Chapter					3.3		creen	21
1	Precautions		5		3.4		ool Bar(Quick Access)	22
	1.1	Overview	5		3.5		Abbreviation	23
	1.2	Limitation	5		3.6		tar Key	24
	1.3	Danger in Use	5		3.7		Hot Keys	25
	1.4	Laser	8	4	Me			26
2	Preparation		12	5	Job			27
	2.1	Storage	12		5.1		Creating a New Job	27
	2.2	Setup	12		5.2		diting a Job	28
	2.3	Battery	14	6	Me			29
	2.4	Tribrach	15		6.1		Measure	28
	2.5	Power On	16		6.2		Prism Search	30
	2.6	Registration Code	17		6.3		APR	31
	2.7	Calibrate APR+Prism Search	18		6.4		ocknTRack	32
3	Introduction		20		6.5		ile	33
	3.1	Instrument Components	20		6.6		Point Stake Out	34
	3.2	Keys	21		6.7		Graph	35
7	Station		36		8.9		ag Measure	58

	10.6	Export \& Copy Data	107	14	Inspe	ion \& Adjustment	137
11	COGO		113		14.1	Plate Vial	137
	11.1	Reduction	114		14.2	Circular Vial	138
	11.2	Traverse Adjustment	115		14.3	Tilt-Sensor	138
	11.3	Calc.XYZ	115		14.4	Reticle Unit	139
	11.4	Inverse	117		14.5	2C	140
	11.5	Area \& Girth	118		14.6	Horizontal Axis	141
	11.6	Included Angle	119		14.7	Vertical Index	142
	11.7	Distance Conversion	120		14.8	Vertcial 0 (I - Angle)	142
	11.8	Angle Conversion	120		14.9	Combined Adjustment	144
	11.9	Average	121		14.10	Constant K	144
	11.10	Equidistant Point	121		14.11	Sight of View\& Emitting	145
	11.11	Triangle Calculation	122			Axis	
	11.12	Calculator	123		14.12	Adjustment for APR+PS	146
12	Road		124	Appendix A. Menu Tree			147
	12.1	Road Design	124	Appendix B. Data Format			148
	12.2	Road Stake Out	131	Appendix C. Traverse Level			151
Appendix D. Comm Port			152	Appendix E. Specification			154

Copyright. South Surveying and Mapping Technology CO.,LTD all right reserved.

1. PRECAUTIONS
 1.1 OVERVIEW

Congratulations on the purchase of SOUTH NS30 Total Station!

The following safety instructions specify the responsibilities of the product owner and user.
The product owner must ensure that all users of the instrument know and follow these regulations or instructions.

1.2 LIMITATION

Environment	The environmental conditions of the instrument are similar to those that people can adapt to: it is not suitable for corrosive, flammable and explosive occasions.
Danger	When working in dangerous areas, or any areas close to electric devices, the user must ask for local safety authority in advance.

1.3 DANGER IN USE

Caution After the instrument is collided, re-assembled, stored for a long time and transported,
please check and calibrate the equipment.

Prevention:

Check the instrument regularly according to the instructions in the user manual, especially before and after the important measurement tasks.

```
Danger It is very dangerous to use prism pole near the electrical equipment such as
``` electrified cables or electrified railways.

\section*{Prevention:}

Keep a safe distance from power facilities. If you must work in this environment, please contact the safety department responsible for these electrical equipment and follow their instructions.

If the instrument is used to observe the sun directly, the eyes and optical system might be damaged because of the magnifying effect.

\section*{Prevention:}

Don't aim the telescope directly at the sun without a sun filter.
Warning In measurement, if users do not pay attention to the surrounding conditions, there will be a risk of accidents, such as obstacles, or traffic vehicles in the setting out process.

\section*{Prevention:}

The product owner must ensure that all the users are aware of possible hazards.
Warning If the survey site does not have enough safety facilities and signs, it may cause
dangerous situations.

\section*{Prevention:}

Always ensure the safety of the work site. Always check the safety and accident prevention regulations and traffic rules.
Caution If the accessories are not firmly connected to the instrument, it might be damaged. Prevention:

When installing the instrument, ensure that the accessories are correctly, properly and safely fixed in place.
Warning If the instrument is used with accessories, such as centering rod, the risk of lightning stroke will be increased.

\section*{Prevention:}

Do not survey in the field under thunderstorm days.
During the transportation of battery,the improper mechanical influence may cause fire.

\section*{Prevention:}

Discharge the battery before transportation.
During battery transportation, the product owner must comply with domestic and international regulations and guidelines.

This product belongs to Class 3R laser product, according to the standards
GB7247.1-2012: Safety of Laser Products.
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{Warning} & From the perspective of safety, Class 3R laser products are potentially dangerous. \\
\hline & Prevention: \\
\hline & 1) Avoid direct eye contact with the laser beam. \\
\hline & 2) Do not irradiate others with laser beam. \\
\hline \multirow[t]{4}{*}{Warning} & The potential safety is not only the direct viewing laser beam, but also the laser beam reflected by prism, window, mirror and metal surface. \\
\hline & Prevention: \\
\hline & 1) Do not aim at objects that reflect strongly, such as mirrors, or objects that emit unnecessary reflected light. \\
\hline & 2) When the laser is turned on and in the laser aiming or distance measurement mode, do not look at the laser beam near to the target. The prism can only be aimed through the telescope of the total station. \\
\hline \multirow[t]{2}{*}{Warning} & It is dangerous to use Class 3R laser equipment incorrectly. \\
\hline & Prevention: \\
\hline
\end{tabular}

The user should take effective safety precautions and control the possible danger within the distance (according to GB7247.1-2012).

\section*{Class 3R}

Class 3 laser products are used outdoors and on construction sites (surveying, alignment, leveling)
A. Only trained and certified personnel can install, commission and operate the laser equipment.
B. Set up laser warning signs within the operation area.
C. Prevent directly looking at the laser beam with eyes or using optical instruments to watch the laser beam.
D.In order to prevent the damage, the laser beam shall be blocked at the end of the working route. When the laser beam passes through the restricted area (in harmful distance*) or when someone is moving in this area, the laser must be stopped.
E.The path of the laser beam must be set above or below the line of sight of people.
F.When the laser product is not in use, it shall be properly kept and stored.
G.Prevent the laser beam reflected from the mirror, metal, window, etc.
*Harmful distance refers to the maximum distance from the starting point of the laser beam to the point where the laser beam weakens without harm.

A built-in rangefinder product equipped with a Class 3R laser has a harmful distance of 1000 m (3300ft). Beyond this distance, the laser intensity will be reduced to Class 1 (It won't be harmful directly to the eyes).
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Description } & \multicolumn{4}{|c|}{ Value } \\
\cline { 2 - 5 } & Auto Prism Following & Auto Search & Laser Plummet & EDM \\
\hline Wavelength & 785 nm & 905 nm & 635 nm & 635 nm \\
\hline Max. Radiant Power & 6 mW & 3.5 mW & 3.5 mW & 6.5 mW \\
\hline Divergence Angle & \(\pm 1.5^{\circ}\) & \(\pm 17^{\circ}\) & 1 mrad & 0.4 mrad \\
\hline Transmission Frequency & Continuous Laser & & Continuous Laser \\
\hline \begin{tabular}{l}
Half-peak Width of \\
Transmitting Pulses
\end{tabular} & & 10 ns & & \\
\hline \multicolumn{5}{|l|}{} \\
\hline
\end{tabular}

\section*{2. PREPARATION \\ 2.1 STORAGE}

\section*{Unpacking}

Lay down the case lightly with the cover upward. Unlock the case, and take out the instrument.

\section*{Storage of Instrument}

Cover the cap, put the instrument into the case with the vertical clamp screw and circular bubble to the upwards (lens towards tribrach).

\subsection*{2.2 SETUP}

\section*{Setting up the tripod}
A. Loosen the screws on the tripod legs, pull out to the required length and tighten the screws.
B. Make the center of tripod and the occupied point approximately on the same plumb line. C. Step on the tripod to make sure if it is well stationed on the ground.

\section*{Instrument setup (with Laser Plummet)}
A. Place and lock the instrument carefully on the tripod
B. Turn on the instrument and activate the laser plummet. Hold the two legs which are not fixed
on the ground and decide the position to fix according to the laser dot. When the laser dot is roughly on the station point, fix those 2 legs.
C. Leveling the instrument by circular vial.
a) Rotate the foot-screw \(A\) and \(B\) to move the bubble in the circular vial, in which case the bubble is located on a line perpendicular to a line running through the centers of the two leveling screw being adjusted.
b) Rotate the foot-screw C to move the bubble to the center of the circular vial.

D. Precisely leveling by plate vial
a) Rotate the instrument horizontally by loosening the horizontal clamp unit and place
the plate vial parallel to the line connecting rotating the foot-screw \(A\) and \(B\), and then bring the bubble to the center of the plate vial by rotating the foot-screw \(A\) and \(B\).
b) Rotate the instrument in \(90^{\circ}\) (100 gon) around its vertical axis and turn the remaining leveling screw or leveling \(C\) to center the bubble once more.
c) Repeat the steps and check whether the bubble is correctly centered in all directions.

