

Shenzhen Toby Technology Co., Ltd.

Report No.: TBR-C-202306-0191-31

Page: 1 of 44

Radio Test Report

FCC ID: 2AJTU-NS30

Report No. : TBR-C-202306-0191-31

Applicant : South Surveying & Mapping Technology Co., Ltd.

Equipment Under Test (EUT)

EUT Name: Total station

Model No. : NS30

Series Model No. : NS50, NS90, KA05, KA10, Arc One, Nexis, TS-R900, eTS8,

eTS10

Brand Name : SOUTH, KOLIDA, SANDING, RUIDE, TIANYU, SinoGNSS,

e-Survey

Sample ID : 202306-0191-1-1# & 202306-0191-1-2#

Receipt Date : 2023-06-30

Test Date : 2023-06-30 to 2023-08-23

Issue Date : 2023-08-23

Standards : FCC Part 15 Subpart C 15.247

Test Method : ANSI C63.10: 2013

KDB 558074 D01 15.247 Meas Guidance v05r02

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above.

Witness Engineer :

Engineer Supervisor : JAW SV

Engineer Manager : *****

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Report No.: TBR-C-202306-0191-31 Page: 2 of 44

Contents

COI	NTENTS	2	
1.	GENERAL INFORMATION ABOUT EUT	5	
	1.1 Client Information	5	
	1.2 General Description of EUT (Equipment Under Test)	5	
	1.3 Block Diagram Showing the Configuration of System Tested	6	
	1.4 Description of Support Units	7	
	1.5 Description of Test Mode	7	
	1.6 Description of Test Software Setting	9	
	1.7 Measurement Uncertainty	9	
	1.8 Test Facility	10	
2.	TEST SUMMARY	11	
3.	TEST SOFTWARE	11	
4.	TEST EQUIPMENT	12	
5.	CONDUCTED EMISSION TEST		
	5.1 Test Standard and Limit	14	
	5.2 Test Setup	14	
	5.3 Test Procedure		
	5.4 Deviation From Test Standard	15	
	5.5 EUT Operating Mode	15	
	5.6 Test Data	15	
6.	RADIATED AND CONDUCTED UNWANTED EMISSIONS	16	
	6.1 Test Standard and Limit	16	
	6.2 Test Setup	18	
	6.3 Test Procedure	19	
	6.4 Deviation From Test Standard	20	
	6.5 EUT Operating Mode	20	
	6.6 Test Data	20	
7.	RESTRICTED BANDS REQUIREMENT	21	
	7.1 Test Standard and Limit	21	
	7.2 Test Setup		
	7.3 Test Procedure		
	7.4 Deviation From Test Standard	23	

Report No.: TBR-C-202306-0191-31 Page: 3 of 44

	7.5 EUT Operating Mode	23
	7.6 Test Data	
8.	BANDWIDTH TEST	24
	8.1 Test Standard and Limit	24
	8.2 Test Setup	
	8.3 Test Procedure	
	8.4 Deviation From Test Standard	
	8.5 EUT Operating Mode	25
	8.6 Test Data	25
9.	PEAK OUTPUT POWER	26
	9.1 Test Standard and Limit	26
	9.2 Test Setup	26
	9.3 Test Procedure	26
	9.4 Deviation From Test Standard	26
	9.5 EUT Operating Mode	26
	9.6 Test Data	
10.	POWER SPECTRAL DENSITY	27
	10.1 Test Standard and Limit	27
	10.2 Test Setup	27
	10.3 Test Procedure	27
	10.4 Deviation From Test Standard	27
	10.5 Antenna Connected Construction	27
	10.6 Test Data	27
11.	ANTENNA REQUIREMENT	28
	11.1 Test Standard and Limit	28
	11.2 Deviation From Test Standard	28
	11.3 Antenna Connected Construction	28
	11.4 Test Data	28
ATT	ACHMENT A CONDUCTED EMISSION TEST DATA	29
ΔΤΤ	ACHMENT BUNWANTED EMISSIONS DATA	31

Report No.: TBR-C-202306-0191-31 Page: 4 of 44

Revision History

Report No.	Version	Description	Issued Date
TBR-C-202306-0191-31	Rev.01	Initial issue of report	2023-08-23
	man B		W Committee
	3	WORR WINDS	
	mnB)		
		OH THE	
The state of the s			J Work
	133		
			V. W.
		MODEL TO THE PARTY OF THE PARTY	
		Dis During	CI W

Page: 5 of 44

1. General Information about EUT

1.1 Client Information

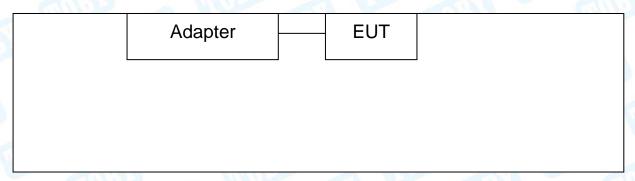
Applicant : South Surveying & Mapping Technology Co., Ltd.		South Surveying & Mapping Technology Co., Ltd.
Address : No.39, Sicheng Road, Tian He District, Guangzh		No.39, Sicheng Road, Tian He District, Guangzhou, China
Manufacturer : S		South Surveying & Mapping Technology Co., Ltd.
Address		No.39, Sicheng Road, Tian He District, Guangzhou, China

