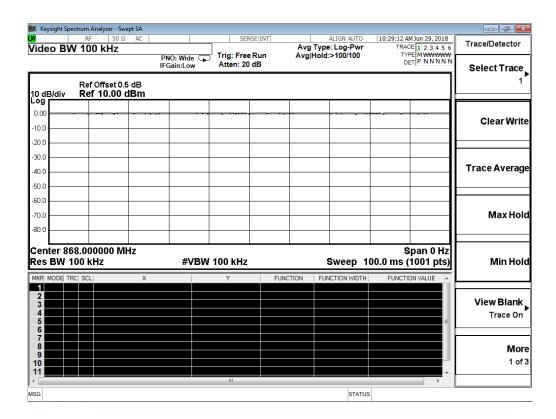
5.5.1. Limit

No dedicated limit specified in the Rules.

- 5.5.2. Test Procedure
- 5.5.2.1. Place the EUT on the table and set it in transmitting mode.
- 5.5.2.2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 5.5.2.3. Set centre frequency of spectrum analyzer=operating frequency.
- 5.5.2.4. Set the spectrum analyzer as RBW=100kHz, VBW=100KHz, Span=0Hz, Adjust Sweep=100ms to obtain the "worst-case" pulse on time
- 5.5.2.5. Repeat above procedures until all frequency measured was complete.

5.5.3. Test Data


Ton = 100.00(ms)


Tp = 100.00(ms)

The duty cycle=100.00/100.00= 100%

Average Correction Factory = 20*log(Ton/Tp) = 20*log(1) = 0dB

Note: The signal bandwidth was measured and less then 100kHz RBW so PDCF factor is not required to correct the fundamental signal peak result.

5.6. Antenna Requirement

FCC 15.203

5.6.1. Standard Applicable

According to § 15.203, An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

5.6.2. Result

Compliant.

The antenna used for transmitting is designed by manufacturer and the EUT has a special antenna connector. Please see EUT photo for details.

6. LIST OF MEASURING EQUIPMENTS

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.			
1	Power Meter	R&S	NRVS	100444	2018-06-16	2019-06-15			
2	Power Sensor	R&S	NRV-Z81	100458	2018-06-16	2019-06-15			
3	Power Sensor	R&S	NRV-Z32	10057	2018-06-16	2019-06-15			
	ESA-E SERIES								
4	SPECTRUM	Agilent	E4407B	MY41440754	2017-11-17	2018-11-16			
	ANALYZER								
5	MXA Signal Analyzer	Agilent	N9020A	MY49100040	2018-06-16	2019-06-15			
6	SPECTRUM	R&S	FSP	100503	2018-06-16	2019-06-15			
	ANALYZER		1 01	100000	2010 00 10	2010 00 10			
7	3m Semi Anechoic	SIDT	SAC-3M	03CH03-HY	2018-06-16	2019-06-15			
	Chamber	FRANKONIA	C/ (C CIVI	0001100111		2010 00 10			
8	Positioning Controller	MF	MF-7082	/	2018-06-16	2019-06-15			
9	EMI Test Software	AUDIX	E3	N/A	2018-06-16	2019-06-15			
10	EMI Test Receiver	R&S	ESR 7	101181	2018-06-16	2019-06-15			
11	AMPLIFIER	QuieTek	QTK-A2525G	CHM10809065	2017-11-17	2018-11-16			
12	Active Loop Antenna	SCHWARZBECK	FMZB 1519B	00005	2018-06-22	2019-06-21			
13	By-log Antenna	SCHWARZBECK	VULB9163	9163-470	2018-05-01	2019-04-30			
14	Horn Antenna	EMCO	3115	6741	2018-06-22	2019-06-21			
15	Broadband Horn	SCHWARZBECK	BBHA 9170	791	2017-09-21	2018-09-20			
13	Antenna	SCHWARZBECK	BBHA 9170						
16	Broadband	SCHWARZBECK	BBV 9719	9719-025	2017-09-21	2018-09-20			
10	Preamplifier	OOHWARZBEOR	DDV 3713	37 13 023	2017 03 21				
17	RF Cable-R03m	Jye Bao	RG142	CB021	2018-06-16	2019-06-15			
18	RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	2018-06-16	2019-06-15			
19	TEST RECEIVER	R&S	ESCI	101142	2018-06-16	2019-06-15			
20	RF Cable-CON	UTIFLEX	3102-26886-4	CB049	2018-06-16	2019-06-15			
21	10dB Attenuator	SCHWARZBECK	MTS-IMP136	261115-001-00	2019 06 16	2019-06-15			
21	TOUB Attenuator	SCHWARZBLCK	IVIT 3-IIVIF 130	32	2018-06-16	2019-00-13			
22	Artificial Mains	R&S	ENV216	101288	2018-06-16	2019-06-15			
23	RF Control Unit	Tonscend	JS0806-2	178060073	2017-10-28	2018-10-27			
24	BT/WIFI Test	Tonscend	JS1120-3	,	N/A	N/A			
24	Software	ronscend	JO1120-3	/	IN/A	IN/A			
Note: A	Note: All equipment is calibrated through GUANGZHOU LISAI CALIBRATION AND TEST CO.,LTD.								

-----THE END OF REPORT-----