If the laser dot doesn't stay at the center position, please slightly loosen the screw under the tripod head and move the instrument (don't rotate the instrument) until the laser dot is
on the station point. Tighten the screw and level the instrument again. Repeat these steps until

\section*{Electronic Bubble}

To ensure a precise angle measurement, you can also level the instrument by E-bubble.
[Tilt-X]: Tilt compensation in X-direction [Till-XY]: Tilt compensation in XY-direction. [Tilt-Off]: Turn off the tilt sensor.
the instrument is precisely centered and leveled.

\subsection*{2.3 BATTERY}

\section*{Initial Use/Charging}

The battery should be charged only by the official charger NC-10. The battery must be charged before the first time operation. Indicator: Red - Charging;

Green - Completed;
Green Flashes - Error

Input: 70V-240V 50/60Hz;
Output: 7.4V-1.2A)
The allowable charging temperature range is \(0{ }^{\circ} \mathrm{C}\) to \(+40{ }^{\circ} \mathrm{C}\). For optimum charging, we recommend charging the battery at \(+10{ }^{\circ} \mathrm{C}\) to \(+20{ }^{\circ} \mathrm{C}\).

It is normal for the battery to become hot during charging. If the temperature is too high, the
charger will not work.
For new batteries or batteries that have not been used for a long time (over three months), it will be more effective to have a complete charge and discharge before the work.

\section*{Remained Capacity}

When the remaining voltage is less than one grid, please stop your operation and charge it as soon as possible.

Working time depends on the environmental conditions, such as ambient temperature, charging times. For safety reasons, please charge in advance or prepare some backup batteries.

The remaining capacity is related to the current measurement mode. In angle measurement mode, the capacity is sufficient, which cannot ensure that the battery can also be used in distance measurement mode.

\subsection*{2.4 TRIBRACH}

\section*{Dismounting}

Turn the locking knob in \(180^{\circ}\) counter-clockwise to disengage anchor jaws, and take off the instrument.

\section*{Mounting}

Insert three anchor jaws into holes of tribrach and

line up the directing stub. Turn the locking knob about \(180^{\circ}\) clockwise to mounting the instrument.

\subsection*{2.5 POWER ON}

\section*{Power On}

Press and hold the power key in 2 seconds until the screen lights up.

\section*{Power Off}

Press and hold the power key in 1 seconds until the shut down menu pops up. Please keep the normal shut down steps to avoid the data lost.

\subsection*{2.6 REGISTRATION CODE}

\subsection*{2.6.1 Check the Status in TServer.}

Description

\section*{Access}

\section*{Registration}

\section*{Status}

Before working, the user needs to check whether the device connection in the TServer App is correct and whether the registration time has expired or not.
\begin{tabular}{|c|c|c|c|}
\hline 2:55 \% & \(\bigcirc \bigcirc\) & 2:56 \% & \(\bigcirc\) - \(\uparrow\) \\
\hline Tserver & (i) & \multicolumn{2}{|l|}{< Setting} \\
\hline Model & South TS Series > & Measure Beep & \\
\hline Connect Type & Serial Port > & Auto On & \\
\hline Device List & ttyS1:38400 > & Register & 2022-12-02 > \\
\hline & & Version & > \\
\hline Setting & Disconnect & About & > \\
\hline
\end{tabular}
- If the instrument is blocked, please reconnect the TServer.
- Do not change the settings without authorization.
- If the angle value is not displayed, or the value does not change when the instrument is rotated, the registration code might be expired.
- If the laser pointer and plummet can not be activated, the problem might be caused by register code, too.

\subsection*{2.6.2 Registration Code}

Description Registration code for Survey Star onboard.
Access - Auto: Connect 4G/WIFI network, select [TServer] for auto registration.
- Manual: [TServer] \(\backslash\) [Setting] \(\backslash\) [Register] \(\backslash\) Input codes \(\backslash\) [Register]

\section*{Registration}

Code
\begin{tabular}{|c|c|}
\hline 4:15 \% 1 & * 0 - 0 \\
\hline < Register & \\
\hline Register Info: & Copy \\
\hline Register ID: TT43CAOD2166932 & \\
\hline Register PID: 3836966102493391 & \\
\hline Expired Date: 2022-12-02 & \\
\hline (1) Input Code by Manual, orReceived by Files & \\
\hline Input Codes in 36 Digits & \\
\hline Register & \\
\hline
\end{tabular}

\subsection*{2.7 CALIBRATION FOR APR + Prism Search}

\section*{Description}
instrument basic system should be considered.
In order to solve this problem, the instrument will calculate the absolute position accuracy by the distance accuracy between 2 points, which will largely simplify the measure steps.

\section*{Access}

Calibration
Step-by-Step

\begin{tabular}{|l|l|}
\hline Steps & Description \\
\hline 1. & Set and aim a prism at 35-50m. \\
\hline 2. & \begin{tabular}{l}
Press [Enter Calibration Mode], waiting for the parameters in \\
horizontal and vertical direction.
\end{tabular} \\
\hline 3. & \begin{tabular}{l}
Type the parameters in [Hz Parameter] and [Vz Parameter], the \\
value is valid in 5 digits.
\end{tabular} \\
\hline 4. & Press [Input Parameter] in 3 times to ensure the data is written. \\
\hline 5. & Restart the program to activate the functions \\
\hline
\end{tabular}

\section*{3. INTRODUCTION}
3.1 INSTRUMENT COMPONENTS

\subsection*{3.2 KEYS}
\begin{tabular}{|c|l|c|l|l|}
\hline Key & Description & Key & Description \\
\hline \begin{tabular}{c}
\(1-9 /\). \\
\(/-\)
\end{tabular} & \begin{tabular}{l}
Numeric keys, which can be \\
defined by user.
\end{tabular} & Fn & \begin{tabular}{l}
Function key, which can be \\
defined by user.
\end{tabular} \\
\hline BS & Backspace & \(\square\) & Sub-menu \\
\hline
\end{tabular}

\subsection*{3.3 SCREEN}

The screen of NS30 is separate into four parts:
a) Status bar (e.g. time, setting, download, location, WIFI connection, battery.)
b) Quick access
c) Measure mode (e.g. mode, target, tilt sensor)
d) Current job
e) Main menu

\subsection*{3.4 TOOL BAR (QUICK ACCESS)}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Icons} & Description \\
\hline \multicolumn{3}{|c|}{(} & Quick access to star key. \\
\hline \multicolumn{3}{|c|}{(3)} & Quick access to data manage. \\
\hline S & 9|c| & T & Quick access to measure mode (Single/N Times/Continuous/ Tracking) \\
\hline
\end{tabular}

\subsection*{3.5 ABBREVIATION}
\begin{tabular}{|c|l|c|l|l|}
\hline Icon & Description & Icon & Description \\
\hline V/VA & Vertical angle & STN & Station \\
\hline V\% & Vertical angle (\%) & BS & Backsight \\
\hline HL/HR & Horizontal left/ right & R.Ht & Reflector height \\
\hline SD & Slope distance & Ins. \(\mathrm{Ht} \dagger\) & Instrument height \\
\hline
\end{tabular}

\subsection*{3.6 STAR KEY}

Description
Access
Star keys provide a quick access to the settings and functions of total station
1) Select [Survey Star]: [\(\star\)]
2) Slide the left edge of the screen to the right
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{11}{*}{Star Keys} & Key & Description \\
\hline & 1.Laser Pointer & Open the laser pointer. \\
\hline & 2.Reticle Backlight & Open the reticle (crosshair) backlight in telescope. \\
\hline & 3.Laser Plummet & Open the laser plummet. \\
\hline & 4.Temp.\&Pressure & Set temperature, pressure, PPM. \(20{ }^{\circ} \mathrm{C} / 1013 \mathrm{hPa}\) in default. \\
\hline & 5.Prism Constant & Set prism constant, -30.0mm in default. \\
\hline & 6.Face 2 & Turn and aim the target in the second face. \\
\hline & 7.Prism Search & Activate the Prism Search. \\
\hline & 8.APR & Activate the Auto Prism Recognition in sight of view \\
\hline & 9.LocknTRack & Activate the LocknTRack. \\
\hline & 10.Demo Mode & Enter the demo mode to simulate the data. \\
\hline \multicolumn{3}{|l|}{3.7 HOT KEYS} \\
\hline Description & \multicolumn{2}{|l|}{Hot keys provide a shortcut to user-defined functions or applications assigned to the keys.} \\
\hline Access & \multicolumn{2}{|l|}{Select [Survey Star]: [Setting] \[Function Key] \Select the keys} \\
\hline
\end{tabular}

Hot Keys
\begin{tabular}{|l|l|}
\hline Key & Description \\
\hline Measure Button & Measure / all (measure + save) \\
\hline Fn & \begin{tabular}{l}
Undefined / laser pointer / reticle / laser plummet / \\
soft-keypad
\end{tabular} \\
\hline [0]-[9], [.], [-] & \begin{tabular}{l}
Undefined / laser pointer / reticle / laser plummet / \\
known point / free station / point / point stake out.
\end{tabular} \\
\hline
\end{tabular}