1.2 General Description of EUT (Equipment Under Test)

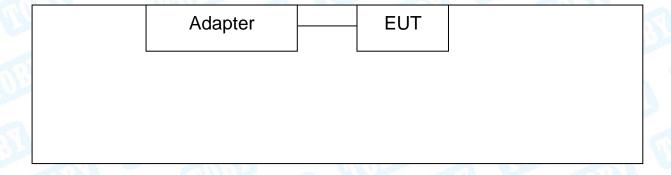
EUT Name		Total station				
Models No.		NS30, NS50, NS90, KA05, KA10, Arc One, Nexis, TS-R900, eTS8, eTS10				
Model Different		All PCB boards and circuit diagrams are the same, the only difference is that appearance color.				
TOPE		Operation Frequency:	802.11b/g/n(HT20): 2412MHz~2462MHz 802.11n(HT40): 2422MHz~2452MHz			
		Number of Channel:	802.11b/g/n(HT20):11 channels 802.11n(HT40): 7 channels			
Product		Antenna Gain:	1.8dBi FPC Antenna			
Description	W.	Modulation Type:	802.11b: DSSS(CCK, DQPSK, DBPSK) 802.11g/n:OFDM(BPSK,QPSK,16QAM,64QAM)			
		Bit Rate of Transmitter:	802.11b:11/5.5/2/1 Mbps 802.11g:54/48/36/24/18/12/9/6 Mbps 802.11n:up to 150Mbps			
The same of		Input: 100-240V~ 50/60Hz				
Power Rating		Output: 12V-2A				
		DC 7.4V 5400mAh Rechargeable Li-ion battery				
Software Version	:	Android 11				
Hardware Version		: CT3_AB board_P1				

- (1) The antenna gain provided by the applicant, the verified for the RF conduction test provided by
- TOBY test lab.

 (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- 3) Antenna information provided by the applicant.


Report No.: TBR-C-202306-0191-31 Page: 6 of 44

(4) Channel List:


Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
01	2412	05	2432	09	2452		
02	2417	06	2437	10	2457		
03	2422	07	2442	11	2462		
04	2427	80	2447				
Note: CH 01~CH 11 for 802.11b/g/n(HT20)							

1.3 Block Diagram Showing the Configuration of System Tested

Conducted Test

Radiated Test

Page: 7 of 44

1.4 Description of Support Units

		Equipment Inform	ation			
Name Model FCC ID/SDOC Manufacturer Use						
Adapter		<u> </u>	7 (111)	√		
Cable Information						
Number Shielded Type Ferrite Core Length Note						
				TILL WEST		

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Emission Test					
Final Test Mode Description					
Mode 1	TX Mode b Mode Channel 01				
For Radiated and RF Conducted Test					
Final Test Mode Description					
Mode 2	TX Mode b Mode Channel 01/06/11				
Mode 3	TX Mode g Mode Channel 01/06/11				
Mode 4 TX Mode n(HT20) Mode Channel 01/06/11					
Mode 5 TX Mode n(HT40) Mode Channel 03/06/09					

Page: 8 of 44

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

802.11b Mode: CCK

802.11g Mode: OFDM

802.11n (HT20) Mode: MCS 0 802.11n (HT40) Mode: MCS 0

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a Mobile unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 9 of 44

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

	Test Softwa	are: #*#*3646633*	#*#				
Test Mode: Continuously transmitting							
Mode	Data Rate	Channel	Parameters				
	CCK/ 1Mbps	01	22				
802.11b	CCK/ 1Mbps	06	22				
000	CCK/ 1Mbps	11	22				
	OFDM/ 6Mbps	01	20				
802.11g	OFDM/ 6Mbps	06	20				
	OFDM/ 6Mbps	11	20				
W COOL	MCS 0	01	20				
802.11n(HT20)	MCS 0	06	20				
	MCS 0	11	20				
CHOCK	MCS 0	03	18				
802.11n(HT40)	MCS 0	06	18				
	MCS 0	09	15				

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	$\pm 3.50~\mathrm{dB}$ $\pm 3.10~\mathrm{dB}$
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	\pm 4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

Page: 10 of 44

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F., Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.

Report No.: TBR-C-202306-0191-31 Page: 11 of 44

2. Test Summary

Standard Section	Took How	Toot Commission	ldamaant	Damari
FCC	Test Item	Test Sample(s)	Judgment	Remari
FCC 15.207(a)	Conducted Emission	202306-0191-1-1#	PASS	N/A
FCC 15.209 & 15.247(d)	Radiated Unwanted Emissions	202306-0191-1-1#	PASS	N/A
FCC 15.203	Antenna Requirement	202306-0191-1-2#	PASS	N/A
FCC 15.247(a)(2)	6dB Bandwidth	202306-0191-1-2#	PASS	N/A
	99% Occupied bandwidth	202306-0191-1-2#	PASS	N/A
FCC 15.247(b)(3)	Peak Output Power and E.I.R.P	202306-0191-1-2#	PASS	N/A
FCC 15.247(e)	Power Spectral Density	202306-0191-1-2#	PASS	N/A
FCC 15.247(d)	Band Edge Measurements	202306-0191-1-2#	PASS	N/A
FCC 15.207(a)	Conducted Unwanted Emissions	202306-0191-1-2#	PASS	N/A
FCC 15.247(d)	Emissions in Restricted Bands	202306-0191-1-2#	PASS	N/A
1-000	On Time and Duty Cycle	202306-0191-1-2#		N/A

Note: N/A is an abbreviation for Not Applicable.

