ANNEX A Graph Results . #### LTE B23 Body #### **Exposure Conditions** | Phantom
Section, TSL | Position, Test
Distance [mm] | Band | Duty Cycle | Frequency
[MHz],
Channel Numbe | Conversion
Factor
er | TSL Conductivity
[S/m] | TSL Permittivity | |-------------------------|---------------------------------|--------|------------|--------------------------------------|----------------------------|---------------------------|------------------| | Flat, | BACK, | Band23 | CW, | 2019.900, | 8.33 | 1.373 | 39.354 | | ЦCI | 5.00 | | 0 | 25600 | | | | #### **Hardware Setup** | Phantom | TSL, Measured Date | Probe, Calibration Date | DAE, Calibration Date | |----------------------------------|--------------------|-----------------------------|-------------------------| | Twin-SAM V8.0 (30deg probe tilt) | HBBL-600-10000 | EX3DV4 – SN7307, 2024-05-28 | DAE4 Sn1807, 2024-05-14 | | - 2114 | | | | **Scan Setup** | | Area Scan | Zoom Scan | |-------------------|---------------|--------------------| | Grid Extents [mm] | 120.0 x 200.0 | 30.0 x 30.0 x 30.0 | | Grid Steps [mm] | 10.0 x 10.0 | 5.0 x 5.0 x 1.5 | | Sensor Surface | 3.0 | 1.4 | | [mm] | | | | Graded Grid | N/A | Yes | | Grading Ratio | N/A | 1.5 | | MAIA | N/A | N/A | | Surface Detection | All points | All points | | Scan Method | Measured | Measured | | | | | | | Area Scan | Zoom Scan | |---------------------|---------------|---------------| | Date | 2024-10-25 | 2024-10-25 | | psSAR1g [W/kg] | 0.862 | 0.863 | | psSAR10g [W/kg] | 0.501 | 0.509 | | Power Drift [dB] | 0.05 | 0.09 | | Power Scaling | Disabled | Disabled | | Scaling Factor [dB] | | | | TSL Correction | No correction | No correction | | M2/M1 [%] | | 80.4 | | Dist 3dB Peak | | 8.1 | | [mm] | | | . LTE B255 Body #### **Exposure Conditions** | Phantom
Section, TSL | Position, Test
Distance [mm] | Band | Duty Cycle | Frequency
[MHz],
Channel Numbe | Conversion
Factor | TSL Conductivity
[S/m] | TSL Permittivity | |-------------------------|---------------------------------|---------|------------|--------------------------------------|----------------------|---------------------------|------------------| | Flat, | BACK, | Band255 | CW, | 1626.600, | 8.57 | 1.309 | 39.558 | | HSL | 5.00 | | 0 | 261505 | | | | #### **Hardware Setup** | Phantom | TSL, Measured Date | Probe, Calibration Date | DAE, Calibration Date | |----------------------------------|--------------------|-----------------------------|-------------------------| | Twin-SAM V8.0 (30deg probe tilt) | HBBL-600-10000 | EX3DV4 – SN7307, 2024-05-28 | DAE4 Sn1807, 2024-05-14 | | - 2114 | | | | | | Area Scan | Zoom Scan | |-------------------|---------------|--------------------| | Grid Extents [mm] | 120.0 x 210.0 | 30.0 x 30.0 x 30.0 | | Grid Steps [mm] | 15.0 x 15.0 | 5.1 x 5.1 x 1.5 | | Sensor Surface | 3.0 | 1.4 | | [mm] | | | | Graded Grid | N/A | Yes | | Grading Ratio | N/A | 1.5 | | MAIA | N/A | N/A | | Surface Detection | All points | All points | | Scan Method | Measured | Measured | | | | | | | Area Scan | Zoom Scan | |---------------------|---------------|---------------| | Date | 2024-10-24 | 2024-10-24 | | psSAR1g [W/kg] | 1.00 | 1.08 | | psSAR10g [W/kg] | 0.559 | 0.616 | | Power Drift [dB] | -0.14 | -0.18 | | Power Scaling | Disabled | Disabled | | Scaling Factor [dB] | | | | TSL Correction | No correction | No correction | | M2/M1 [%] | | 83.1 | | Dist 3dB Peak | | 6.3 | | [mm] | | | #### BT Body #### **Exposure Conditions** | Phantom
Section, TSL | Position, Test
Distance [mm] | Band | Duty Cycle | Frequency
[MHz],
Channel Number | Conversion
Factor | TSL Conductivity
[S/m] | TSL Permittivity | |-------------------------|---------------------------------|----------|------------|---------------------------------------|----------------------|---------------------------|------------------| | Flat, | BACK, | ISM 2.4 | 1:1 | 2402.000, | 7.09 | 1.727 | 39.7 | | HSL | 5.00 | GHz Band | | 0 | | | | #### **Hardware Setup** | Phantom | TSL, Measured Date | Probe, Calibration Date | DAE, Calibration Date | |----------------------------------|--------------------|-----------------------------|-------------------------| | Twin-SAM V8.0 (30deg probe tilt) | HBBL-600-10000 | EX3DV4 - SN7307, 2024-05-28 | DAE4 Sn1807, 2024-05-14 | | - 2114 | | | | Scan Setup | | Area Scan | Zoom Scan | |------------------------|---------------|--------------------| | Grid Extents [mm] | 120.0 x 200.0 | 30.0 x 30.0 x 30.0 | | Grid Steps [mm] | 10.0 x 10.0 | 5.0 x 5.0 x 1.5 | | Sensor Surface
[mm] | 3.0 | 1.4 | | Graded Grid | N/A | Yes | | Grading Ratio | N/A | 1.5 | | MAIA | Υ | Υ | | Surface Detection | All points | All points | | Scan Method | Measured | Measured | | | | | | | Area Scan | Zoom Scan | |---------------------|---------------|---------------| | Date | 2024-10-07 | 2024-10-07 | | psSAR1g [W/kg] | 0.006 | 0.007 | | psSAR10g [W/kg] | 0.003 | 0.005 | | Power Drift [dB] | 0.03 | 0.07 | | Power Scaling | Disabled | Disabled | | Scaling Factor [dB] | | | | TSL Correction | No correction | No correction | | M2/M1 [%] | | 70.0 | | Dist 3dB Peak | | 4.2 | | [mm] | | | # **ANNEX B System Verification Results** #### 1640MHz #### **Exposure Conditions** | Phantom
Section, TSL | Position, Test
Distance [mm] | Band | Group,
UID | Frequency
[MHz],
Channel Numbe | Conversion
Factor
r | TSL Conductivity
[S/m] | TSL Permittivity | |-------------------------|---------------------------------|-------|---------------|--------------------------------------|---------------------------|---------------------------|------------------| | Flat, | BACK, | D1640 | CW, | 1640.000, | 7.74 | 1.321 | 39.54 | | HSL | 5.00 | | 0 | 10 | | | | #### **Hardware Setup** | Phantom | TSL, Measured Date | Probe, Calibration Date | DAE, Calibration Date | |----------------------------------|--------------------|-----------------------------|-------------------------| | Twin-SAM V8.0 (30deg probe tilt) | HBBL-600-10000 | EX3DV4 – SN7307, 2024-05-28 | DAE4 Sn1807, 2024-05-14 | - 2114 # Scan Setup Area Scan Zoom Scan Grid Extents [mm] 120.0 x 150.0 30.0 x 30.0 x 30.0 x 30.0 Grid Steps [mm] 15.0 x 15.0 6.0 x 6.0 x 1.5 Sensor Surface 3.0 1.4 #### 6.0 x 6.0 x 1.5 1.4 [mm] Graded Grid N/A Yes **Grading Ratio** N/A 1.5 MAIA N/A N/A **Surface Detection** VMS + 6p VMS + 6p Scan Method Measured Measured | | Area Scan | Zoom Scan | |---------------------|---------------|---------------| | Date | 2024-10-24 | 2024-10-24 | | psSAR1g [W/kg] | 8.75 | 8.72 | | psSAR10g [W/kg] | 4.77 | 4.74 | | Power Drift [dB] | 0.11 | 0.05 | | Power Scaling | Disabled | Disabled | | Scaling Factor [dB] | | | | TSL Correction | No correction | No correction | | M2/M1 [%] | | 80.8 | | Dist 3dB Peak [mm] | | 9.6 | . 2000MHz ## **Exposure Conditions** | Phantom
Section, TSL | Position, Test
Distance [mm] | Band | Group,
