

Project No.: ZKT-2208025418E Page 51 of 79

GFSK Middle Channel

GFSK High Channel

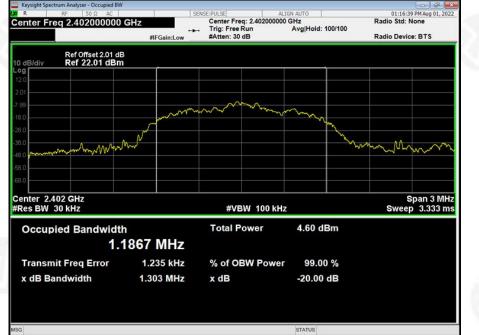


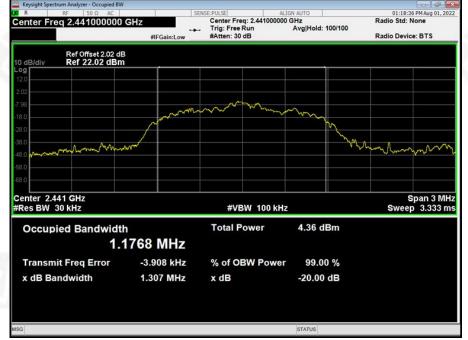
π/4-DQPSK Low Channel

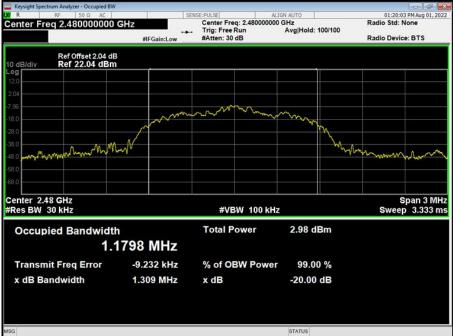
π/4-DQPSK Middle Channel



π/4-DQPSK High Channel




8-DPSK Low Channel



8-DPSK Middle Channel

8-DPSK High Channel

8. Maximum Peak Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(1)
Test Method:	ANSI C63.10:2013
Limit:	GFSK:30 dBm
	π/4-DQPSK & 8-DPSK:20.97 dBm

8.1 Block Diagram Of Test Setup

EUT	SPECTRUM
	ANALYZER

8.2 Limit

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

For FHSs operating in the band 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W if the hopset uses 75 or more hopping channels; the maximum peak conducted output power shall not exceed 0.125 W if the hopset uses less than 75 hopping channels. The e.i.r.p. shall not exceed 4 W.

8.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 2MHz. VBW =6MHz. Sweep = auto; Detector Function = Peak.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

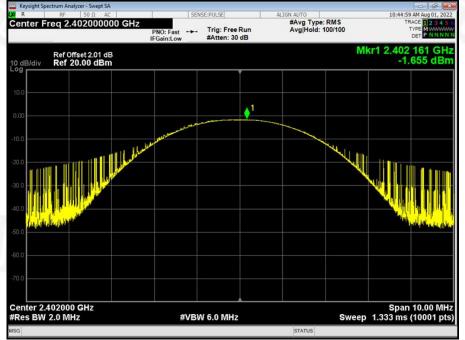
8.4 DEVIATION FROM STANDARD

No deviation.

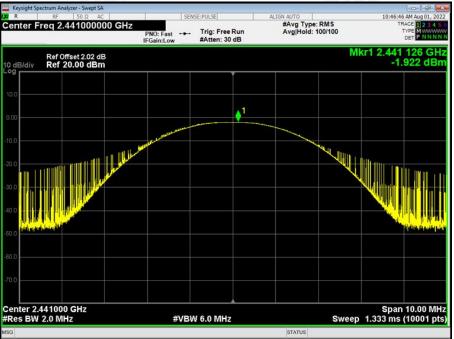
8.5 Test Result

Mode	Test channel	Peak Output Power (dBm)	FCC Limit (dBm)	Result	
	Lowest	-1.655			
GFSK	Middle	-1.922	30.00	Pass	
	Highest	-3.036			
100	Lowest	-1.299			
π/4-DQPSK	Middle	-1.611	21.00	Pass	
	Highest	-2.716			
	Lowest	-0.919			
8-DPSK	Middle	-1.175	21.00	Pass	
	Highest	-2.333	-		

Shenzhen ZKT Technology Co., Ltd.