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
Radiation Emission	EZ-EMC	EZ	FA-03A2RE+
RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0
RF Test System	JS1120	Tonscend	V3.2.22

Report No.: TBR-C-202306-0191-31 Page: 12 of 44

4. Test Equipment

Conducted Emissi	on Test					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date	
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jun. 20, 2023	Jun. 19, 2024	
	Compliance	1000	NO	J 67		
RF Switching Unit	Direction Systems	RSU-A4	34403	Jun. 20, 2023	Jun. 19, 2024	
	Inc	7		WW.		
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jun. 20, 2023	Jun. 19, 2024	
LISN	Rohde & Schwarz	ENV216	101131	Jun. 20, 2023	Jun. 19, 2024	
ISN	SCHWARZBECK	NTFM 8131	8131-193	Jun. 20, 2023	Jun. 19, 2024	
ISN	SCHWARZBECK	CAT3 8158	cat3 5158-0094	Jun. 20, 2023	Jun. 19, 2024	
ISN	SCHWARZBECK	NTFM5158	NTFM5158 0145	Jun. 20, 2023	Jun. 19, 2024	
ISN	SCHWARZBECK	CAT 8158	cat5 8158-179	Jun. 20, 2023	Jun. 19, 2024	
Radiation Emissio	n Test (B Site)		•			
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date	
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep.01.2022	Aug. 31, 2023	
Spectrum	Dobdo & Coburge	ESV40 N	102107	lun 20 2022	lun 10 2024	
Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 20, 2023	Jun. 19, 2024	
EMI Test Receiver	Rohde & Schwarz	ESU-8	100472/008	Feb. 23, 2023	Feb. 22, 2024	
Bilog Antenna	SCHWARZBECK	VULB 9168	1225	Dec. 05, 2021	Dec. 04, 2023	
Horn Antenna	SCHWARZBECK	BBHA 9120 D	2463	Feb. 26, 2022	Feb.25, 2024	
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Jun. 26, 2022	Jun.25, 2024	
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jun. 26, 2022	Jun.25, 2024	
HF Amplifier	Tonscend	TAP9E6343	AP21C806117	Sep.01.2022	Aug. 31, 2023	
HF Amplifier	Tonscend	TAP051845	AP21C806141	Sep.01.2022	Aug. 31, 2023	
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Sep.01.2022	Aug. 31, 2023	
Highpass Filter	CD	HPM-6.4/18G		N/A	N/A	
Highpass Filter	CD	HPM-2.8/18G		N/A	N/A	
Highpass Filter	XINBO	XBLBQ-HTA67(8-25G)	22052702-1	N/A	N/A	
Antenna Conducte	d Emission					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date	
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jun. 20, 2023	Jun. 19, 2024	
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 20, 2023	Jun. 19, 2024	
MXA Signal Analyzer	KEYSIGHT	N9020B	MY60110172	Sep.01.2022	Aug. 31, 2023	
MXA Signal Analyzer	Agilent	N9020A	MY47380425	Sep.01.2022	Aug. 31, 2023	

Report No.: TBR-C-202306-0191-31 Page: 13 of 44

Vector Signal Generator	Agilent	N5182A	MY50141294	Sep.01.2022	Aug. 31, 2023
Analog Signal Generator	Agilent	N5181A	MY48180463	Sep.01.2022	Aug. 31, 2023
Vector Signal Generator	KEYSIGHT	N5182B	MY59101429	Sep.01.2022	Aug. 31, 2023
Analog Signal Generator	KEYSIGHT	N5173B	MY61252685	Sep.01.2022	Aug. 31, 2023
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Sep.01.2022	Aug. 31, 2023
DE Dawar Canasa	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Sep.01.2022	Aug. 31, 2023
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Sep.01.2022	Aug. 31, 2023
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Sep.01.2022	Aug. 31, 2023
RF Control Unit	Tonsced	JS0806-1	21C8060380	N/A	N/A
RF Control Unit	Tonsced	JS0806-2	21F8060439	Sep.01.2022	Aug. 31, 2023
Band Reject Filter Group	Tonsced	JS0806-F	21D8060414	Jun. 20, 2023	Jun. 19, 2024
Power Control Box	Tonsced	JS0806-4ADC	21C8060387	N/A	N/A
Wideband Radio Comunication Tester	Rohde & Schwarz	CMW500	144382	Sep.01.2022	Aug. 31, 2023
Universal Radio Communication Tester	Rohde&Schwarz	CMW500	168796	Feb. 23, 2023	Feb.22, 2024
Temperature and Humidity Chamber	ZhengHang	ZH-QTH-1500	ZH2107264	Jun. 20, 2023	Jun. 19, 2024

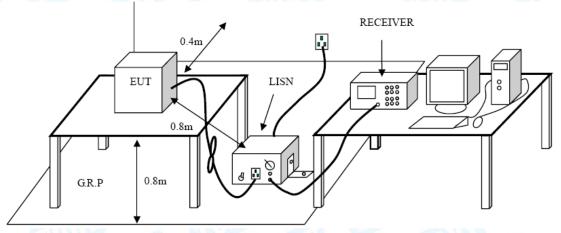
Page: 14 of 44

5. Conducted Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard

FCC Part 15.207


5.1.2 Test Limit

Francisco	Maximum RF Line Voltage (dBμV)			
Frequency	Quasi-peak Level	Average Level		
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *		
500kHz~5MHz	56	46		
5MHz~30MHz	60	50		

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

5.3 Test Procedure

- The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.
- Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- ●I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- ■LISN at least 80 cm from nearest part of EUT chassis.

Page: 15 of 44

●The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

5.4 Deviation From Test Standard

No deviation

5.5 EUT Operating Mode

Please refer to the description of test mode.

5.6 Test Data

Please refer to the Attachment A inside test report.

