Chapter						
1	Precau	utions	5			
	1.1	Overview	5			
	1.2	Limitation	5			
	1.3	Danger in Use	5			
	1.4	Laser	8	4		
2	Prepar	ation	12	5		
	2.1	Storage	12			
	2.2	Setup	12			
	2.3	Battery	14	6		
	2.4	Tribrach	15			
	2.5	Power On	16			
	2.6	Registration Code	17			
	2.7	Calibrate APR+Prism Search	18			
3	Introdu	uction	20			
	3.1	Instrument Components	20			
	3.2	Keys	21			
7	Station		36			
			1			

	3.3	Screen	21
	3.4	Tool Bar(Quick Access)	22
	3.5	Abbreviation	23
	3.6	Star Key	24
	3.7	Hot Keys	25
4	Menu		26
5	Job		27
	5.1	Creating a New Job	27
	5.2	Editing a Job	28
6	Measu	re	29
	6.1	Measure	28
	6.2	Prism Search	30
	6.3	APR	31
	6.4	LocknTRack	32
	6.5	File	33
	6.6	Point Stake Out	34
	6.7	Graph	35
	8.9	Sag Measure	58

	7.1	Known Point	36
	7.2 Multiple Orient		37
	7.3	Height Transfer	39
	7.4	Backsight Check	40
	7.5	Resection	41
	7.6	Point to Line	43
	7.7	Free Station	44
	7.8	Station Setup without CP	46
8	Colle	ct	48
	8.1	Point	48
	8.2	Distance Offset	49
	8.3	Plane Offset	51
	8.3 8.4	Plane Offset Column Offset	51 52
	8.3 8.4 8.5	Plane Offset Column Offset REM	51 52 53
	8.3 8.4 8.5 8.6	Plane Offset Column Offset REM MLM	51 52 53 55
	8.3 8.4 8.5 8.6 8.7	Plane Offset Column Offset REM MLM Line & Extend Point	51 52 53 55 56
	8.3 8.4 8.5 8.6 8.7 8.8	Plane Offset Column Offset REM MLM Line & Extend Point Line & Extend Angle	51 52 53 55 56 57
	8.3 8.4 8.5 8.6 8.7 8.8 10.5	Plane Offset Column Offset REM MLM Line & Extend Point Line & Extend Angle Import Data	51 52 53 55 56 57 103

	8.10	Traverse	62
	8.11	Cable Height	71
	8.12	Point Projection	72
9	Stake C	Dut	75
	9.1	Overview	75
	9.2	Point	78
	9.3	CAD Stake Out	80
	9.4	Angle&Distance	85
	9.5	Direction Line	86
	9.6	Line	87
	9.7	Reference Line	88
	9.8	Arc	92
10	Data M	anagement	96
	10.1	Point Management	96
	10.2	Code Management	100
	10.3	Q-Code Management	101
	10.4	Map Management	102
13	Setting		134

	10.6	Export & Copy Data	107	14	Ins
11	COGO		113		14
	11.1	Reduction	114		14
	11.2	Traverse Adjustment	115		14
	11.3	Calc.XYZ	115		14
	11.4	Inverse	117		14
	11.5	Area & Girth	118		14
	11.6	Included Angle	119		14
	11.7	Distance Conversion	120		14
	11.8	Angle Conversion	120		14
	11.9	Average	121		14
	11.10	Equidistant Point	121		14
	11.11	Triangle Calculation	122		
	11.12	Calculator	123		14
12	Road		124	Арр	oend
	12.1	Road Design	124	Арр	oend
	12.2	Road Stake Out	131	Арр	bene
App	oendix [D. Comm Port	152	Арр	ben

,	14	Inspection & Adjustment		137
		14.1	Plate Vial	137
		14.2	Circular Vial	138
		14.3	Tilt-Sensor	138
		14.4	Reticle Unit	139
		14.5	2C	140
_		14.6	Horizontal Axis	141
		14.7	Vertical Index	142
		14.8	Vertcial 0 (I - Angle)	142
		14.9	Combined Adjustment	144
		14.10	Constant K	144
		14.11	Sight of View& Emitting	145
			Axis	
		14.12	Adjustment for APR+PS	146
_	Арр	oendix A	A. Menu Tree	147
_	Арр	oendix B	3. Data Format	148
_	Арр	oendix (C. Traverse Level	151
_	Арр	oendix E	. Specification	154

Copyright. South Surveying and Mapping Technology CO., LTD all right reserved.

1. PRECAUTIONS

1.1 OVERVIEW

Congratulations on the purchase of SOUTH NS30 Total Station!

The following safety instructions specify the responsibilities of the product owner and user. The product owner must ensure that all users of the instrument know and follow these regulations or

instructions.

1.2 LIMITATION

Environment	The environmental conditions of the instrument are similar to those that people can
	adapt to: it is not suitable for corrosive, flammable and explosive occasions.
Danger	When working in dangerous areas, or any areas close to electric devices, the user
	must ask for local safety authority in advance.

1.3 DANGER IN USE

Caution After the instrument is collided, re-assembled, stored for a long time and transported, please check and calibrate the equipment.

Check the instrument regularly according to the instructions in the user manual, especially before and after the important measurement tasks.

Danger It is very dangerous to use prism pole near the electrical equipment such as electrified cables or electrified railways.

Prevention:

Keep a safe distance from power facilities. If you must work in this environment, please contact the safety department responsible for these electrical equipment and follow their instructions.

Caution If the instrument is used to observe the sun directly, the eyes and optical system might be damaged because of the magnifying effect.

Prevention:

Don't aim the telescope directly at the sun without a sun filter.

Warning In measurement, if users do not pay attention to the surrounding conditions, there will be a risk of accidents, such as obstacles, or traffic vehicles in the setting out process.
 Prevention:

The product owner must ensure that all the users are aware of possible hazards.

Warning If the survey site does not have enough safety facilities and signs, it may cause

dangerous situations.

	Prevention:
	Always ensure the safety of the work site. Always check the safety and accident
	prevention regulations and traffic rules.
Caution	If the accessories are not firmly connected to the instrument, it might be damaged.
	Prevention:
	When installing the instrument, ensure that the accessories are correctly, properly
	and safely fixed in place.
Varning	If the instrument is used with accessories, such as centering rod, the risk of lightning
	stroke will be increased.
	Prevention:
	Do not survey in the field under thunderstorm days.
Caution	During the transportation of battery, the improper mechanical influence may cause
	fire.
	Prevention:
	Discharge the battery before transportation.
	During battery transportation, the product owner must comply with domestic and
	international regulations and guidelines.

Warning	Strong mechanical pressure, high temperature or falling into liquid may cause						
	battery leakage, fire or explosion.						
	Prevention:						
	Protect the battery from mechanical impact and high temperature environment. Do						
	not drop the battery or immerse the battery in liquid.						
Warning	If the battery is short circuited, such as touching jewelry, keys, metal pieces or metal,						
	the battery may be overheated and damaged or catch fire, such as when the						
	battery is put in a pocket.						
	Prevention:						
	Make sure that the battery end is not in contact with metal objects						
Warning	Only the distributor who authorized by South is qualified to repair the products.						

1.4 LASER

WarningThe EDM rangefinder built in the total station will emit a visible red laser through the
objective lens. which is identified by the following signs:
A warning label "LASER 3R" is attached above the vertical tangent screw, and the
same label is attached on the opposite side.

	This product belongs to Class 3R laser product, according to the standards						
	GB7247.1-2012: Safety of Laser Products.						
Warning	From the perspective of safety, Class 3R laser products are potentially dangerous.						
	Prevention:						
	1) Avoid direct eye contact with the laser beam.						
	2) Do not irradiate others with laser beam.						
Warning	The potential safety is not only the direct viewing laser beam, but also the laser beam						
	reflected by prism, window, mirror and metal surface.						
	Prevention:						
	1) Do not aim at objects that reflect strongly, such as mirrors, or objects that emit						
	unnecessary reflected light.						
	2) When the laser is turned on and in the laser aiming or distance measurement						
	mode, do not look at the laser beam near to the target. The prism can only be aimed						
	through the telescope of the total station.						
Warning	It is dangerous to use Class 3R laser equipment incorrectly.						
	Prevention:						
	The user should take effective safety precautions and control the possible danger						
	within the distance (according to GB7247.1-2012).						

Class 3R Class 3R laser products are used outdoors and on construction sites (surveying, alignment, leveling)

A.Only trained and certified personnel can install, commission and operate the laser equipment.

B.Set up laser warning signs within the operation area.

C.Prevent directly looking at the laser beam with eyes or using optical instruments to watch the laser beam.

D.In order to prevent the damage, the laser beam shall be blocked at the end of the working route. When the laser beam passes through the restricted area (in harmful distance*) or when someone is moving in this area, the laser must be stopped.

E.The path of the laser beam must be set above or below the line of sight of people.

F.When the laser product is not in use, it shall be properly kept and stored.

G.Prevent the laser beam reflected from the mirror, metal, window, etc.

*Harmful distance refers to the maximum distance from the starting point of the laser beam to the point where the laser beam weakens without harm.