UID | Frequency
[MHz],
Channel Numbe | Conversion
Factor
er | TSL Conductivity
[S/m] | TSL Permittivity | |-------------------------|---------------------------------|-------|---------------|--------------------------------------|----------------------------|---------------------------|------------------| | Flat, | BACK, | D2000 | CW, | 2000.000, | 7.71 | 1.36 | 39.38 | | HSL | 5.00 | | 0 | 50 | | | | #### **Hardware Setup** | Phantom | TSL, Measured Date | Probe, Calibration Date | DAE, Calibration Date | |----------------------------------|--------------------|-----------------------------|-------------------------| | Twin-SAM V8.0 (30deg probe tilt) | HBBL-600-10000 | EX3DV4 – SN7307, 2024-05-28 | DAE4 Sn1807, 2024-05-14 | | | | | | - 2114 | Sca | n | Se | tu | p | |-----|---|----|----|---| | | | | | | | | Area Scan | Zoom Scan | |-------------------|---------------|--------------------| | Grid Extents [mm] | 120.0 x 150.0 | 30.0 x 30.0 x 30.0 | | Grid Steps [mm] | 15.0 x 15.0 | 6.0 x 6.0 x 1.5 | | Sensor Surface | 3.0 | 1.4 | | [mm] | | | | Graded Grid | N/A | Yes | | Grading Ratio | N/A | 1.5 | | MAIA | N/A | N/A | | Surface Detection | VMS + 6p | VMS + 6p | | Scan Method | Measured | Measured | | | Area Scan | Zoom Scan | |---------------------|---------------|---------------| | Date | 2024-10-25 | 2024-10-25 | | psSAR1g [W/kg] | 10.11 | 10.13 | | psSAR10g [W/kg] | 5.23 | 5.25 | | Power Drift [dB] | -0.04 | 0.11 | | Power Scaling | Disabled | Disabled | | Scaling Factor [dB] | | | | TSL Correction | No correction | No correction | | M2/M1 [%] | | 81.0 | | Dist 3dB Peak [mm] | | 9.2 | . 2450MHz #### **Exposure Conditions** | Phantom
Section, TSL | Position, Test
Distance [mm] | Band | Group,
UID | Frequency
[MHz],
Channel Numbe | Conversion
Factor
er | TSL Conductivity
[S/m] | TSL Permittivity | |-------------------------|---------------------------------|-------|---------------|--------------------------------------|----------------------------|---------------------------|------------------| | Flat, | BACK, | D2450 | CW, | 2450.000, | 7.37 | 1.767 | 39.59 | | HSL | 5.00 | | 0 | 50 | | | | #### **Hardware Setup** | Phantom | TSL, Measured Date | Probe, Calibration Date | DAE, Calibration Date | |----------------------------------|--------------------|-----------------------------|-------------------------| | Twin-SAM V8.0 (30deg probe tilt) | HBBL-600-10000 | EX3DV4 – SN7307, 2024-05-28 | DAE4 Sn1807, 2024-05-14 | | - 2114 | | | | | | Scar | ı Sı | etu | p | |--|------|------|-----|---| |--|------|------|-----|---| | | Area Scan | Zoom Scan | |-------------------|---------------|--------------------| | Grid Extents [mm] | 120.0 x 192.0 | 30.0 x 30.0 x 30.0 | | Grid Steps [mm] | 12.0 x 12.0 | 5.0 x 5.0 x 1.5 | | Sensor Surface | 3.0 | 1.4 | | [mm] | | | | Graded Grid | N/A | Yes | | Grading Ratio | N/A | 1.5 | | MAIA | N/A | N/A | | Surface Detection | VMS + 6p | VMS + 6p | | Scan Method | Measured | Measured | | | Area Scan | Zoom Scan | |---------------------|---------------
---------------| | Date | 2024-10-07 | 2024-10-07 | | psSAR1g [W/kg] | 13.07 | 13.03 | | psSAR10g [W/kg] | 6.15 | 6.12 | | Power Drift [dB] | 0.11 | -0.03 | | Power Scaling | Disabled | Disabled | | Scaling Factor [dB] | | | | TSL Correction | No correction | No correction | | M2/M1 [%] | | 79.6 | | Dist 3dB Peak [mm] | | 9.0 | #### **ANNEX C SAR Measurement Setup** #### **C.1 Measurement Set-up** The Dasy4 or DASY5 system for performing compliance tests is illustrated above graphically. This system consists of the following items: Picture C.1SAR Lab Test Measurement Set-up - A standard high precision 6-axis robot (StäubliTX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE). - An isotropic field probe optimized and calibrated for the targeted measurement. - A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC. - The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server. - The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts. - The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning. - A computer running WinXP and the DASY4 or DASY5 software. - Remote control and teach pendant as well as additional circuitry for robot safety such as - warning lamps, etc. - The phantom, the device holder and other accessories according to the targeted measurement. #### C.2 Dasy4 or DASY5 E-field Probe System The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 or DASY5 software reads the reflection durning a software approach and looks for the maximum using 2nd ord curve fitting. The approach is stopped at reaching the maximum. #### **Probe Specifications:** Model: ES3DV3, EX3DV4 Frequency 10MHz — 6.0GHz(EX3DV4) Range: 10MHz — 4GHz(ES3DV3) Calibration: In head and body simulating tissue at Frequencies from 835 up to 5800MHz Linearity: \pm 0.2 dB(30 MHz to 6 GHz) for EX3DV4 ± 0.2 dB(30 MHz to 4 GHz) for ES3DV3 DynamicRange: 10 mW/kg — 100W/kg Probe Length: 330 mm **Probe Tip** Length: 20 mm Body Diameter: 12 mm Tip Diameter: 2.5 mm (3.9 mm for ES3DV3) Tip-Center: 1 mm (2.0mm for ES3DV3) Application: SAR Dosimetry Testing Compliance tests of mobile phones Dosimetry in strong gradient fields Picture C.3E-field Probe # Picture C.2Near-field Probe Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter. The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and inn a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm². E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe. $$SAR = C \frac{\Delta T}{\Delta t}$$ Where: Δt = Exposure time (30 seconds), C = Heat capacity of tissue (brain or muscle), ΔT = Temperature increase due to RF exposure. $$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$ Where: σ = Simulated tissue conductivity, ρ = Tissue density (kg/m³). #### **C.4 Other Test Equipment** #### C.4.1 Data Acquisition Electronics(DAE) The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock. The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection. The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB. PictureC.4: DAE #### C.4.2 Robot The SPEAG DASY system uses the high precision robots (DASY4: RX90XL; DASY5: RX160L) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application: - High precision (repeatability 0.02mm) - High reliability (industrial design) - Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives) - Jerk-free straight movements (brushless synchron motors; no stepper motors) - ➤ Low ELF interference (motor control fields shielded via the closed metallic construction shields) **Picture C.5DASY 4** Picture C.6DASY 5 #### C.4.3 Measurement Server The Measurement server is based on a PC/104 CPU broad with CPU (dasy4: 166 MHz, Intel Pentium; DASY5: 400 MHz, Intel Celeron), chipdisk (DASY4: 32 MB; DASY5: 128MB), RAM (DASY4: 64 MB, DASY5: 128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O broad, which is directly connected to the PC/104 bus of the CPU broad. The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server. #### C.4.4 Device Holder for Phantom The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards. The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales are the ear reference point (ERP). Thus the device needs no repositioning when changing the angles. The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered. #### <Laptop Extension Kit> The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM and ELI phantoms. Picture C.9-1: Device Holder Picture C.9-2: Laptop Extension Kit #### C.4.5 Phantom The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to Represent the 90th percentile of the population. The phantom enables the