\section*{4. MAIN MENU}

\section*{Main Menu}

\section*{Description}
\begin{tabular}{|l|l|}
\hline Main Menu & Description \\
\hline Measure & To simply survey, select and stake out a point with graphics. \\
\hline Station & To setup the station before works. \\
\hline Collect & To collect a point, as well as select and start an application. \\
\hline Stake Out & To stake out a point. \\
\hline Job & To manage job. \\
\hline COGO & To start a coordinated geometry application. \\
\hline Program & To design and stake out a road. \\
\hline Setting & To make settings regarding the software and the display unit \\
\hline
\end{tabular}

\section*{5. JOB \\ 5.1 CREATING A NEW JOB}

\begin{tabular}{|l|l|}
\hline Keys & Descriptions \\
\hline Job & A unique name for a new job. \\
\hline Time & Display only. Time and date. \\
\hline Operator & Editable field. Operator's name. \\
\hline Note & Editable field. The software version is filled. \\
\hline
\end{tabular}

\subsection*{5.2 EDITING A JOB}

\section*{Access Select Main Menu:[Job] \(\backslash\) Select a job \(\backslash\) [Open], [Delete] or [View]}

Edit a new job

\begin{tabular}{|l|l|}
\hline Keys & Descriptions \\
\hline [Open] & Open the selected job. \\
\hline [Delete] & Delete the selected job. \\
\hline [View Info] & \begin{tabular}{l}
Check the job properties. Includes job name, storage location, \\
time, operator and note.
\end{tabular} \\
\hline
\end{tabular}

\section*{6. MEASURE \\ 6.1 MEASURE}
\begin{tabular}{|c|c|c|}
\hline Description & \multicolumn{2}{|l|}{[Measure] is used for point measurement.} \\
\hline Access & \multicolumn{2}{|l|}{Select Main Menu: [Measure]\ \{Meas.\} Page \(\backslash\) [Meas.]\[Save]} \\
\hline \multirow[t]{8}{*}{Measure Page} & & \(\bullet\)-¢ \\
\hline & \(<\) (\(A\) O Measure & S [回 [9] \\
\hline & Meas. File Poins.o Graph & \\
\hline & V : \(\quad 050^{\circ} 00^{\prime} 19^{\prime \prime} \quad \mathrm{HR}: \quad 315^{\circ} 25511^{\circ}\) & 0 Set/H Set \\
\hline & N: \(\quad 1.158 \mathrm{~m}\) SD: \(\quad 2.123 \mathrm{~m}\) & In H/R. Ht \\
\hline & \%. & STN setup \\
\hline & E: \(\quad \begin{array}{lll}\text {-1.142 m } & \text { HD: } \\ \text { 1.627 m }\end{array}\) & Meas. \\
\hline & z: \(\quad 1.365 \mathrm{~m}\) vo: \(\quad 1.365 \mathrm{~m}\) & Save \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Key & Description \\
\hline O Set/ H Set & Set the current horizontal angle to 0 or a certain value. \\
\hline In Ht/ R. Ht & Set the instrument height and reflector height. \\
\hline STN Setup & Setup the station by two known points. \\
\hline Meas. & Measure \\
\hline Save & Save the data with point name and code. \\
\hline
\end{tabular}

\subsection*{6.2 PRISM SEARCH}
\begin{tabular}{ll}
\hline Description & When Prism Search is activated, the station \\
starts to rotate 360 degrees around the \\
vertical axis in anti-clockwise direction. \\
Then, the automatic prism search in the \\
vertical direction \(\left(\pm 18^{\circ}\right)\) is performed. \\
The transmitter (a) emits a laser beam in \\
vertical direction, and if the laser swatch is \\
detected by the receiver (b), the rotation will \\
stop immediately. Otherwise, it will stop after \\
a full-360 degree rotation. \\
Access & \begin{tabular}{l}
1) Press [\(\star\)] or slide from the left, activate [6. Prism Search] \\
2) Back to the measure page, press [Meas] to start searching. \\
3) When Prism Search is activated, the icon ©] shows on the status bar.
\end{tabular}
\end{tabular}

\subsection*{6.3 APR - AUTO PRISM RECOGNITION}
\begin{tabular}{ll}
\hline Description & \begin{tabular}{l}
APR (Auto Prism Recognition) is used to \\
recognize and measure the prism \\
automatically in the sight of view 1 \\
degrees). \\
The automatic aiming window will scan the \\
prism from the center of the current telescope \\
position, in anti-clockwise direction.
\end{tabular} \\
If the prism is founded, the crosshair will \\
automatically positioned to the prism center. \\
Access & \begin{tabular}{l}
1) Press [\(\star\)] or slide from the left, activate the [7. APR] \\
2) Back to the measure page, press [Meas] to start recognition. \\
3) When APR is activated, the icon[©] shows on the status bar.
\end{tabular}
\end{tabular}

\subsection*{6.4 FOLLOW THE MOVING PRISM - LOCKNTRACK}
\begin{tabular}{|c|c|}
\hline Description & \begin{tabular}{l}
LocknTRack enables an automatic prism recognition and lock to a moving prism. \\
Eliminating the need for standing around and waiting when data collect or stake out.
\end{tabular} \\
\hline & \begin{tabular}{l}
The first measurement should be stable fixed on the ground, otherwise, the prism might not be successfully locked. \\
The lock may be lost if the movement of prism is too fast or invisible in the sight.
\end{tabular} \\
\hline Access & \begin{tabular}{l}
1) Press [\(\star\)] or slide from the left, activate the [9. LocknTRack] \\
2) Back to the measure page, press [Meas] to activate LocknTRack mode. \\
3) If the prism is successfully locked, the icon [\(\mathcal{4}]\)] shows on the status bar. \\
4) If it is unlocked, the icon [\(¢\)] shows. Press [Meas] again to re-lock the prism.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{6.5 FILE}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Description & \multicolumn{6}{|l|}{Select the point from the other files.} \\
\hline Access & \multicolumn{6}{|l|}{Select Main Menu: [Measure] \(\backslash\{\) File\} Page} \\
\hline \multirow[t]{8}{*}{File Page} & \multicolumn{4}{|l|}{4.55 + 11} & & \\
\hline & \(<\ldots\) & & & asure & s & \\
\hline & \multicolumn{6}{|l|}{Meas. FFile Points.o Graph} \\
\hline & Known Pr & New & Toat 12 & 1st & \multicolumn{2}{|l|}{PtN: 1} \\
\hline & defaut & & \multirow[t]{2}{*}{1} & \multirow[b]{2}{*}{Last} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Code: Occ}} \\
\hline & \({ }^{1100-7 e s t}\) & Current & & & & \\
\hline & 221208 & & 3 & Next & N: 1000.000 & \\
\hline & & Recive & , & st Point & E: 1000.000
Z: 10.000 & m \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Keys & Description \\
\hline New & Create a new job. \\
\hline Delete & Delete the selected job. \\
\hline Current & \begin{tabular}{l}
Set the selected job as \\
current job.
\end{tabular} \\
\hline Send & Send data via MSMT. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Keys & Description \\
\hline 1st & First point. \\
\hline Last & Last point. \\
\hline Next & Next point. \\
\hline Last Pt & Last point in the job. \\
\hline Receive & Receive data via MSMT. \\
\hline
\end{tabular}

\subsection*{6.6 POINT STAKE-OUT}

\begin{tabular}{|l|l|}
\hline Display & Description \\
\hline E-Compass & Direction of the target \\
\hline dHA & HA difference \\
\hline Front/Back & Move to the front/back \\
\hline Left/Right & Move to the left/right \\
\hline Fill/Dig & Move to the up/down \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Keys & Description \\
\hline+ & Add point \\
\hline Last & Last point \\
\hline Next & Next point \\
\hline Meas. & Measure the prism \\
\hline Storage & Save the point \\
\hline
\end{tabular}

\subsection*{6.7 GRAPH}
\begin{tabular}{|c|c|}
\hline Description & Graph is an interactive display feature embedded in Survey Star. It offers a graphical display of the survey elements with base map, which allows a better understanding of the measurement. Normally it will be loaded automatically. \\
\hline Access & \begin{tabular}{l}
Select Main Menu: [Measure] \(\backslash\{G r a p h\} ~ p a g e . ~ . ~\) \\
Use two fingers on the screen to zoom in or zoom out.
\end{tabular} \\
\hline \multirow[t]{4}{*}{Graph Page} & \\
\hline & Keys \(\quad\) Description \\
\hline & Change the layers screen. It is possible to make layers from the CAD file visible or invisible in map. \\
\hline & \(\Theta \quad\) Click to locate the current station to the center of screen. \\
\hline
\end{tabular}

\section*{7. STATION \\ 7.1 KNOWN PT}
\begin{tabular}{|c|c|}
\hline Description & The coordinates of station point are required for setup. The instrument can be oriented by a known point, or an unknown point with assumed azimuth. \\
\hline Access & 1) Select Main Menu: [Station] \(\backslash\) [Known Pt]. Press [+] to select a station. \\
\hline Step-by-step & \begin{tabular}{l}
2) Select orientation method: by known backsight point or by assumed azimuth. \\
3) Input instrument height and reflector height. Aim at the target, press [Setting].
\end{tabular} \\
\hline \multirow[t]{5}{*}{Known Point} & \\
\hline & \\
\hline & \begin{tabular}{|l|l}
Keys & Description \\
\hline
\end{tabular} \\
\hline & BS Pt \(\quad\) Select a known backsight point. \\
\hline & Azimuth \(\quad\) Select an assumed azimuth for orientation. \\
\hline
\end{tabular}

\subsection*{7.2 MULTIPLE ORIENT}

\section*{Description}

Access
Step-by-step

The instrument can be oriented by more than one backsight points.
Note: A maximum of 10 points can be measured and used for the calculation. This program is similar to Resection (Chapter 7.5), the difference is whether the coordinates of station is known or not. In multiple orientation, it's known.
1) Select Main Menu:[Station] \KKnown Pt]. Add a station point.
2) Click [Multiple Orient] \(\backslash[\) Setting] to enter the point list for multiple orient.
3) Press [Meas.1st Pt] \(\backslash[+] \backslash[\) Angle] or [Ang.\& Dist] to measure the backsight.
4) Press [Done] to save it in point list. Repeat the steps for the others.
5) Press [COGO] \(\backslash\) [Set] to see the calculated station.