A built-in rangefinder product equipped with a Class 3R laser has a harmful distance of 1000m (3300ft). Beyond this distance, the laser intensity will be reduced to Class 1 (It won't be harmful directly to the eyes).

Description	Value				
Description	Auto Prism Following	Auto Search	Laser Plummet	EDM	
Wavelength	785nm	905nm	635nm	635nm	
Max. Radiant Power	6mW	3.5mW	3.5mW	6.5mW	
Divergence Angle	±1.5°	±17°	1mrad	0.4mrad	
Transmission Frequency	Continuous Laser		Continuous Lase	r	
Half-peak Width of		10ns			
Transmitting Pulses				_	
Pulse Repetition Rate		120KHz			

2. PREPARATION 2.1 STORAGE

Unpacking

Lay down the case lightly with the cover upward. Unlock the case, and take out the instrument.

Storage of Instrument

Cover the cap, put the instrument into the case with the vertical clamp screw and circular bubble to the upwards (lens towards tribrach).

2.2 SETUP

Setting up the tripod

A. Loosen the screws on the tripod legs, pull out to the required length and tighten the screws.B. Make the center of tripod and the occupied point approximately on the same plumb line.C. Step on the tripod to make sure if it is well stationed on the ground.

Instrument setup (with Laser Plummet)

A. Place and lock the instrument carefully on the tripod

B. Turn on the instrument and activate the laser plummet. Hold the two legs which are not fixed

on the ground and decide the position to fix according to the laser dot. When the laser dot is roughly on the station point, fix those 2 legs.

C. Leveling the instrument by circular vial.

a) Rotate the foot-screw A and B to move the bubble in the circular vial, in which case the bubble is located on a line perpendicular to a line running through the centers of the two leveling screw being adjusted.

b) Rotate the foot-screw C to move the bubble to the center of the circular vial.

D. Precisely leveling by plate vial a)Rotate the instrument horizontally by loosening the horizontal clamp unit and place the plate vial parallel to the line connecting rotating the foot-screw A and B, and then bring the bubble to the center of the plate vial by rotating the foot-screw A and B.

b) Rotate the instrument in 90° (100gon) around its vertical axis and turn the remaining leveling screw or leveling C to center the bubble once more.

c) Repeat the steps and check whether the bubble is correctly centered in all directions.

If the laser dot doesn't stay at the center position, please slightly loosen the screw under the tripod head and move the instrument (don't rotate the instrument) until the laser dot is on the station point. Tighten the screw and level the instrument again. Repeat these steps until <u>Electronic Bubble</u>

To ensure a precise angle measurement, you can also level the instrument by E-bubble.

[Tilt-X]: Tilt compensation in X-direction[Tilt-XY]: Tilt compensation in XY-direction.[Tilt-Off]: Turn off the tilt sensor.

the instrument is precisely centered and leveled.

2.3 BATTERY

Initial Use/Charging

The battery should be charged only by the official charger NC-10. The battery must be charged before the first time operation.

Indicator: Red - Charging;

Green - Completed; Green Flashes - Error Input: 70V-240V 50/60Hz; Output: 7.4V-1.2A)

The allowable charging temperature range is 0 °C to +40 °C . For optimum charging, we recommend charging the battery at +10 °C to+20 °C.

It is normal for the battery to become hot during charging. If the temperature is too high, the charger will not work.

For new batteries or batteries that have not been used for a long time (over three months), it will be more effective to have a complete charge and discharge before the work.

Remained Capacity

When the remaining voltage is less than one grid, please stop your operation and charge it as soon as possible.

Working time depends on the environmental conditions, such as ambient temperature, charging times. For safety reasons, please charge in advance or prepare some backup batteries.

The remaining capacity is related to the current measurement mode. In angle measurement mode, the capacity is sufficient, which cannot ensure that the battery can also be used in distance measurement mode.

2.4 TRIBRACH

Dismounting

Turn the locking knob in 180° counter-clockwise to disengage anchor jaws, and take off the instrument.

Mounting

Insert three anchor jaws into holes of tribrach and

15

line up the directing stub. Turn the locking knob about 180° clockwise to mounting the instrument.

2.5 POWER ON

Power On

Press and hold the power key in 2 seconds until the screen lights up.

Power Off

Press and hold the power key in 1 seconds until the shut down menu pops up. Please keep the normal shut down steps to avoid the data lost.

2.6 REGISTRATION CODE

2.6.1 Check the Status in TServer.

Description	Before working, the	Before working, the user needs to check whether the device connection in the			
	TServer App is correct and whether the registration time has expired or not			s expired or not.	
Access	Select [TServer] : [C	Select [TServer] : [Connect] or [Disconnect]; [Settings]\[Register]			
Registration	2:55 💠	2.55 \$ 0 \$\$			
Status	Tserver	0	< Setting		
	Model	South TS Series >	Measure Beep		
	Connect Type	Serial Port >	Auto On		
	Device List	ttyS1:38400 >	Register	2022-12-02 >	
			Version	5	
	Setting	Disconnect	About	>	

- If the instrument is blocked, please reconnect the TServer.
- Do not change the settings without authorization.
- If the angle value is not displayed, or the value does not change when the instrument is rotated, the registration code might be expired.

• If the laser pointer and plummet can not be activated, the problem might be caused by register code, too.

2.6.2 Registration Code

Description	Registration code for Survey Star onboard.	
Access	• Auto: Connect 4G/WIFI network, select [TServer] for auto registration.	
	Manual: [TServer] \[Setting] \[Register] \Input codes \[Register]	
Registration	4:15 🗢 1	* 0 🗘 🗅
Code	< Register	
	Register Info: Register ID: TT43CA0D2166932 Register PID: 3836966102493391 Expired Date: 2022-12-02	Сору
	Input Code by Manual, orReceived by Files	
	Input Codes in 36 Digits	
	Register	

2.7 CALIBRATION FOR APR + Prism Search

Description When calibrating and compensating the absolute position error of the instrument, the coordinate transforming between the measuring system and the

instrument basic system should be considered.

In order to solve this problem, the instrument will calculate the absolute position accuracy by the distance accuracy between 2 points, which will largely simplify the measure steps.

Access Select [TServer]: [Setting] \ [Initial Set] \ [Calibration]

Calibration Step-by-Step

Description	
Set and aim a prism at 35-50m.	
Press [Enter Calibration Mode], waiting for the parameters in	
horizontal and vertical direction.	
Type the parameters in [Hz Parameter] and [Vz Parameter], the	
value is valid in 5 digits.	
Press [Input Parameter] in 3 times to ensure the data is written.	
Restart the program to activate the functions	

3. INTRODUCTION

3.1 INSTRUMENT COMPONENTS

- a) Antenna
- b) Handle
- c) Collimator
- d) Central Mark
- e) Function Keys
- f) Endless Drive (Horizontal)
- g) Eyepiece Unit
- h) Plate Vial
- i) USB/Card Slot
- j) Circular Vial
- k) Auto Search Window
- I) Objective Lens
- m) Endless Drive (Vertical)
- n) Battery
- o) Display Unit

3.2 KEYS

Кеу	Description		Key	Description
1-9/.	Numeric keys, which can be	21	En	Function key, which can be
/-	defined by user.			defined by user.
BS	Backspace			Sub-menu

3.3 SCREEN

3.4 TOOL BAR (QUICK ACCESS)

The screen of **NS30** is separate into four parts:

- a) Status bar (e.g. time, setting, download, location, WIFI connection, battery.)
- b) Quick access
- c) Measure mode (e.g. mode, target, tilt sensor)
- d) Current job
- e) Main menu

lcons	Description
	Quick access to star key.
	Quick access to data manage.
S 9 C T	Quick access to measure mode (Single/N Times/Continuous/ Tracking)

3.5 ABBREVIATION

lcon	Description		lcon	Description
V/VA	Vertical angle		STN	Station
V%	Vertical angle (%)		BS	Backsight
HL/HR	Horizontal left/ right	23	R.Ht	Reflector height
SD	Slope distance		Ins.Ht	Instrument height
		1		

3.6 STAR KEY

 Description
 Star keys provide a quick access to the settings and functions of total station

 Access
 1) Select [Survey Star]: [★]

 2) Slide the left edge of the screen to the right

Star Keys	Кеу	Description
	1.Laser Pointer	Open the laser pointer.
	2.Reticle Backlight	Open the reticle (crosshair) backlight in telescope.
	3.Laser Plummet	Open the laser plummet.
	4.Temp.&Pressure	Set temperature, pressure, PPM. 20 °C /1013hPa in
		default.
	5.Prism Constant	Set prism constant, -30.0mm in default.
	6.Face 2	Turn and aim the target in the second face.
	7.Prism Search	Activate the Prism Search.
	8.APR	Activate the Auto Prism Recognition in sight of view
	9.LocknTRack	Activate the LocknTRack.
	10.Demo Mode	Enter the demo mode to simulate the data.