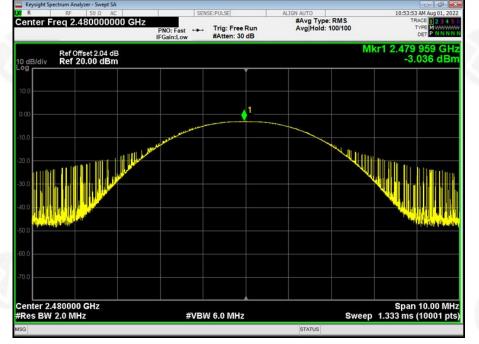

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

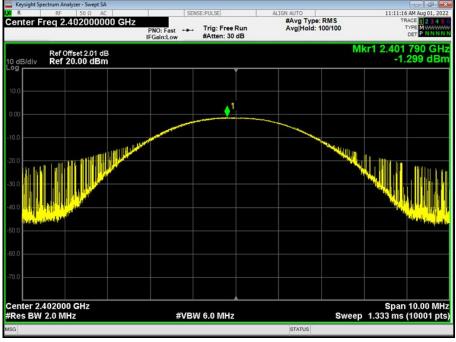
www.zkt-lab.com

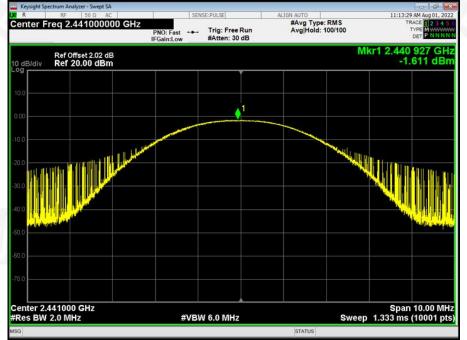


Test plots

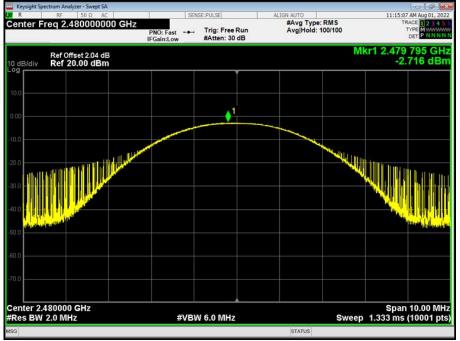
GFSK Low Channel

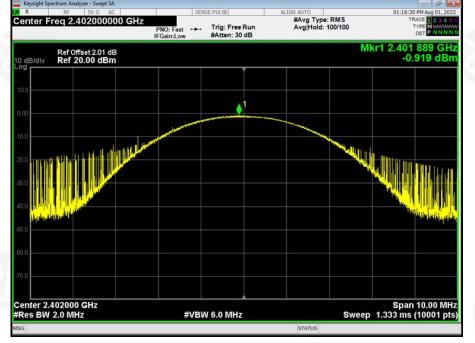

GFSK Middle Channel





GFSK High Channel


π/4-DQPSK Low Channel


π/4-DQPSK Middle Channel

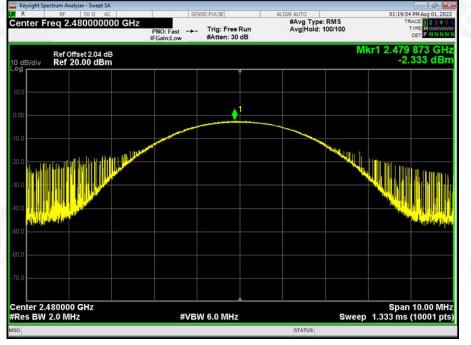
π /4-DQPSK High Channel



8-DPSK Low Channel

8-DPSK Middle Channel

Shenzhen ZKT Technology Co., Ltd.


1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

9. HOPPING CHANNEL SEPARATION

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Receiver setup:	RBW=30KHz, VBW=100KHz, detector=Peak
Limit:	GFSK: 20dB bandwidth $\pi/4$ -DQPSK & 8DSK: 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)

9.1 Test Setup

UT	SPECTRUM
	ANALYZER

9.2 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port

to the spectrum.

2. Set the spectrum analyzer: RBW = 30kHz. VBW = 100kHz , Span = 3.0MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.

3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

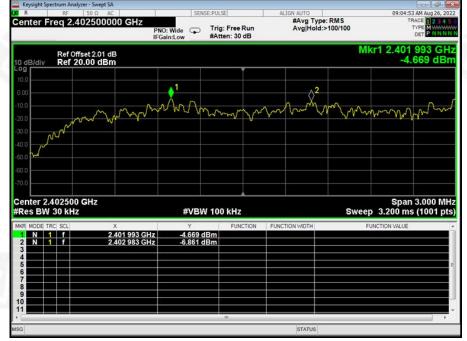
9.3 DEVIATION FROM STANDARD No deviation.