Page: 16 of 44

6. Radiated and Conducted Unwanted Emissions

6.1 Test Standard and Limit

6.1.1 Test Standard

FCC Part 15.209 & FCC Part 15.247(d)

6.1.2 Test Limit

General field strength limits at frequencies Below 30MHz					
Frequency (MHz)	Field Strength (microvolt/meter)**	Measurement Distance (meters)			
0.009~0.490	2400/F(KHz)	300			
0.490~1.705	24000/F(KHz)	30			
1.705~30.0	30	30			

Note: 1, The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

General field strength limits at frequencies above 30 MHz						
Frequency (MHz)	Field strength(μV/m at 3 m)	Measurement Distance (meters)				
30~88	100	3				
88~216	150	3				
216~960	200	3				
Above 960	500	3				

General field strength limits at frequencies Above 1000MHz					
Frequency	Distance of 3m (dBuV/m)				
(MHz)	Peak	Average			
Above 1000	74	54			

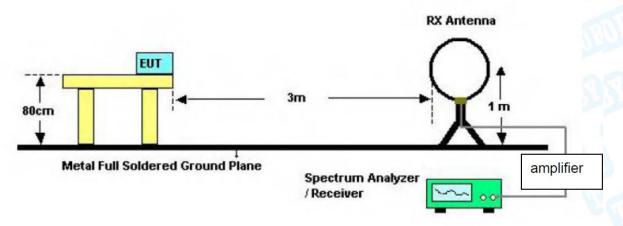
Note:

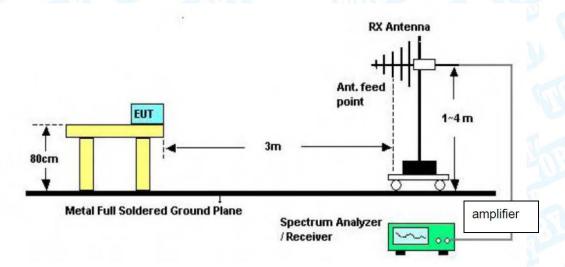
- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the

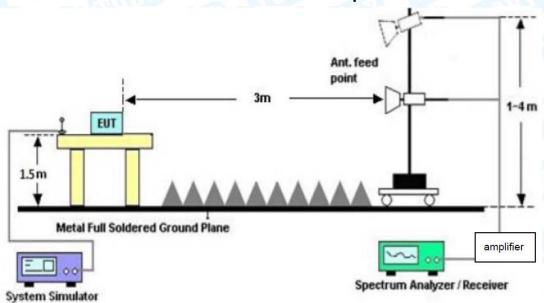
Page: 17 of 44

transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.



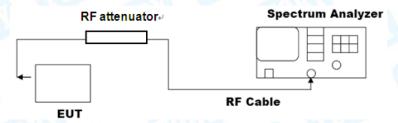

Page: 18 of 44

6.2 Test Setup


Radiated measurement

Below 30MHz Test Setup

Below 1000MHz Test Setup



Page: 19 of 44

Above 1GHz Test Setup Conducted measurement

6.3 Test Procedure

---Radiated measurement

- ●The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Below 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- Testing frequency range 30MHz-1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection. Testing frequency range 9KHz-150Hz the measuring instrument use VBW=200Hz with Quasi-peak detection. Testing frequency range 9KHz-30MHz the measuring instrument use VBW=9kHz with Quasi-peak detection.
- ●Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- For the actual test configuration, please see the test setup photo.

Page: 20 of 44

--- Conducted measurement

Reference level measurement

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to≥1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW≥[3*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

Emission level measurement

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW≥[3*RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.

6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Mode

Please refer to the description of test mode.

6.6 Test Data

Radiated measurement please refer to the Attachment B inside test report.

Conducted measurement please refer to the external appendix report of 2.4G Wi-Fi.

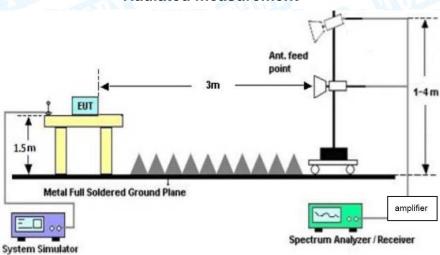
Page: 21 of 44

7. Restricted Bands Requirement

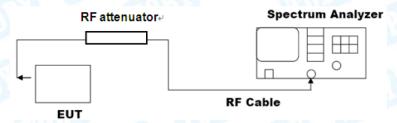
7.1 Test Standard and Limit

7.1.1 Test Standard

FCC Part 15.205 & FCC Part 15.247(d)


7.1.2 Test Limit

Restricted Frequency	Distance Meters(at 3m)			
Band (MHz)	Peak (dBuV/m)	Average (dBuV/m)		
2310 ~2390	74	54		
2483.5 ~2500	74	54		
	Peak (dBm)see 7.3 e)	Average (dBm) see 7.3 e)		
2310 ~2390	-21.20	-41.20		
2483.5 ~2500	-21.20	-41.20		


Note: According the ANSI C63.10 11.12.2 antenna-port conducted measurements may also be used as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test forcabinet/case emissions is required.

7.2 Test Setup

Radiated measurement

Conducted measurement

Page: 22 of 44

7.3 Test Procedure

---Radiated measurement

- Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- ●The Peak Value and average value both need to comply with applicable limit above 1 GHz.
- Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- For the actual test configuration, please see the test setup photo.

--- Conducted measurement

- a) Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 11.12.2.3 through 11.12.2.5 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).
- b) Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP (see 11.12.2.6 for guidance on determining the applicable antenna gain).
- c) Add the appropriate maximum ground reflection factor to the EIRP (6 dB for frequencies ≤30 MHz; 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive; and 0 dB for frequencies > 1000 MHz).
- d) For MIMO devices, measure the power of each chain and sum the EIRP of all chains in linear terms (i.e., watts and mW).
- e) Convert the resultant EIRP to an equivalent electric field strength using the following relationship:

 $E = EIRP-20 \log d + 104.8$

where

E is the electric field strength in dBuV/m

Page: 23 of 44

EIRP is the equivalent isotropically radiated power in dBm

d is the specified measurement distance in m

- f) Compare the resultant electric field strength level with the applicable regulatory limit.
- g) Perform the radiated spurious emission test.