3.7 HOT KEYS

Description	Hot keys provide a shortcut to user-defined functions or applications assigned to
	the keys.
Access	Select [Survey Star]: [Setting] [Function Key] Select the keys

Hot Keys

Кеу	Description
Measure Button	Measure / all (measure + save)
Fn	Undefined / laser pointer / reticle / laser plummet /
	soft-keypad
[0]-[9], [.], [-]	Undefined / laser pointer / reticle / laser plummet /
	known point / free station / point / point stake out.

4. MAIN MENU

Main Menu

Description

Main Menu	Description
Measure	To simply survey, select and stake out a point with graphics.
Station	To setup the station before works.
Collect	To collect a point, as well as select and start an application.
Stake Out	To stake out a point.
Job	To manage job.
COGO	To start a coordinated geometry application.
Program	To design and stake out a road.
Setting	To make settings regarding the software and the display unit

5. JOB 5.1 CREATING A NEW JOB

Keys	Descriptions	
Job	A unique name for a new job.	
Time	Display only. Time and date.	
Operator	Editable field. Operator's name.	
Note	Editable field. The software version is filled.	

5.2 EDITING A JOB

Keys	Descriptions
[Open]	Open the selected job.
[Delete]	Delete the selected job.
[View Info]	Check the job properties. Includes job name, storage location,
	time, operator and note.

6. MEASURE 6.1 MEASURE

Description

[Measure] is used for point measurement.

Access

Select Main Menu: [Measure] \ {Meas.} Page \ [Meas.] \ [Save]

Measure Page

Key	Description	
0 Set/ H Set	et the current horizontal angle to 0 or a certain value.	
In Ht/ R. Ht	Set the instrument height and reflector height.	
STN Setup	Setup the station by two known points.	
Meas.	Measure	
Save	Save the data with point name and code.	

6.2 PRISM SEARCH

Description	When Prism Search is activated, the station	ар∏
	starts to rotate 360 degrees around the	
	vertical axis in anti-clockwise direction.	ALI
	Then, the automatic prism search in the	
	vertical direction (±18°) is performed.	
	The transmitter (a) emits a laser beam in	
	vertical direction, and if the laser swatch is	
	detected by the receiver (b), the rotation will	
	stop immediately. Otherwise, it will stop after	
	a full-360 degree rotation.	
Access	1) Press [★] or slide from the left, activate [6. Print	sm Search]
	2) Back to the measure page, press [Meas] to st	tart searching.
	3) When Prism Search is activated, the icon] shows on the status bar.

6.3 APR - AUTO PRISM RECOGNITION

Description APR (Auto Prism Recognition) is used to recognize and measure the prism automatically in the sight of view (\pm 1.5 degrees).

The automatic aiming window will scan the prism from the center of the current telescope position, in anti-clockwise direction.

If the prism is founded, the crosshair will automatically positioned to the prism center.

Access 1) Press [★] or slide from the left, activate the [7. APR]

2) Back to the measure page, press [Meas] to start recognition.

3) When APR is activated, the icon[6] shows on the status bar.

6.4 FOLLOW THE MOVING PRISM - LOCKNTRACK

 Description
 LocknTRack enables an automatic prism recognition and lock to a moving prism.

 Eliminating the need for standing around and waiting when data collect or stake out.

The first measurement should be stable fixed on the ground, otherwise, the prism might not be successfully locked.

The lock may be lost if the movement of prism is too fast or invisible in the sight.

Access 1) Press [★] or slide from the left, activate the [9. LocknTRack]

- 2) Back to the measure page, press [Meas] to activate LocknTRack mode.
- 3) If the prism is successfully locked, the icon [6] shows on the status bar.
- 4) If it is unlocked, the icon [6] shows. Press [Meas] again to re-lock the prism.

6.5 FILE

Description Select the point from the other files.

Access Select Main Menu: [Measure] \{File} Page

File Page

Keys	Description			
New	Create a new job.			
Delete	Delete the selected job.			
Current	Set the selected job as			
	current job.			
Send	Send data via MSMT.			

Keys	Description
1st	First point.
Last	Last point.
Next	Next point.
Last Pt	Last point in the job.
Receive	Receive data via MSMT.

6.6 POINT STAKE-OUT

Description

Stake out points by coordinate, please refers to Chapter 9.2

Access

Select Main Menu: [Measure] \{Point S.O} Page

Stake Out Page

5:06	¢ 1						0 🗢 🗅
	۲			Measur	e	S [<u> </u>
Me	as.	File	Point S.O	Graph			
1	•	dHA:	139°06'04"	Pt N:	rd02	+	Last
(Front	↓ :1.746 m	Pcode			
1	Y	Right	← :0.835 m	N:	1.275	m	Next
		Dig J	:0.020 m	F.	-0.012	m	
	HA:359°26'31 HD:1.275 m	59°26'31"	L.	-0.012		Meas.	
		.275 m	Z:	1.372	m	Contractory of the local division of the	
		Z:1.3	72 m	R.Ht:	0.000	m	Storage

Display	Description		Keys	Description
E-Compass	Direction of the target		+	Add point
dHA	HA difference		Last	Last point
Front/Back	Move to the front/back		Next	Next point
Left/Right	Move to the left/right		Meas.	Measure the prism
Fill/Dig	Move to the up/down		Storage	Save the point

6.7 GRAPH

DescriptionGraph is an interactive display feature embedded in Survey Star. It offers a
graphical display of the survey elements with base map, which allows a better
understanding of the measurement. Normally it will be loaded automatically.

Access Select Main Menu: [Measure] \{Graph} page.

Use two fingers on the screen to zoom in or zoom out.

Graph Page

Keys	Description
\$	Change the layers screen. It is possible to make layers from the CAD
	file visible or invisible in map.
\bigcirc	Click to locate the current station to the center of screen.
7. STATION 7.1 KNOWN PT

DescriptionThe coordinates of station point are required for setup. The instrument can be
oriented by a known point, or an unknown point with assumed azimuth.

Access 1) Select Main Menu: [Station] \ [Known Pt]. Press [+] to select a station.

Step-by-step 2) Select orientation method: by known backsight point or by assumed azimuth.

3) Input instrument height and reflector height. Aim at the target, press [Setting].

Known Point

Keys	Description				
BS Pt	Select a known backsight point.				
Azimuth	Select an assumed azimuth for orientation.				

7.2 MULTIPLE ORIENT

DescriptionThe instrument can be oriented by more than one backsight points.Note:A maximum of 10 points can be measured and used for the calculation.This program is similar to Resection (Chapter 7.5), the difference is whether the
coordinates of station is known or not. In multiple orientation, it's known.

Access 1) Select Main Menu:[Station] \ [Known Pt]. Add a station point.

Step-by-step 2) Click [Multiple Orient] \[Setting] to enter the point list for multiple orient.

3) Press [Meas.1st Pt] \[+] \[Angle] or [Ang.& Dist] to measure the backsight.

- 4) Press [Done] to save it in point list. Repeat the steps for the others.
- 5) Press [COGO] \ [Set] to see the calculated station.

Multiple Orient 11:35 0 1 0 9 0 11:19 💠 <u>†</u> 0 90 < 🛞 🗐 く 余 🗐 Multiple Orient Graph Meas. Data No. N F Item Pt N: +HR: 349°38'57" Angle 23.115 113.192 1 BBS1 2 BBS2 23.050 113,799 Ins.Ht: 0.000 VA: 053°38'32" Ang.&Dist. m 3 BBS3 23.005 114.397 BBS4 22.455 113.746 R.Ht 0.000 Done SD: m m Meas, 6 Pt

Keys	Description			
Meas.1 Pt Measure the known points one by one (max.10 points)				
COGO	Calculate the coordinate of station after measurements.			
Angle	Measure angles only.			
Ang. & Dist. Measure angles and distances.				
Done Confirm the measurement.				

Keys	Description				
N/E/Z Coordinates of station.					
dHz	Difference of horizontal angle.				
Height Height of station.					
Height Transfer (Refers to Chapter 7.3) if necessary.					

39

Next Step

7.3 HEIGHT TRANSFER

Description Calculate the station height by measuring a point with known height. Only the height of station will be updated.

- Access 1) Select Main Menu:[Station] \[STN.Ht].
- Step-by-step 2) Press [+], input or select the height of known points, Ins.Ht, R.Ht.
 - 3) Press [Meas.] and [Setting] to measure and update the height of station.

Height Transfer

Display	Description					
VD Vertical distance between the station and known po						
Calcu.H	Calculated height of station.					
STN Ht	Updated height of station.					

7.4 BACKSIGHT CHECK

Description

Step-by-step

Access

Check the residual of backsight after station setup.

- 1) Select Main Menu:[Station] \[BS Check].
- 2) Aim at the backsight, press [Meas.] to see the coordinate and difference.
 - 3) Press [Reset] to set the current point as backsight.