	Modulation	Test Channel	Separation (MHz)	Limit(MHz)	Result
	GFSK	Low	1.011	0.9813	PASS
	GFSK	Middle	1.008	0.9523	PASS
×.	GFSK	High	1.272	1.0180	PASS
20	π/4-DQPSK	Low	0.990	0.8560	PASS
	π/4-DQPSK	Middle	1.002	0.8600	PASS
	π/4-DQPSK	High	1.011	0.8633	PASS
	8-DPSK	Low	1.011	0.8687	PASS
	8-DPSK	Middle	0.984	0.8713	PASS
	8-DPSK	High	0.993	0.8727	PASS

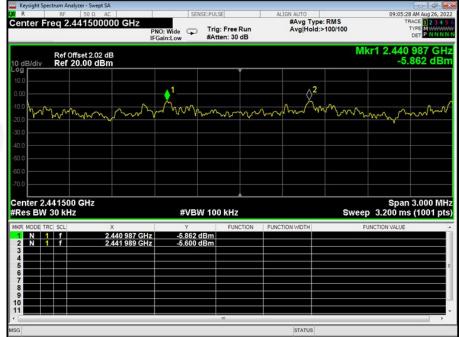
Test plots GFSK Low Channel

Project No.: ZKT-2208025418E

GFSK Middle Channel

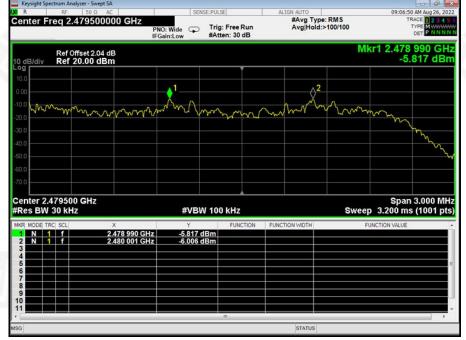


GFSK High Channel

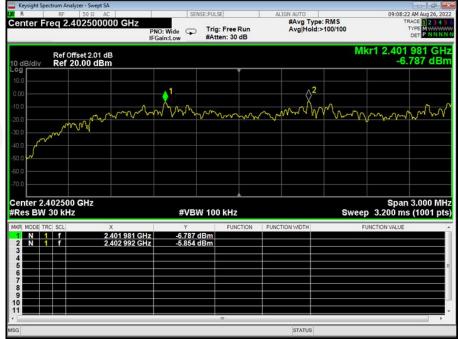


π/4-DQPSK Low Channel

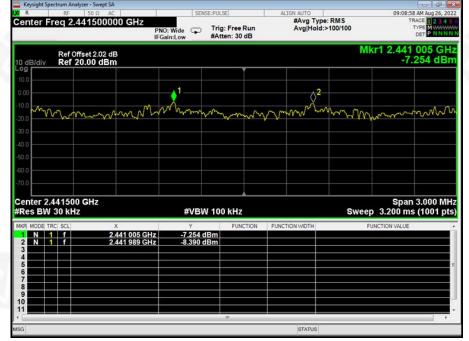
π/4-DQPSK Middle Channel



Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen,China


200

π/4-DQPSK High Channel


8-DPSK Low Channel

8-DPSK Middle Channel

8-DPSK High Channel

10.NUMBER OF HOPPING FREQUENCY

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)(iii)
Test Method:	ANSI C63.10:2013
Receiver setup:	RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak
Limit:	15 channels

10.1 Test Setup

EUT	SPECTRUM
	ANALYZER

10.2 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

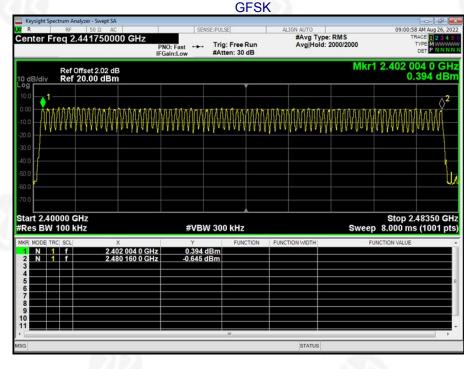
2. Set the spectrum analyzer: RBW = 100kHz. VBW = 300kHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.

3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.

4. Set the spectrum analyzer: Start Frequency = 2.4GHz, Stop Frequency = 2.4835GHz. Sweep=auto;

10.3 DEVIATION FROM STANDARD

No deviation.


Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

📢 www.zkt-lab.com

Test Plots: 79 Channels in total

Mkr1 2.401 670 0 GHz -7.990 dBm

π/4-DQPSK #Avg Type: RMS Avg|Hold: 2000/2000 q 2.441750000 GHz Center F Trig: Free Run #Atten: 30 dB PNO: Fast +++ Ref Offset 2.02 dB Ref 20.00 dBm water and a particular and a particular and a particular and the particular p #Re

		000 GHz 100 kHz		#VBW 300	kHz		Stop 2.48350 GHz Sweep 8.000 ms (1001 pts)
MODE	E TRC	SCL	X	Y	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE
N	1	1	2.401 670 0 GHz	-7.990 dBm			
N	1	f	2.479 993 0 GHz	-5.150 dBm			
_	_					STATUS	
	_						

8-DPSK

R	t Spect	RF	alyzer - Swept S 50 Ω A	IA IC	í.	SENSE:PUL	SE	1	ALIGN /	UTO		09:09	:30 AM Aug 26, 20
enter	Fre	eq 2	.4417500	000 GHz	PNO: Fast IFGain:Low		g: Free I ten: 30			Avg Type: vg Hold: 2			TRACE 1 2 3 4 1 TYPE MWWW DET P NNN
) dB/d			Dffset 2.02 o 20.00 dB								Mk		503 0 GH 9.873 dBr
0.0													
0.0	Υγµ	M M	MANAMA	man	garange	MANA	Mary	MA	YUNA	MMM	MANA	hann	Mangar
0.0													
0.0													
0.0													V
0.0													
tart 2 Res E					#	VBW 30	0 kHz				Swee	Stop ep 8.000 r	2.48350 GI ns (1001 pt
KR MOD	E TRC			× 401 503 0 GH		Y 873 dBm	FUNC	TION	FUNCTION	MDTH		FUNCTION VALU	E
2 N	1			401 503 0 GH 480 494 0 GH		021 dBm							
3	-												
4	_												
5													
4 5 6 7													
4 5 6 7 8 9													
4 5 6 7 8													
4 5 6 7 8 9 9							ш						,

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

1

11. DWELL TIME

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)(iii)
Test Method:	ANSI C63.10:2013
Receiver setup:	RBW=1MHz, VBW=3MHz, Span=0Hz, Detector=Peak
Limit:	0.4 Second

11.1 Test Setup

EUT	SPECTRUM
51785511251	ANALYZER

11.2 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set spectrum analyzer span = 0Hz;

3. Set RBW = 1MHz and VBW = 3MHz.Sweep = as necessary to capture the entire dwell time per hopping channel. Set the EUT for DH5, DH3 and DH1 packet transmitting.

4. Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

11.3 DEVIATION FROM STANDARD

No deviation.

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

📢 www.zkt-lab.com

11.4 Test Result

GFSK mode:

Frequency	Packet	Dwell time(ms)	Limit(ms)	Result
2441MHz	DH1	138.24	400	Pass
2441MHz	DH3	261.12	400	Pass
2441MHz	DH5	302.08	400	Pass

Remarks:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s Test channel: as blow CH:2441MHz time slot=0.379(ms)*(1600/ (2*79))*31.6=121.280ms CH:2441MHz time slot=1.636(ms)*(1600/ (4*79))*31.6=261.760ms

CH:2441MHz time slot=2.884(ms)*(1600/ (6*79))*31.6=307.627ms

$\pi/4$ -DQPSK mode:

Frequency	Packet	Dwell time(ms)	Limit(ms)	Result
2441MHz	2DH1	157.44	400	Pass
2441MHz	2DH3	270.56	400	Pass
2441MHz	2DH5	308.48	400	Pass

Remarks:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s Test channel: as blow

CH:2441MHz time slot=0.389(ms)*(1600/ (2*79))*31.6=124.480ms

CH:2441MHz time slot=1.641(ms)*(1600/ (4*79))*31.6=262.560ms

CH:2441MHz time slot=2.889(ms)*(1600/ (6*79))*31.6=308.160ms

8-DPSK mode:

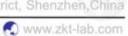
Frequency	Packet	Dwell time(ms)	Limit(ms)	Result
2441MHz	3DH1	133.44	400	Pass
2441MHz	3DH3	267.36	400	Pass
2441MHz	3DH5	294.72	400	Pass

Remarks:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s Test channel: as blow CH:2441MHz time slot=0.389(ms)*(1600/ (2*79))*31.6=124.480ms CH:2441MHz time slot=1.640(ms)*(1600/ (4*79))*31.6=262.400ms CH:2441MHz time slot=2.891(ms)*(1600/ (6*79))*31.6=308.370ms

Shenzhen ZKT Technology Co., Ltd.