\section*{Multiple Orient}

\begin{tabular}{|l|l|}
\hline Keys & Description \\
\hline Meas.1 Pt & Measure the known points one by one (max.10 points). \\
\hline COGO & Calculate the coordinate of station after measurements. \\
\hline Angle & Measure angles only. \\
\hline Ang. \& Dist. & Measure angles and distances. \\
\hline Done & Confirm the measurement. \\
\hline
\end{tabular}

\begin{tabular}{|l|l|}
\hline Keys & Description \\
\hline \(\mathrm{N} / \mathrm{E} / Z\) & Coordinates of station. \\
\hline dHz & Difference of horizontal angle. \\
\hline Height & Height of station. \\
\hline
\end{tabular}

Next Step
Height Transfer (Refers to Chapter 7.3) if necessary.

\subsection*{7.3 HEIGHT TRANSFER}
\begin{tabular}{|c|c|c|}
\hline Description & \multicolumn{2}{|l|}{Calculate the station height by measuring a point with known height. Only the height of station will be updated.} \\
\hline Access & \multicolumn{2}{|l|}{1) Select Main Menu:[Station] [STN.Ht].} \\
\hline Step-by-step & \multicolumn{2}{|l|}{2) Press [+], input or select the height of known points, Ins.Ht, R.Ht.} \\
\hline \multirow[t]{6}{*}{Height Transfer} & & \\
\hline & \begin{tabular}{l}
Height: 1.378 \\
Ins. \(\mathrm{Ht}: \quad 1.500\) \\
VD: \\
Calcu. Ht: \\
STN Ht:
\end{tabular} & \\
\hline & Display & Description \\
\hline & VD & Vertical distance between the station and known point. \\
\hline & Calcu.H & Calculated height of station. \\
\hline & STN Ht & Updated height of station. \\
\hline
\end{tabular}

\subsection*{7.4 BACKSIGHT CHECK}

\subsection*{7.5 RESECTION}

\begin{tabular}{|l|l|}
\hline COGO & Calculate the coordinate of station after measurements. \\
\hline Angle & Measure angles only. \\
\hline Ang. \& Dist. & Measure angles and distances. \\
\hline Done & Confirm the measurement. \\
\hline
\end{tabular}

\begin{tabular}{|l|l|}
\hline Display & Description \\
\hline\(N / E / Z\) & Calculated coordinates. \\
\hline\(d N / d E / d Z\) & The difference between given and calculated coordinates. \\
\hline
\end{tabular}

Note: If the angles between the known points are too small or too large, the accuracy will be effected. The station height is calculated by the distance. If only angles are measured, the height will be determined by the angle of known points.

\subsection*{7.6 POINT TO LINE}

\begin{tabular}{|l|l|}
\hline Display & Description \\
\hline A-HD & HD from station to \(1^{\text {st }}\) point \\
\hline B-HD & HD from station to \(2^{\text {nd }}\) point \\
\hline dHD & Difference of HD for A-B \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Display & Description \\
\hline\(d V D\) & Difference of VD for A-B \\
\hline\(d S D\) & Difference of SD for A-B \\
\hline N/E/Z & Coordinates of station \\
\hline
\end{tabular}

\subsection*{7.7 FREE STATION}
\begin{tabular}{|c|c|}
\hline Description & \begin{tabular}{l}
In Free Station, the coordinate system will be settled by it's local coordinate system. \\
Normally, the workflow is: \\
Station setup - Backsight oriented - Data collect. \\
With Free Station, it is: \\
Station setup - Data collect - Reduction with backsight. \\
After reduction, the local coordinates will convert to the real coordinates.
\end{tabular} \\
\hline Access & \begin{tabular}{l}
1) Select Main Menu: [Station] \(\backslash\) [Free Station]. \\
2) Press \([+] \backslash[\) Setting \(]\).
\end{tabular} \\
\hline
\end{tabular}

\section*{Free Station}

\begin{tabular}{|l|l|}
\hline Display & Description \\
\hline STN & Select or type a point as station \\
\hline HR & Horizontal angle for current direction. It will be settled as 0. \\
\hline Ins. \(\mathrm{Ht} \dagger\) & Instrument height \\
\hline R.Ht & Reflector height \\
\hline \begin{tabular}{l}
[Backsight \\
Checking \(]\)
\end{tabular} & \begin{tabular}{l}
Define the backsight direction. \\
It can be set before or after the station setup.
\end{tabular} \\
\hline
\end{tabular}

Next Step
Data Collect. Refers to Chapter 8.1.
Reduction for Free Station. Refers to Chapter 11.1.1

\subsection*{7.8 STATION SETUP WITHOUT CONTROL POINT}

Description
This function is used to setup the station when you don't have any control points.

All those local coordinates, which are measured under two different stations (A \& B), can be converted to correct coordinates if there is a public point \(C\) exists.

\section*{Workflow:}

Set station at A - Data collect (including a public point C) - Move station at B -
Data collect (including a public point C) - Reduction

Access \(\quad\) Select Main Menu:[Station] \(\backslash[\) STN Setup without CP] \(\backslash[+] \backslash[\) Setting]

\begin{tabular}{|l|l|}
\hline Display & Description \\
\hline STN & Select or type a point as station \\
\hline HR & Horizontal angle for current direction. It will be settled as 0. \\
\hline Ins. Ht & Instrument height \\
\hline \(\mathrm{R} . \mathrm{Ht}\) & Reflector height \\
\hline
\end{tabular}

Next Step
Data Collect. Refers to Chapter 8.1
Reduction for Station Setup without CP. Refers to Chapter 11.1.2

\section*{8. COLLECT \\ 8.1 POINT}

\begin{tabular}{|l|l|}
\hline Display & Description \\
\hline PtN & Point name. \\
\hline Code & \begin{tabular}{l}
Code. Press [+] \(\backslash\) Qcode [+] to select the code. \\
The position and links is marked for Southmap, it will not display \\
on the map of total station.
\end{tabular} \\
\hline R.H \(\dagger\) & Reflector height. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline HR/HL & Horizontal left or right \\
\hline V & Vertical angle \\
\hline N/E/Z & North, east and zenith coordinates \\
\hline HD/VD/SD & Horizontal / Vertical / Slope Distance \\
\hline [Meas. \(]\) & Measure the target. \\
\hline [Save] & Save the data. \\
\hline [All] & Measure and save the coordinates in once. \\
\hline
\end{tabular}

\subsection*{8.2 DISTANCE OFFSET}

\section*{Description}

The distance offset calculates from measurement or coordinates with longitudinal, parallel offset and height differences of the target point relative to the known point.

Note: All directions are correspondent
 to the visual side of operator.

\section*{Access}
1) Select Main Menu: [Collect] \(\backslash\) [Dist.Offset].
2) Input lateral, longitudinal and altitude offset.
3) Press [Dist] or [All] to measure and calculate the offset coordinates.

\section*{Distance Offset}

\begin{tabular}{|l|l|}
\hline Display & Description \\
\hline Pt N & Input the ID of offset point. \\
\hline Left/Right & Input lateral deviation, from offset point to prism. \\
\hline Front/Back & Input longitudinal deviation, from offset point to prism. \\
\hline Up/Down & Input altitude deviation, from offset point to prism. \\
\hline [Dist] & Measure the target. \\
\hline [Save] & Save the data. \\
\hline [All] & Measure and save the coordinates of offset point. \\
\hline
\end{tabular}

\subsection*{8.3 PLANE OFFSET}

\begin{tabular}{|l|l|}
\hline Unmeas. & Display only. When the measurement is not completed. \\
\hline Done & Display only. When the measurement is completed. \\
\hline
\end{tabular}

\subsection*{8.4 COLUMN OFFSET}

\section*{Description}

\section*{Access}

Step-by-step

Column offset is widely used in measuring a hidden point that is not directly visible, for example the center of column as picture shown.

Measure the left and right edge (P2\&P3) of column. Then measure the center
 point P1 in surface.
1) Select Main Menu: [Collect] [Column Offset].
2) Press [Angle] \[Angle] \[Meas.] to measure the edges and surface center.
3) Press [Data] \(\backslash[\) Save] to check and save the coordinates of PO.

