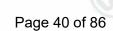
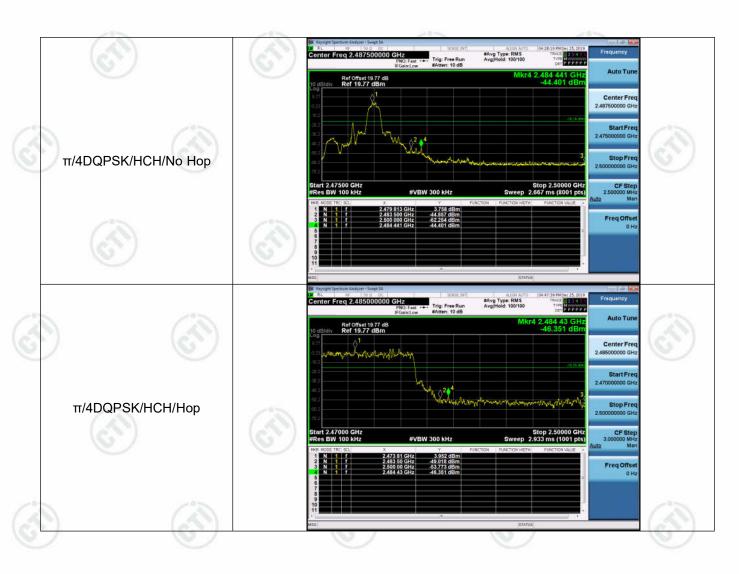


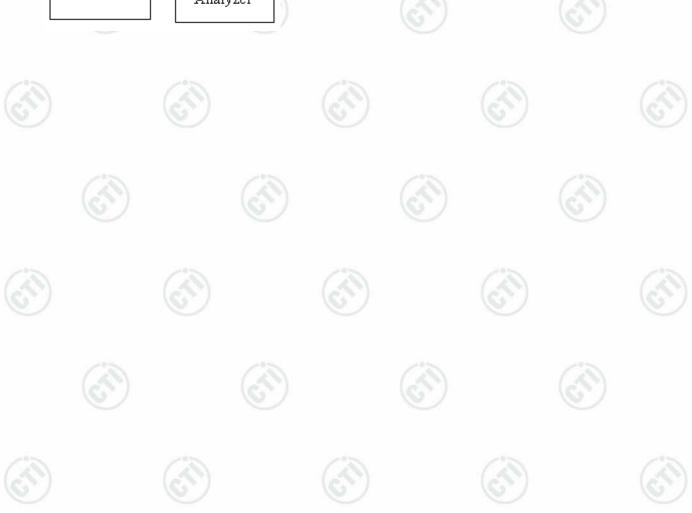
Page 39 of 86





Report No. : EED32L00379301 Page 43 of 86

Appendix G): RF Conducted Spurious Emissions

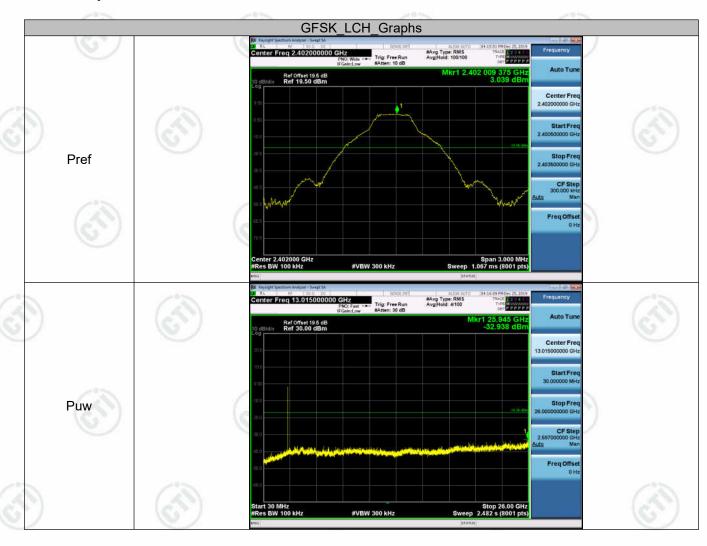

Test Limit According to §15.247(d),

The same of the sa	-0.7	and All Plans	and Million	and the first
.40		00. 10		
Limit		-20 dBc		(200
1 /		10.0		70.0

Test Procedure

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

= Auto. Test Setup EUT Spectrum Analyzer

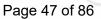


Report No. : EED32L00379301 Page 44 of 86

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
GFSK	LCH	3.039	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	MCH	3.798	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	HCH	3.728	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	LCH	3.435	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	MCH	3.717	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	HCH	3.696	<limit< td=""><td>PASS</td></limit<>	PASS

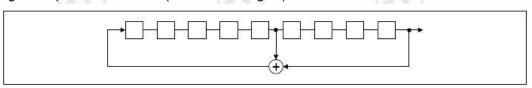
Test Graph





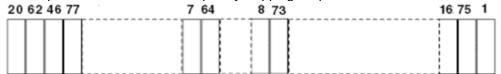
Appendix H) Pseudorandom Frequency Hopping Sequence

Test Requirement: 47 CFR Part 15**C Section 15.247 (a)(1) requirement:**


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence


The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

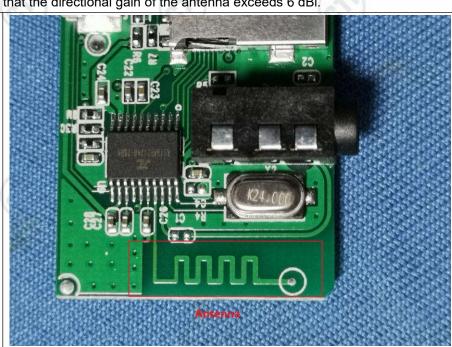
Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

The device does not have the ability to be coordinated with other FHSS systems in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Report No. : EED32L00379301 Page 51 of 86

Appendix I) Antenna Requirement


15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna car be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

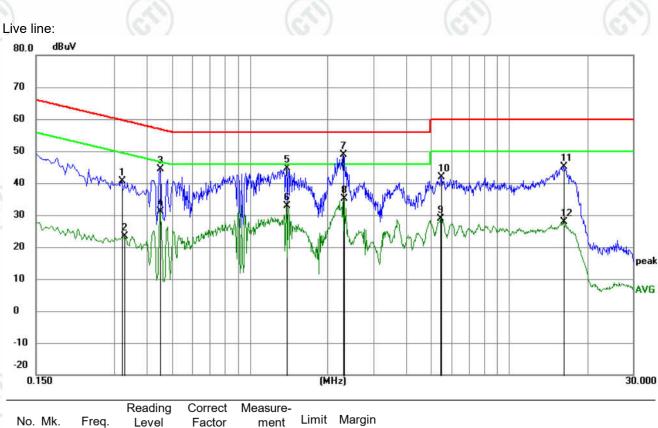
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is -0.5dBi.

Appendix J) AC Power Line Conducted Emission

Test Procedure:	: Test frequency range :150KHz	z-30MHz								
	1) The mains terminal disturb	1) The mains terminal disturbance voltage test was conducted in a shielded room.								
	2) The EUT was connected to Stabilization Network) which power cables of all other to which was bonded to the grant for the unit being measure multiple power cables to a exceeded.	ch provides a 50Ω/50 units of the EUT were ground reference plane ed. A multiple socket o	uH + 5Ω linear imp connected to a sec e in the same way a putlet strip was use	edance. cond LIS as the LIS d to con						
	The tabletop EUT was pla reference plane. And for fle horizontal ground reference	oor-standing arrangem								
	 4) The test was performed we EUT shall be 0.4 m from the reference plane was bonded 1 was placed 0.8 m from ground reference plane for plane. This distance was be All other units of the EUT at LISN 2. 5) In order to find the maximum. 	ne vertical ground refer ed to the horizontal gro the boundary of the user or LISNs mounted co petween the closest pot and associated equipm um emission, the relat	rence plane. The verbund reference plan unit under test and on top of the groun ints of the LISN 1 anent was at least 0.	ertical gro ne. The L bonded nd refere and the E 8 m from						
	all of the interface cable	o must be onlyinged	according to ANS							
Limit:	all of the interface cable conducted measurement.									
Limit:		Limit (c	lBuV)							
Limit:	conducted measurement.									
Limit:	conducted measurement. Frequency range (MHz)	Limit (c Quasi-peak	BuV) Average							
Limit:	conducted measurement. Frequency range (MHz) 0.15-0.5	Limit (c Quasi-peak 66 to 56*	Average 56 to 46*							