Test Plots


GFSK DH1 2441MHz

RF nter Freq 2.44	50 Ω AC	0 GHz			g Delay-	500.0 µs	ALIGN AUT	g Type:	RMS	11:04	1:23 AM Aug 01, 2 TRACE 1 2 3 4
			PNO: Fast FGain:Low		g: Video tten: 30						DET PNNN
	set 2.02 dB .00 dBm									ΔMki	1 432.0 j -6.63 d
X ₂ ● ^{1∆}	2										TRIG
											TRK-1
		en alemania de		n dan Matak alian di dan	n (PAN) al da la	entringentiert In dasse forse fi		identak p. Isteriotare	error in the line	in and the fitter of	to the second second
na n	dan senda Sena pin	u daten hala Inter e fajn bje	etendula Al Mary	and details An an	<mark>all farth</mark>	<mark>k padad</mark> i	telljer telje Telljer telje	internation In printipp	n de la de la Calendaria	n an	all adalated by
nter 2.4410000	anddiff	n de la d La de la d La de la d	A ddition	#VBW 3.0	e pledat		in din tar Tali a tali	id <mark>i kini</mark> p	ut per te per	<mark>n di di sini dapa</mark>	Span 0
nter 2.4410000 BW 1.0 MHz	anddiff	linder for the for	¢,debilop ≠	#VBW 3.0) MHz	ind per la p	UNCTION WID	i fa kinge	Sweep	<mark>n di di sini dapa</mark>	Span 0 s (10001 p
nter 2.4410000 BW 1.0 MHz	000 GHz	432.0 us 498.0 us	+ (Δ)	dhilling hulton) MHz	ind per la p	ielle and i	i fa kinge	Sweep	10.00 m	Span 0 s (10001 p
1000 1000	000 GHz	432.0 µs	+ (Δ)	#VBW 3.0 Y -6.63 dB) MHz	ind per la p	ielle and i	i fa kinge	Sweep	10.00 m	Span 0 s (10001 p
1000 Ther 2.4410000 SBW 1.0 MHz MODE TRC SCL Δ2 1 t (Δ)	000 GHz	432.0 µs	+ (Δ)	#VBW 3.0 Y -6.63 dB) MHz	ind per la p	ielle and i	i fa kinge	Sweep	10.00 m	Span 0 s (10001 p
1000 Ther 2.4410000 SBW 1.0 MHz MODE TRC SCL Δ2 1 t (Δ)	000 GHz	432.0 µs	+ (Δ)	#VBW 3.0 Y -6.63 dB) MHz	ind per la p	ielle and i	i fa kinge	Sweep	10.00 m	Span 0 l s (10001 p
1000 Ther 2.4410000 SBW 1.0 MHz MODE TRC SCL Δ2 1 t (Δ)	000 GHz	432.0 µs	+ (Δ)	#VBW 3.0 Y -6.63 dB) MHz	ind per la p	ielle and i	i fa kinge	Sweep	10.00 m	Span 0 l s (10001 p

GFSK DH3 2441MHz

Keysight Spectrum Analyzer - R RE 50	Swept SA	SENSE:	nui cel	ALIGN AUTO	1	01-01-4	4 PM Aug 01, 20
enter Freq 2.441	000000 GHz	NO: Fast	Trig Delay-500.0 µ Trig: Video #Atten: 30 dB		e: RMS	TF	TYPE WWWW DET P N N N
Ref Offset						∆Mkr1	1.632 m -4.42 d
.0							
							TRIĜ L
10							
	anpillykin		hitelday militari		aller and the second		Span 0 H
enter 2.44100000 s BW 1.0 MHz) GHz	#vBW :	3.0 MHz		Sweep	ange in charde	Span 0 I
α α) GHz	#vBW :	3.0 MHz	and the state of the state	Sweep	10.00 ms	Span 0 H
Participante Pa) GHz × 1.632 ms	#VBW ((Δ) -4.42 d	3.0 MHz	and the state of the state	Sweep	10.00 ms	Span 0 I
0 199117 0 1441 enter 2.441000000 es BW 1.0 MHz R Mode TRC SCL 42 1 42 1 5 1 6 1) GHz × 1.632 ms	#VBW ((Δ) -4.42 d	3.0 MHz	and the state of the state	Sweep	10.00 ms	Span 0 I
Image: Constraint of the second sec) GHz × 1.632 ms	#VBW ((Δ) -4.42 d	3.0 MHz	and the state of the	Sweep	10.00 ms	Span 0 H