7.4 Deviation From Test Standard

No deviation

7.5 EUT Operating Mode

Please refer to the description of test mode.

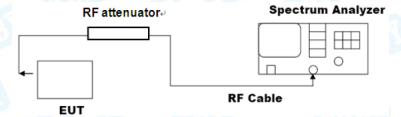
7.6 Test Data

Remark: The test uses antenna-port conducted measurements as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements.

Page: 24 of 44

8. Bandwidth Test

8.1 Test Standard and Limit


8.1.1 Test Standard

FCC Part 15.205 & FCC Part 15.247(d)

8.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
-6dB bandwidth	>=500 KHz	2400~2483.5
(DTS bandwidth)	>=500 KHZ	2400~2463.5
99% occupied bandwidth		2400~2483.5

8.2 Test Setup

8.3 Test Procedure

---DTS bandwidth

- The steps for the first option are as follows:
- a) Set RBW = 100 kHz.
- b) Set the VBW≥[3*RBW].
- c) Detector = peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

---occupied bandwidth

- ●The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:
- a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.

Page: 25 of 44

b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.

- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
- d) Step a) through step c) might require iteration to adjust within the specified range.
- e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
- g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.
- h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

8.4 Deviation From Test Standard

No deviation

8.5 EUT Operating Mode

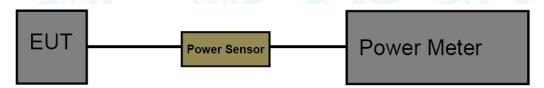
Please refer to the description of test mode.

8.6 Test Data

Page: 26 of 44

9. Peak Output Power

9.1 Test Standard and Limit


9.1.1 Test Standard

FCC Part 15.247(b)(3)

9.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)	
Peak Output Power	not exceed 1 W or 30dBm	2400~2483.5	

9.2 Test Setup

9.3 Test Procedure

● The EUT was connected to RF power meter via a broadband power sensor as show the block above. The power sensor video bandwidth is greater than or equal to the DTS bandwidth of the equipment.

9.4 Deviation From Test Standard

No deviation

9.5 EUT Operating Mode

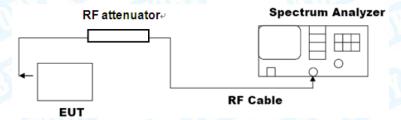
Please refer to the description of test mode.

9.6 Test Data

Page: 27 of 44

10. Power Spectral Density

10.1 Test Standard and Limit


10.1.1 Test Standard

FCC Part 15.247(e)

10.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)		
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5		

10.2 Test Setup

10.3 Test Procedure

- The following procedure shall be used if maximum peak conducted output power was used to determine compliance, and it is optional if the maximum conducted (average) output power was used to determine compliance:
- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to 3 kHz≤RBW≤100 kHz.
- d) Set the VBW ≥[3*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.

10.4 Deviation From Test Standard

No deviation

10.5 Antenna Connected Construction

Please refer to the description of test mode.

10.6 Test Data

Page: 28 of 44

11. Antenna Requirement

11.1 Test Standard and Limit

11.1.1 Test Standard

FCC Part 15.203

11.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

11.2 Deviation From Test Standard

No deviation

11.3 Antenna Connected Construction

The gains of the antenna used for transmitting is 1.8dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

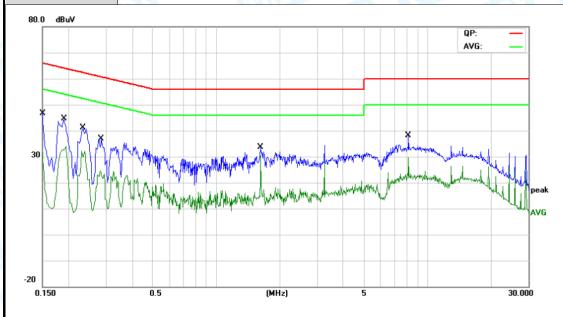
11.4 Test Data

The EUT antenna is a FPC Antenna. It complies with the standard requirement.

Antenna Type			
⊠Permanent attached antenna	(III)		
Unique connector antenna			
Professional installation antenna	M.F.		

Page: 29 of 44

Attachment A-- Conducted Emission Test Data


Temperature: 23.8°C Relative Humidity: 55%

Test Voltage: AC 120V/60Hz

Terminal: Line

Test Mode: Mode 1

Remark: Only worse case is reported.

No. M	c. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1500	30.10	11.11	41.21	65.99	-24.78	QP
2	0.1500	15.81	11.11	26.92	55.99	-29.07	AVG
3	0.1900	30.14	11.02	41.16	64.03	-22.87	QP
4	0.1900	20.65	11.02	31.67	54.03	-22.36	AVG
5	0.2340	26.96	10.95	37.91	62.30	-24.39	QP
6	0.2340	18.56	10.95	29.51	52.30	-22.79	AVG
7	0.2860	22.01	10.88	32.89	60.64	-27.75	QP
8	0.2860	11.15	10.88	22.03	50.64	-28.61	AVG
9	1.6220	20.49	10.56	31.05	56.00	-24.95	QP
10 *	1.6220	17.31	10.56	27.87	46.00	-18.13	AVG
11	8.1140	23.57	10.06	33.63	60.00	-26.37	QP
12	8.1140	18.03	10.06	28.09	50.00	-21.91	AVG