Column Offset

\begin{tabular}{|l|l|}
\hline Keys & Description \\
\hline [Angle] & Measure the angle of left and right edge. \\
\hline [Meas.] & Measure the distance of surface center. \\
\hline Unmeas. & Display only. When the measurement is not completed. \\
\hline Done & Display only. When the measurement is completed. \\
\hline [Save] & Save the coordinates. \\
\hline
\end{tabular}

\subsection*{8.5 REM}
\begin{tabular}{ll}
Description & \begin{tabular}{l}
When the target is hard to reach or hang in the air, for example, the electric \\
cables, REM (Remote Height) can help you measure the point.
\end{tabular} \\
\cline { 2 - 2 } & 1) Select Main Menu: [Collect \(] \backslash[\) REM \(]\).
\end{tabular}

\section*{Step-by-step}
2) Set a prism vertically under the target.
3) Input reflector height, press [Ang.\&Dist] to measure the prism.
4) Rotate the telescope to the target.

\section*{REM}

\begin{tabular}{|l|l|}
\hline Display & Description \\
\hline V & Vertical angle of target \\
\hline dVD & Vertical distance of prism or the target \\
\hline VA & Vertical angle of prism \\
\hline HD & Horizontal distance of prism \\
\hline [Ang\&Dist] & Measuring the prism which is vertically under the target \\
\hline [Reset BL] & \begin{tabular}{l}
When R.HT is unknown, aim at the pinpoint, press [Reset BL] to set \\
the vertical distance to 0. Then rotate the telescope to target.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{8.6 MLM}

\begin{tabular}{|l|l|}
\hline [Lock] & Lock (A-B, A-C, A-D, etc.) or unlock (A-B, B-C, C-D) mode. \\
\hline [Ang \& Dist] & Measure the angle, distance and coordinate. \\
\hline [Save] & Save the measured point in data list. \\
\hline
\end{tabular}

\subsection*{8.7 LINE \& EXTEND POINT}

\section*{Description}

Access
Step-by-step

It calculate the coordinates of an unknown point from a line defined by two points (P1, P2) with an inputted distance (calculated from P2).
1) Select Main Menu: [Collect] \[Line \& Extend Point].
2) Enter the reflector height, press [Meas] to measure P1 and P2 as a baseline.
3) Press [Dist.Set] to enter the extend distance. Press [Save].

Line \& Extend Point

\begin{tabular}{|l|l|}
\hline Keys & Description \\
\hline\([\) Meas. \(]\) & Measure points (P1, P2). \\
\hline\([\) View \(]\) & Check the coordinates for P1 and P2. \\
\hline\([\) Dist Set \(]\) & Set the extend distance which is based on P2. \\
\hline\([+]\) & Extend direction from P1-P2. \\
\hline\([-]\) & Extend direction from P2-P1. \\
\hline\([\) Save \(]\) & Calculate and save the coordinates of extend point. \\
\hline
\end{tabular}

\subsection*{8.8 LINE \& EXTEND ANGLE}

Description

Access
Step-by-step

It calculate the coordinates of an unknown point from a line defined by two points (P1, P2) with an azimuth (calculated from P2).
1) Select Main Menu: [Collect] \(\backslash\) [Line \& Extend Angle].
2) Press [Meas] to measure P1 \& P2 as a base line.
3) Press [Meas] \(\backslash[\) Save] to measure and save the coordinates of extend point.

Line \& Extend
Angle

\begin{tabular}{|l|l|}
\hline Keys & Description \\
\hline [Meas.] & Measure points (P1, P2 and extend azimuth). \\
\hline [View] & Check the coordinates for P1 and P2. \\
\hline [Save] & Calculate and save the coordinates of extend point. \\
\hline
\end{tabular}

\subsection*{8.9 SAG MEASURE}

\section*{Description}

The sag measure is able to ensure the sufficient safety distance from the hanging cable to the ground, or to the object to be crossed.
The sag control and sag measure are calculated from measuring the horizontal distance of lower cable, the span or the observation of sag point.

Diagram
1. Sag Begin Method.

Set the station under one side of the tower (A).

2. Sag In Method

Set the station between the location of two towers.

3. Sag Out Method

Set the station at the outside of two towers.

4. Sag Interval Method

\subsection*{8.9.1 Sag Measure}

Access
Step-by-step
1) Select Main Menu: [Collect] \(\backslash\) [Sag Measure]
2) Select the method.
3) Enter or press [Meas] to measure the data for each item.
4) Press [Calc.] to calculate the observation angle of sag point (\(\theta\)).
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{6}{*}{Sag Begin} & Item & \multicolumn{2}{|l|}{Description} \\
\hline & Sag Angle & \(\theta\) & Observation angle of sag (unknown) \\
\hline & Span & L & Distance of span \\
\hline & Sag & f & Sag value in the middle of span. \\
\hline & Nominal Ht of Station & & = Nominal height - length of insulation string \\
\hline & Value of Pulley (Clamp) & \(\beta\) & Observation angle of pulley/clamp. \\
\hline Sag In/Out & Item & \multicolumn{2}{|l|}{Description} \\
\hline & HD of lower level & L' & Distance between the station to A. \\
\hline & Nominal Ht of Station & & = Nominal height - length of insulation string \\
\hline & Value of Pulley (Clamp) & \(\beta\) & Observation angle of pulley/clamp. \\
\hline & Span & L & Distance of span \\
\hline & Sag & f & Sag value in the middle of span. \\
\hline \multirow[t]{6}{*}{Sag Interval} & Item & \multicolumn{2}{|l|}{Description} \\
\hline & Span L1 & L1 & Distance of span. \\
\hline & Span L2 & L2 & Distance of span. \\
\hline & Sag & f & Sag value in the middle of span. \\
\hline & Angle a of lower level & a & the observation angle to the nearer pulley. \\
\hline & Angle \(\beta\) of lower level & \(\beta\) & the observation angle to the further pulley. \\
\hline & & 62 & \\
\hline
\end{tabular}

\subsection*{8.9.2 Sag Control}

\section*{Access}
1) Select Main Menu: [Collect] \(\backslash\) [Sag Measure] \(\backslash\) [Sag Control].
2) Select the method. Enter the instrument height.
3) Press [Meas] to measure. Press [Calc.] to calculate the sag value \(f\).

\subsection*{8.10 TRAVERSE}

\subsection*{8.10.1 Overview}

\section*{Description}

Traverse is used to establish a control point system when you have to work further than the first orientation or when the target is not visible.

It needs at least two known points to open or end the traverse.
Types of traverse 1. Open Traverse. Apply for Roads, Railways, etc

: Known Points
- Traverse Points
- : Sideshot Points
2. Closed Traverse, Apply for Buildings, Gardens, etc

P1: Backsight Point (Known)
P2: \(1^{\text {st }}\) Station (Known)
P3-P5: Traverse Point
P8-10: Sideshot Point

\section*{Access} Measure Sequence

Select Main Menu: [Collect]\[Traverse]
\(\mathbf{B}^{1} \mathbf{B}^{2} \mathbf{F}^{2} \mathbf{F}^{1} \quad\) Backsight point is measured in face 1 , face 2 order; Foresight point is measured in reverse order.
\(\mathbf{B}^{\mathbf{1}} \mathbf{B}^{\mathbf{2}} \mathbf{F}^{\mathbf{1}} \mathbf{F}^{\mathbf{2}} \quad\) Backsight point is measured in face 1 , face 2 order; Foresight point is measured in same order.
\(\mathbf{B}^{\mathbf{1}} \mathbf{F}^{\mathbf{1}} \mathbf{B}^{2} \mathbf{F}^{2} \quad\) Backsight and foresight points are measured in face 1, then measured backsight and foresight again in face 2.
\(\mathbf{B}^{\mathbf{1}} \mathbf{F}^{\mathbf{1}} \mathbf{F}^{\mathbf{2}} \mathbf{B}^{\mathbf{2}} \quad\) Backsight and foresight points are measured in face 1 , then reverse the order, foresight point is measured firstly in face 2.