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

🔀 zkt@zkt-lab.com

GFSK DH5 2441MHz

enter Freq 2.441000000	GHz	Trig Delay-500.0 μ Trig: Video #Atten: 30 dB	s #Avg Ty	vpe: RMS	TI	9 PM Aug 01, 2022 RACE 1 2 3 4 5 TYPE WWWWWWW DET P N N N N
Ref Offset 2.02 dB 0 dB/div Ref 20.00 dBm					ΔMkr1	2.832 ms -4.52 dB
						TRIG LVL
40.0						
			. n	d la seconda de la		1.1.1.1.1
50.0 geografi 50.0 geografi		n an				n an
	hudphlin			den si de se de sected	ich alie ph	the second stands
800 (1000) 100 (1	#VBW	3.0 MHz		Sweep	ich alie ph	Span 0 Hz
0.0 γ (μμ) 0.0 γ (μμ) senter 2.441000000 GHz es BW 1.0 MHz KR MODE TRC SCL 2 F 2 F 4	hudphlin	3.0 MHz	las pails time/ite	Sweep	10.00 ms	Span 0 Hz
0.0 Compt 0.0 Compt 0.0 Compt enter 2.4410000000 GHz es BW 1.0 MHz X 1.0 4 4	#VBW 2.832 ms (Δ) -4.52 c	3.0 MHz	las pails time/ite	Sweep	10.00 ms	Span 0 Hz
0.0 Complete 0.0 Complete 0.0 Complete center 2.4410000000 GHz es BW 1.0 MHz RR MODE TRC SCL X 1 A2 F 1 3 4 5 6	#VBW 2.832 ms (Δ) -4.52 c	3.0 MHz	las pails time/ite	Sweep	10.00 ms	Span 0 Hz
0.0 content c	#VBW 2.832 ms (Δ) -4.52 c	3.0 MHz	las pails time/ite	Sweep	10.00 ms	Span 0 Hz
00 count 00 count count	#VBW 2.832 ms (Δ) -4.52 c	3.0 MHz	las pails time/ite	Sweep	10.00 ms	Span 0 Hz

π/4-DQPSK 2DH1 2441MHz

Keysight Spectrum Analyzer - Sw R RF 50 Ω Center Freq 2.44100	AC DOODO GHz PNO: Fas		and the second	Type: RMS	11:21:44 AM Aug 01, 202 TRACE 2 2 3 4 S TYPE WWWWW DET P NN N
Ref Offset 2. 10 dB/div Ref 20.00		w #Atten: 30 d			ΔMkr1 492.0 μ -3.27 dl
10.0 0.00 -10.0 20.0					TRIGLY
30.0 40.0 50.0 60.0 60.0 70.0	ala ja kine persona kaka talami kile ana ana ana <mark>19 ya kuna sa kaka talami kile persona ka</mark> ka kalami kile		neutra di Malania Nyangasha (Mania)	territoria da tang a da tang Tang ang ang ang ang ang ang ang ang ang	digan in suid it proton in the ni Na marit bate of start of the suite of
Center 2.441000000 (Res BW 1.0 MHz	GHz	#VBW 3.0 MHz		Sweep	Span 0 H 10.00 ms (10001 pts
MKR MODE TRC: SCL 1 A2 1 t (A) 2 F 1 t 3 4 5 4 6 6 8 7 9 9 10	Χ 497.0 μs 497.0 μs	Y FUNC -3.27 dB -12.01 dBm	TION FUNCTION WIDT	H F	UNCTION VALUE
SG		m	STAT		

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen,China

8

π/4-DQPSK 2DH3 2441MHz

R RF 50 Ω AC enter Freq 2.44100000	F	NO: Fast	ISE:PULSE Trig Delay Trig: Video #Atten: 30	-500.0 µs	LIGN AUTO #Avg Type	e: RMS		9 PM Aug 01, 202 RACE 1 2 3 4 5 TYPE WWWWWW DET PNNNN
Ref Offset 2.02 dB 0 dB/div Ref 20.00 dBm							ΔMkr1	1.691 ms -6.49 dB
000 000 000 000	142							- TRIG L VI
00.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ate to the state of					a <mark>ylin oʻrandaring</mark>		
enter 2.441000000 GHz es BW 1.0 MHz		#VB\	N 3.0 MHz			Sweep	10.00 ms	Span 0 H: (10001 pts
KR MODE TRC SCL X 1 Δ2 1 t (Δ) 2 F 1 t 3 4 - - - - 5 - - - -	1.691 ms 498.0 us	(Δ) -6.4 -2.34	9 dB	CTION FUNC	TION WIDTH	F	UNCTION VALUE	
6 7 8								
9								