Backsight Check

< 😿 🖲	BS Check	S 🖄 🞯	< 🛞 🔳	Result	
STN Pt:	2			Coordinate	Difference
BS Pt:	BBS6			N: 22.872 m E: 113.208 m	dN: 0.002 m dE: 0.000 m
Azimuth:	356°13'39"	Meas		Z: 3.030 m	dZ: 0.001 m
HR:	356°13'39"				dSD: -0.002 m
dHA:	000°00'00"	Reset			Cancel Reset

Display	Description		Display	Description
Azimuth	Azimuth of backsight		N/E/Z	Coordinate of target
HR/HL	HA of measured point		dN/dE/dZ	Difference of coordinate
dHA	Difference of HA		dSD	Difference of SD

7.5 RESECTION

Description Resection is used for determine the instrument position from measurements of at least two known points (maximum 7 points). Only angles or both angles and distances can be measured.

The calculation requires at least three angle data or two distance data.

Access 1) Select Main Menu: [Station] \ [Resection]

 Step-by-step
 2) Press [Meas No.1 Pt] \ [Angle] [Ang.&Dist] \ [Done] to measure the known points

3) Press [COGO] \ [STN Setup] \ [Stn Set] to calculate and set the station.

Resection

3:07 💠 🗌			◎ 🔒	3:07 💠 📕	◎ 🔒
< 😸	•	Resection	S 🖄 🧭	< 🖈 🛢	S 🗟 🧭
Meas.	Data Graph				
No.	Item	N	E	Pt N: pt01 + HR: 348°40'37 5"	Aurala
1	pt01	1.756	-0.349		Angle
2	pt02	1.748	0.253		10 000 C
3	pt03	1.740	0.862	Ins.Ht: 1.500 m VA: 308°15'17.6"	Ang.&Dist.
				R.Ht 1.000 m SD: 2.250 n	Done
	Meas	. 4 Pt COGO			

Display	Description
Meas.1 Pt	Measure the known points one by one (max. 7 points).

COGO	Calculate the coordinate of station after measurements.			
Angle Measure angles only.				
Ang. & Dist. Measure angles and distances.				
Done	Confirm the measurement.			

3:09 💠 🗖				◎★●	3:13	*			◎ ★ 9
< 🛞	8	Resectior		S 🕸 🧭	<	۲			S 🗟 🎯
Meas.	Data	Graph							
		Stn.Pt	Sta	andard Deviation		STN:	stn01	Code: stn	-
N:		-0.018 m	dN:	0.000 m		N.	-0.01	18 m	
E:		0.013 m	dE:	0.000 m		E.	0.0	12 m	
Z:		-0.011 m	dZ:	0.000 m		L. 7.	0.0		
			5	STN Setup		Ζ:	-0.0	i i m	Stn Set

Display	Description
N/E/Z	Calculated coordinates.
dN/dE/dZ	The difference between given and calculated coordinates.

Note: If the angles between the known points are too small or too large, the accuracy will be effected. The station height is calculated by the distance. If only angles are measured, the height will be determined by the angle of known points.

7.6 POINT TO LINE

DescriptionPoint to Line can be used to calculate the local coordinates for the station. The
result is calculated from distance and angle measurements of two target points
(A and B). Point A will be defined as the origin point, while point B will be defined
as North direction.

- Access 1) Select Main Menu: [Station] \ [Point to Line].
- Step-by-step 2) Press [Meas.] \[Meas.] to measure point A and point B.
 - 3) Press [Next] \[Stn Set] to calculate and set the station.

Point To Line

Display	Description		Display	Description
A-HD	HD from station to 1 st point HD from station to 2 nd point		dVD	Difference of VD for A-B
B-HD			dSD	Difference of SD for A-B
dHD	Difference of HD for A-B		N/E/Z	Coordinates of station

7.7 FREE STATION

Description	In Free Station, the coordinate system will be settled by it's local coordinate							
	system.							
	Normally, the workflow is:							
	Station setup - Backsight oriented - Data collect.							
	With Free Station, it is:							
	Station setup - Data collect - Reduction with backsight.							
	After reduction, the local coordinates will convert to the real coordinates.							
Access	1) Select Main Menu: [Station]\[Free Station].							
	2) Press [+] \[Setting].							

Free Station

Display	Description				
STN	Select or type a point as station				
HR	Horizontal angle for current direction. It will be settled as 0.				
Ins. Ht	Instrument height				
R.Ht	Reflector height				
[Backsight	Define the backsight direction.				
Checking]	It can be set before or after the station setup.				

Next Step Data Collect. Refers to Chapter 8.1.

Reduction for Free Station. Refers to Chapter 11.1.1

7.8 STATION SETUP WITHOUT CONTROL POINT

Description This function is used to setup the station when you don't have any control points.

All those local coordinates, which are measured under two different stations (A

& B), can be converted to correct coordinates if there is a public point C exists.

Workflow:

Set station at A - Data collect (including a public point C) - Move station at B -Data collect (including a public point C) - Reduction

Display	Description
STN	Select or type a point as station
HR	Horizontal angle for current direction. It will be settled as 0.
Ins. Ht	Instrument height
R.Ht	Reflector height

Next Step Data Collect. Refers to Chapter 8.1

Reduction for Station Setup without CP. Refers to Chapter 11.1.2

8. COLLECT 8.1 POINT

Description

Measure and save the points.

Select Main Menu: [Collect] \ [Point] \ [Meas.] or [All]

Access

Collect Points

1 🖬 🔒			Q 🛪 🐨 🖹 🗎 4:22	3:49 🗘 <u>1</u>				÷ •
< 😸	9	Point	s 🗟 🎯	< 😿 🤇		Poir	nt	s 🔯 🧭
Meas.	Data Graph			Meas.	Data Gra	aph		
HL:	231°04'23"	Dt N · 3	Meas	Pt N:		gz2	Code:	
V.	0.00%	. J	Wieds.	N:		119.686 m	HD:	0.314 m
•.	0.00%			E:		25.000 m	VD:	1.380 m
N:	2564745.699 m	Code:	+ Save	z:		21.880 m	SD:	1.416 m
E:	440345.923 m			HR:	359°	59'53.8"		
Z:	19.170 m	R.Ht: 0.000	m All	V:	347°	11'12.3"		

Display	Description					
Pt N	Point name.					
Code	Code. Press [+] \Qcode [+] to select the code.					
	The position and links is marked for Southmap, it will not display					
	on the map of total station.					
R.Ht	Reflector height.					

 HR/HL	Horizontal left or right				
V	Vertical angle				
N/E/Z	North, east and zenith coordinates				
HD/VD/SD	Horizontal / Vertical / Slope Distance				
[Meas.]	Measure the target.				
[Save]	Save the data.				
[All]	Measure and save the coordinates in once.				

8.2 DISTANCE OFFSET

Description The distance offset calculates from measurement or coordinates with longitudinal, parallel offset and height differences of the target point relative to the known point.

Note: All directions are correspondent to the visual side of operator.

Access

1) Select Main Menu: [Collect] \ [Dist.Offset].

2) Input lateral, longitudinal and altitude offset.

3) Press [Dist] or [All] to measure and calculate the offset coordinates.

Distance Offset

4:34 🌣 <u>†</u>					0 🖓 🗋	4:34 🌣 <u>†</u>				0 🗢 🗅
< 🛞	D	Dist.Off	set	S 🚱	٢	< 😸		Dist.C	ffset	S 🚳 🝼
Meas.	Data Grapl	n				Meas.	Data	Graph		
Pt N .	1	Code:	-	P. Ht. 1.000	m	Pt N :		о1	Code:	
	•	oode.		1.000		N:		120.770 m	HD:	2.007 m
🔘 Left	Right	2.000	m	Dist.		E:		26.853 m	VD:	0.642 m
○ Front	Back	2.000	m	Save		Z:		19.858 m	SD:	2.107 m
						HR:	1	067°25'39.3"		
O Up	Own	2.000	m	All		V:		107°44'57.9"		

Display	Description
Pt N	Input the ID of offset point.
Left/Right	Input lateral deviation, from offset point to prism.
Front/Back	Input longitudinal deviation, from offset point to prism.
Up/Down	Input altitude deviation, from offset point to prism.
[Dist]	Measure the target.
[Save]	Save the data.
[All]	Measure and save the coordinates of offset point.

8.3 PLANE OFFSET

Description This function calculates the points which cannot be measured directly.

1)Select Main Menu: [Collect] \ [Plane Offset].

2)Press [Meas.] to measure three points in a same plane

3)Rotate the telescope, aim at the unreachable point in this plane.

4) press [Save] to save the coordinate.

Distance Offset

Access

Display	Description
[Meas.]	Measure three points in a same plane to define a plane.
[View]	Check the coordinate of measured point.
[Save]	Save the coordinate of calculated point.

_	Unmeas.	Display only. When the measurement is not completed.
	Done	Display only. When the measurement is completed.

8.4 COLUMN OFFSET

Description Column offset is widely used in measuring a hidden point that is not directly visible, for example the center of column as picture shown.

Measure the left and right edge (P2&P3) of column. Then measure the center point P1 in surface.

Access 1) Select Main Menu: [Collect] \ [Column Offset].

Step-by-step

- 2) Press [Angle] \ [Angle] \ [Meas.] to measure the edges and surface center.
 - 3) Press [Data] \[Save] to check and save the coordinates of PO.