\subsection*{8.10.2 Create a New Traverse}

\section*{Access}
```

Press [+]\Type the name\[OK]

```

Traverse

\begin{tabular}{|l|l|}
\hline Display & Description \\
\hline Template Name & Name of the traverse. \\
\hline Type & \begin{tabular}{l}
Traverse type, closed traverse or open traverse. \\
The software will recognize it automatically.
\end{tabular} \\
\hline Level & Select the measure level. (Refers to Appendix.C) \\
\hline Angle Direction & The direction is in the left or right side of traverse. \\
\hline
\end{tabular}

\subsection*{8.10.3 Edit an Existed Traverse}

Access Press the traverse name \(\backslash\) [Measure], [Edit] or [Delete] \(\backslash[O K]\)
Traverse

\begin{tabular}{|l|l|}
\hline Display & Description \\
\hline Measure & Continue the measurement of traverse points. \\
\hline Traverse Adjustment & Adjust the results of traverse. \\
\hline Export Survey Table & Export the data. \\
\hline Edit & Edit the name of traverse. \\
\hline Delete & Delete the data in this traverse. \\
\hline
\end{tabular}

\subsection*{8.10.4 Traverse Step in Step}

\begin{tabular}{|l|l|}
\hline Step & Description \\
\hline 1 & Setup total station at the first station(P2) which is known. \\
\hline 2 & \begin{tabular}{l}
{\([\) New STN] to select or type the coordinates of first station (P2). } \\
[OK] to access the measure page for \(\mathrm{l}^{\text {st }}\) round.
\end{tabular} \\
\hline 3 & {\([\) Target \(]\) to select the ID of backsight (P1) and foresight points (P3). } \\
\hline 4 & \begin{tabular}{l}
{\([\) Meas] to measure and record. } \\
(Measure sequence: \(\left.\mathrm{B}^{1} \mathrm{~B}^{2} \mathrm{~F}^{2} \mathrm{~F}^{1} / \mathrm{B}^{1} \mathrm{~B}^{2} \mathrm{~F}^{1} \mathrm{~F}^{2} / \mathrm{B}^{1} \mathrm{~F}^{1} \mathrm{~B}^{2} \mathrm{~F}^{2} / \mathrm{B}^{1} \mathrm{~F}^{1} \mathrm{~F}^{2} \mathrm{~B}^{2}\right)\)
\end{tabular} \\
\hline & \begin{tabular}{l}
\(\{\mathbf{A n g}\} \backslash\{\) Dist \(\}\) to check the data of traverse. \\
Horizontal angle, calculated azimuth from the foresight to the \\
backsight, distance measured by facel and face 2 are displayed.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline 5 & {\([+],[-]\) to add or delete the measure rounds. } \\
\hline 6 & Move to the foresight point (P3) as the next station. \\
\hline 7 & \begin{tabular}{l}
{\([\mathbf{N e w ~ S T N] ~ t o ~ t y p e ~ t h e ~ n a m e ~ o f ~ t r a v e r s e ~ p o i n t . ~}\)} \\
{\([\mathbf{O K}]\) to access the measure page. }
\end{tabular} \\
\hline 8 & {\([\) Target] to select the ID of backsight (P2) and foresight points (P4). } \\
\hline 9 & \begin{tabular}{l}
[Meas] to measure and record. \\
Move to the foresight point (P4) as the next station .
\end{tabular} \\
\hline 10 & \begin{tabular}{l}
Repeat the steps to set the station at the other points (P4 ,P5). \\
Then traverse is closed.
\end{tabular} \\
\hline 11 & [Done] to save the data and back to the job list. \\
\hline
\end{tabular}

\begin{tabular}{|l|l|l|}
\hline Page & Display & Description \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{9}{*}{Angle} & Vertical Angle & Horizontal angle of current position \\
\hline & Horizontal Angle & Vertical angle of current position \\
\hline & Average Angle & Average angle among several rounds \\
\hline & 1 round trip & Measure rounds. \\
\hline & Location & Left: Face 1; Right: Face 2 \\
\hline & Target & Target ID for backsight and foresight. \\
\hline & H Dist Reading & Horizontal angle of backsight \& foresight (F1/F2) \\
\hline & One Way Angle & Angle from foresight to backsight \\
\hline & Round Trip Angle & Average angle in this round \\
\hline \multirow[t]{5}{*}{Dist} & Edge Name & Edge from backsight - station, station - foresight \\
\hline & N Times Round & \(1{ }^{\text {st }}, 2^{\text {nd }}\), or \(3^{\text {rd }} \ldots\)... rounds \\
\hline & Left & Distance in Face 1 (Left) \\
\hline & Right & Distance in Face 2 (Right) \\
\hline & Average & Average distance between F1 and F2 \\
\hline
\end{tabular}

\subsection*{8.10.5 Traverse Adjustment}

A traverse adjustment can be performed on coordinates of traverse points, angles and distances.

\section*{Access}

Traverse
Adjustment

Press the traverse name\[Traverse Adjustment]

\begin{tabular}{|l|l|}
\hline Display & Description \\
\hline Pt N & Point ID \\
\hline Observation Angle & Original observed angle \\
\hline Correction Value & Correction value of horizontal angle \\
\hline Correct Angle & Corrected angle after adjustment \\
\hline Coordinate Azimuth & Azimuth of each points \\
\hline Distance & Distance between two points \\
\hline Incremental Value & Incremental \(X\) and \(Y\) for traverse points \\
\hline Corrected Increment & Corrected \(X\) and \(Y\) for traverse points \\
\hline Last Coordinate & Coordinates for each points \\
\hline
\end{tabular}

\subsection*{8.10.6 Export Survey Table}

\subsection*{8.11 CABLE HEIGHT}
Description \begin{tabular}{l}
This function is used to measure the height (LH) from a target (L) hanging in the \\
air to the lower reference plane (G). (like the overhang of channel) \\
Access \\
Step-by-step \\
1) Select Main Menu: [Collect] \(\backslash\) [Cable Height] \\
2) Press [Setting] to enter the instrument height and reflector height. \\
3) Press [Meas] \(\backslash\) [Save] to measure prism A \& B, define a reference plane. \\
4) Press [Next], Aim at the target L, press [Meas.]. \\
5) Aim at the base point G on the ground, press [Meas.].
\end{tabular}

\begin{tabular}{|l|l|}
\hline Item & Description \\
\hline HD(A) & Horizontal distance to prism \(A\). \\
\hline HD(B) & Horizontal distance to prism \(B\). \\
\hline VD & Vertical distance from prism \(A\) to target \(L\). \\
\hline HD & Horizontal distance of target L. \\
\hline Off & Offset between prism A and target \(L\) \\
\hline LH & Height from target \(L\) to the ground \(G\). \\
\hline
\end{tabular}

\subsection*{8.12 POINT PROJECTION}
Description It is used to calculate the coordinates of a point projected onto a line.

\begin{tabular}{|l|l|}
\hline Item & Description \\
\hline Start Pt & Start point, defining a line. \\
\hline Nb 1/Eb 1/Zb1 & Coordinates of the start point. \\
\hline End Pt & End point, defining a line. \\
\hline Nb2/Eb2/Zb2 & Coordinates of the end point. \\
\hline N/E/Z & Coordinates of the measured point. \\
\hline SD/VD/HD & Slope, vertical, horizontal distance of the measured point. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Result & Description \\
\hline Np/Ep/Zp & Coordinates of the projected point. \\
\hline L & Length from start point to projected point. \\
\hline Off & Horizontal offset from measured point to projected point. \\
\hline VD & Vertical distance from measured point to projected point. \\
\hline
\end{tabular}

\section*{9. STAKE OUT \\ 9.1 OVERVIEW}
\begin{tabular}{|c|c|c|}
\hline Description & \multicolumn{2}{|l|}{Stakeout application is used to place marks or find locations in the field.} \\
\hline Program & Diagram & \\
\hline Point & & \begin{tabular}{l}
F/B: Forward / Backward \\
L/R: Left / Right \\
F/C: Fill / Cut \\
S.O Pt: Selected, measured or typed by manual, which is known.
\end{tabular} \\
\hline CAD & & \begin{tabular}{l}
F/B: Forward / Backward \\
L/R: Left / Right \\
F/C: Fill / Cut \\
S.O Pt: Selected from CAD files
\end{tabular} \\
\hline Angle \& Distance & & \begin{tabular}{l}
a: Horizontal angle \\
HD: Horizontal distance \\
Z: Height difference\Vertical distance
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Direction Line & & \begin{tabular}{l}
a: Horizontal angle\Azimuth \\
HD: Horizontal distance \\
Z: Height difference\Vertical distance \\
P1:Known.
\end{tabular} \\
\hline Line & & \begin{tabular}{l}
F/B: Forward / Backward \\
L/R: Left / Right \\
U/D: Up / Down \\
Start Pt \& End Pt: Known
\end{tabular} \\
\hline Reference Line & & \begin{tabular}{l}
BL: Baseline, defined by two known points. \\
RL: Reference line, rotated (a) and moved by latitudinal (Off') and longitudinal (Off²) offset. \\
Off \({ }^{3}\) : Left or right, backward or forward from the start point' of reference line. \\
Off \({ }^{4}\) : Cut or fill from the start point'.
\end{tabular} \\
\hline Arc 5.0 & Point & \begin{tabular}{l}
d1: Arc distance \\
d2: Radius distance (+) \\
P3: The point to be staked.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Arc & & \begin{tabular}{l}
d1: Arc length \\
d2: Radius distance (+) \\
P3/P4...: The points to be staked.
\end{tabular} \\
\hline String & & \begin{tabular}{l}
d3: String length \\
d2: Radius distance (-) \\
P3/P4...: The points to be staked.
\end{tabular} \\
\hline \begin{tabular}{l}
Central \\
Angle
\end{tabular} & & \begin{tabular}{l}
a: Central angle \\
d2: Radius distance (0) \\
P3/P4/P5...: The points to be staked.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{9.2 POINT}

\begin{tabular}{|l|l|}
\hline L/R & Left or right \\
\hline F/C & Fill or cut, move the target up or down. \\
\hline P1 & Display the HA/N/E/Z/HD/VD/SD of measured target. \\
\hline P2 & \begin{tabular}{l}
Slide the screen to check the information of points to be \\
staked. Click the triangle mark to set the display items.
\end{tabular} \\
\hline Keys & Description \\
\hline [Last] & Last point to be staked. \\
\hline [Next] & Next point to be staked. \\
\hline [Meas.] & Measure the target. \\
\hline [Storage] & Save the point into storage \\
\hline
\end{tabular}