π/4-DQPSK 2DH5 2441MHz

R RF 50 Ω AC enter Freq 2.441000000 G		ISE:PULSE Trig Delay-50 Trig: Video #Atten: 30 de	00.0 µs	IGN AUTO #Avg Type	RMS	TF	I PM Aug 01, 202 RACE 1 2 3 4 5 TYPE WWWWWW DET P N N N
Ref Offset 2.02 dB 0 dB/div Ref 20.00 dBm						ΔMkr1	2.892 m -3.40 dl
200 200 0 X2	1Δ2						
0.0							TRIGL
1.0 1.0							
0.0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		10000000	A		1 1111 1 1 1	a construction of the second	
10 <mark>p.4</mark> .W	and the last A last of last		a indali (ph. 1	<mark>le de constantes.</mark> Le de constantes de la cons	an a tha an	<mark>lite te lester</mark>	episonel (184 Pisonel (184
	ร้งไปไปที่เกมไ	V 3.0 MHz	a mantana ana ana ana ana ana ana ana ana a	l og skipter I og skipter	on an aire an	10.00 ms	Span 0 H
enter 2.441000000 GHz es BW 1.0 MHz	Skikilni #∨BV	V 3.0 MHz	un la la parte		Sweep	niperil terbier	Span 0 H
Image: Constraint of the second sec	Skikilni #∨BV	W 3.0 MHz	un la la parte	l'an shi jid	Sweep	10.00 ms	Span 0 H
μ μ μ μ enter 2.441000000 GHz ss BW 1.0 MHz κ μ Δ2 F 1 Δ2 1 t Δ4 4	#VBV 892 ms (Δ) -3.4	W 3.0 MHz	un la la parte	l'an shi jid	Sweep	10.00 ms	Span 0 H
φ φ φ φ enter 2.441000000 GHz ses BW 1.0 MHz x φ	#VBV 892 ms (Δ) -3.4	W 3.0 MHz	un la la parte	l'an shi jid	Sweep	10.00 ms	Span 0 H
Image: Constraint of the second se	#VBV 892 ms (Δ) -3.4	W 3.0 MHz	un la la parte	l'an shi jid	Sweep	10.00 ms	Span 0 H
Image: Constraint of the second sec	#VBV 892 ms (Δ) -3.4	W 3.0 MHz	un la la parte	l'an shi jid	Sweep	10.00 ms	Span 0 H

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen,China

8

🔀 zkt@zkt-lab.com

🔊 www.zkt-lab.com

8-DPSK 3DH1 2441MHz

R RF 50 Ω AC Center Freq 2.441000000 GHz	PNO: Fast	PULSE Trig Delay-500.0 µ Trig: Video #Atten: 30 dB	ALIGN AUTO s #Avg Ty	rpe: RMS	TI	9 PM Aug 01, 2022 RACE 1 2 3 4 5 C TYPE WWWWWWW DET P NNNN
Ref Offset 2.02 dB 0 dB/div Ref 20.00 dBm					ΔMkr1	417.0 μs -6.05 dB
0.00						
10.0 1 0.2 1 0.2 1 0.2 1 0.0 1 0						TRIGLVL
30.0						
	landa analalaiki analana 414 garta katarapahapaha	ling the prime of the	<mark>u de la contra de la Contra de la contra d</mark>	atelian in colorin andre Marine receipted in the color	n dari bi dari Mari dari perio	
50.0 bire birden borr it bire it bire it bir e birden bir bire it bi	later og standelska forset Alf Vallet af forstandelska forset Alf Vallet af forstandelska forset forset	detings filmosti i Hel gyrs <mark>f</mark> ilmosti i	nt traffic the	alada ya katalala ya ka Mana ya katalan ingini katalan Mana ya katalan ingini katalan ingini	n a statistication National Angles (Statistication)	
50 0 μτ	ting taldaliting or til provident of the til provident of the til provident of til provident	dish (ari pisipine)	ng tang ng manang ng Ng manang ng	<mark>le en seu qui bisce</mark> let	Mundel Heren	Span 0 Hz (10001 pts)
60.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4)////////////////////////////////////	3.0 MHz		Sweep	Mundel Heren	Span 0 Hz (10001 pts)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	#VBW 3 #VBW 3	3.0 MHz	<mark>nt klandere hur</mark> t	Sweep	10.00 ms	Span 0 Hz (10001 pts)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	#VBW 3 #VBW 3	3.0 MHz	<mark>nt klandere hur</mark> t	Sweep	10.00 ms	Span 0 Hz (10001 pts)