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Report No.: TBR-C-202306-0191-31 Page: 30 of 44

Temperature:	23.8℃		a W	Relative Hu	ımidity:	55%	
Test Voltage:	AC 12	20V/60Hz			1)	1	Alle
Terminal:	Neutra	al			61	UPP	
est Mode:	Mode	1	Alle		1		ATT I
Remark:	Only	worse case i	is reported.	OHU			63
30 dBuV	May		Mary Mayora		The state of the s	QP:	
0.150	0.5	Reading	(MHz) Correct	Measure-			30.000
No. Mk.	Freq.	Level	Factor	ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1500	29.88	10.98	40.86	65.99	-25.13	QP
2	0.1500	11.94	10.98	22.92	55.99	-33.07	AVG
3 *	0.1819	30.49	11.07	41.56	64.39	-22.83	QP
4	0.1819	13.64	11.07	24.71	54 30	-29.68	AVG
		10.01			04.00		
5	0.2260	26.50	11.08	37.58		-25.01	QP
5					62.59	-25.01 -31.59	
	0.2260	26.50	11.08	37.58	62.59 52.59		
6	0.2260 0.2260	26.50 9.92	11.08 11.08	37.58 21.00	62.59 52.59 56.00	-31.59	AVG
7	0.2260 0.2260 1.2100	26.50 9.92 18.82	11.08 11.08 10.66	37.58 21.00 29.48	62.59 52.59 56.00 46.00	-31.59 -26.52	AVG QP
6 7 8	0.2260 0.2260 1.2100 1.2100	26.50 9.92 18.82 6.45	11.08 11.08 10.66 10.66	37.58 21.00 29.48 17.11	62.59 52.59 56.00 46.00 60.00	-31.59 -26.52 -28.89	AVG QP AVG
6 7 8 9	0.2260 0.2260 1.2100 1.2100 6.7780	26.50 9.92 18.82 6.45 15.85	11.08 11.08 10.66 10.66 10.06	37.58 21.00 29.48 17.11 25.91	62.59 52.59 56.00 46.00 60.00 50.00	-31.59 -26.52 -28.89 -34.09	AVG QP AVG QP

- Remark:
 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

31 of 44 Page:

Attachment B--Unwanted Emissions Data

---Radiated Unwanted Emissions

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB Below the permissible value has no need to be reported.

30MHz~1GHz

cinhei	ature:	24.3℃ Relative Humidity: 45%			5.1			
Test Vo	ltage:	AC 12	20V/60Hz					1) (1)
Ant. Po	l.	Horiz	ontal					60
Test Mo	de:	Mode	Mode 2 TX Mode b Mode Channel 01					1 6
Remark	:	Only worse case is reported.						
80.0 dBu	V/m							
70								
60								
						7 1	3M Radiation	
50						Margin -6 dB	4 5	c
40				*	-			, , , , , , , , , , , , , , , , , , ,
aa					1 1 1 1 1 1 1		TITLE BUDGET	Jahlia III
30								peal
20				المهرالي إن			M M	(/∭III.4I/v•vpeai
	llywydannymaetholanyia	and the second second	Manager	Mary Mary Mary Mary Mary Mary Mary Mary				MINITION Pear
20	l fagan daring an distribution for	and the second second second	- Mangapan dan pangan dan dan dan dan dan dan dan dan dan d	المحاملة العرب المعرب ومعرب والمعرب				()))((Lilyyy pear
20 10	(Superior and Artistan)	and the second second second	Managarahan philosophia	المحافظ المرسي ومساوره والمساورة			AND THE	()]][[t]:\peal
20	Elyandarus, passidert bez in		Marian against ann phoras de ann an ann ann ann ann ann ann ann ann				W. W. W.	
20	Eliprodurus, partirilores	60.00	Marine and any house of a series	(MHz)	300.1		MA, M. W.	1000.00
20	Frequ (MF	60.00 ency	Reading (dBuV)			Limit	Margin (dB)	1000.00
20 10 0 0 10 10 10 10 10 10 10 10 10 10 1	Frequ	60.00 ency Hz)	Reading	(MHz)	300.1	Limit		1000.00
20 10 0 -10 -20 30.000	Frequ (MF	ency dz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	(dB)	1000.00
20 10 0 -10 -20 30.000 No.	Frequ (MF	60.00 ency Hz) 378	Reading (dBuV) 61.93	Factor (dB/m)	Level (dBuV/m) 37.79	Limit (dBuV/m) 43.50	(dB) -5.71	Detector peak
20 110 0 -10 -20 30.000 No.	Frequ (MF 185.1 252.0	ency 1z) 378 627 5803	Reading (dBuV) 61.93 61.30	(MHz) Factor (dB/m) -24.14 -22.64	Level (dBuV/m) 37.79 38.66	Limit (dBuV/m) 43.50 46.00	(dB) -5.71 -7.34	Detector peak peak
20 10 0 -10 -20 30.000 No. 1! 2 3!	Frequ (MF 185.1 252.0 420.5	ency dz) 378 0627 5803	Reading (dBuV) 61.93 61.30 57.99	(MHz) Factor (dB/m) -24.14 -22.64 -17.34	300.0 Level (dBuV/m) 37.79 38.66 40.65	Limit (dBuV/m) 43.50 46.00 46.00	(dB) -5.71 -7.34 -5.35	Detector peak peak peak

^{*:}Maximum data x:Over limit !:over margin

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Report No.: TBR-C-202306-0191-31 Page: 32 of 44