\section*{9．3 CAD STAKE OUT}

\section*{Description}

\section*{Access}

The points to be staked can be uploaded and selected from DXF／DWG files．
1）Select Main Menu：［Stake Out］\(\backslash\)［CAD Stake Out］．
2）Press［图］\(]\)［Done］to upload the map in DXF／DWG files．

\section*{CAD Stake Out}

\begin{tabular}{|c|c|}
\hline \(\pm\) ¢ & \(\bigcirc *\)－\({ }^{11746}\) \\
\hline ＜CAD Layer Setting & Background Color Setting \\
\hline －©＊ 0 & \\
\hline －if＊ASSIST & \\
\hline －\＆＊BASICGRID & \\
\hline －©－Community & \\
\hline －\＆COMPONENT & \\
\hline －© DGX & \\
\hline －© DLDW & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Icons & Description \\
\hline 圂 & Explore the features into sections． \\
\hline 图 & Select the features by cursor． \\
\hline 图 & \begin{tabular}{l}
Upload a map or layer in DXF／DWG files； \\
Select the layer for display；Select the color of background．
\end{tabular} \\
\hline 圆 & Display the full map． \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline （0） & Locate the station． \\
\hline 盽 & \begin{tabular}{l}
Check all the lines． \\
Select the line to be staked． \\
Including 1）Line stake out，refers to Chapter 9．6 Line． \\
2）Start point stakeout，refers to Chapter 9.2 Point． \\
3）End point stakeout，refers to Chapter 9．2 Point． \\
4）start point extraction，and \\
5）end point extraction，to extract and save points．
\end{tabular} \\
\hline 园 & Last \\
\hline 回 & Next \\
\hline \(\square\) & \begin{tabular}{l}
Select the feature，click it to stake out． \\
Including 1）Line stake out，refers to Chapter 9．6 Line． \\
2）Start point stakeout，refers to Chapter 9．2 Point． \\
3）End point stakeout，refers to Chapter 9．2 Point． \\
4）Pile stake out， \\
5）Interval stakeout， \\
6）Offset stakeout．
\end{tabular} \\
\hline
\end{tabular}

\subsection*{9.3.1 Pile Stakeout}

\section*{Description Staking out the piles on the selected features.}

Access 1) Select the feature, press [\(\mathbb{\square}]\) [Pile Stake Out].
2) Press [团] [國] to select the last or next pile.
3) Press [\(\mathbb{P}\)] again to stake out the selected pile.

\section*{Pile Stake Out}

\begin{tabular}{|l|l|}
\hline Icons & Description \\
\hline Reverse & Reverse the stake out direction. \\
\hline Exit & Exit the program. \\
\hline
\end{tabular}

\subsection*{9.3.2 Interval Stakeout}

\section*{Access}
1) Select the feature, press \([\mathbb{\square}]\) [Interval Stake Out].
2) Enter the interval mileage, press [Modify]. It will calculate the location of points by the inputted interval, on the selected feature.
3) Press [团 [[\(]\) to select the last or next point.
4) Press \([\mathbb{\square}]\) again to stake out the selected point.

Pile Stake Out

\begin{tabular}{|l|l|}
\hline Icons & Description \\
\hline \begin{tabular}{l}
Interval \\
Mileage
\end{tabular} & Enter the intervals to be staked. \\
\hline Reverse & Reverse the stake out direction. \\
\hline Exit & Exit the program. \\
\hline
\end{tabular}

\subsection*{9.3.3 Offset stakeout}

Description

\section*{Access}

Staking out the points by the inputted offsets.
1) Select the feature, press [\(\mathbb{\square}]\) [Offset Stake Out].
2) Enter the offsets, press [Modify]. It will move the selected feature horizontally for staking out.
3) Press [包 [包] to select the last or next point.
4) Press [\(\mathbb{\square}\)] again to stake out the selected point.

\section*{Pile Stake Out}

\begin{tabular}{|l|l|}
\hline Icons & Description \\
\hline Offset & \begin{tabular}{l}
Enter the offsets to be staked. \\
Positive: Move right, Negative: Move left.
\end{tabular} \\
\hline Reverse & Reverse the stake out direction. \\
\hline
\end{tabular}

\subsection*{9.4 ANGLE \& DISTANCE}

\subsection*{9.5 DIRECTION LINE}
\begin{tabular}{|c|c|}
\hline Description & Stake-out the points by angle (Azimuth), horizontal distance(HD) or height (VD), based on a known point, along the direction of azimuth. \\
\hline Diagram & \\
\hline Access & \begin{tabular}{l}
1)Select Main Menu: [Stake Out] \(\backslash\) [Direction Line]. \\
2) Enter the point ID, azimuth, HD and VD, press [Next]. \\
3)Stake out the points, press [Meas] \(\backslash\) [Storage].
\end{tabular} \\
\hline Direction Line & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Items & Descriptions \\
\hline Pt N & Point ID of the known point. \\
\hline Azimuth & Horizontal angle from stake out point to the known point. \\
\hline HD & Horizontal distance from stake out point to the known point. \\
\hline VD & Vertical difference from stake out point to the known point. \\
\hline
\end{tabular}

\subsection*{9.6 LINE}
\begin{tabular}{|c|c|}
\hline Description & The points are staked by a base line (defined by two known points) and the offset is calculated from the start point, move along the direction of baseline. \\
\hline \multirow[t]{4}{*}{Diagram} & F/B: Forward / Backward \\
\hline & End \(\mathbf{Z}^{\text {S.O Pt }}\) L/R: Left / Right \\
\hline & U/D: Up / Down \\
\hline & Start - Start Pt \& End Pt: Known points \\
\hline Access & 1)Select Main Menu: [Stake Out] \({ }_{\text {[Line] }}\) \\
\hline \multirow[t]{2}{*}{Step-by-step} & 2) Enter two points and offsets, press [Next] \\
\hline & 3)Stake out the points, press [Meas]\[Storage]. \\
\hline
\end{tabular}

Line Stake Out

\begin{tabular}{|l|l|}
\hline Items & Descriptions \\
\hline Start/End Pt & Define a line by two known points. \\
\hline Left/Right & Longitudinal offset (Left or right). \\
\hline Front/Back & Latitudinal offset (front or back). \\
\hline Up/Down & Altitude offset (Up or down). \\
\hline
\end{tabular}

\subsection*{9.7 REFERENCE LINE}

Reference Line application can be used to stake out or measure points relative to a line.

The points are staked from a reference line (shifted from a baseline), and the
related offset.
The reference line can be offset either longitudinally or latitudinally to the baseline (defined by two known points), or be rotated around the first base point as required.
Diagram

BL: Baseline, defined by two known points.
RL: Reference line, rotated (a) and moved by latitudinal (\(\mathbf{O f f}^{1}\)) and longitudinal (\(\mathbf{O f f}^{2}\)) offset. Off \({ }^{3}\) : Left or right, backward or forward from the start point' of reference line.
Off \({ }^{4}\) : Cut or fill from the start point'.

\section*{Access}
Step-by-step

Step 1. Define a baseline from two known points.
Press [+] to select, create, input or measure points.
Step 2. Define a reference line.
Type the offsets or angle to shift the baseline. Press [Next].
Step 3. Stake out points
Enter the offsets from the start point of reference line, press [Next] to stake out the points.
Press [Meas] \(\backslash\) [Storage] to measure and save.

\begin{tabular}{|l|l|}
\hline Items & Descriptions \\
\hline Start/End Pt & Define a baseline by two known points. \\
\hline Left/Right & Longitudinal offset (Left or right) to define a reference line. \\
\hline Front/Back & Latitudinal offset (front or back) to define a reference line. \\
\hline Angle & \begin{tabular}{l}
This term must always be considered to mean as Bearing. \\
The bearing angle from the baseline to define a reference line.
\end{tabular} \\
\hline Up/Down & Vertical offset to define a reference line. \\
\hline
\end{tabular}

\begin{tabular}{|l|l|}
\hline Items & Descriptions \\
\hline Left/Right & \begin{tabular}{l}
Longitudinal offset (Left or right) from the start point of \\
reference line.
\end{tabular} \\
\hline Front/Back & \begin{tabular}{l}
Latitudinal offset (front or back) from the start point of \\
reference line.
\end{tabular} \\
\hline Up/Down & Vertical offset from the start point of reference line. \\
\hline
\end{tabular}