Column Offset

10:24 🗘 🗋 👲						۵	10:21 💠 🛙	t			0 🗘 🖞
< 🛞 🤅		Colu	mn Offset		s 😰	۲	< 😧		Column	Offset	S 😰 🞯
Meas.	Data Graj	bh					Meas.	Data	Graph		
Pt N ⁺	3	Code:	-	R Ht.	1 000	m	Pt N:		3	Code:	
		00001					N:		122.671 m	HD:	3.484 m
AzimA:	Done	Angle	HR: 118°	4'15.3"			E:		22.763 m	VD:	1.366 m
AzimB:	Done	Angle	HR: 173°4	8'02 9"			Z:		21.866 m	SD:	3.742 m
-							HR:		140°03'34.7"		
Center:	Unmeas.	Meas.	HD:	n	n Sa	ave	V:	:	291°24'37.8"		

Keys	Description
[Angle]	Measure the angle of left and right edge.
[Meas.]	Measure the distance of surface center.
Unmeas.	Display only. When the measurement is not completed.
Done	Display only. When the measurement is completed.
[Save]	Save the coordinates.

8.5 REM

Description	When the target is hard to reach or hang in the air, for example, the electric
	cables, REM (Remote Height) can help you measure the point.
Access	1) Select Main Menu: [Collect] \ [REM].

Step-by-step

- 2) Set a prism vertically under the target.
- 3) Input reflector height, press [Ang.&Dist] to measure the prism.
- 4) Rotate the telescope to the target.

REM

Display	Description			
V	Vertical angle of target			
dVD Vertical distance of prism or the target				
VA	Vertical angle of prism			
HD	Horizontal distance of prism			
[Ang&Dist] Measuring the prism which is vertically under the target				
[Reset BL]	When R.HT is unknown, aim at the pinpoint, press [Reset BL] to set			
	the vertical distance to 0. Then rotate the telescope to target.			

8.6 MLM

Description MLM, is mainly used to compute the HD/VD/SD/azimuth between two points.

- 1) MLM Radial(A-B, A-C), lock the start point
- 2) MLM Cont. (A-B, B-C), unlock the start point.
- Access 1) Select Main Menu: [Collect] \ [MLM].
- Step-by-step 2) Press [Meas] \ [Ang.&Dist] \ [Save].
 - 3) Select calculation mode, lock or unlock the start point. Press [COGO]

MLM

¢ 1			0 🗢 🗅	ļ	4:22 🌣 <u>†</u>	4:22 🌣 <u>†</u>	4:22 💠 İ 📕	4:22 🗢 İ 📕	4:22 💠 İ 🔳
< 쑰		MLM	s 😰 🧭		< 😒	< 😿 🖲	< 😿 🗐	< 🖈 🛢 [< 😿 🗐 🛛 🔹 🕅
Meas.	Data Graph				UD.	HD: 102°59'19"	LD· 102°50'10"	LD. 103°50'10"	LD. 102°50'10"
No.	Item	N	E		пк.	HR. 102 58 18	Pt N:	Pt N: A	Pt N: A
P1	A	2564800.839	440308.701		V:	V: 028°06'36"	V: 028°06'36"	V: 028°06'36"	V: 028°06'36"
P2	В	2564801.384	440306.333		SD:	SD: 1.526 m	SD: 1.526 m R.Ht:	SD: 1.526 m R.Ht: 0.000	SD: 1.526 m R.Ht: 0.000
P3	С	2564791.013	440305.732		N:	N: 2564800.839 m	N: 2564800.839 m	N: 2564800.839 m	N: 2564800.839 m
					E:	E: 440308.701 m	E: 440308.701 m	E: 440308.701 m	E: 440308.701 m
					Z:	Z: 22.846 m	Z: 22.846 m Ang.&D	Z: 22.846 m Ang.&Dist.	Z: 22.846 m Ang.&Dist. OK
Lock		Meas.	COGO						

Keys	Description
[Meas.]	Measure points.
[COGO]	Calculate the result base on points in data list.

[Lock]	Lock (A-B, A-C, A-D, etc.) or unlock (A-B, B-C, C-D) mode.
[Ang & Dist]	Measure the angle, distance and coordinate.
[Save]	Save the measured point in data list.

8.7 LINE & EXTEND POINT

DescriptionIt calculate the coordinates of an unknown point from a line defined by two
points (P1, P2) with an inputted distance (calculated from P2).

- Access 1) Select Main Menu: [Collect] \ [Line & Extend Point].
- Step-by-step 2) Enter the reflector height, press [Meas] to measure P1 and P2 as a baseline.
 - 3) Press [Dist.Set] to enter the extend distance. Press [Save].

Keys	Description	
[Meas.]	Measure points (P1, P2).	
[View]	Check the coordinates for P1 and P2.	
[Dist Set]	Set the extend distance which is based on P2.	
[+]	Extend direction from P1-P2.	
[-]	Extend direction from P2-P1.	
[Save]	Calculate and save the coordinates of extend point.	

8.8 LINE & EXTEND ANGLE

Description	It calculate the coordinates of an unknown point from a line defined by two
	points (P1, P2) with an azimuth (calculated from P2).
Access	1) Select Main Menu: [Collect] \ [Line & Extend Angle].
Step-by-step	2) Press [Meas] to measure P1 & P2 as a base line.
	3) Press [Meas] \[Save] to measure and save the coordinates of extend point.

Anglo	< 😿 🗐	Line & E	xtend Angle		s 😰	3	< 法		Line & Extend Angle	s 🗟 🍼
Aligie	Meas. Dat	a Graph					Meas.	Data Graph	1	
	Pt N: pt03	Code:		R.Ht:	0.000	m			4	\$
	HR:	031°49'38"	V:		024°03	'36"				
	P1:	10.322 m	Meas.	View					. /	
	P2:	5.211 m	Meas.	View					2 pt04	
	Azimuth:	031°51'30"	Meas.	Save						.P1 0.56 m

Keys	Description			
[Meas.]	Measure points (P1, P2 and extend azimuth).			
[View]	Check the coordinates for P1 and P2.			
[Save]	Calculate and save the coordinates of extend point.			

8.9 SAG MEASURE

DescriptionThe sag measure is able to ensure the sufficient safety distance from the
hanging cable to the ground, or to the object to be crossed.
The sag control and sag measure are calculated from measuring the horizontal
distance of lower cable, the span or the observation of sag point.

Diagram

1. Sag Begin Method.

Set the station under one side of the tower (A).

2. Sag In Method

Set the station between the location of two towers.

3. Sag Out Method

Set the station at the outside of two towers.

8.9.1 Sag Measure

- 1) Select Main Menu: [Collect] \[Sag Measure]
- Step-by-step

Access

- 2) Select the method.
- 3) Enter or press [Meas] to measure the data for each item.
- 4) Press **[Calc.]** to calculate the observation angle of sag point (θ).

Sag Begin	Item	Descr	iption
	Sag Angle	θ	Observation angle of sag (unknown)
	Span	L	Distance of span
	Sag	f	Sag value in the middle of span.
	Nominal Ht of Station		= Nominal height - length of insulation string
	Value of Pulley (Clamp)	β	Observation angle of pulley/clamp.
Sag In/Out	Item	Descr	iption
	HD of lower level	L'	Distance between the station to A.
	Nominal Ht of Station		= Nominal height - length of insulation string
Value of Pulley (Clamp)		β	Observation angle of pulley/clamp.
Span		L	Distance of span
	Sag	f	Sag value in the middle of span.
Sag Interval	ltem	Descr	iption
	Span L1	L1	Distance of span.
	Span L2	L2	Distance of span.
	Sag	f	Sag value in the middle of span.
	Angle α of lower level	α	the observation angle to the nearer pulley.
	Angle β of lower level	β	the observation angle to the further pulley.

8.9.2 Sag Control

Access 1) Select Main Menu: [Collect] \ [Sag Measure] \ [Sag Control].

- 2) Select the method. Enter the instrument height.
- 3) Press [Meas] to measure. Press [Calc.] to calculate the sag value f.

8.10 TRAVERSE

8.10.1 Overview

Description Traverse is used to establish a control point system when you have to work further than the first orientation or when the target is not visible.

It needs at least two known points to open or end the traverse.

Types of traverse 1. Open Traverse. Apply for Roads, Railways, etc

2. Closed Traverse, Apply for Buildings, Gardens, etc

Access	Select Main	n Menu: [Collect] \ [Traverse]					
Measure	B ¹ B ² F ² F ¹	Backsight point is measured in face 1, face 2 order; Foresight point					
Sequence		is measured in reverse order.					
	B ¹ B ² F ¹ F ²	Backsight point is measured in face 1, face 2 order; Foresight point					
		is measured in same order.					
	B ¹ F ¹ B ² F ²	Backsight and foresight points are measured in face 1, then					
		measured backsight and foresight again in face 2.					
	B ¹ F ¹ F ² B ²	Backsight and foresight points are measured in face 1, then					
		reverse the order, foresight point is measured firstly in face 2.					

8.10.2 Create a New Traverse

Display	Description
Template Name	Name of the traverse.
Туре	Traverse type, closed traverse or open traverse.
	The software will recognize it automatically.
Level	Select the measure level. (Refers to Appendix.C)
Angle Direction	The direction is in the left or right side of traverse.