dissymmetric evaluation of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm). Shell Thickness: 2±0.2 mm Filling Volume: Approx. 25 liters Dimensions: 810 x 1000 x 500 mm (H x L x W) Available: Special **Picture C.10: SAM Twin Phantom** # ANNEX D Position of the wireless device in relation to the phantom #### **D.1 General considerations** This standard specifies two handset test positions against the head phantom – the "cheek" position and the "tilt" position. W_t Width of the handset at the level of the acoustic W_b Width of the bottom of the handset A Midpoint of the width W_t of the handset at the level of the acoustic output B Midpoint of the width W_b of the bottom of the handset Picture D.1-a Typical "fixed" case handset Picture D.1-b Typical "clam-shell" case handset Picture D.2 Cheek position of the wireless device on the left side of SAM Picture D.3 Tilt position of the wireless device on the left side of SAM #### D.2 Body-worn device A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer. Picture D.4Test positions for body-worn devices #### D.3 Desktop device A typical example of a desktop device is a wireless enabled desktop computer placed on a table or desk when used. The DUT shall be positioned at the distance and in the orientation to the phantom that corresponds to the intended use as specified by the manufacturer in the user instructions. For devices that employ an external antenna with variable positions, tests shall be performed for all antenna positions specified. Picture 8.5 show positions for desktop device SAR tests. If the intended use is not specified, the device shall be tested directly against the flat phantom. Picture D.5 Test positions for desktop devices # **D.4 DUT Setup Photos** Picture D.6 # **ANNEX E Equivalent Media Recipes** The liquid used for the frequency range of 800-3000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table E.1 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209. **TableE.1: Composition of the Tissue Equivalent Matter** | Frequency | | • | 1900 | 1900 | 2450 | 2450 | 5800 | 5800 | | | | | | |-------------------|---------------------------|---------|----------------|----------------|--------|--------|--------|--------|--|--|--|--|--| | | 835Head | 835Body | | | | | | | | | | | | | (MHz) | | , | Head | Body | Head | Body | Head | Body | | | | | | | Ingredients (% by | Ingredients (% by weight) | | | | | | | | | | | | | | Water | 41.45 | 52.5 | 55.242 | 69.91 | 58.79 | 72.60 | 65.53 | 65.53 | | | | | | | Sugar | 56.0 | 45.0 | \ | \ | \ | \ | \ | \ | | | | | | | Salt | 1.45 | 1.4 | 0.306 | 0.13 | 0.06 | 0.18 | \ | \ | | | | | | | Preventol | 0.1 | 0.1 | \ | \ | \ | \ | \ | \ | | | | | | | Cellulose | 1.0 | 1.0 | \ | \ | \ | \ | \ | \ | | | | | | | Glycol | , | , | 44.450 | 00.00 | 44.45 | 07.00 | , | , | | | | | | | Monobutyl | \ | \ | 44.452 | 29.96 | 41.15 | 27.22 | ١ | ١ | | | | | | | Diethylenglycol | , | , | , | , | , | , | 47.04 | 47.04 | | | | | | | monohexylether | \ | \ | \ | \ | ١ | \ | 17.24 | 17.24 | | | | | | | Triton X-100 | \ | \ | \ | \ | \ | \ | 17.24 | 17.24 | | | | | | | Dielectric | 44.5 | 55.0 | 40.0 | 50.0 | 00.0 | 50.7 | 05.0 | 40.0 | | | | | | | Parameters | ε=41.5 | ε=55.2 | ε=40.0 | ε=53.3 | ε=39.2 | ε=52.7 | ε=35.3 | ε=48.2 | | | | | | | | σ=0.90 | σ=0.97 | σ =1.40 | σ =1.52 | σ=1.80 | σ=1.95 | σ=5.27 | σ=6.00 | | | | | | | Target Value | | | | | | | | | | | | | | Note: There are a little adjustment respectively for 750, 1750, 2600, 5200, 5300 and 5600 based on the recipe of closest frequency in table E.1. # **ANNEX F System Validation** The SAR system must be validated against its performance specifications before it is deployed. When SAR probes, system components or software are changed, upgraded or recalibrated, these must be validated with the SAR system(s) that operates with such components. **Table F.1: System Validation for 7307** | Probe SN. | Liquid name | Validation date | Frequency point | Status (OK or Not) | |-----------|-------------|-----------------|-----------------|--------------------| | 7307 | H650-7000M | July 8,2024 | 750 MHz | OK | | 7307 | H650-7000M | July 8,2024 | 900 MHz | OK | | 7307 | H650-7000M | July 8,2024 | 1450 MHz | OK | | 7307 | H650-7000M | July 8,2024 | 1640 MHz | OK | | 7307 | H650-7000M | July 10,2024 | 1750 MHz | OK | | 7307 | H650-7000M | July 10,2024 | 1900 MHz | OK | | 7307 | H650-7000M | July 10,2024 | 2000 MHz | OK | | 7307 | H650-7000M | July 10,2024 | 2100 MHz | OK | | 7307 | H650-7000M | July 11,2024 | 2300 MHz | OK | | 7307 | H650-7000M | July 11,2024 | 2450 MHz | OK | | 7307 | H650-7000M | July 11,2024 | 2600 MHz | OK | | 7307 | H650-7000M | July 12,2024 | 3500 MHz | OK | | 7307 | H650-7000M | July 12,2024 | 3700 MHz | OK | | 7307 | H650-7000M | July 12,2024 | 3900 MHz | OK | | 7307 | H650-7000M | July 13,2024 | 5250 MHz | OK | | 7307 | H650-7000M | July 13,2024 | 5600 MHz | OK | | 7307 | H650-7000M | July 13,2024 | 5800 MHz | OK | #### **ANNEX G Probe Calibration Certificate** #### 7307 Calibration Certificate #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland lac MRA S Schweizerischer Kallbrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client CTTL Beijing Certificate No. EX-7307_May24 #### **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:7307 Calibration procedure(s) QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6, QA CAL-25.v8 Calibration procedure for dosimetric E-field probes Calibration date May 28, 2024 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3) ℃ and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards ID | | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|-----------------------| | Power meter NRP2 | SN: 104778 | 26-Mar-24 (No. 217-04036/04037) | Mar-25 | | Power sensor NRP-Z91 | SN: 103244 | 26-Mar-24 (No. 217-04036) | Mar-25 | | OCP DAK-3.5 (weighted) | SN: 1249 | 05-Oct-23 (OCP-DAK3.5-1249_Oct23) | Oct-24 | | OCP DAK-12 | SN: 1016 | 05-Oct-23 (OCP-DAK12-1016_Oct23) | Oct-24 | | Reference 20 dB Attenuator | SN: CC2552 (20x) | 26-Mar-24 (No. 217-04046) | Mar-25 | | DAE4 | SN: 660 | 23-Feb-24 (No. DAE4-660_Feb24) | Feb-25 | | Reference Probe EX3DV4 | SN: 7349 | 03-Nov-23 (No. EX3-7349_Nov23) | Nov-24 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | |-------------------------|------------------|-----------------------------------|------------------------| | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-22) | In house check: Jun-24 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-22) | In house check: Jun-24 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-22) | In house check: Jun-24 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-22) | In house check: Jun-24 | | Network Analyzer E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-22) | In house check: Oct-24 | Name Function Signature Calibrated by Joanna Lleshaj Laboratory Technician Approved by Sven Kühn Technical Manager S Issued: May 28, 2024 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EX-7307_May24 Page 1 of 23 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Ilac-MRA S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\theta = 0$ is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices – Part 1528: Human Models,
Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below CornE). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ±50 MHz to ±100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - · Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX-7307_May24 Page 2 of 23 May 28, 2024 EX3DV4 - SN:7307 #### Parameters of Probe: EX3DV4 - SN:7307 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k = 2) | |--------------------------|----------|----------|----------|-------------| | Norm $(\mu V/(V/m)^2)$ A | 0.45 | 0.58 | 0.61 | ±10.1% | | DCP (mV) B | 100.7 | 100.1 | 101.2 | ±4.7% | #### **Calibration Results for Modulation Response** | UID | Communication System Name | | A
dB | $dB\sqrt{\mu V}$ | С | D
dB | VR
mV | Max
dev. | Max
Unc ^E
<i>k</i> = 2 | |-------|--|---|---------|------------------|-------|---------|----------|-------------|---| | 0 | CW | X | 0.00 | 0.00 | 1.00 | 0.00 | 142.9 | ±1.3% | ±4.7% | | U | | Y | 0.00 | 0.00 | 1.00 | | 137.9 | | | | | | Z | 0.00 | 0.00 | 1.00 | | 138.4 | | | | 10352 | Pulse Waveform (200Hz, 10%) | X | 1.75 | 62.21 | 7.64 | 10.00 | 60.0 | ±0.5% | ±9.6% | | .0002 | (====, | Y | 10.43 | 81.49 | 16.53 | 1 | 60.0 | | | | | | Z | 1.85 | 61.94 | 7.75 | | 60.0 | | | | 10353 | Pulse Waveform (200Hz, 20%) | X | 0.92 | 60.67 | 5.90 | 6.99 | 80.0 | ±0.7% | ±9.6% | | .0000 | , 5.65 | Y | 20.00 | 89.36 | 17.75 | 1 | 80.0 | | | | | | Z | 1.16 | 60.77 | 6.44 | 1 | 80.0 | | | | 10354 | Pulse Waveform (200Hz, 40%) | X | 0.45 | 60.00 | 4.81 | 3.98 | 95.0 | ±0.8% | ±9.6% | | 10001 | 1 4100 1141010111 (2011) | Y | 20.00 | 92.73 | 17.98 | | 95.0 | | | | | | Z | 0.66 | 60.28 | 5.69 | 1 | 95.0 | | | | 10355 | Pulse Waveform (200Hz, 60%) | X | 0.26 | 60.00 | 4.61 | 2.22 | 120.0 | ±0.8% | ±9.6% | | 10000 | Tales travelerin (assum, estal) | Y | 20.00 | 97.22 | 18.90 | | 120.0 | | | | | | Z | 0.59 | 62.61 | 6.64 | 1 | 120.0 | | | | 10387 | QPSK Waveform, 1 MHz | X | 1.61 | 66.77 | 14.90 | 1.00 | 150.0 | ±1.0% | ±9.6% | | 10007 | | Y | 1.54 | 65.17 | 14.14 | 1 | 150.0 | | | | | | Z | 1.74 | 67.64 | 15.79 | 1 | 150.0 | 1 | | | 10388 | QPSK Waveform, 10 MHz | X | 2.12 | 67.57 | 15.54 | 0.00 | 150.0 | ±0.9% | ±9.6% | | | | Y | 2.04 | 66.54 | 14.90 | 1 | 150.0 | 1 | | | | | Z | 2.27 | 68.72 | 16.31 | 1 | 150.0 | 1 | | | 10396 | 64-QAM Waveform, 100 kHz | X | 2.29 | 68.07 | 17.72 | 3.01 | 150.0 | ±0.6% | ±9.6% | | | | Y | 2.56 | 68.91 | 18.03 | 1 | 150.0 | 1 | | | | | Z | 2.32 | 67.85 | 17.90 | 1 | 150.0 | 1 | | | 10399 | 64-QAM Waveform, 40 MHz | X | 3.32 | 66.35 | 15.37 | 0.00 | 150.0 | ±0.8% | ±9.6% | | | same same publication of the some con- | Y | 3.42 | 66.56 | 15.40 | 1 | 150.0 | 1 | | | | | Z | 3.52 | 67.36 | 16.01 | 1 | 150.0 | | | | 10414 | WLAN CCDF, 64-QAM, 40 MHz | X | 4.61 | 65.23 | 15.27 | 0.00 | 150.0 | ±0.9% | ±9.6% | | | the state of s | Y | 4.78 | 65.47 | 15.38 | 1 | 150.0 | 1 | | | | | Z | 4.80 | 65.75 | 15.64 | 1 | 150.0 | | | Note: For details on UID parameters see Appendix The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: EX-7307_May24 Page 3 of 23 A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 to 7). B Linearization parameter uncertainty for maximum specified field strength. Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. # Parameters of Probe: EX3DV4 - SN:7307 #### **Sensor Model Parameters** | | C1
fF | C2
fF | ${\color{red} \alpha \atop V^{-1}}$ | T1
ms V ⁻² | T2
ms V ⁻¹ | T3
ms | T4
V ⁻² | T5
V ^{−1} | Т6 | |---|----------|----------|-------------------------------------|--------------------------|--------------------------|----------|-----------------------|-----------------------|------| | x | 34.1 | 251.01 | 34.53 | 5.42 | 0.00 | 4.91 | 1.25 | 0.00 | 1.00 | | v | 39.5 | 295.05 | 35.42 | 6.75 | 0.00 | 5.03 | 1.40 | 0.09 | 1.01 | | z | 39.4 | 289.83 | 34.73 | 13.98 | 0.00 | 4.92 | 0.69 | 0.15 | 1.01 | #### Other Probe Parameters | Sensor Arrangement | Triangular | |---|------------| | Connector Angle | 19.8° | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | Note: Measurement distance from surface can be increased to 3–4 mm for an Area Scan job. Certificate No: EX-7307_May24 Page 4 of 23 #### Parameters of Probe: EX3DV4 - SN:7307 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity ^F
(S/m) | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc ^H
(k = 2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|-----------------------------| | 13 | 55.0 | 0.75 | 18.54 | 18.54 | 18.54 | 0.00 | 1.25 | ±13.3% | | 64 | 54.2 | 0.75 | 13.53 | 13.53 | 13.53 | 0.00 | 1.25 | ±13.3% | | 150 | 52.3 | 0.76 | 12.55 | 12.55 | 12.55 | 0.00 | 1.25 | ±13.3% | | 300 | 45.3 | 0.87 | 11.64 | 11.64 | 11.64 | 0.09 | 1.00 | ±13.3% | | 450 | 43.5 | 0.87 | 11.04 | 11.04 | 11.04