8-DPSK 3DH3 2441MHz

R R R	RF 5	Swept SA 0 Ω AC 000000 GHz		rig Delay-500.0 µ	ALIGN AUTO s #Avg Typ	e: RMS	01:24:37 PM Aug 01, 2 TRACE 1 2 3 4
	_			rig: Video Atten: 30 dB			DET P N N N
0 dB/div og v	Ref Offset Ref 20.0						ΔMkr1 1.671 n -3.56 c
10.0		1Δ2					
	Helendertheren	The state of the s					T. BOT M
10.0							
0.0		the state of the set	the sector of the sector to	the stand to a stand the	at trate the stat dealer t	bradit to the state of the Arrow	the statement of the
0.0 <mark>11 1</mark> -		al de la companya de La companya de la comp			<mark>dillata dalara b</mark>		
enter 2.4	l4100000 .0 MHz	^{ok} delindere		ili vili di postatio	ni na na mana ana ang ang ang ang ang ang ang ang	n him a him an a shi an a shi In the shi an a shi a	Span 0 10.00 ms (10001 p
enter 2.4 es BW 1.	.0 MHz	o GHz ×	#VBW 3	.0 MHz		Sweep	Span 0
enter 2.4 es BW 1. R MODE TR A2 1 2 F 1	OMHz SCL t (Δ)	o GHz	#VBW 3	.0 MHz	yillana ay ana ana ana a	Sweep	Span 0 10.00 ms (10001 p
enter 2.4 es BW 1. R MODE TR A2 1 F 1 3	0 MHz	0 GHz × 1.671 m	#VBW 3	.0 MHz	yillana ay ana ana ana a	Sweep	Span 0 10.00 ms (10001 p
enter 2.4 es BW 1. RR MODE TRI 1 A2 1 2 F 1 3 5 5 6	0 MHz	0 GHz × 1.671 m	#VBW 3	.0 MHz	yillana ay ana ana ana a	Sweep	Span 0 10.00 ms (10001 p
enter 2.4 es BW 1. BW 1 A ADDE TR A A A A A A A A A A A A A A A A A A A	0 MHz	0 GHz × 1.671 m	#VBW 3	.0 MHz	yillana ay ana ana ana a	Sweep	Span 0 10.00 ms (10001 p
enter 2.4 es BW 1. kR MODE TRI A A2 1 2 F 1 3 4 5 5 6 5 6 7 7 7 8 8 9	0 MHz	0 GHz × 1.671 m	#VBW 3	.0 MHz	yillana ay ana ana ana a	Sweep	Span 0 10.00 ms (10001 p
enter 2.4 es BW 1. R MODE TR A A 2 1 3 4 6 6 7	0 MHz	0 GHz × 1.671 m	#VBW 3	.0 MHz	yillana ay ana ana ana a	Sweep	Span 0 10.00 ms (10001 p

8-DPSK 3DH5 2441MHz

R RF 50 Ω AC enter Freq 2.441000000 GHz	PNO: Fast Tri	g Delay-500.0 μ g: Video tten: 30 dB	ALIGN AUTO IS #Avg Typ	e: RMS	TF	1 PM Aug 01, 202: RACE 1 2 3 4 5 TYPE WWWWWWW DET P N N N N
Ref Offset 2.02 dB 0 dB/div Ref 20.00 dBm					ΔMkr1	2.763 ms -5.72 dE
	A Augustan					TRIG LV
0.0					en et han at de	dat a
0.0 / 1998- 0.0 / 1998- 0.0			helalbar hall barrent			
0.0 <mark>pd d/</mark>		nnharmann		ninihhuaha		Span 0 H
α 4 α 4 α 4 α 4 α 1 α 1 α 1 α 1 α 1 α 1	#VBW 3.0	nnharmann		Sweep	ooniariide A	Span 0 H
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	#VBW 3.0) MHz	healeoline (heal) dhea side	Sweep	10.00 ms	Span 0 H

12. Antenna Requirement

Standard requirement:	FCC Part15 C Section 15.203 /247(c)	
-----------------------	-------------------------------------	--

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

EUT Antenna:

The antenna is PCB Antenna, the best case gain of the antennas is -0.58 dBi, reference to the appendix II for details

Reference to the appendix I for details.

14. EUT Constructional Details

Reference to the appendix II for details.

***** END OF REPORT ****