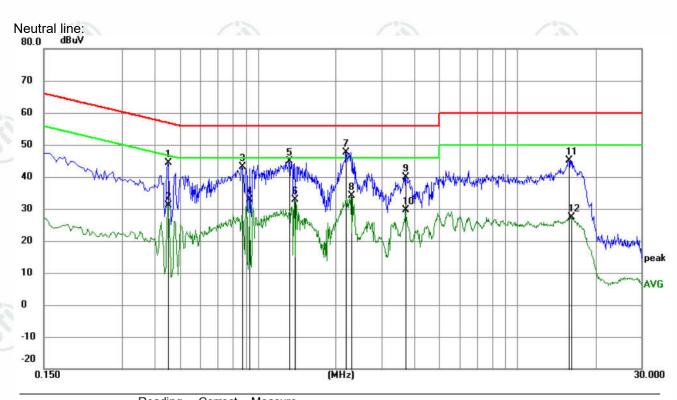
Report No. : EED32L00379301 Page 53 of 86

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

No	. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.3209	30.46	10.08	40.54	59.68	-19.14	QP	
2	!	0.3300	13.26	10.07	23.33	49.45	-26.12	AVG	
3	1	0.4515	34.46	10.00	44.46	56.85	-12.39	QP	
4		0.4515	21.02	10.00	31.02	46.85	-15.83	AVG	
5		1.3875	34.81	9.88	44.69	56.00	-11.31	QP	
6	;	1.3875	22.96	9.88	32.84	46.00	-13.16	AVG	
7	*	2.2920	39.00	9.83	48.83	56.00	-7.17	QP	
8	,	2.3190	25.25	9.83	35.08	46.00	-10.92	AVG	
9)	5.4465	19.01	9.83	28.84	50.00	-21.16	AVG	
10		5.4645	32.15	9.83	41.98	60.00	-18.02	QP	
11		16.2105	35.17	9.97	45.14	60.00	-14.86	QP	
12		16.2105	17.93	9.97	27.90	50.00	-22.10	AVG	



	No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
-		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
-	1	0.4515	34.26	10.00	44.26	56.85	-12.59	QP	
_	2	0.4515	21.11	10.00	31.11	46.85	-15.74	AVG	
	3	0.8700	33.18	9.92	43.10	56.00	-12.90	QP	
-	4	0.9330	23.04	9.92	32.96	46.00	-13.04	AVG	
	5	1.3200	34.94	9.88	44.82	56.00	-11.18	QP	
	6	1.3829	23.04	9.88	32.92	46.00	-13.08	AVG	
_	7 *	2.1885	37.89	9.83	47.72	56.00	-8.28	QP	
	8	2.2875	24.34	9.83	34.17	46.00	-11.83	AVG	
	9	3.7005	30.03	9.83	39.86	56.00	-16.14	QP	
	10	3.7005	19.77	9.83	29.60	46.00	-16.40	AVG	
	11	15.7920	35.20	9.97	45.17	60.00	-14.83	QP	
	12	16.0889	17.38	9.97	27.35	50.00	-22.65	AVG	

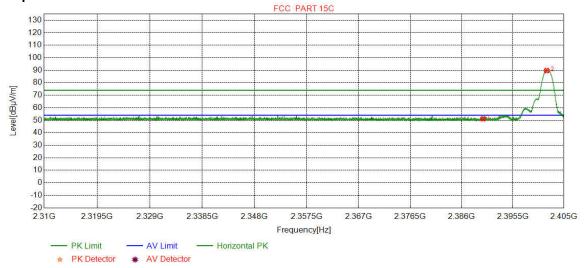
Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No. : EED32L00379301 Page 55 of 86

Appendix K) Restricted bands around fundamental frequency (Radiated)

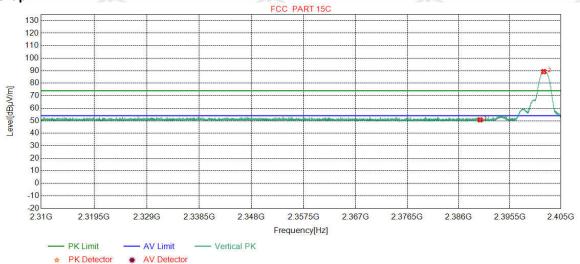
Recei	iver Setup:	Frequency	Detector	RBW	VBW	Remark	
	·	30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak	
		0011112 10112	Peak	1MHz	3MHz	Peak	13
	6	Above 1GHz	Peak	1MHz	10Hz	Average	
Test F	Procedure:	Below 1GHz test procedu	re as below:			<u> </u>	
		 a. The EUT was placed of at a 3 meter semi-aned determine the position b. The EUT was set 3 me was mounted on the toto. c. The antenna height is determine the maximu polarizations of the antenna was tuned table was turned from e. The test-receiver system Bandwidth with Maximm f. Place a marker at the of frequency to show combands. Save the spect for lowest and highest 	choic camber. To of the highest rate of the highest rate of the saway from ope of a variable-to varied from one moves where the set to mission, the EUT of the tenna are set to mission, the EUT of the heights from 0 degrees to 36 m was set to Perum Hold Mode. The restriction of t	he table was adiation. the interfer neight anter meter to for eld strength make the r r was arran of meter to degrees the eak Detect cted band of neasure any	ence-receinna tower. Four meters Four meters Four meters Four meters Four meters Four find the Four	wing antennal above the gradual and vent. worst case and the rotate maximum real and Specified the transmit in the restricts in the restricts.	to, whice ound the able ading.
		g. Different between above to fully Anechoic Chammetre(Above 18GHz th. b. Test the EUT in the i. The radiation measure Transmitting mode, an j. Repeat above procedu	ure as below: we is the test site ber and change the distance is 1 lowest channel ements are perfo d found the X ax	e form table meter and , the Highe ormed in X, kis position	e 0.8 metre table is 1.5 st channel Y, Z axis p ing which i	to 1.5 metre). positioning for t is worse cas	(C)
Limit		Frequency	Limit (dBuV	7		mark	
		30MHz-88MHz	40.0			eak Value	
		88MHz-216MHz	43.		<u> </u>	eak Value	
		216MHz-960MHz	46.0	- 20		eak Value	
	/ /	2 TOWN 12-3001VII 12	70.0	9 4 4	Quasi-pi	sak value	
	(0)	060MHz 1GHz	54.1	n 163	Ouasi n		
	6	960MHz-1GHz	54.0			eak Value	
	6	960MHz-1GHz Above 1GHz	54.0 54.0 74.0	0	Averag		

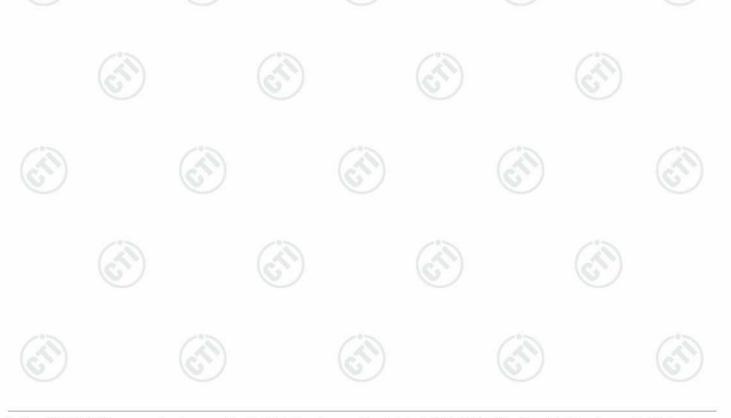


Test plot as follows:

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	48.66	51.16	74.00	22.84	Pass	Horizontal
2	2401.8015	32.26	13.31	-43.12	87.25	89.70	74.00	-15.70	Pass	Horizontal

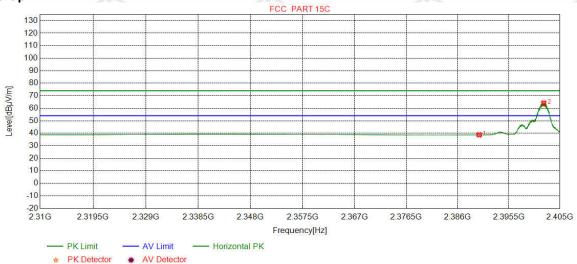


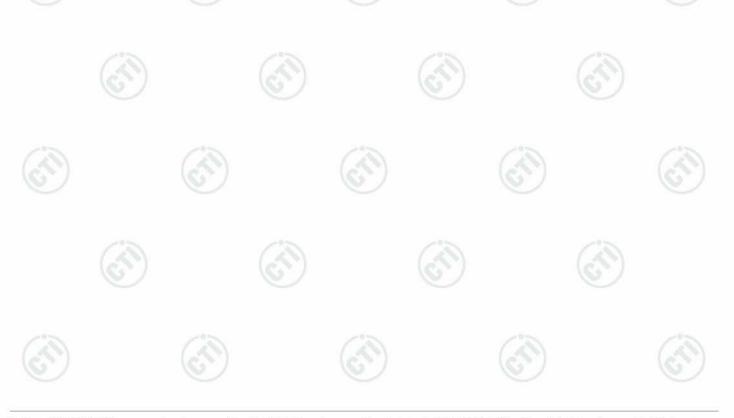

Report No. : EED32L00379301 Page 57 of 86

	125.75	100	
Mode:	GFSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	48.24	50.74	74.00	23.26	Pass	Vertical
2	2401.8015	32.26	13.31	-43.12	86.82	89.27	74.00	-15.27	Pass	Vertical