8.10.3 Edit an Existed Traverse

Access

Press the traverse name\[Measure], [Edit] or [Delete]\[OK]

Traverse

Display	Description
Measure	Continue the measurement of traverse points.
Traverse Adjustment	Adjust the results of traverse.
Export Survey Table	Export the data.
Edit	Edit the name of traverse.
Delete	Delete the data in this traverse.

8.10.4 Traverse Step in Step

Step	Description
1	Setup total station at the first station(P2) which is known.
2	[New STN] to select or type the coordinates of first station (P2).
	[OK] to access the measure page for 1 st round.
3	[Target] to select the ID of backsight (P1) and foresight points (P3).
4	[Meas] to measure and record.
	(Measure sequence: B ¹ B ² F ² F ¹ /B ¹ B ² F ¹ F ² /B ¹ F ¹ B ² F ² /B ¹ F ¹ F ² B ²)
17	{Ang}\{Dist} to check the data of traverse.
	Horizontal angle, calculated azimuth from the foresight to the
	backsight, distance measured by face1 and face 2 are displayed.

5	[+], [-] to add or delete the measure rounds.
6	Move to the foresight point (P3) as the next station.
7	[New STN] to type the name of traverse point.
	[OK] to access the measure page.
8	[Target] to select the ID of backsight (P2) and foresight points (P4).
9	[Meas] to measure and record.
	Move to the foresight point (P4) as the next station .
10	Repeat the steps to set the station at the other points (P4, P5).
	Then traverse is closed.
11	[Done] to save the data and back to the job list.

🖬 🤜 📕 🕇 🔒					9 🖇 🖹 🗎 4:16	1	<u>t</u> ô				1	7 % 🗄 🗎 4
< 🖲		eee-Traverse	Survey		s 😰 🧭	<	*	ee	e-Traverse	Survey		<u> (</u>
1 🔪 🧪	Angle Dist	ance			Done	1	1	Angle Distance				Done
	ical Angl 116	5°37'48" zontal A	076°53'00" Av	erage A	Angle: 075°05'27"			cal Ang 116°30"	12" zontal Ar	145°16'42"		
	1 round tri	ip			+ - ~			Edge Name	N times round trip	Left	Right	Average
	ation L	Target	H disk read	ding	One way angle val			1 - bs	1	2.055	2.062	2.058
	1.49	bs	249°20'37*	Meas	075142125			1 - stn2	1	1.695	1.696	1.695
	Len	stn2	325°04'11"	Meas	075 43 35							
	Disha	stn2	145°16'42"	Meas	0749071101							
New STN	Right	bs	070*49'24"	Meas	074 27 18	Net	w STN					

Page Display Description

Angle	Vertical Angle	Horizontal angle of current position
	Horizontal Angle	Vertical angle of current position
	Average Angle	Average angle among several rounds
	1 round trip	Measure rounds.
	Location	Left: Face 1; Right: Face 2
	Target	Target ID for backsight and foresight.
	H Dist Reading	Horizontal angle of backsight & foresight (F1/F2)
	One Way Angle	Angle from foresight to backsight
	Round Trip Angle	Average angle in this round
Dist	Edge Name	Edge from backsight - station, station - foresight
	N Times Round	1 st , 2 nd , or 3 rd rounds
	Left	Distance in Face 1 (Left)
	Right	Distance in Face 2 (Right)
	Average	Average distance between F1 and F2

8.10.5 Traverse Adjustment

Description A traverse adjustment can be performed on coordinates of traverse points, angles and distances.

Press the traverse name\[Traverse Adjustment]

Access

Traverse

Adjustment

Display	Description
Pt N	Point ID
Observation Angle	Original observed angle
Correction Value	Correction value of horizontal angle
Correct Angle	Corrected angle after adjustment
Coordinate Azimuth	Azimuth of each points
Distance	Distance between two points
Incremental Value	Incremental X and Y for traverse points
Corrected Increment	Corrected X and Y for traverse points
Last Coordinate	Coordinates for each points

8.10.6 Export Survey Table

Access Press the traverse name\[Export Survey Table]\Select the location of storage\[OK]

 $\label{eq:location: [File manager] [Internal Storage] [com_southgnss_surveystar] \\$

Expand] \ [Export]. The file can be transferred by USB OTG, Bluetooth or Micro SD

Card. Refers to Chapter 10.6.3

Survey Table

STN	Vertical Disk Location	Target	H disk reading	One way angle value	Round trip angle value	Average Angle	
	Enco 1	bsc1	045°00'00'	16490000		164°15'30*	
1	Tace T	3	209°22'37'	104 22 30	164915'20'		
	Face 2	3	029°09'05'	164*08*23*	104 13 30		
	1 466 2	bsc1	225°00'43'	104 0025			
Edge Name	N times round trip	Face 1	Face 2	Average	Averag	e value	
1-bsc1	1	10.555	10.550	10.553	10.5	i53	
1-3	1	10.671	10.637	10.654	10.6	54	
	Eaco 1	1	052°07'36'	205*00'13'		205°04'31'	
3	i ace i	4	257°16'49'	203 03 13	205°04'31'		
J	Face 2	4	077°17'56'	204*59'49*			
	Tace 2	1	232°18'08'	204 3343			
Edge Name	N times round trip	Face 1	Face 2	Average	Averag	e value	
3-1	1	10.686	10.675	10.680	10.6	680	
3-4	1	12.068	12.066	12.067	12.0	167	
	Face 1	3	218°43'21'	333°23'45"	333°21'14'	333°21'14'	
		5	192°07'06'				
4	Face 2	5	012°02'27"	333948/43*			
		3	038°43'44"	333 1043			
Edge Name	N times round trip	Face 1	Face 2	Average	Averag	e value	
4-3	1	12.095	12.100	12.098	12.0)98	
4-5	1	10.861	10.851	10.856	10.856		
	Face 1	4	149°14'54"	208°28'05*	208*24/04*	208°24'04*	
5		1	357°42'59'				
0	Face 2	1	177°35'12'	209:20/02*	200 24 04		
		4	329°15'08'	200 20 03			
Edge Name	N times round trip	Face 1	Face 2	Average	Average value		
5-4	1	10.824	10.805	10.815	10.8	15	
5-1	1	12.081	12.082	12.082	12 082		

8.11 CABLE HEIGHT

Description This function is used to measure the height (LH) from a target (L) hanging in the air to the lower reference plane (G). (like the overhang of channel)

Access

1) Select Main Menu: [Collect] \ [Cable Height]

Step-by-step

- 2) Press [Setting] to enter the instrument height and reflector height.
- 3) Press [Meas] \[Save] to measure prism A & B, define a reference plane.
- 4) Press [Next], Aim at the target L, press [Meas.].
- 5) Aim at the base point G on the ground, press [Meas.].
| 3:10 🌣 <u>†</u> | | | | | 0 🗢 🗅 | 3:15 🏚 İ | | | | | 0 🗘 |
|--------------------|------------------------|--------|------------|--------|------------|---------------|--|-----------------------------|-----------------|-----|------------|
| < 🛞 (| 9 | Cal | ole Height | C | s 🔃 🧭 | < 😒 | ٢ | Cable | Height | C | s 🖄 🧭 |
| Tips:Meas
Click | ure Prism A a
Next. | and B. | | | Legend > | Tips:Me
Ro | asure Target L on
tate the Vertical 1 | i the Hangin
Tangent Uni | ig Cables.
t | | Legend > |
| HD (A): | 0.619 m | Meas. | Save | HR: | 088°33'00" | VD:
HD: | -0.084 m
0.265 m | Meas. | Save | HR: | 075°38'46" |
| HD (B): | 1.598 m | Meas. | Save | V: | 048°50'28" | Off: | 0.695 m | _ | _ | v: | 237°50'48" |
| | | | S | etting | Next | LH:
Off: | 0.441 m
0.695 m | Meas. | Save | | Last |

Item	Description	
HD(A)	Horizontal distance to prism A.	
HD(B) Horizontal distance to prism B.		
VD	Vertical distance from prism A to target L.	
HD	Horizontal distance of target L.	
Off	Offset between prism A and target L	
LH	Height from target L to the ground G.	

8.12 POINT PROJECTION

Description

It is used to calculate the coordinates of a point projected onto a line.

Item	Description
Start Pt Start point, defining a line.	
Nb1/Eb1/Zb1 Coordinates of the start point.	
End Pt	End point, defining a line.
Nb2/Eb2/Zb2	Coordinates of the end point.
N/E/Z	Coordinates of the measured point.
SD/VD/HD	Slope, vertical, horizontal distance of the measured point.

Result	Description
Np/Ep/Zp	Coordinates of the projected point.
L	Length from start point to projected point.
Off	Horizontal offset from measured point to projected point.
VD	Vertical distance from measured point to projected point.