Ten	npera	iture:	24.3	C		R	elative Hu	midity:	45%	
Гes	t Vol	tage:	AC 1	20V/60	0Hz	133		11000		Alle
4nt	. Pol		Verti	cal		-100	2.7		1999	
Tes	t Mo	de:	Mode	e 2 TX	Mode	b Mode Ch	annel 01			nB1
Rer	nark:		Only	worse	case	is reported.	LINE.		1	
80.0	dBuV	//m								
70										
60										
50								(RF)FCC 15 Margin -6 d	C 3M Radiation	, L
								3	3 45	6
40								, 1		
30										Alikilikk
						Y			A CHARLANDINI SUM	I Dillinaria liber
20	u. mil Mi	in. La markoni.	يندن بالماس	ı.		A. A. Markarahara . I a	and the lands			I JULIAN ANDE
20 10	physical Mr.	dh _{ara} n Angaretara	anganadar (biograpodes,	yar yalam	acquerigly politica problem	k, h, marangah,	Magazin Marillari Maria	A JANA A A A A A A A A A A A A A A A A A	 	
20 10 0	planetral Alla	da _{ke a} nd k _e periodoral es	agonalism (Biograported.	yan yalaan	ecreologic publicates	Kolonicon polynomical (m.	desch Anthre India			ре
20 10 0 -10 -20		there also provides and		yar yalaan	ورجد الهار بالخام والأله				[Vortiniiiii]	
20 10 0 -10	.000	de production de la constitución	60.00			(MHz)	300	.00	W*	1000.0
20 10 0 -10 -20 30		Freq		Rea	ding		Level		Margin	
20 10 0 -10 -20 300	0.000	Freq (M	60.00 uency	Rea (dB	ding	(MHz)	Level	.00	Margin	1000.0
20 10 0 -10 -20 30	0.000 No.	Freq (M	uency	Rea (dB	iding	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	1000.0
20 10 0 -10 -20 30	0.000 No.	Freq (M 184 420	60.00 uency lHz)	Rea (dB 51 58	ading BuV)	Factor (dB/m)	Level (dBuV/m) 27.70	Limit (dBuV/m) 43.50	Margin (dB)	Detector peak
20 10 0 -10 -20 30	No. 1	Freq (M 184 420 588	uency Hz) .4898	Rea (dB 51 58 54	ading BuV) .81	(MHz) Factor (dB/m) -24.11 -17.34	Level (dBuV/m) 27.70 40.76	Limit (dBuV/m) 43.50 46.00	Margin (dB) -15.80 -5.24	Detecto peak peak
20 10 0 -10 -20 30	No. 1 2 ! 3 *	Freq (M 184 420 588 656	uency IHz) .4898 .5803	Rea (dB 51 58 54 52	ading 8uV) .81 .10	(MHz) Factor (dB/m) -24.11 -17.34 -13.20	Level (dBuV/m) 27.70 40.76 41.37	Limit (dBuV/m) 43.50 46.00 46.00	Margin (dB) -15.80 -5.24 -4.63	Detecto peak peak peak

^{*:}Maximum data x:Over limit !:over margin

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 33 of 44

Above 1GHz

Temperature:	26°C	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Horizontal	William I	THE STATE OF THE S
Test Mode:	TX B Mode 2412MHz		Tillian

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10664.500	46.19	-3.19	43.00	74.00	-31.00	peak
2 *	14515.000	42.53	0.69	43.22	74.00	-30.78	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Temperature:	26°C	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical		
Test Mode:	TX B Mode 2412MHz	Millian	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11302.000	43.64	-1.15	42.49	74.00	-31.51	peak
2 *	14846.500	42.70	0.93	43.63	74.00	-30.37	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 34 of 44

Temperature:	26°C	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz	CHILDRAN TO THE	
Ant. Pol.	Horizontal		
Test Mode:	TX B Mode 2437MHz		COM STATE

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10894.000	44.71	-1.80	42.91	74.00	-31.09	peak
2 *	14897.500	42.26	1.35	43.61	74.00	-30.39	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Temperature:	26°C	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz	TO WOO	
Ant. Pol.	Vertical	4000	MAN
Test Mode:	TX B Mode 2437MHz	WILL ST	0111

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11251.000	44.11	-1.61	42.50	74.00	-31.50	peak
2 *	14413.000	41.98	0.94	42.92	74.00	-31.08	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 35 of 44

Temperature:	26°C	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz	MUDIE	7
Ant. Pol.	Horizontal		1000
Test Mode:	TX B Mode 2462MHz		Callin S

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10843.000	45.01	-2.04	42.97	74.00	-31.03	peak
2 *	14336.500	42.60	0.55	43.15	74.00	-30.85	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Temperature:	26°C	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical	4000	MAN
Test Mode:	TX B Mode 2462MHz	mn's	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11302.000	43.95	-1.15	42.80	74.00	-31.20	peak
2 *	14897.500	42.43	1.35	43.78	74.00	-30.22	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 36 of 44

Temperature:	26°C	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz	MUDE	73 1
Ant. Pol.	Horizontal		1000
Test Mode:	TX G Mode 2412MHz		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10919.500	44.46	-1.79	42.67	74.00	-31.33	peak
2 *	14362.000	42.68	0.73	43.41	74.00	-30.59	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical	0.000	
Test Mode:	TX G Mode 2412MHz	mn31	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10970.500	44.20	-1.82	42.38	74.00	-31.62	peak
2 *	13444.000	42.96	0.15	43.11	74.00	-30.89	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 37 of 44

Temperature:	26°C	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		7
Ant. Pol.	Horizontal		11773
Test Mode:	TX G Mode 2437MHz		COMP