 0.16 | 1.30 | ±13.3% | | 750 | 41.9 | 0.89 | 9.25 | 9.17 | 10.18 | 0.40 | 1.27 | ±11.0% | | 835 | 41.5 | 0.90 | 9.48 | 9.40 | 10.00 | 0.40 | 1.27 | ±11.0% | | 900 | 41.5 | 0.97 | 8.88 | 8.58 | 9.34 | 0.39 | 1.27 | ±11.0% | | 1450 | 40.5 | 1.20 | 7.92 | 7.77 | 8.52 | 0.35 | 1.27 | ±11.0% | | 1640 | 40.2 | 1.31 | 7.74 | 7.72 | 8.51 | 0.34 | 1.27 | ±11.0% | | 1750 | 40.1 | 1.37 | 7.90 | 7.90 | 8.54 | 0.27 | 1.27 | ±11.0% | | 1810 | 40.0 | 1.40 | 7.91 | 7.85 | 8.53 | 0.30 | 1.27 | ±11.0% | | 1900 | 40.0 | 1.40 | 7.62 | 7.62 | 8.28 | 0.29 | 1.27 | ±11.0% | | 2000 | 40.0 | 1.40 | 7.71 | 7.65 | 8.27 | 0.30 | 1.27 | ±11.0% | | 2100 | 39.8 | 1.49 | 7.81 | 7.75 | 8.42 | 0.31 | 1.27 | ±11.0% | | 2300 | 39.5 | 1.67 | 7.65 | 7.63 | 8.26 | 0.32 | 1.27 | ±11.0% | | 2450 | 39.2 | 1.80 | 7.37 | 7.34 | 7.95 | 0.32 | 1.27 | ±11.0% | | 2600 | 39.0 | 1.96 | 7.22 | 7.19 | 7.78 | 0.31 | 1.27 | ±11.0% | | 3300 | 38.2 | 2.71 | 6.56 | 6.53 | 7.06 | 0.36 | 1.27 | ±13.1% | | 3500 | 37.9 | 2.91 | 6.39 | 6.41 | 6.91 | 0.37 | 1.27 | ±13.1% | | 3700 | 37.7 | 3.12 | 6.21 | 6.24 | 6.72 | 0.37 | 1.27 | ±13.1% | | 3900 | 37.5 | 3.32 | 6.49 | 6.55 | 7.02 | 0.39 | 1.27 | ±13.19 | | 4100 | 37.2 | 3.53 | 6.31 | 6.38 | 6.85 | 0.37 | 1.27 | ±13.19 | | 4200 | 37.1 | 3.63 | 6.21 | 6.28 | 6.74 | 0.39 | 1.27 | ±13.19 | | 4400 | 36.9 | 3.84 | 6.20 | 6.29 | 6.74 | 0.40 | 1.27 | ±13.19 | | 4600 | 36.7 | 4.04 | 6.10 | 6.20 | 6.65 | 0.39 | 1.27 | ±13.19 | | 4800 | 36.4 | 4.25 | 6.13 | 6.20 | 6.65 | 0.40 | 1.27 | ±13.19 | | 4950 | 36.3 | 4.40 | 5.72 | 5.80 | 6.28 | 0.41 | 1.36 | ±13.19 | ^C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz. F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than ±5% from the target values (typically better than ±3%) and are valid for TSL with deviations of up to ±10% if SAR correction is applied. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary. H The selection of the properties of the properties of the uncertainty stated is equivalent to the uncertainty. Certificate No: EX-7307_May24 Page 5 of 23 H The stated uncertainty is the total calibration uncertainty (k = 2) of Norm-ConvF. Therefore, The uncertainty stated is equivalent to the uncertainty component with the symbol CF in Table 9 of IEC/IEEE 62209-1528:2020. #### Parameters of Probe: EX3DV4 - SN:7307 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity ^F
(S/m) | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc ^H
(k = 2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|-----------------------------| | 5200 | 36.0 | 4.66 | 5.45 | 5.57 | 5.96 | 0.40 | 1.51 | ±13.1% | | 5250 | 35.9 | 4.71 | 5.37 | 5.49 | 5.89 | 0.40 | 1.53 | ±13.1% | | 5300 | 35.9 | 4.76 | 5.23 | 5.36 | 5.76 | 0.41 | 1.55 | ±13.1% | | 5500 | 35.6 | 4.96 | 4.73 | 4.82 | 5.17 | 0.46 | 1.59 | ±13.1% | | 5600 | 35.5 | 5.07 | 4.66 | 4.74 | 5.05 | 0.40 | 1.75 | ±13.1% | | 5750 | 35.4 | 5.22 | 4.69 | 4.76 | 5.08 | 0.41 | 1.84 | ±13.1% | | 5800 | 35.3 | 5.27 | 4.59 | 4.64 | 4.96 | 0.41 | 1.87 | ±13.1% | ^C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz. F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than ±5% from the target values (typically better than ±3%) and are valid for TSL with deviations of up to ±10% if SAR correction is applied. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary. H The attend uncertainty is the total calibration uncertainty (*k* = 2) of Norm-ConvE. The uncertainty stated is equivalent to the uncertainty. Certificate No: EX-7307_May24 Page 6 of 23 H The stated uncertainty is the total calibration uncertainty (k = 2) of Norm-ConvF. Therefore, The uncertainty stated is equivalent to the uncertainty component with the symbol CF in Table 9 of IEC/IEEE 62209-1528:2020. May 28, 2024 EX3DV4 - SN:7307 #### Parameters of Probe: EX3DV4 - SN:7307 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity ^F
(S/m) | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc ^H
(k = 2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|-----------------------------| | 6500 | 34.5 | 6.07 | 5.54 | 5.64 | 6.08 | 0.20 | 1.27 | ±18.6% | | 7000 | 33.9 | 6.65 | 5.63 | 5.74 | 6.16 | 0.20 | 2.00 | ±18.6% | | 9000 | 31.6 | 9.08 | 5.16 | 5.23 | 5.57 | 0.45 | 1.60 | ±18.6% | ^C Frequency validity at 6.5 GHz is –600/+700 MHz, and ±700 MHz at or above 7 GHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than ±10% from the target values (typically better than ±6%) and are valid for TSL with deviations of up to ±10%. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz; below ±2% for frequencies between 3–6 GHz; and below ±4% for frequencies between 6–10 GHz at any distance larger than half the probe tip diameter from the boundary. H The stated uncertainty is the total calibration uncertainty (k = 2) of Norm-ConvF. Therefore, The uncertainty stated is equivalent to the uncertainty component with the symbol CF in Table 9 of IEC/IEEE 62209-1528:2020. #### Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide:R22) Uncertainty of Frequency Response of E-field: ±6.3% (k=2) Certificate No: EX-7307_May24 Page 8 of 23 ### Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ±0.5% (k=2) Certificate No: EX-7307_May24 Page 9 of 23 #### Dynamic Range f(SAR_{head}) Uncertainty of Linearity Assessment: $\pm 0.6\%$ (k=2) Certificate No: EX-7307_May24 Page 10 of 23 #### **Conversion Factor Assessment** #### **Deviation from Isotropy in Liquid** Error (ϕ , θ), f = 900 MHz Certificate No: EX-7307_May24 Page 11 of 23 # Appendix: Modulation Calibration Parameters | UID | Rev | Communication System Name | Group | PAR (dB) | Unc ^E k = 2 | |-------|---------|---|-----------|----------|------------------------| | 0 | 1101 | CW | CW | 0.00 | ±4.7 | | 0010 | CAB | SAR Validation (Square, 100 ms, 10 ms) | Test | 10.00 | ±9.6 | | 0011 | CAC | UMTS-FDD (WCDMA) | WCDMA | 2.91 | ±9.6 | | 0012 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps) | WLAN | 1.87 | ±9.6 | | 0012 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps) | WLAN | 9.46 | ±9.6 | | 0021 | DAC | GSM-FDD (TDMA, GMSK) | GSM | 9.39 | ±9.6 | | | DAC | GPRS-FDD (TDMA, GMSK, TN 0) | GSM | 9.57 | ±9.6 | | 0023 | 1000000 | GPRS-FDD (TDMA, GMSK, TN 0) | GSM | 6.56 | ±9.6 | | 0024 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0) | GSM | 12.62 | ±9.6 | | 0025 | DAC | | GSM | 9.55 | ±9.6 | | 0026 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1) | GSM | 4.80 | ±9.6 | | 0027 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2) | GSM | 3.55 | ±9.6 | | 0028 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2-3) | GSM | 7.78 | +9.6 | | 0029 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2) | Bluetooth | 5.30 | ±9.6 | | 0030 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH1) | Bluetooth | 1.87 | ±9.6 | | 0031 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH3) | | 1.16 | ±9.6 | | 0032 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH5) | Bluetooth | 7.74 | ±9.6 | | 0033 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1) | Bluetooth | | | | 0034 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3) | Bluetooth | 4.53 | ±9.6 | | 0035 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5) | Bluetooth | 3.83 | ±9.6 | | 0036 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH1) | Bluetooth | 8.01 | ±9.6 | | 0037 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH3) | Bluetooth | 4.77 | ±9.6 | | 0038 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH5) | Bluetooth | 4.10 | ±9.6 | | 0039 | CAB | CDMA2000 (1xRTT, RC1) | CDMA2000 | 4.57 | ±9.6 | | 0042 | CAB | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate) | AMPS | 7.78 | ±9.6 | | 0044 | CAA | IS-91/EIA/TIA-553 FDD (FDMA, FM) | AMPS | 0.00 | ±9.6 | | 0048 | CAA | DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24) | DECT | 13.80 | ±9.6