\subsection*{9.8 ARC}
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{Description} & Calculate and stake out the points related to an arc. \\
\hline & \begin{tabular}{l}
Elements that must be known to define the arc are: \\
- coordinate of central point \\
- coordinate of a start point
\end{tabular} \\
\hline & \begin{tabular}{l}
OR \\
- coordinates of start point and end point \\
- radius
\end{tabular} \\
\hline & \begin{tabular}{l}
OR \\
- coordinates of three points on the arc.
\end{tabular} \\
\hline Access & 1)Select Main Menu: [Stake Out] \(\backslash\) [Arc S.O] \\
\hline Step-by-step & \begin{tabular}{l}
2)Define an arc by: Arc center \& Start point; Two points \& Radius; Three points. Press [Next]. \\
3) Enter the offsets on the arc. Press [Next]. \\
4)Stake out the points, press [Meas] \(\backslash\) [Storage].
\end{tabular} \\
\hline
\end{tabular}

Step 1.
Define an arc

\section*{Step 2:}

Stake out an arc

\begin{tabular}{|l|l|l|}
\hline Methods & Elements Must Known & Diagram \\
\hline Point & \begin{tabular}{l}
Arc \(\mathbf{D}\) (d 1): Distance along the arc in \\
anti-clockwise direction. \\
Radius \(\mathbf{D}(\mathrm{d} 2):\) Radius distance in (\(\mathrm{d} 2<0\)), on \\
\((\mathrm{d} 2=0)\) or outside (\(\mathrm{d} 2>0\)) the arc.
\end{tabular} \\
\hline Arc & \begin{tabular}{l}
Closed Differ: \\
- Equally: Divide the closing error equally to \\
each parts. \\
- End Pt: Add the closing error to the end point. \\
\(\bullet\) Start Pt: Add the closing error to the start \\
point.
\end{tabular}
\end{tabular}
\begin{tabular}{l}
\hline \\
\hline
\end{tabular} \begin{tabular}{l}
Arc L (d1): Divide arc into several parts by the \\
arc length. \\
Radius D (d2): Radius distance in (\(\mathrm{d} 2<0\)), on \\
\((\mathrm{d} 2=0\)) or outside (\(\mathrm{d} 2>0\)) the arc.
\end{tabular}, \begin{tabular}{l}
Closed Differ: Equally, End Point or Start Point. \\
String L (d 3): Divide arc into several parts by the \\
string length. \\
Radius D (d2): Radius distance in (\(\mathrm{d} 2<0\)), on \\
(d2=0) or outside (\(\mathrm{d} 2>0\)) the arc.
\end{tabular}

\section*{10. DATA MANAGEMENT 10.1 POINT MANAGEMENT}

Overview

\begin{tabular}{|l|l|}
\hline Field & Descriptions \\
\hline Item & Point ID. Click the triangle to reorder the points. \\
\hline Type & \begin{tabular}{l}
Display all or several types of points. \\
e.g. Station point, measured point, inputted point, imported \\
point, stake out point, known point, calculated point.
\end{tabular} \\
\hline Code & Code of points. \\
\hline N/E/Z & North, East and Zenith. \\
\hline Time & Recording time. \\
\hline
\end{tabular}

\subsection*{10.1.1 Creating a New Point}

\begin{tabular}{|l|l|}
\hline Field & Descriptions \\
\hline PtN & Name of the new point. \\
\hline Code & \begin{tabular}{l}
Code of the new point. \\
It can be selected from code list or typed by manual.
\end{tabular} \\
\hline N/E/Z & North, east and zenith. \\
\hline
\end{tabular}

\subsection*{10.1.2 Editing a Point}
\begin{tabular}{ll}
\hline Description & Edit the point ID or coordinates. \\
\cline { 2 - 3 } Access & Select \([\) [\(\Theta] \backslash\{\) Data \(\}\) page \(\backslash\) Select a point \(\backslash[\) Edit \(] \backslash[\) OK] \\
\hline
\end{tabular}

\begin{tabular}{|l|l|}
\hline Type & Descriptions \\
\hline Stn.Pt & Not editable. \\
\hline Meas.Pt & Available to edit Pt N only. \\
\hline Inputted Pt & Available to edit Pt N, code and coordinates. \\
\hline Imp. Point & Available to edit Pt N, code and coordinates. \\
\hline S.O Point & Not editable. \\
\hline Known Pt & Available to edit. \\
\hline Calc.Pt & Available to edit Pt N, code and coordinates. \\
\hline
\end{tabular}

\subsection*{10.1.3 Deleting Points}
- Single: Select a point \(\backslash\) [Delete]
- Multiple: Press [Multi-Delete] \(\backslash\) Tick the points \(\backslash[D e l e t e]\)
- All: Press [\(\vdots\)] \(\backslash\) [Clear]

Delete Points

\subsection*{10.1.4 View Points}

Access
Select [[
Including point name, type, code, R.ht, HA, VA, N, E, Z, HD, dVD and SD.

\subsection*{10.1.5 Searching a Point}

\subsection*{10.2 CODE MANAGEMENT}

\begin{tabular}{|c|c|c|}
\hline \multirow[t]{7}{*}{\begin{tabular}{l}
Code \\
Management
\end{tabular}} & Operate & Access \\
\hline & Create & [+]\Type the information\[OK] \\
\hline & Edit & Select a code\[Edit] \[OK] \\
\hline & Delete & \begin{tabular}{l}
Select a code\[Delete]. \\
[Multi-Del.] \(\backslash\) Tick the codes \(\backslash\) [Delete]. Press [: !] \[Clear].
\end{tabular} \\
\hline & Search & Press [Q] \(\backslash\) Type the keyword of codes \(\\) [Enter] \\
\hline & Import & Press [\(\vdots\)] \(\backslash\) [Import Code]. Refers to Chapter 10.5.2. \\
\hline & Export & Press [\(\vdots\)] \({ }^{\text {[Export Code]. Refers to Chapter 10.6.2. }}\) \\
\hline
\end{tabular}

\subsection*{10.3 QCODE MANAGEMENT}

Quick codes must be created in Southmap or CAD.

\subsection*{10.4 MAP MANAGEMENT}

\subsection*{10.5 IMPORT DATA}
\begin{tabular}{|c|c|c|}
\hline Description & \multicolumn{2}{|l|}{The data to import must be stored in the internal memory.} \\
\hline Formats & Type & File Extension \\
\hline & Coordinate & *.txt, *.dat \\
\hline & Code & *..xls \\
\hline & Map & *.map, *.mbtiles, *.kml, *.shp, *.dwg, *.tif, *.tiff, *.dxf \\
\hline & CAD Stake Out & *.dwg, *.dxf \\
\hline & Road & *.rd, *.ip, *.xlsx, *.rod, *.pm, *.jd \\
\hline
\end{tabular}

\subsection*{10.5.1 Importing Coordinates}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{Description} & Point Name,code, N, E, Z \\
\hline & Example: imp5,building,-0.286,29.757, 1.424 \\
\hline & imp2,tree,29.757,-0.286, 1.424 \\
\hline Access & 1) Press [9] in tool bar \(\backslash\) [Data\} Page \(\backslash\) [\(:\)] \(]\) [Import]. \\
\hline \multirow[t]{3}{*}{Step-by-step} & 2) Select type (*.txt or *.dat) and file from the internal memory. \\
\hline & 3) Select and drag the item (Pt N, Code, N, E, Z) to change the imported order. \\
\hline & 4) Press [OK] \\
\hline
\end{tabular}

\subsection*{10.5.2 Importing Codes}

\subsection*{10.5.3 Importing Maps}

\begin{tabular}{|l|l|}
\hline\({ }^{*} . \mathrm{kmz}\) & Map related files \\
\hline\({ }^{*}\). .hp & Shape files \\
\hline\({ }^{*}\). tif, \({ }^{*}\). tiff & Tagged image files \\
\hline\({ }^{*} . \mathrm{dxf}\) & Drawing exchange files \\
\hline\({ }^{*} . \mathrm{dwg}\) & Drawing files \\
\hline
\end{tabular}

\subsection*{10.5.4 Importing Data for CAD Stake Out}

Description
Access

Easy-to-Stake out the base map from a CAD file. Refers to Chapter 9.3.
1) Select main menu: [Stake Out] \(\backslash[C A D\) Stake Out].
2) Press \([\leqslant \mathbf{I} \backslash[\) [\(]\) to select a CAD file to the job.
3) Choose type (DWG/DXF) and file from the internal memory. Press [Done].

\begin{tabular}{|l|l|}
\hline Keys & Descriptions \\
\hline Type & All files with extension *.dwg and *.dxf can be selected. \\
\hline ESC & Escape to the root directory. \\
\hline Back & Back to the last page. \\
\hline
\end{tabular}
10.6 EXPORT \& COPY DATA

Description
The data can be exported to the internal memory.
Copy it to the data storage device (Micro SD card, USB OTG) or transfer it by Bluetooth.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{6}{*}{Overview} & \multicolumn{2}{|l|}{Type} & File Extension \\
\hline & \multirow[t]{3}{*}{Points} & Coordinate & *.txt, *.dxf, *.dat, *.csv, *.txt (FC-6/GTS-7) \\
\hline & & Raw Data & *.txt, *.txt (FC-6/GTS-7) \\
\hline & & Side \& Angle Data & *.txt \\
\hline & \multicolumn{2}{|l|}{Codes} & *.xls \\
\hline & \multicolumn{2}{|l|}{Traverse} & *.xls \\
\hline
\end{tabular}

Next Step
Please check the data format in Appendix B.```