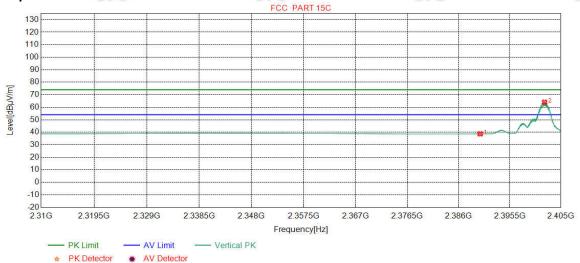


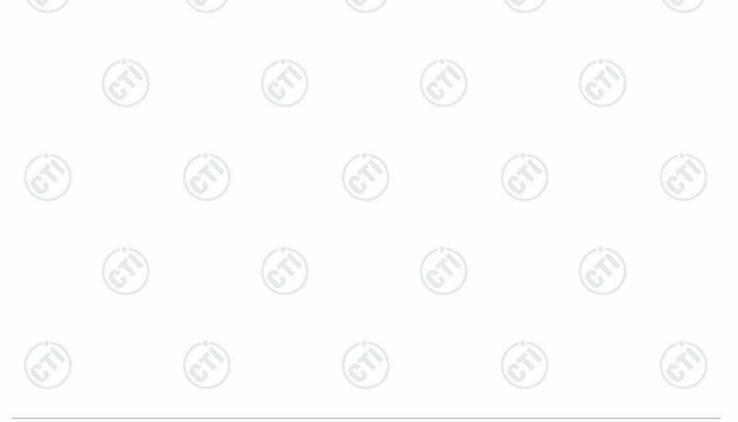

Report No. : EED32L00379301 Page 58 of 86

6.7	18.5	P 1	1.65.75
Mode:	GFSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

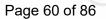
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.25	38.75	54.00	15.25	Pass	Horizontal
2	2401.9915	32.26	13.31	-43.12	61.65	64.10	54.00	-10.10	Pass	Horizontal



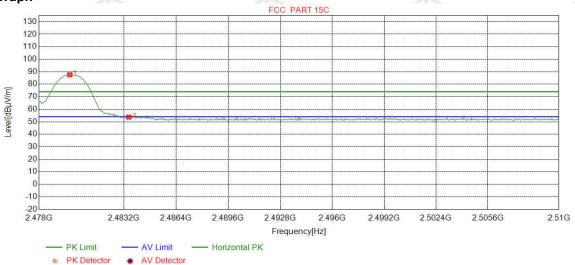

Report No. : EED32L00379301 Page 59 of 86

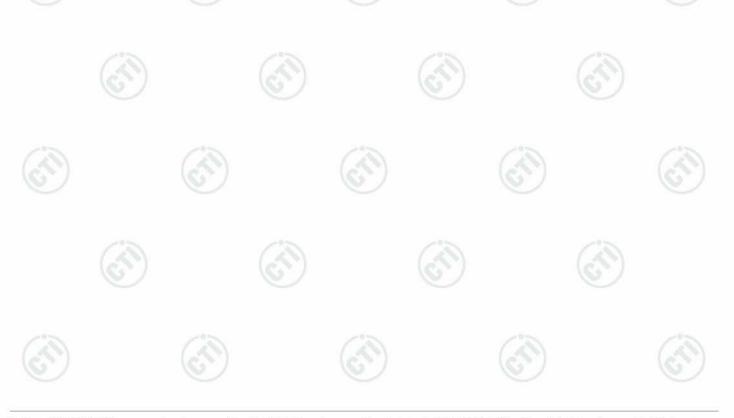
Mode:	GFSK Transmitting	Channel:	2402
Remark:	AV		

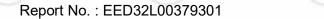
Test Graph



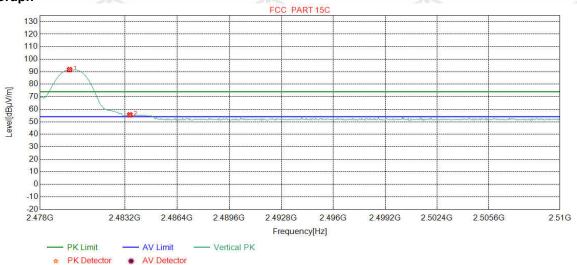
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.24	38.74	54.00	15.26	Pass	Vertical
2	2401.9535	32.26	13.31	-43.12	61.54	63.99	54.00	-9.99	Pass	Vertical

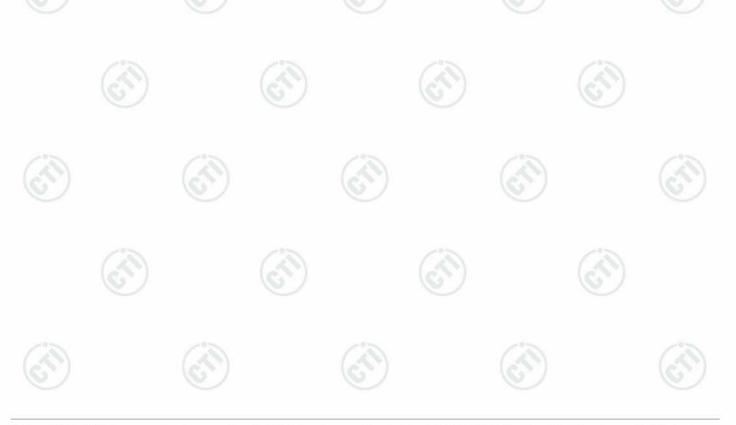





Mode:	Mode: GFSK Transmitting		2480
Remark:	PK		

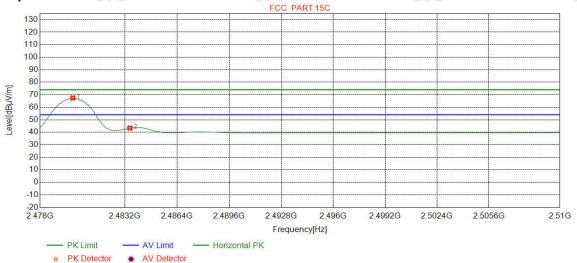
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.8824	32.37	13.39	-43.10	84.84	87.50	74.00	-13.50	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	51.03	53.68	74.00	20.32	Pass	Horizontal

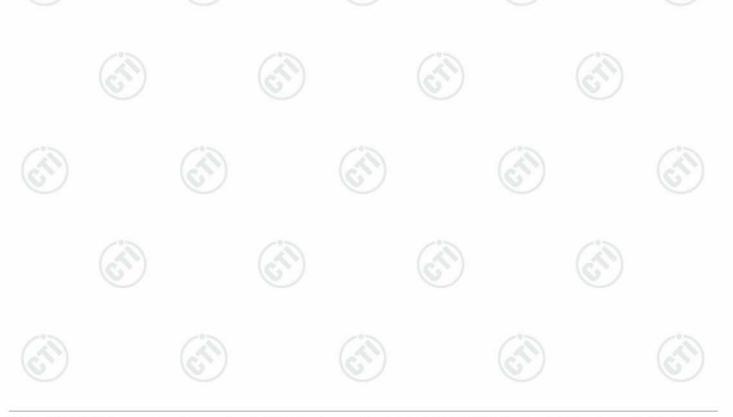




	1.65.75	120.75	1,600
Mode:	GFSK Transmitting	Channel:	2480
Remark:	PK	•	•

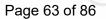
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.8023	32.37	13.39	-43.10	88.96	91.62	74.00	-17.62	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	52.91	55.56	74.00	18.44	Pass	Vertical