9. STAKE OUT 9.1 OVERVIEW

Description	Stakeout application is used to	place marks or find locations in the field.		
Program	Diagram			
Point		F/B: Forward / Backward		
	F/B S.O Pt	L/R: Left / Right		
		F/C: Fill / Cut		
	STN 🖌 L/R	S.O Pt: Selected, measured or typed by manual,		
		which is known.		
CAD	P	F/B: Forward / Backward		
	F/B S.O.Pt	L/R: Left / Right		
		F/C: Fill / Cut		
	STN 🖌 LÌR	S.O Pt: Selected from CAD files		
Angle & Distance	N S.O Pt	a: Horizontal angle		
		HD: Horizontal distance		
	STN CHI	Z: Height difference \Vertical distance		

9.2 POINT

Access

Description The points can be selected from job, entered by manual or measured directly.

1)Select Main Menu: [Stake Out] \ [Point S.O] \ [+]

2)Rotate the telescope based on the guidance of E-compass, press [Meas.]

3) When all the distance becomes 0, press [Storage].

Point Stake Out

1 8							♥ * ▼ №	9:33
<			Poir	nt S.	0		s 😰	Q
Stake Out	Data	Graph	٦					
	Pt N:	-[Meas	+	L	ast	Next		
	R.Ht:	0.000	m	Me	eas.	Storage		
dHA :	-00	0°00'01"		м	HA:	3 34	°38'23"	
Front :		0.611	m	ea	N:	4 1	01.852 m	
Stop :		0.000	m	S.	E:	2	99.122 m	
Fill ↑ :		0.523	m	Pt	Z:		51.108 m	

Display	Description
Pt N Point ID to be staked.	
E-Compass	Direction of the stakeout points.
dHA	Difference of horizontal angle
F/B	Forward or backward

L/R	Left or right	
F/C	Fill or cut, move the target up or down.	
P1	Display the HA/N/E/Z/HD/VD/SD of measured target.	
P2	Slide the screen to check the information of points to be	
	staked. Click the triangle mark to set the display items.	
Keys	vs Description	
[Last]	Last point to be staked.	
[Next] Next point to be staked.		
[Meas.] Measure the target.		
[Storage]	Save the point into storage	

9.3 CAD STAKE OUT

Description The points to be staked can be uploaded and selected from DXF/DWG files.

Select Main Menu: [Stake Out] [CAD Stake Out].

2) Press [3]\[]]\[Done] to upload the map in DXF/DWG files.

CAD Stake Out

Access

lcons	Description		
[©]	Explore the features into sections.		
	Select the features by cursor.		
8	Upload a map or layer in DXF/DWG files;		
	Select the layer for display; Select the color of background.		
	Display the full map.		

۲	Locate the station.
	Check all the lines.
	Select the line to be staked.
	Including 1) Line stake out, refers to Chapter 9.6 Line.
	2) Start point stakeout, refers to Chapter 9.2 Point.
	3)End point stakeout, refers to Chapter 9.2 Point.
	4) start point extraction, and
	5) end point extraction, to extract and save points.
	Last
₽ ₽	Next
	Select the feature, click it to stake out.
	Including 1) Line stake out, refers to Chapter 9.6 Line.
	2) Start point stakeout, refers to Chapter 9.2 Point.
	3) End point stakeout, refers to Chapter 9.2 Point.
	4) Pile stake out,
	5) Interval stakeout,
	6) Offset stakeout.

9.3.1 Pile Stakeout

Description	Staking out the piles on the selected features.
-------------	---

Access

- 1) Select the feature, press [1] \[Pile Stake Out].
- 2) Press [1][] to select the last or next pile.
- 3) Press [1] again to stake out the selected pile.

Pile Stake Out

Icons Description		Description
	Reverse	Reverse the stake out direction.
	Exit	Exit the program.

9.3.2 Interval Stakeout

Description Staking out the points by the inputted interval.

Select the feature, press [1]\[Interval Stake Out].

2) Enter the interval mileage, press [Modify]. It will calculate the location of

points by the inputted interval, on the selected feature.

- 3) Press [1] 2 to select the last or next point.
- 4) Press [12] again to stake out the selected point.

Pile Stake Out

Access

lcons	Description	
Interval	Enter the intervals to be staked.	
Mileage		
Reverse	Reverse the stake out direction.	
Exit	Exit the program.	

9.3.3 Offset stakeout

Description	Staking out the points by the inputted offsets.			
Access	 Select the feature, press [1] [Offset Stake Out]. 			
	2) Enter the offsets, press [Modify]. It will move the selected feature horizontally			
	for staking out.			
	3) Press [①][꼬]	to select the last or next point.		
	4) Press [1] ago	ain to stake out the selected point.		
Pile Stake Out		Offset: 50.000 m Modify Reverse Exit		
Icons Description				
	Offset Enter the offsets to be staked.			
	Positive: Move right, Negative: Move left.			
	Reverse	se Reverse the stake out direction.		

9.4 ANGLE & DISTANCE

Description Stake-out the points by angle (HA), horizontal distance(HD) or height (Z).

Access 1)Select Main Menu:[Stake Out] \ [Angle & Distance S.O]

2)Enter HA, HD, Z\[Next]\[Meas.]

Angle & Distance

S.O

	Items	Descriptions
HA Horizontal angle from stake out point to station.		Horizontal angle from stake out point to station.
	HD	Horizontal distance from stake out point to station.
	Z	Height difference from stake out point to station.

9.5 DIRECTION LINE

Items	Descriptions	
Pt N Point ID of the known point.		
Azimuth Horizontal angle from stake out point to the known point.		
HD Horizontal distance from stake out point to the known		
VD	Vertical difference from stake out point to the known point.	

9.6 LINE

Description	base line (defined by two known points) and the		
	offset is calculated from the start point, move along the direction of baseline.		
Diagram		F/B: Forward / Backward	
	End S.O Pt	L/R: Left / Right	
	Start	U/D: Up / Down	
		Start Pt & End Pt: Known points	
Access	1)Select Main Menu: [Stake Out] \ [Line]		
Step-by-step	2)Enter two points and offsets, press [Next]		
	3)Stake out the points, press	[Meas]\[Storage].	

Line Stake Out

Items	Descriptions	
Start/End Pt Define a line by two known points.		
Left/Right	Longitudinal offset (Left or right).	
Front/Back	Latitudinal offset (front or back).	
Up/Down	Altitude offset (Up or down).	

9.7 REFERENCE LINE

DescriptionReference Line application can be used to stake out or measure points relative
to a line.

The points are staked from a reference line (shifted from a baseline), and the

related offset.

The reference line can be offset either longitudinally or latitudinally to the baseline (defined by two known points), or be rotated around the first base point as required.

End Off1 BL BL' S.O Pt RL 30tf

BL: Baseline, defined by two known points.

RL: Reference line, rotated (a) and moved by latitudinal (Off¹) and longitudinal (Off²) offset.

Off³: Left or right, backward or forward from the start point' of reference line.

Off4: Cut or fill from the start point'.

Access Step 1. Define a baseline from two known points.

Step-by-step

Diaaram

Press [+] to select, create, input or measure points.

Step 2. Define a reference line.

Type the offsets or angle to shift the baseline. Press [Next].

Step 3. Stake out points

Enter the offsets from the start point of reference line, press **[Next]** to stake out the points.

Press [Meas] \[Storage] to measure and save.

Reference line

Items	Descriptions	
Start/End Pt	Define a baseline by two known points.	
Left/Right Longitudinal offset (Left or right) to define a reference		
Front/Back	Latitudinal offset (front or back) to define a reference line.	
Angle	This term must always be considered to mean as Bearing.	
	The bearing angle from the baseline to define a reference line.	
Up/Down	Vertical offset to define a reference line.	

Refere	nce Line	s 🚳	 ♦
ers			
0.000	m		
0.000	m		
0.000	m	Next	
	Refere ers 0.000 0.000 0.000	Reference Line ers 0.000 m 0.000 m	Reference Line S Image: Comparison of the second s

Items	Descriptions		
Left/Right	Longitudinal offset (Left or right) from the start point of		
	reference line.		
Front/Back	Latitudinal offset (front or back) from the start point of		
	reference line.		
Up/Down	Vertical offset from the start point of reference line.		

Next Step Stake out points (Refers to Chapter 9.2)

9.8 ARC

Description	Calculate and stake out the points related to an arc.
	Elements that must be known to define the arc are:
	• coordinate of central point $\begin{pmatrix} \bullet \\ \mathfrak{w} \end{pmatrix}$
	coordinate of a start point
	OR
	 coordinates of start point and end point
	• radius
	OR p3
	coordinates of three points on the arc.
	P2 P1
Access	1)Select Main Menu: [Stake Out] \ [Arc S.O]
Step-by-step	2)Define an arc by: Arc center & Start point; Two points & Radius; Three points.
	Press [Next].
	3)Enter the offsets on the arc. Press [Next].
	4)Stake out the points, press [Meas]\[Storage].

Step 1.

Define an arc

Methods	Descriptions	
Center	Central point of the arc.	
Start Pt	The start point of the arc. Available for define an arc using:	
	Arc center & Start point, 3 points and 2 points & radius.	
End Pt	The end point of the arc. Available for define an arc using:	
	3 points and 2 points & radius.	
Arc Pt	The 3rd point of the arc. Available for define an arc using: 3	
	points.	
Radius	The radius of the arc. Available for define an arc using: 2	
	points & radius.	