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10894.000	44.33	-1.80	42.53	74.00	-31.47	peak
2 *	14336.500	42.19	0.55	42.74	74.00	-31.26	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Temperature:	26°C	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical		THU:
Test Mode:	TX G Mode 2437MHz	WUR T	
		6033	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10970.500	44.09	-1.82	42.27	74.00	-31.73	peak
2 *	14362.000	42.63	0.73	43.36	74.00	-30.64	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 38 of 44

Temperature:	26°C	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz	COUNTY OF	7
Ant. Pol.	Horizontal		000
Test Mode:	TX G Mode 2462MHz		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11149.000	45.17	-2.17	43.00	74.00	-31.00	peak
2	14413.000	41.86	0.94	42.80	74.00	-31.20	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Temperature:	26°C	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz	77 100	
Ant. Pol.	Vertical	4000	ALC:
Test Mode:	TX G Mode 2462MHz	W. C.	AMI.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10894.000	44.65	-1.80	42.85	74.00	-31.15	peak
2 *	13469.500	43.32	0.13	43.45	74.00	-30.55	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 39 of 44

Temperature:	26°C	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Horizontal		11/2/2
Test Mode:	TX n(HT20) Mode 2	2412MHz	CELLED

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10817.500	45.20	-2.17	43.03	74.00	-30.97	peak
2 *	13418.500	43.01	0.17	43.18	74.00	-30.82	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Temperature:	26°C	Relative Humidity:	54%			
Test Voltage:	AC 120V/60Hz					
Ant. Pol.	Vertical	4000				
Test Mode:	TX n(HT20) Mode 2412MF	Hz				
Test Mode:	TX n(HT20) Mode 2412Mh	-lz				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10945.000	45.02	-1.80	43.22	74.00	-30.78	peak
2	14362.000	41.97	0.73	42.70	74.00	-31.30	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 40 of 44

Temperature:	26°C	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		THE PARTY OF THE P
Ant. Pol.	Horizontal		000
Test Mode:	TX n(HT20) Mode 24	I37MHz	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	10843.000	45.44	-2.04	43.40	74.00	-30.60	peak
2	14260.000	42.91	0.29	43.20	74.00	-30.80	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
 The tests evaluated1-26.5GHz,The testing as been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Temperature:	26°C	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical	4000	
Test Mode:	TX n(HT20) Mode 2437Mł	-lz	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10894.000	44.67	-1.80	42.87	74.00	-31.13	peak
2 *	15076.000	41.51	1.56	43.07	74.00	-30.93	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 41 of 44

Temperature:	26℃	Relative Humidity:	54%			
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz				
Ant. Pol.	Horizontal		1000			
Test Mode:	TX n(HT20) Mode 2462	MHz	an is			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11302.000	44.51	-1.15	43.36	74.00	-30.64	peak
2 *	14183.500	43.37	0.25	43.62	74.00	-30.38	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Temperature:	26°C	Relative Humidity:	54%		
Test Voltage:	AC 120V/60Hz				
Ant. Pol.	Vertical	4000			
Test Mode:	TX n(HT20) Mode 2462Mi	Hz			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	10919.500	45.43	-1.79	43.64	74.00	-30.36	peak
2	13495.000	42.65	0.11	42.76	74.00	-31.24	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 42 of 44

Temperature:	26°C	Relative Humidity: 54%				
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz				
Ant. Pol.	Horizontal		11/2/2			
Test Mode:	TX n(HT40) Mode 2	2422MHz	mili s			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	10945.000	44.86	-1.80	43.06	74.00	-30.94	peak
2	13112.500	42.64	-0.17	42.47	74.00	-31.53	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Temperature:	26°C	Relative Humidity:	54%		
Test Voltage:	AC 120V/60Hz				
Ant. Pol.	Vertical	1000			
Test Mode:	TX n(HT40) Mode 2422Mi	Hz			
iest wode.	17 11(11140) Wode 2422WI	12			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	12067.000	43.91	-0.68	43.23	74.00	-30.77	peak
2 *	13444.000	43.26	0.15	43.41	74.00	-30.59	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 43 of 44

Anna Maria						
Temperature:	26°C	Relative Humidity:	54%			
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz				
Ant. Pol.	Horizontal		1000			
Test Mode:	TX n(HT40) Mode 2	2437MHz	Can 3			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10945.000	45.59	-1.80	43.79	74.00	-30.21	peak
2	14387.500	42.13	0.91	43.04	74.00	-30.96	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing as been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Temperature:	26°C	Relative Humidity:	54%		
Test Voltage:	AC 120V/60Hz				
Ant. Pol.	Vertical	1000			
Test Mode:	TX n(HT40) Mode 2437Mi	Hz			
	,	HI MI P			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11735.500	43.00	-1.13	41.87	74.00	-32.13	peak
2 *	14387.500	41.58	0.91	42.49	74.00	-31.51	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 44 of 44

Temperature:	26°C	Relative Humidity:				
Test Voltage:	AC 120V/60Hz					
Ant. Pol.	Horizontal		TO STATE OF			
Test Mode:	TX n(HT40) Mode 2452MHz					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10970.500	44.42	-1.82	42.60	74.00	-31.40	peak
2 *	13495.000	43.26	0.11	43.37	74.00	-30.63	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Temperature:	26°C	Relative Humidity:	54%			
Test Voltage:	AC 120V/60Hz					
Ant. Pol.	Vertical					
Test Mode:	TX n(HT40) Mode 2452MHz					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11353.000	44.28	-1.08	43.20	74.00	-30.80	peak
2	14132.500	42.99	0.19	43.18	74.00	-30.82	peak

Remark

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

----END OF THE REPORT-----