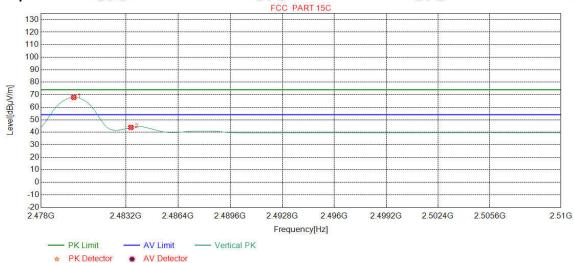

Report No. : EED32L00379301 Page 62 of 86

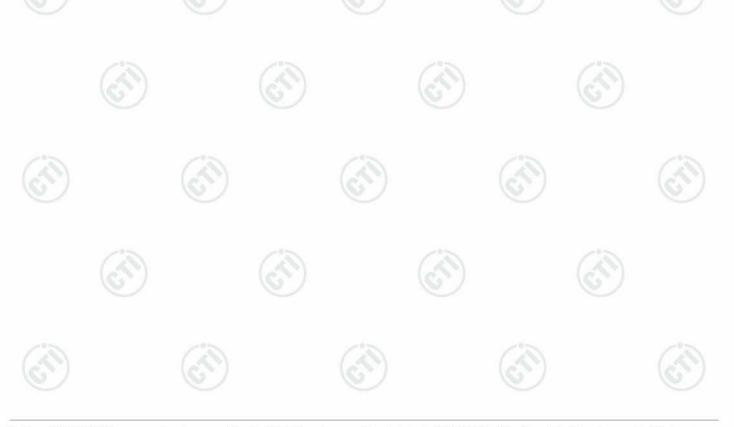
6.74	19878	1.00	1 20 20 1
Mode:	GFSK Transmitting	Channel:	2480
Remark:	AV	•	

Test Graph

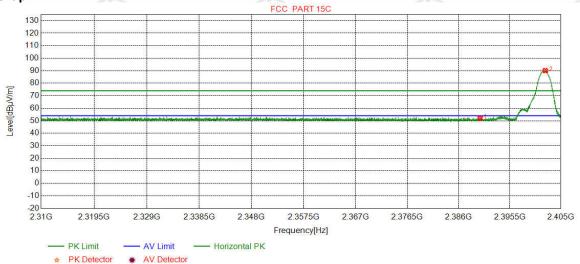


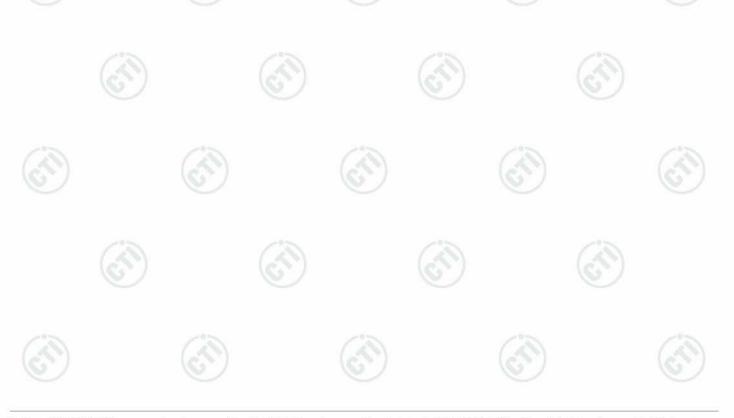
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0025	32.37	13.39	-42.39	64.02	67.39	54.00	-13.39	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	39.94	43.30	54.00	10.70	Pass	Horizontal





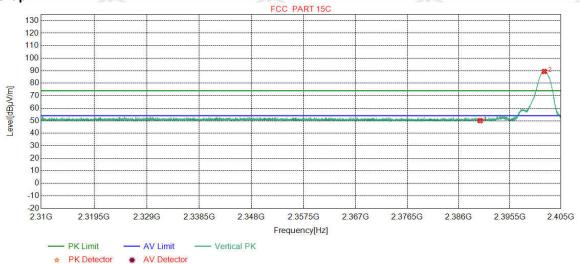
Mode:	GFSK Transmitting	Channel:	2480
Remark:	AV		

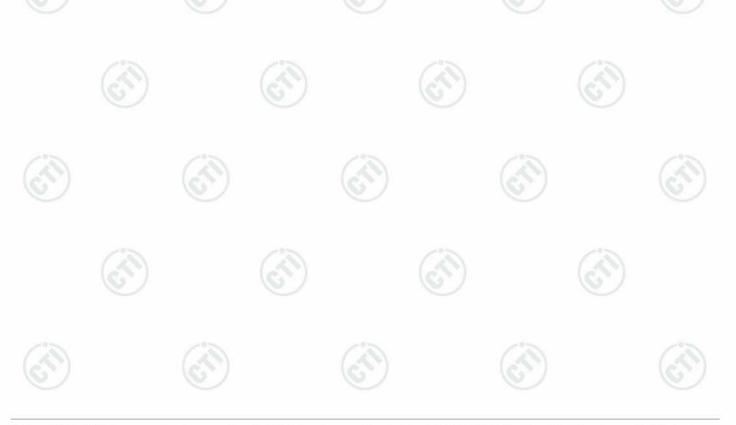

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0025	32.37	13.39	-42.39	64.52	67.89	54.00	-13.89	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	40.52	43.88	54.00	10.12	Pass	Vertical



20.75	100	126.78	
Mode:	π/4DQPSK Transmitting	Channel:	2402
Remark:	PK		•

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	49.46	51.96	74.00	22.04	Pass	Horizontal
2	2402.0928	32.26	13.31	-43.12	87.63	90.08	74.00	-16.08	Pass	Horizontal

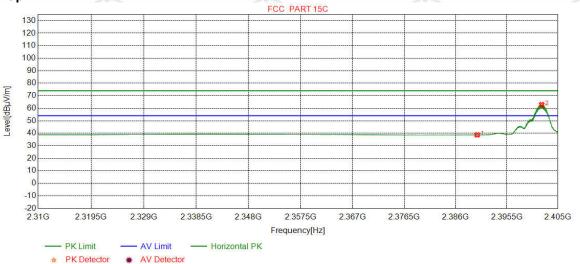


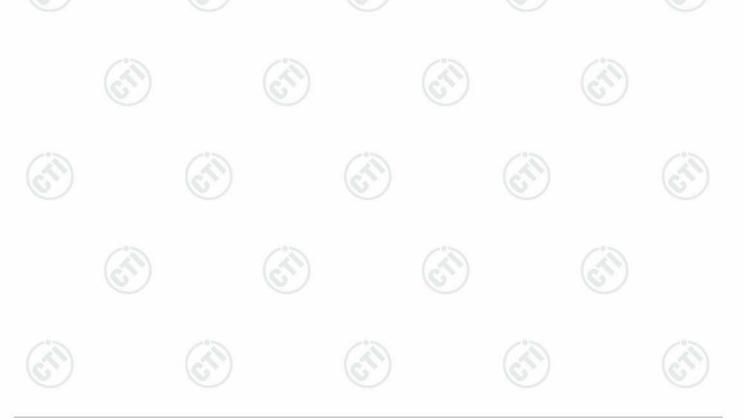

Report No. : EED32L00379301 Page 65 of 86

20.75	100	126.78	
Mode:	π/4DQPSK Transmitting	Channel:	2402
Remark:	PK		•

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.58	50.08	74.00	23.92	Pass	Vertical
2	2401.9155	32.26	13.31	-43.12	86.97	89.42	74.00	-15.42	Pass	Vertical

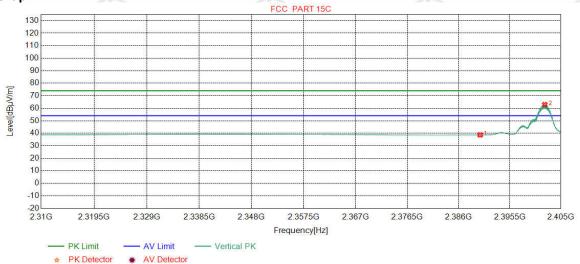


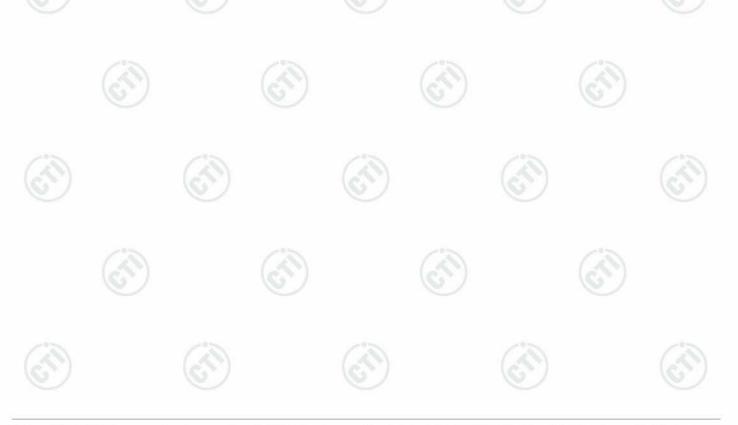

Report No. : EED32L00379301 Page 66 of 86

6.3	100	120.75	
Mode:	π/4DQPSK Transmitting	Channel:	2402
Remark:	AV		•

Test Graph

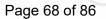
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.20	38.70	54.00	15.30	Pass	Horizontal
2	2401.9788	32.26	13.31	-43.12	60.38	62.83	54.00	-8.83	Pass	Horizontal