Step 2: Stake out an arc

Methods	Elements Must Known	Diagram	
Point	Arc D (d1): Distance along the arc in	P3	
	anti-clockwise direction.	18	
	Radius D (d2): Radius distance in (d2<0), on		
	(d2=0) or outside (d2>0) the arc.		
Arc	vrc Closed Differ:		
	• Equally: Divide the closing error equally to	d1 d2 P3	
	each parts.	d1	
	• End Pt: Add the closing error to the end point.		
	• Start Pt: Add the closing error to the start		
	point.		

		Arc L (d1): Divide arc into several parts by the	
		arc length.	
		Radius D (d2): Radius distance in (d2<0), on	
		(d2=0) or outside (d2>0) the arc.	
	String	Closed Differ: Equally, End Point or Start Point.	d3
		String L (d3): Divide arc into several parts by the	d3
		string length.	P3 d3
		Radius D (d2): Radius distance in (d2<0), on	P1
		(d2=0) or outside (d2>0) the arc.	
	Central	Closed Differ: Equally, End Point or Start Point.	P5
	Angle	Center Angle (a): Divide arc into several parts	P4
		by the angle.	α_α
		Radius D (d2): Radius distance in (d2<0), on	P1
		(d2=0) or outside (d2>0) the arc.	
Next Step	Stake out th	e points based on the arc.	
	(Refers to CI	napter 9.2 Point.)	

10. DATA MANAGEMENT 10.1 POINT MANAGEMENT

Overview

Field	Descriptions
Item	Point ID. Click the triangle to reorder the points.
Туре	Display all or several types of points.
	e.g. Station point, measured point, inputted point, imported
	point, stake out point, known point, calculated point.
Code	Code of points.
N/E/Z	North, East and Zenith.
Time	Recording time.

10.1.1 Creating a New Point

10.1.2 Editing a Point

Description	Edit the point ID or coordinates.
Access	Select []]\{Data} page\Select a point\[Edit]\[OK]

1 🖩 🖨		Q 🗱 🐨 🖄 🔒 4:56	🖻 İ 🖬 🖨			♀ ೫ ♀ № ਛ 4:59
<	Operation	9, 1	<			۹. :
Data Code	operation		Data Code	ocorde Data Granh		
Total 3	View	Multi-Del.	Total 3	Edit		Multi-Del.
Item +	Edit	E	Item +			E
22	Delete	111.198	22	Pt N: 22		111.198
21	001010	113.021	21	Cancel	ок	113.021
1		100.000	1			100.000
ļ		Cancel (+				Ð

Туре	Descriptions
Stn.Pt	Not editable.
Meas.Pt	Available to edit Pt N only.
Inputted Pt	Available to edit Pt N, code and coordinates.
Imp. Point	Available to edit Pt N, code and coordinates.
S.O Point	Not editable.
Known Pt	Available to edit.
Calc.Pt	Available to edit Pt N, code and coordinates.

10.1.3 Deleting Points

Access

Points can be deleted by three methods:

- Single: Select a point \[Delete]
- Multiple: Press [Multi-Delete] \Tick the points \[Delete]
- All: Press []\[Clear]

Delete Points

1 🖬 🔒			•	\$ 🗑 🖹 🛢 9:21
<		Data		٩
Data	Code Qcode D	ata Graph		
Cancel		2 Selected		Delete
🗌 Item		Code	Ν	Е
23	Stn.Pt	station	30.000	0.000
23	Inp.Pt	stn	30.000	0.000
22	Meas.Pt		111.198	111.198
21	Meas.Pt		113.021	113.021
□ 1	Inn Pt	etn	100.000	100.000

10.1.4 View Points

Access

Select []]\{Data} page\Select a point\[View].

Including point name, type, code, R.ht, HA, VA, N, E, Z, HD, dVD and SD.

10.1.5 Searching a Point

10.2 CODE MANAGEMENT

Access

Select []]\{Code} page

Overview

Display	Description	
Q-Code	Quick code, must be created in Southmap or CAD.	
	Otherwise, please enter the full code here to record the	
	codes in raw data or coordinate data.	
	Maximum 16 digits.	
Code	Code, which is created in southmap or CAD.	
Color	Color, which is created in southmap or CAD.	
Name	Note, which is created in southmap or CAD.	

Code	Operate	Access
Management	Create	[+]\Type the information\[OK]
	Edit	Select a code\[Edit]\[OK]
	Delete	Select a code\ [Delete] .
		[Multi-Del.]\Tick the codes\[Delete].
		Press []\[Clear].
	Search	Press []\Type the keyword of codes\[Enter]
	Import	Press []\[Import Code]. Refers to Chapter 10.5.2.
	Export	Press []\[Export Code]. Refers to Chapter 10.6.2.

10.3 QCODE MANAGEMENT

Quick codes must be created in Southmap or CAD.

10.4 MAP MANAGEMENT

Description

Upload the map or layers for graphical display.

Access

- 1) There are two methods to access map.
- Press [**[]**] from the tool bar **{Graph}** page.
- Select Main Menu: [Measure] \{Graph} page.
- 2) Press [Solar to access the map management.

Map Page

Keys	Description
\$	Change the layers screen.
•	Make layers from the CAD file visible or invisible in map.
D	Select a CAD file or offline map to the job.

10.5 IMPORT DATA

Description The data to import must be stored in the internal memory.

Formats

Туре	File Extension	
Coordinate	*.txt, *.dat	
Code	*.xls	
Мар	*.map, *.mbtiles, *.kml, *.shp, *.dwg, *.tif, *.tiff, *.dxf	
CAD Stake Out	*.dwg, *.dxf	
Road	*.rd, *.ip, *.xlsx, *.rod, *.pm, *.jd	

10.5.1 Importing Coordinates

Description	Point Name,code,N,E,Z		
	Example: imp5,building,-0.286,29.757,1.424		
	imp2,tree,29.757,-0.286,1.424		
Access	1) Press [🕘] in tool bar\ {Data} Page \[<mark>[]]</mark> \[Import].		
Step-by-step	2) Select type (*.txt or *.dat) and file from the internal memory.		
	3) Select and drag the item (Pt N, Code, N, E, Z) to change the imported order.		
	4) Press [OK]		

Import

Coordinates

Keys	Descriptions
Туре	All files with extension *.txt and *.dat can be selected.
ESC	Escape to the root directory.
Back	Back to the last page.
←/→	Change the order of data.
ОК	To import the data.
Cancel	To exit the screen.

10.5.2 Importing Codes

Back

Back to the last page.

10.5.3 Importing Maps

DescriptionIn normal, when instrument is online, the map will be loaded automatically.
Meanwhile, the layers and maps can be imported for offline users.
*It is a kind of reference in work, the deviation might be existed.

Access 1) Press [] in tool bar\{Graph} Page.

Or select main menu: [Measure] \{Graph} page.

- 2) Press [$\[[Semigrad]\]$] to select a CAD file or offline map to the job.
- 3) Choose type and file from the internal memory. Press [Done].

Import Maps

Туре	Description
*.map, *.mbtiles	Map related files
*.kml	Map related files

	*.kmz	Map related files	
	*.shp	Shape files	
	*.tif, *.tiff	Tagged image files	
	*.dxf	Drawing exchange files	
	*.dwg	Drawing files	

10.5.4 Importing Data for CAD Stake Out

Description	Easy-to-Stake out the base map from a CAD file. Refers to Chapter 9.3.					
Access 1) Select main menu: [Stake Out] \[CAD Stake Out].						
	2) Press [\otimes \ [\bigcirc] to select a CAD file to the job.					
	3) Choose type (DWG/DXF) o	noose type (DWG/DXF) and file from the internal memory. Press [Done].				
Import Data for	🖂 土 🔳 台	♥ 🕸 🕅 🛔 9:35 🔛 🚊 🖿	🔒 🔮 🕸 🚉 9:35.			
CAD Stake Out	< Add Layer	< 🍕) 🛢 🔹 S 🕅 🎯			
	Type: .dwg	▼ Done Ô*				
	/storage/emulated/0/com_southgnss_surveystarExpand/Map					
	Park.dwg	\$				
	Lain 湿地公园.dwg	30	¥.			
		۲				
_	Keys	Descriptions				
---	------	---	---			
	Туре	All files with extension *.dwg and *.dxf can be selected.				
	ESC	Escape to the root directory.]			
	Back	Back to the last page.				

10.6 EXPORT & COPY DATA

Description The data can be exported to the internal memory.

Copy it to the data storage device (Micro SD card, USB OTG) or transfer it by Bluetooth.

Overview	Туре		File Extension		
	Points	Coordinate	*.txt, *.dxf, *.dat, *.csv, *.txt (FC-6/GTS-7)		
		Raw Data	*.txt, *.txt (FC-6/GTS-7)		
		Side & Angle Data	*.txt		
	Codes		*.xls		
	Traverse		*.xls		
Next Step	Please check the data format in Appendix B.				