RF Exposure Compliance Requirement

1 Standard requirement
Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.
(a) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density $(\mathrm{S})\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Averaging Times $\|E\|^{2},\|H\|^{2}$ or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	(900/f)*	6
30-300	61.4	0.163	1.0	6
300-1500	--	--	F/300	6
1500-100000	--	--	5	6

(b) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S)(mW/cm ${ }^{2}$)	Averaging Times $\|E\|^{2},\|H\|^{2}$ or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500	--	--	F/1500	30
1500-100000	--	--	1.0	30

Note: f=frequency in MHz; *Plane-wave equivalent power density

2 MPE Calculation Method
$E(V / m)=\left(30^{*} P^{*} G\right)^{0.5} / d \quad$ Power Density: $P d\left(W / m^{2}\right)=E^{2} / 377$
$\mathrm{E}=$ Electric Field (V/m)
P=Peak RF output Power (W)
G=EUT Antenna numeric gain (numeric)
$\mathrm{d}=$ Separation distance between radiator and human body (m)
The formula can be changed to
$P d=\left(30^{*} P^{*} G\right) /\left(377^{*} d^{2}\right)$
From the peak EUT RF output power, the minimum mobile separation distance, $\mathrm{d}=0.2 \mathrm{~m}$, as well as the gain of the used antenna, the RF power density can be obtained.

3 Calculated Result and Limit

(1)						
Frequency (MHz)	Antenna Gain (Numeric)	Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (S) (mW/cm ${ }^{2}$)	Limit of Power Density (S) ($\mathrm{mW} / \mathrm{cm}^{2}$)	Test Result
433.92	0	-19.38	0.0115	0.0000023	0.29	Complies