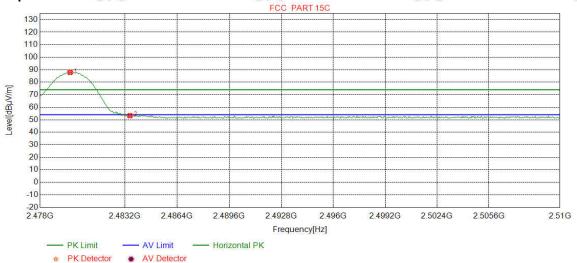

Report No. : EED32L00379301 Page 67 of 86

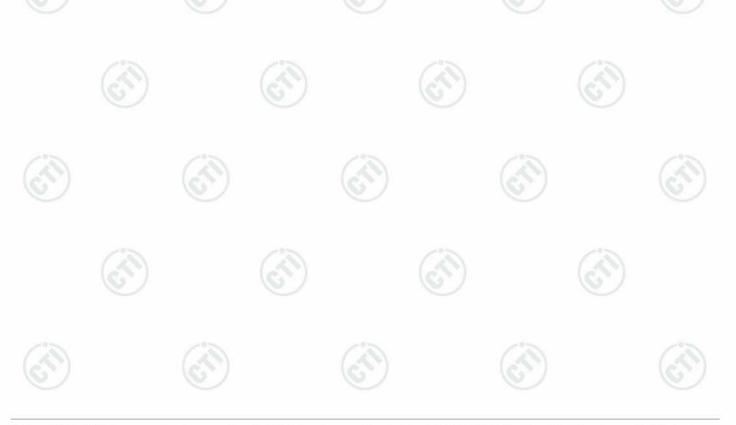
	1.00	126.78	
Mode:	π/4DQPSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph



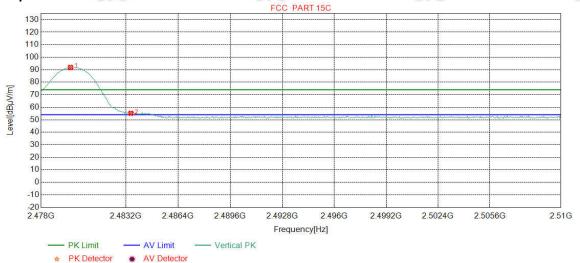
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.20	38.70	54.00	15.30	Pass	Vertical
2	2401.9978	32.26	13.31	-43.12	60.43	62.88	54.00	-8.88	Pass	Vertical

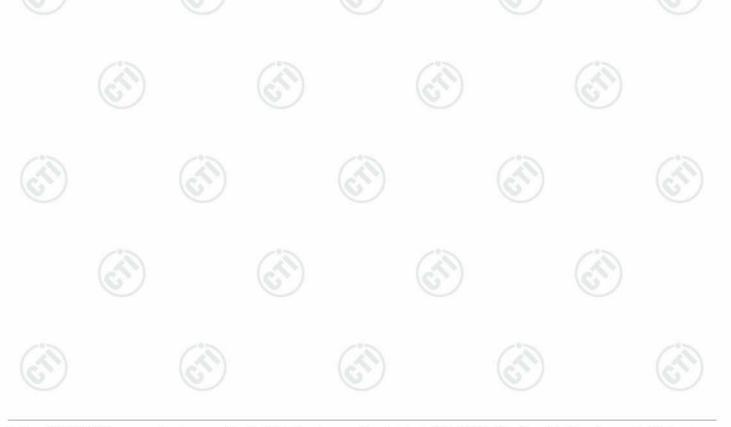




Mode:	π/4DQPSK Transmitting	Channel:	2480	
Remark:	PK	•	·	

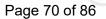
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.8423	32.37	13.39	-43.10	85.15	87.81	74.00	-13.81	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	50.63	53.28	74.00	20.72	Pass	Horizontal



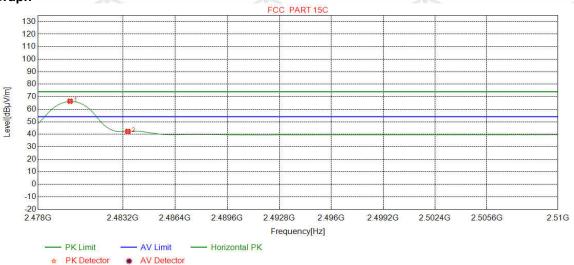

Report No. : EED32L00379301 Page 69 of 86

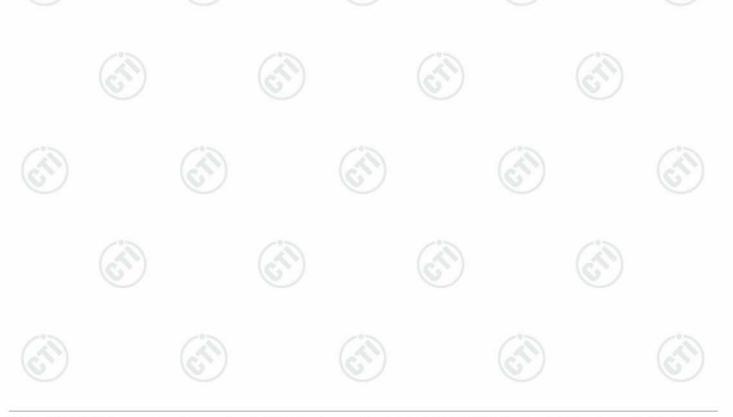
	100	126.78	
Mode:	π/4DQPSK Transmitting	Channel:	2480
Remark:	PK		

Test Graph

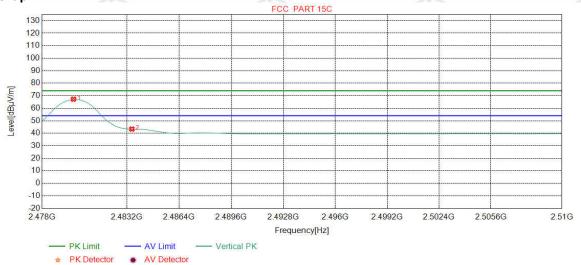


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.8023	32.37	13.39	-43.10	89.19	91.85	74.00	-17.85	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	52.51	55.16	74.00	18.84	Pass	Vertical

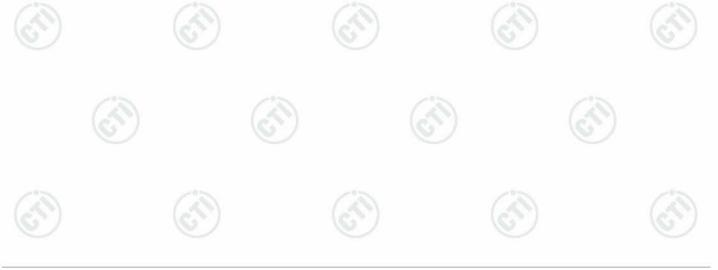




Mode:	π/4DQPSK Transmitting	Channel:	2480
Remark:	AV	•	


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9625	32.37	13.39	-42.39	63.05	66.42	54.00	-12.42	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	38.92	42.28	54.00	11.72	Pass	Horizontal

Mode:	π/4DQPSK Transmitting	Channel:	2480
Remark:	AV	•	


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9224	32.37	13.39	-42.39	63.85	67.22	54.00	-13.22	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	39.98	43.34	54.00	10.66	Pass	Vertical

Note:

- 1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of modulation and all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No. : EED32L00379301 Page 72 of 86

Appendix L) Radiated Spurious Emissions

Receiver Setup:		1/2	7 /		
	Frequency	Detector	RBW	VBW	Remark
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
\	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
)	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
/	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak
	Above 10Hz	Peak	1MHz	3MHz	Peak
	Above 1GHz	Peak	1MHz	10Hz	Average

Test Procedure:

Limit:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

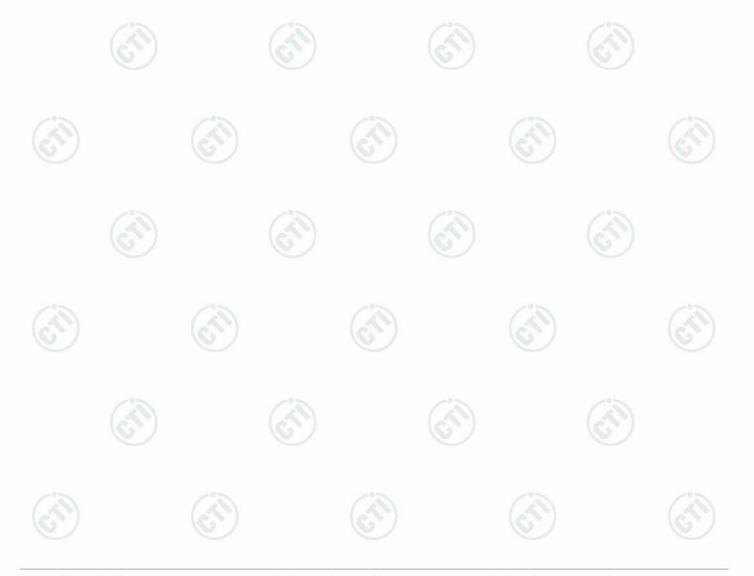
Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

j. Repeat above procedures until all frequencies measured was complete.

	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	(N.)	-	300
	0.490MHz-1.705MHz	24000/F(kHz)	× /	-	30
	1.705MHz-30MHz	30	-	-	30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
1	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.



Report No. : EED32L00379301 Page 73 of 86

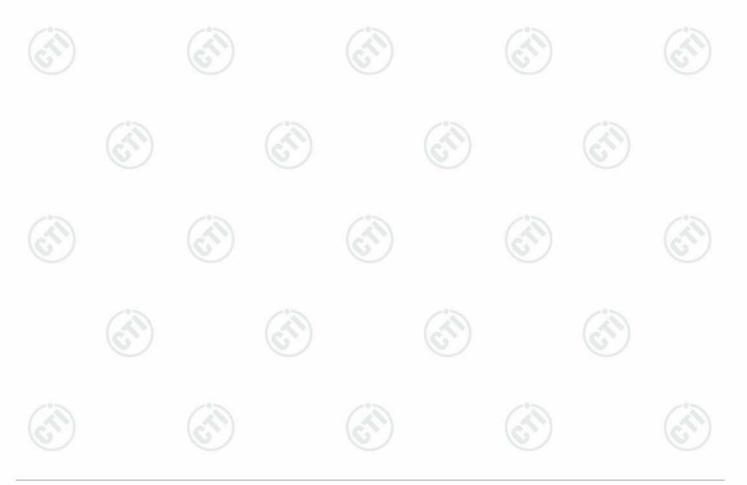
Radiated Spurious Emissions test Data:

Mode) :	GFSK T	ransmitt	ing			Channel:		2441		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	156.0156	7.76	1.46	-31.99	61.40	38.63	43.50	4.87	Pass	Н	PK
2	240.0260	11.94	1.84	-31.90	51.19	33.07	46.00	12.93	Pass	Н	PK
3	444.0374	16.10	2.49	-31.88	45.89	32.60	46.00	13.40	Pass	Н	PK
4	600.0290	19.00	2.96	-31.50	49.42	39.88	46.00	6.12	Pass	Н	PK
5	840.1280	21.38	3.50	-31.89	42.18	35.17	46.00	10.83	Pass	Н	PK
6	974.9715	22.55	3.75	-30.95	43.07	38.42	54.00	15.58	Pass	Н	PK
7	107.9958	10.92	1.23	-32.04	49.79	29.90	43.50	13.60	Pass	V	PK
8	132.0542	7.60	1.34	-32.01	55.89	32.82	43.50	10.68	Pass	V	PK
9	156.0156	7.76	1.46	-31.99	59.06	36.29	43.50	7.21	Pass	V	PK
10	216.0646	11.32	1.75	-31.95	54.41	35.53	46.00	10.47	Pass	V	PK
11	600.0290	19.00	2.96	-31.50	46.34	36.80	46.00	9.20	Pass	V	PK
12	974.9715	22.55	3.75	-30.95	41.92	37.27	54.00	16.73	Pass	V	PK

Page 74 of 86

	21%			100		16	7%		20%		
Mode	e :	GFSK T	ransmitt	ing			Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1599.2599	29.06	3.07	-42.91	58.56	47.78	74.00	26.22	Pass	Н	PK
2	2123.1123	31.87	3.61	-43.17	59.76	52.07	74.00	21.93	Pass	Н	PK
3	4804.0000	34.50	4.55	-42.80	58.81	55.06	74.00	18.94	Pass	Н	PK
4	7206.0000	36.31	5.81	-42.16	56.22	56.18	74.00	17.82	Pass	Н	PK
5	9608.0000	37.64	6.63	-42.10	46.75	48.92	74.00	25.08	Pass	Н	PK
6	12010.0000	39.31	7.60	-41.90	46.26	51.27	74.00	22.73	Pass	Н	PK
7	4803.9503	34.50	4.55	-42.80	45.87	42.12	54.00	11.88	Pass	Н	AV
8	7205.9404	36.31	5.82	-42.16	42.58	42.55	54.00	11.45	Pass	Н	AV
9	1661.4661	29.47	3.15	-42.75	51.75	41.62	74.00	32.38	Pass	V	PK
10	2127.1127	31.88	3.62	-43.18	60.73	53.05	74.00	20.95	Pass	V	PK
11	4804.0000	34.50	4.55	-42.80	61.73	57.98	74.00	16.02	Pass	V	PK
12	7206.0000	36.31	5.81	-42.16	56.93	56.89	74.00	17.11	Pass	V	PK
13	9608.0000	37.64	6.63	-42.10	47.17	49.34	74.00	24.66	Pass	V	PK
14	12010.0000	39.31	7.60	-41.90	47.37	52.38	74.00	21.62	Pass	V	PK
15	4804.0003	34.50	4.55	-42.80	47.63	43.88	54.00	10.12	Pass	V	AV
16	7205.8804	36.31	5.82	-42.16	44.45	44.42	54.00	9.58	Pass	V	AV

Mode) :	GFSK T	ransmitt	ing			Channel:		2441		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1330.8331	28.23	2.79	-42.75	53.86	42.13	74.00	31.87	Pass	Н	PK
2	2123.1123	31.87	3.61	-43.17	61.64	53.95	74.00	20.05	Pass	Н	PK
3	4882.1255	34.50	4.81	-42.80	58.71	55.22	74.00	18.78	Pass	Н	PK
4	7323.2882	36.42	5.85	-42.13	54.01	54.15	74.00	19.85	Pass	Н	PK
5	9764.0000	37.71	6.71	-42.10	47.33	49.65	74.00	24.35	Pass	Н	PK
6	12205.0000	39.42	7.67	-41.89	45.73	50.93	74.00	23.07	Pass	Н	PK
7	4881.9655	34.50	4.81	-42.80	46.52	43.03	54.00	10.97	Pass	Н	AV
8	7322.9282	36.42	5.85	-42.14	43.70	43.83	54.00	10.17	Pass	Н	AV
9	1597.6598	29.04	3.07	-42.90	54.84	44.05	74.00	29.95	Pass	V	PK
10	2663.7664	32.66	4.10	-43.10	60.21	53.87	74.00	20.13	Pass	V	PK
11	4881.1254	34.50	4.80	-42.80	62.20	58.70	74.00	15.30	Pass	V	PK
12	7323.0000	36.42	5.85	-42.13	56.97	57.11	74.00	16.89	Pass	V	PK
13	9764.0000	37.71	6.71	-42.10	49.41	51.73	74.00	22.27	Pass	V	PK
14	12205.0000	39.42	7.67	-41.89	45.95	51.15	74.00	22.85	Pass	V	PK
15	4881.9254	34.50	4.81	-42.80	47.70	44.21	54.00	9.79	Pass	V	AV
16	7322.9382	36.42	5.85	-42.14	44.32	44.45	54.00	9.55	Pass	V	AV



_		_	
Page	75	Ωf	86

NO Freq. [MHz]		-21%			200			The		200		
NO Freq. [MHz] Factor [dB] loss [dB] gain [dB] Reading [dBμV/m] Level [dBμV/m] Limit [dBμV/m] Result [dBμV/m] Polarity Remark 1 1598.0598 29.05 3.07 -42.91 57.57 46.78 74.00 27.22 Pass H PK 2 2127.3127 31.88 3.62 -43.18 60.46 52.78 74.00 21.22 Pass H PK 3 4960.0000 34.50 4.82 -42.80 57.97 54.49 74.00 19.51 Pass H PK 4 7440.0000 36.54 5.85 -42.11 56.71 56.99 74.00 17.01 Pass H PK 5 9920.0000 37.77 6.79 -42.10 46.68 49.14 74.00 24.86 Pass H PK 6 12400.0000 39.54 7.86 -41.90 47.13 52.63 74.00 21.37 Pass H PK <td>Mode</td> <td>e:</td> <td>GFSK T</td> <td>ransmitt</td> <td>ing</td> <td></td> <td></td> <td>Channel:</td> <td></td> <td>2480</td> <td></td> <td></td>	Mode	e:	GFSK T	ransmitt	ing			Channel:		2480		
2 2127.3127 31.88 3.62 -43.18 60.46 52.78 74.00 21.22 Pass H PK 3 4960.0000 34.50 4.82 -42.80 57.97 54.49 74.00 19.51 Pass H PK 4 7440.0000 36.54 5.85 -42.11 56.71 56.99 74.00 17.01 Pass H PK 5 9920.0000 37.77 6.79 -42.10 46.68 49.14 74.00 24.86 Pass H PK 6 12400.0000 39.54 7.86 -41.90 47.13 52.63 74.00 21.37 Pass H PK 7 4959.9906 34.50 4.82 -42.80 47.11 43.63 54.00 10.37 Pass H AV 8 7439.9160 36.54 5.85 -42.11 43.89 44.17 54.00 9.83 Pass H AV 9	NO		Factor	loss	gain					Result	Polarity	Remark
3 4960.0000 34.50 4.82 -42.80 57.97 54.49 74.00 19.51 Pass H PK 4 7440.0000 36.54 5.85 -42.11 56.71 56.99 74.00 17.01 Pass H PK 5 9920.0000 37.77 6.79 -42.10 46.68 49.14 74.00 24.86 Pass H PK 6 12400.0000 39.54 7.86 -41.90 47.13 52.63 74.00 21.37 Pass H PK 7 4959.9906 34.50 4.82 -42.80 47.11 43.63 54.00 10.37 Pass H AV 8 7439.9160 36.54 5.85 -42.11 43.89 44.17 54.00 9.83 Pass H AV 9 1594.4594 29.02 3.07 -42.91 55.57 44.75 74.00 29.25 Pass V PK 10	1	1598.0598	29.05	3.07	-42.91	57.57	46.78	74.00	27.22	Pass	Н	PK
4 7440.0000 36.54 5.85 -42.11 56.71 56.99 74.00 17.01 Pass H PK 5 9920.0000 37.77 6.79 -42.10 46.68 49.14 74.00 24.86 Pass H PK 6 12400.0000 39.54 7.86 -41.90 47.13 52.63 74.00 21.37 Pass H PK 7 4959.9906 34.50 4.82 -42.80 47.11 43.63 54.00 10.37 Pass H AV 8 7439.9160 36.54 5.85 -42.11 43.89 44.17 54.00 9.83 Pass H AV 9 1594.4594 29.02 3.07 -42.91 55.57 44.75 74.00 29.25 Pass V PK 10 2164.7165 31.93 3.65 -43.17 53.32 45.73 74.00 28.27 Pass V PK 11	2	2127.3127	31.88	3.62	-43.18	60.46	52.78	74.00	21.22	Pass	Н	PK
5 9920.0000 37.77 6.79 -42.10 46.68 49.14 74.00 24.86 Pass H PK 6 12400.0000 39.54 7.86 -41.90 47.13 52.63 74.00 21.37 Pass H PK 7 4959.9906 34.50 4.82 -42.80 47.11 43.63 54.00 10.37 Pass H AV 8 7439.9160 36.54 5.85 -42.11 43.89 44.17 54.00 9.83 Pass H AV 9 1594.4594 29.02 3.07 -42.91 55.57 44.75 74.00 29.25 Pass V PK 10 2164.7165 31.93 3.65 -43.17 53.32 45.73 74.00 28.27 Pass V PK 11 4960.1307 34.50 4.82 -42.80 61.03 57.55 74.00 16.45 Pass V PK 12	3	4960.0000	34.50	4.82	-42.80	57.97	54.49	74.00	19.51	Pass	Н	PK
6 12400.0000 39.54 7.86 -41.90 47.13 52.63 74.00 21.37 Pass H PK 7 4959.9906 34.50 4.82 -42.80 47.11 43.63 54.00 10.37 Pass H AV 8 7439.9160 36.54 5.85 -42.11 43.89 44.17 54.00 9.83 Pass H AV 9 1594.4594 29.02 3.07 -42.91 55.57 44.75 74.00 29.25 Pass V PK 10 2164.7165 31.93 3.65 -43.17 53.32 45.73 74.00 28.27 Pass V PK 11 4960.1307 34.50 4.82 -42.80 61.03 57.55 74.00 16.45 Pass V PK 12 7440.0000 36.54 5.85 -42.11 57.17 57.45 74.00 16.55 Pass V PK 13	4	7440.0000	36.54	5.85	-42.11	56.71	56.99	74.00	17.01	Pass	Н	PK
7 4959.9906 34.50 4.82 -42.80 47.11 43.63 54.00 10.37 Pass H AV 8 7439.9160 36.54 5.85 -42.11 43.89 44.17 54.00 9.83 Pass H AV 9 1594.4594 29.02 3.07 -42.91 55.57 44.75 74.00 29.25 Pass V PK 10 2164.7165 31.93 3.65 -43.17 53.32 45.73 74.00 28.27 Pass V PK 11 4960.1307 34.50 4.82 -42.80 61.03 57.55 74.00 16.45 Pass V PK 12 7440.0000 36.54 5.85 -42.11 57.17 57.45 74.00 16.55 Pass V PK 13 9920.0000 37.77 6.79 -42.10 47.21 49.67 74.00 24.33 Pass V PK 14	5	9920.0000	37.77	6.79	-42.10	46.68	49.14	74.00	24.86	Pass	Н	PK
8 7439.9160 36.54 5.85 -42.11 43.89 44.17 54.00 9.83 Pass H AV 9 1594.4594 29.02 3.07 -42.91 55.57 44.75 74.00 29.25 Pass V PK 10 2164.7165 31.93 3.65 -43.17 53.32 45.73 74.00 28.27 Pass V PK 11 4960.1307 34.50 4.82 -42.80 61.03 57.55 74.00 16.45 Pass V PK 12 7440.0000 36.54 5.85 -42.11 57.17 57.45 74.00 16.55 Pass V PK 13 9920.0000 37.77 6.79 -42.10 47.21 49.67 74.00 24.33 Pass V PK 14 12400.0000 39.54 7.86 -41.90 46.68 52.18 74.00 21.82 Pass V PK 15	6	12400.0000	39.54	7.86	-41.90	47.13	52.63	74.00	21.37	Pass	Н	PK
9 1594.4594 29.02 3.07 -42.91 55.57 44.75 74.00 29.25 Pass V PK 10 2164.7165 31.93 3.65 -43.17 53.32 45.73 74.00 28.27 Pass V PK 11 4960.1307 34.50 4.82 -42.80 61.03 57.55 74.00 16.45 Pass V PK 12 7440.0000 36.54 5.85 -42.11 57.17 57.45 74.00 16.55 Pass V PK 13 9920.0000 37.77 6.79 -42.10 47.21 49.67 74.00 24.33 Pass V PK 14 12400.0000 39.54 7.86 -41.90 46.68 52.18 74.00 21.82 Pass V PK 15 4959.9507 34.50 4.82 -42.80 47.12 43.64 54.00 10.36 Pass V AV	7	4959.9906	34.50	4.82	-42.80	47.11	43.63	54.00	10.37	Pass	Н	AV
10 2164.7165 31.93 3.65 -43.17 53.32 45.73 74.00 28.27 Pass V PK 11 4960.1307 34.50 4.82 -42.80 61.03 57.55 74.00 16.45 Pass V PK 12 7440.0000 36.54 5.85 -42.11 57.17 57.45 74.00 16.55 Pass V PK 13 9920.0000 37.77 6.79 -42.10 47.21 49.67 74.00 24.33 Pass V PK 14 12400.0000 39.54 7.86 -41.90 46.68 52.18 74.00 21.82 Pass V PK 15 4959.9507 34.50 4.82 -42.80 47.12 43.64 54.00 10.36 Pass V AV	8	7439.9160	36.54	5.85	-42.11	43.89	44.17	54.00	9.83	Pass	Н	AV
11 4960.1307 34.50 4.82 -42.80 61.03 57.55 74.00 16.45 Pass V PK 12 7440.0000 36.54 5.85 -42.11 57.17 57.45 74.00 16.55 Pass V PK 13 9920.0000 37.77 6.79 -42.10 47.21 49.67 74.00 24.33 Pass V PK 14 12400.0000 39.54 7.86 -41.90 46.68 52.18 74.00 21.82 Pass V PK 15 4959.9507 34.50 4.82 -42.80 47.12 43.64 54.00 10.36 Pass V AV	9	1594.4594	29.02	3.07	-42.91	55.57	44.75	74.00	29.25	Pass	V	PK
12 7440.0000 36.54 5.85 -42.11 57.17 57.45 74.00 16.55 Pass V PK 13 9920.0000 37.77 6.79 -42.10 47.21 49.67 74.00 24.33 Pass V PK 14 12400.0000 39.54 7.86 -41.90 46.68 52.18 74.00 21.82 Pass V PK 15 4959.9507 34.50 4.82 -42.80 47.12 43.64 54.00 10.36 Pass V AV	10	2164.7165	31.93	3.65	-43.17	53.32	45.73	74.00	28.27	Pass	V	PK
13 9920.0000 37.77 6.79 -42.10 47.21 49.67 74.00 24.33 Pass V PK 14 12400.0000 39.54 7.86 -41.90 46.68 52.18 74.00 21.82 Pass V PK 15 4959.9507 34.50 4.82 -42.80 47.12 43.64 54.00 10.36 Pass V AV	11	4960.1307	34.50	4.82	-42.80	61.03	57.55	74.00	16.45	Pass	V	PK
14 12400.0000 39.54 7.86 -41.90 46.68 52.18 74.00 21.82 Pass V PK 15 4959.9507 34.50 4.82 -42.80 47.12 43.64 54.00 10.36 Pass V AV	12	7440.0000	36.54	5.85	-42.11	57.17	57.45	74.00	16.55	Pass	V	PK
15 4959.9507 34.50 4.82 -42.80 47.12 43.64 54.00 10.36 Pass V AV	13	9920.0000	37.77	6.79	-42.10	47.21	49.67	74.00	24.33	Pass	V	PK
	14	12400.0000	39.54	7.86	-41.90	46.68	52.18	74.00	21.82	Pass	V	PK
16 7439.9360 36.54 5.85 -42.11 44.93 45.21 54.00 8.79 Pass V AV	15	4959.9507	34.50	4.82	-42.80	47.12	43.64	54.00	10.36	Pass	V	AV
	16	7439.9360	36.54	5.85	-42.11	44.93	45.21	54.00	8.79	Pass	V	AV

Page 76 of 86

				100		100	7%		20%		
Mode	e :	π/4DQF	PSK Trar	nsmitting			Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1327.8328	28.23	2.79	-42.76	53.30	41.56	74.00	32.44	Pass	Н	PK
2	2125.9126	31.88	3.62	-43.18	57.46	49.78	74.00	24.22	Pass	Н	PK
3	4804.1203	34.50	4.55	-42.80	58.56	54.81	74.00	19.19	Pass	Н	PK
4	7206.2804	36.31	5.81	-42.16	55.36	55.32	74.00	18.68	Pass	Н	PK
5	9608.0000	37.64	6.63	-42.10	47.22	49.39	74.00	24.61	Pass	Н	PK
6	12010.0000	39.31	7.60	-41.90	46.54	51.55	74.00	22.45	Pass	Н	PK
7	4803.9203	34.50	4.55	-42.80	43.95	40.20	54.00	13.80	Pass	Н	AV
8	7205.9304	36.31	5.82	-42.16	41.30	41.27	54.00	12.73	Pass	Н	AV
9	1593.4593	29.02	3.06	-42.91	54.91	44.08	74.00	29.92	Pass	V	PK
10	2125.3125	31.88	3.62	-43.18	55.38	47.70	74.00	26.30	Pass	V	PK
11	4804.0000	34.50	4.55	-42.80	60.66	56.91	74.00	17.09	Pass	V	PK
12	7205.2804	36.31	5.82	-42.17	58.84	58.80	74.00	15.20	Pass	V	PK
13	9608.0000	37.64	6.63	-42.10	47.52	49.69	74.00	24.31	Pass	V	PK
14	12010.0000	39.31	7.60	-41.90	46.99	52.00	74.00	22.00	Pass	V	PK
15	4803.9402	34.50	4.55	-42.80	45.56	41.81	54.00	12.19	Pass	V	AV
16	7205.9204	36.31	5.82	-42.16	42.78	42.75	54.00	11.25	Pass	V	AV

Mode	٠.	π/4DOF	SK Tran	smitting		1.27	Channel:		2441		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1663.4663	29.48	3.16	-42.75	54.23	44.12	74.00	29.88	Pass	Н	PK
2	2127.1127	31.88	3.62	-43.18	57.07	49.39	74.00	24.61	Pass	Н	PK
3	4881.1254	34.50	4.80	-42.80	59.44	55.94	74.00	18.06	Pass	Н	PK
4	7322.2882	36.42	5.85	-42.13	57.80	57.94	74.00	16.06	Pass	Н	PK
5	9764.0000	37.71	6.71	-42.10	47.90	50.22	74.00	23.78	Pass	Н	PK
6	12205.0000	39.42	7.67	-41.89	46.26	51.46	74.00	22.54	Pass	Н	PK
7	4881.9254	34.50	4.81	-42.80	44.61	41.12	54.00	12.88	Pass	Н	AV
8	7322.9482	36.42	5.85	-42.14	41.68	41.81	54.00	12.19	Pass	Н	AV
9	1598.8599	29.05	3.07	-42.90	54.15	43.37	74.00	30.63	Pass	V	PK
10	2126.3126	31.88	3.62	-43.18	57.35	49.67	74.00	24.33	Pass	V	PK
11	4882.1255	34.50	4.81	-42.80	62.37	58.88	74.00	15.12	Pass	V	PK
12	7322.2882	36.42	5.85	-42.13	58.84	58.98	74.00	15.02	Pass	V	PK
13	9755.4504	37.70	6.75	-42.09	50.78	53.14	74.00	20.86	Pass	V	PK
14	12205.0000	39.42	7.67	-41.89	45.72	50.92	74.00	23.08	Pass	V	PK
15	4881.9255	34.50	4.81	-42.80	45.75	42.26	54.00	11.74	Pass	V	AV
16	7322.8682	36.42	5.85	-42.14	42.58	42.71	54.00	11.29	Pass	V	AV

Report No. : EED32L00379301 Page 77 of 86

	1.0.3			1 00 7	1	1.0	2.91		1.65.31		
Mode	e:	π/4DQF	PSK Tran	nsmitting			Channel:		2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1597.0597	29.04	3.07	-42.91	56.97	46.17	74.00	27.83	Pass	Н	PK
2	2133.3133	31.89	3.63	-43.18	57.95	50.29	74.00	23.71	Pass	Н	PK
3	4960.1307	34.50	4.82	-42.80	60.99	57.51	74.00	16.49	Pass	Н	PK
4	7440.2960	36.54	5.85	-42.11	57.63	57.91	74.00	16.09	Pass	Н	PK
5	9920.0000	37.77	6.79	-42.10	45.71	48.17	74.00	25.83	Pass	Н	PK
6	12400.0000	39.54	7.86	-41.90	46.72	52.22	74.00	21.78	Pass	Н	PK
7	4959.9207	34.50	4.82	-42.80	45.29	41.81	54.00	12.19	Pass	Н	AV
8	7439.8860	36.54	5.85	-42.11	42.12	42.40	54.00	11.60	Pass	Н	AV
9	1592.4592	29.01	3.06	-42.91	54.71	43.87	74.00	30.13	Pass	V	PK
10	2125.5126	31.88	3.62	-43.18	55.89	48.21	74.00	25.79	Pass	V	PK
11	4960.1307	34.50	4.82	-42.80	59.74	56.26	74.00	17.74	Pass	V	PK
12	7439.2960	36.54	5.85	-42.11	59.84	60.12	74.00	13.88	Pass	V	PK
13	9920.0000	37.77	6.79	-42.10	46.48	48.94	74.00	25.06	Pass	V	PK
14	12400.0000	39.54	7.86	-41.90	45.93	51.43	74.00	22.57	Pass	V	PK
15	4959.9407	34.50	4.82	-42.80	45.35	41.87	54.00	12.13	Pass	V	AV
16	7439.8960	36.54	5.85	-42.11	43.02	43.30	54.00	10.70	Pass	V	AV

Note:

- 1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of modulation and all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