| | 0049 | CAA | DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12) | DECT | 10.79 | ±9.6 | | 0056 | CAA | UMTS-TDD (TD-SCDMA, 1.28 Mcps) | TD-SCDMA | 11.01 | ±9.6 | | 0058 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3) | GSM | 6.52 | ±9.6 | | 0059 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps) | WLAN | 2.12 | ±9.6 | | 0060 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps) | WLAN | 2.83 | ±9.6 | | 10061 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps) | WLAN | 3.60 | ±9.6 | | 10062 | CAE | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps) | WLAN | 8.68 | ±9.6 | | 10063 | CAE | IEEE 802.11a/n WiFi 5 GHz (OFDM, 9 Mbps) | WLAN | 8.63 | ±9.6 | | 10064 | CAE | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps) | WLAN | 9.09 | ±9.6 | | 10065 | CAE | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps) | WLAN | 9.00 | ±9.6 | | 10066 | CAE | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps) | WLAN | 9.38 | ±9.6 | | 10067 | CAE | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps) | WLAN | 10.12 | ±9.6 | | 10068 | CAE | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps) | WLAN | 10.24 | ±9.6 | | 10069 | CAE | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps) | WLAN | 10.56 | ±9.6 | | 10003 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps) | WLAN | 9.83 | ±9.6 | | 10071 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps) | WLAN | 9.62 | ±9.6 | | 10072 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps) | WLAN | 9.94 | ±9.6 | | 10073 | CAB | IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 16 Mbps) | WLAN | 10.30 | ±9.6 | | | | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps) | WLAN | 10.30 | +9.6 | | 10075 | CAB | | WLAN | 10.77 | ±9.6 | | 10076 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps) | | | | | 10077 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps) | WLAN | 11.00 | ±9.6 | | 0081 | CAB | CDMA2000 (1xRTT, RC3) | CDMA2000 | 3.97 | ±9.6 | | 10082 | CAB | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate) | AMPS | 4.77 | ±9.6 | | 0090 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-4) | GSM | 6.56 | ±9.6 | | 10097 | CAC | UMTS-FDD (HSDPA) | WCDMA | 3.98 | ±9.6 | | 0098 | CAC | UMTS-FDD (HSUPA, Subtest 2) | WCDMA | 3.98 | ±9.6 | | 0099 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-4) | GSM | 9.55 | ±9.6 | | 0100 | CAF | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK) | LTE-FDD | 5.67 | ±9.6 | | 0101 | CAF | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM) | LTE-FDD | 6.42 | ±9.6 | | 0102 | CAF | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM) | LTE-FDD | 6.60 | ±9.6 | | 10103 | | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK) | LTE-TDD | 9.29 | ±9.6 | | 10104 | CAH | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM) | LTE-TDD | 9.97 | ±9.6 | | 10105 | CAH | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM) | LTE-TDD | 10.01 | ±9.6 | | 10108 | CAH | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK) | LTE-FDD | 5.80 | ±9.6 | | 10109 | CAH | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM) | LTE-FDD | 6.43 | ±9.6 | | 10110 | CAH | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK) | LTE-FDD | 5.75 | ±9.6 | | 10111 | CAH | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM) | LTE-FDD | 6.44 | ±9.6 | Certificate No: EX-7307_May24 Page 12 of 23 | UID | Rev | Communication System Name | Group | PAR (dB) | $Unc^{E} k = 2$ | |------------------|-----|--|---------|----------|-----------------| | 10112 | CAH | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM) | LTE-FDD | 6.59 | ±9.6 | | 10113 | CAH | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM) | LTE-FDD | 6.62 | ±9.6 | | 10114 | CAE | IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK) | WLAN | 8.10 | ±9.6 | | 10115 | CAE | IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM) | WLAN | 8.46 | ±9.6 | | 10116 | CAE | IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM) | WLAN | 8.15 | ±9.6 | | 10117 | CAE | IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK) | WLAN | 8.07 | ±9.6 | | 10118 | CAE | IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM) | WLAN | 8.59 | ±9.6 | | 10119 | CAE | IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM) | WLAN | 8.13 | ±9.6 | | 10140 | CAF | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM) | LTE-FDD | 6.49 | ±9.6 | | 10141 | CAF | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM) | LTE-FDD | 6.53 | ±9.6 | | 10142 | CAF | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK) | LTE-FDD | 5.73 | ±9.6 | | 10143 | CAF | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM) | LTE-FDD | 6.35 | ±9.6 | | 10144 | CAF | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM) | LTE-FDD | 6.65 | ±9.6 | | 10145 | CAG | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK) | LTE-FDD | 5.76 | ±9.6 | | 10146 | CAG | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM) | LTE-FDD | 6.41 | ±9.6 | | 10147 | CAG | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM) | LTE-FDD | 6.72 | ±9.6 | | 10149 | CAF | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM) | LTE-FDD | 6.42 | ±9.6 | | 10150 | CAF | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM) | LTE-FDD | 6.60 | ±9.6 | | 10151 | CAH | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK) | LTE-TDD | 9.28 | ±9.6 | | 10152 | CAH | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM) | LTE-TDD | 9.92 | ±9.6 | | 10153 | CAH | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM) | LTE-TDD | 10.05 | ±9.6 | | 10154 | CAH | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK) | LTE-FDD | 5.75 | ±9.6 | | 10155 | CAH | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM) | LTE-FDD | 6.43 | ±9.6 | | 10156 | CAH | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK) | LTE-FDD | 5.79 | ±9.6 | | 10157 | CAH | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM) | LTE-FDD | 6.49 | ±9.6 | | 10158 | CAH | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM) | LTE-FDD | 6.62 | ±9.6 | | 10159 | CAH | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM) | LTE-FDD | 6.56 | ±9.6 | | 10160 | CAF | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK) | LTE-FDD | 5.82 | ±9.6 | | 10161 | CAF | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM) | LTE-FDD | 6.43 | ±9.6 | | 10162 | CAF | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) | LTE-FDD | 6.58 | ±9.6 | | 10166 | CAG | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK) | LTE-FDD | 5.46 | ±9.6 | | 10167 | CAG | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) | LTE-FDD | 6.21 | ±9.6 | | 10168 | CAG | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM) | LTE-FDD | 6.79 | ±9.6 | | 10169 | CAF | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK) | LTE-FDD | 5.73 | ±9.6 | | 10170 | CAF | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM) | LTE-FDD | 6.52 | ±9.6 | | 10171 | AAF | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM) | LTE-FDD | 6.49 | ±9.6 | | 10172 | CAH | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK) | LTE-TDD | 9.21 | ±9.6 | | 10173 | CAH | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM) | LTE-TDD | 10.25 | ±9.6 | | 10174 | CAH | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM) | LTE-FDD | 5.72 | ±9.6 | | 10175 | CAH | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK) | LTE-FDD | 6.52 | ±9.6 | | 10176 | CAH | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) | LTE-FDD | 5.73 | ±9.6 | | 10177 | CAJ | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK) | LTE-FDD | 6.52 | ±9.6 | | 10178 | CAH | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM) | LTE-FDD | 6.50 | ±9.6 | | 10179 | CAH | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) | LTE-FDD | 6.50 | ±9.6 | | 10180 | CAH | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM) | LTE-FDD | 5.72 | ±9.6 | | 10181 | CAF | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK) | LTE-FDD | 6.52 | ±9.6 | | 10182 | CAF | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM) LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) | LTE-FDD | 6.50 | ±9.6 | | 10183 | CAF | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK) | LTE-FDD | 5.73 | ±9.6 | | 10184 | | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK) | LTE-FDD | 6.51 | ±9.6 | | 10185 | AAF | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM) | LTE-FDD | 6.50 | ±9.6 | | 10186 | CAG | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) | LTE-FDD | 5.73 | ±9.6 | | 10187 | | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM) | LTE-FDD | 6.52 | ±9.6 | | | | | LTE-FDD | 6.50 | ±9.6 | | 10189 | | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK) | WLAN | 8.09 | ±9.6 | | 10193 | | IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM) | WLAN | 8.12 | ±9.6 | | | _ | IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM) | WLAN | 8.21 | ±9.6 | | 10 195
10 196 | | IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM) | WLAN | 8.10 | ±9.6 | | 10196 | | IEEE 802.11n (HT Mixed, 9.5 Mbps, BF-SK) | WLAN | 8.13 | ±9.6 | | 10197 | | IEEE 802.11n (HT Mixed, 39 Mops, 16-QAM) | WLAN | 8.27 | ±9.6 | | 10198 | | IEEE 802.11n (HT Mixed, 95 Mipps, 64-CAM) | WLAN | 8.03 | ±9.6 | | 10219 | | IEEE 802.11n (HT Mixed, 7.2 Midps, 16-QAM) | WLAN | 8.13 | ±9.6 | | 10221 | | IEEE 802.11n (HT Mixed, 43.3 Mixps, 10-QAM) | WLAN | 8.27 | ±9.6 | | 1000 | | IEEE 802.11n (HT Mixed, 72.2 Misps, 04-Grill) | WLAN | 8.06 | ±9.6 | | 10222 | CAF | | | | | | 10222
10223 | | IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM) | WLAN | 8.48 | ±9.6 | Certificate No: EX-7307_May24 Page 13 of 23 | UID | Rev | Communication System Name | Group | PAR (dB) | $Unc^{E} k = 2$ | |-------------------------|-------|--|----------|----------------|-----------------| | 10225 | CAC | UMTS-FDD (HSPA+) | WCDMA | 5.97 | ±9.6 | | 10226 | CAC | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM) | LTE-TDD | 9.49 | ±9.6 | | 10227 | CAC | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) | LTE-TDD | 10.26 | ±9.6 | | | CAC | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) | LTE-TDD | 9.22 | ±9.6 | | 10228 | | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM) | LTE-TDD | 9.48 | ±9.6 | | 10229 | CAE | | LTE-TDD | 10.25 | ±9.6 | | 10230 | CAE | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) | LTE-TDD | 9.19 | ±9.6 | | 10231 | CAE | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK) | LTE-TDD | 9.48 | ±9.6 | | 10232 | CAH | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM) | | 10.25 | ±9.6 | | 10233 | CAH | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM) | LTE-TDD | | | | 10234 | CAH | LTE-TDD (SC-FDMA, 1 RB, 5MHz, QPSK) | LTE-TDD | 9.21 | ±9.6 | | 10235 | CAH | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) | LTE-TDD | 9.48 | ±9.6 | | 10236 | CAH | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) | LTE-TDD | 10.25 | ±9.6 | | 10237 | CAH | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK) | LTE-TDD | 9.21 | ±9.6 | | 10238 |
CAG | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM) | LTE-TDD | 9.48 | ±9.6 | | 10239 | CAG | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) | LTE-TDD | 10.25 | ±9.6 | | 10240 | CAG | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK) | LTE-TDD | 9.21 | ±9.6 | | 10241 | CAC | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) | LTE-TDD | 9.82 | ±9.6 | | 10242 | CAC | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM) | LTE-TDD | 9.86 | ±9.6 | | | CAC | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK) | LTE-TDD | 9.46 | ±9.6 | | 10243 | | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM) | LTE-TDD | 10.06 | ±9.6 | | 10244 | CAE | | LTE-TDD | 10.06 | ±9.6 | | 10245 | CAE | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM) | LTE-TDD | 9.30 | ±9.6 | | 10246 | CAE | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK) | LTE-TDD | 9.91 | ±9.6 | | 10247 | CAH | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM) | | | | | 10248 | CAH | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM) | LTE-TDD | 10.09 | ±9.6 | | 10249 | CAH | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK) | LTE-TDD | 9.29 | ±9.6 | | 10250 | CAH | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM) | LTE-TDD | 9.81 | ±9.6 | | 10251 | CAH | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM) | LTE-TDD | 10.17 | ±9.6 | | 10252 | CAH | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK) | LTE-TDD | 9.24 | ±9.6 | | 10253 | CAG | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM) | LTE-TDD | 9.90 | ±9.6 | | 10254 | CAG | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) | LTE-TDD | 10.14 | ±9.6 | | 10255 | CAG | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK) | LTE-TDD | 9.20 | ±9.6 | | 10256 | CAC | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM) | LTE-TDD | 9.96 | ±9.6 | | 10257 | CAC | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM) | LTE-TDD | 10.08 | ±9.6 | | 10258 | CAC | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK) | LTE-TDD | 9.34 | ±9.6 | | 10259 | CAE | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM) | LTE-TDD | 9.98 | ±9.6 | | | CAE | | LTE-TDD | 9.97 | ±9.6 | | 10260 | | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM) | LTE-TDD | 9.24 | ±9.6 | | 10261 | CAE | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK) | | 9.83 | ±9.6 | | 10262 | CAH | LTE-TDD (SC-FDMA, 100% RB, 5MHz, 16-QAM) | LTE-TDD | | | | 10263 | CAH | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM) | LTE-TDD | 10.16 | ±9.6 | | 10264 | CAH | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK) | LTE-TDD | 9.23 | ±9.6 | | 10265 | CAH | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM) | LTE-TDD | 9.92 | ±9.6 | | 10266 | CAH | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM) | LTE-TDD | 10.07 | ±9.6 | | 10267 | CAH | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK) | LTE-TDD | 9.30 | ±9.6 | | 10268 | CAG | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM) | LTE-TDD | 10.06 | ±9.6 | | 10269 | CAG | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM) | LTE-TDD | 10.13 | ±9.6 | | 10270 | | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK) | LTE-TDD | 9.58 | ±9.6 | | 10274 | CAC | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10) | WCDMA | 4.87 | ±9.6 | | 10275 | _ | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4) | WCDMA | 3.96 | ±9.6 | | 10277 | | PHS (QPSK) | PHS | 11.81 | ±9.6 | | 10278 | | PHS (QPSK, BW 884 MHz, Rolloff 0.5) | PHS | 11.81 | ±9.6 | | | _ | PHS (QPSK, BW 884 MHz, Rolloff 0.38) | PHS | 12.18 | ±9.6 | | 10279 | | | CDMA2000 | 3.91 | ±9.6 | | 10290 | _ | CDMA2000, RC1, SO55, Full Rate | CDMA2000 | 3.46 | ±9.6 | | 10291 | _ | CDMA2000, RC3, SO55, Full Rate | | _ | _ | | 10292 | _ | CDMA2000, RC3, SO32, Full Rate | CDMA2000 | 3.39 | ±9.6 | | 10293 | | CDMA2000, RC3, SO3, Full Rate | CDMA2000 | 3.50 | ±9.6 | | 10295 | | CDMA2000, RC1, SO3, 1/8th Rate 25 fr. | CDMA2000 | 12.49 | ±9.6 | | 10297 | AAE | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK) | LTE-FDD | 5.81 | ±9.6 | | 10298 | AAE | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK) | LTE-FDD | 5.72 | ±9.6 | | 10299 | AAE | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM) | LTE-FDD | 6.39 | ±9.6 | | 10300 | AAE | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM) | LTE-FDD | 6.60 | ±9.6 | | 10301 | AAA | IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, QPSK, PUSC) | WiMAX | 12.03 | ±9.6 | | 10302 | _ | IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, QPSK, PUSC, 3 CTRL symbols) | WiMAX | 12.57 | ±9.6 | | | | IEEE 802.16e WIMAX (31:15, 5 ms, 10 MHz, 64QAM, PUSC) | WiMAX | 12.52 | ±9.6 | | 10303 | 1 000 | | | _ | _ | | 10303 | ΔΔΔ | I IEEE 802 16e WIMAX (29:18 5 ms 10 MHz 640AM PUSC) | WIMAX | 11.86 | +54.65 | | 10303
10304
10305 | | IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, 64QAM, PUSC) IEEE 802.16e WiMAX (31:15, 10 ms, 10 MHz, 64QAM, PUSC, 15 symbols) | WiMAX | 11.86
15.24 | ±9.6 | Certificate No: EX-7307_May24 Page 14 of 23 | UID | Rev | Communication System Name | Group | PAR (dB) | $Unc^E k = 2$ | |-------------------------|-----|--|-----------|--------------|---------------| | 10307 | AAA | IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, QPSK, PUSC, 18 symbols) | WiMAX | 14.49 | ±9.6 | | 10308 | AAA | IEEE 802.16e WIMAX (29:18, 10 ms, 10 MHz, 16QAM, PUSC) | WiMAX | 14.46 | ±9.6 | | 10309 | AAA | IEEE 802.16e WIMAX (29:18, 10 ms, 10 MHz, 16QAM, AMC 2x3, 18 symbols) | WiMAX | 14.58 | ±9.6 | | 10310 | AAA | IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, QPSK, AMC 2x3, 18 symbols) | WiMAX | 14.57 | ±9.6 | | 10311 | AAE | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK) | LTE-FDD | 6.06 | ±9.6 | | 10313 | AAA | iDEN 1:3 | IDEN | 10.51 | ±9.6 | | 10314 | AAA | IDEN 1:6 | iDEN | 13.48 | ±9.6 | | 10315 | AAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle) | WLAN | 1.71 | ±9.6 | | 10316 | AAB | IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc duty cycle) | WLAN | 8.36 | ±9.6 | | 10317 | AAE | IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle) | WLAN | 8.36 | ±9.6 | | 10352 | AAA | Pulse Waveform (200Hz, 10%) | Generic | 10.00 | ±9.6 | | 10353 | AAA | Pulse Waveform (200Hz, 20%) | Generic | 6.99 | ±9.6 | | 10354 | AAA | Pulse Waveform (200Hz, 40%) | Generic | 3.98 | ±9.6 | | 10355 | AAA | Pulse Waveform (200Hz, 60%) | Generic | 2.22 | ±9.6 | | 10356 | AAA | Pulse Waveform (200Hz, 80%) | Generic | 0.97 | ±9.6 | | 10387 | AAA | QPSK Waveform, 1 MHz | Generic | 5.10 | ±9.6 | | 10388 | AAA | QPSK Waveform, 10 MHz | Generic | 5.22 | ±9.6 | | 10396 | AAA | 64-QAM Waveform, 100 kHz | Generic | 6.27 | ±9.6 | | 10399 | AAA | 64-QAM Waveform, 40 MHz | Generic | 6.27 | ±9.6 | | 10400 | AAF | IEEE 802.11ac WiFi (20 MHz, 64-QAM, 99pc duty cycle) | WLAN | 8.37 | ±9.6 | | 10401 | AAF | IEEE 802.11ac WiFi (40 MHz, 64-QAM, 99pc duty cycle) | WLAN | 8.60 | ±9.6 | | 10402 | AAF | IEEE 802.11ac WiFi (80 MHz, 64-QAM, 99pc duty cycle) | WLAN | 8.53 | ±9.6 | | 10403 | AAB | CDMA2000 (1xEV-DO, Rev. 0) | CDMA2000 | 3.76 | ±9.6 | | 10404 | AAB | CDMA2000 (1xEV-DO, Rev. A) | CDMA2000 | 3.77 | ±9.6 | | 10404 | AAB | CDMA2000, RC3, SO32, SCH0, Full Rate | CDMA2000 | 5.22 | ±9.6 | | 10410 | AAH | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9, Subframe Conf=4) | LTE-TDD | 7.82 | ±9.6 | | 10414 | AAA | WLAN CCDF, 64-QAM, 40 MHz | Generic | 8.54 | ±9.6 | | 10415 | AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle) | WLAN | 1.54 | ±9.6 | | 10416 | AAA | IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc duty cycle) | WLAN | 8.23 | ±9.6 | | 10417 | AAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle) | WLAN | 8.23 | ±9.6 | | 10417 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Long preambule) | WLAN | 8.14 | ±9.6 | | 10419 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Short preambule) | WLAN | 8.19 | ±9.6 | | 10413 | AAD | IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) | WLAN | 8.32 | ±9.6 | | 10423 | AAD | IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) | WLAN | 8.47 | ±9.6 | | 10424 | AAD | IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) | WLAN | 8.40 | ±9.6 | | 10425 | AAD | IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) | WLAN | 8.41 | ±9.6 | | 10425 | AAD | IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) | WLAN | 8.45 | ±9.6 | | 10427 | AAD | IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) | WLAN | 8.41 | ±9.6 | | 10427 | AAE | LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) | LTE-FDD | 8.28 | ±9.6 | | 10431 | AAE | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) | LTE-FDD | 8.38 | ±9.6 | | 10432 | AAD | LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) | LTE-FDD | 8.34 | ±9.6 | | 10433 | AAD | LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) | LTE-FDD | 8.34 | ±9.6 | | 10434 | AAB | W-CDMA (BS Test Model 1, 64 DPCH) | WCDMA | 8.60 | ±9.6 | | 10435 | AAG | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 7.82 | ±9.6 | | 10447 | AAE | LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) | LTE-FDD | 7.56 | ±9.6 | | 10448 | AAE | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%) | LTE-FDD | 7.53 | ±9.6 | | 10449 | AAD | LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%) | LTE-FDD | 7.51 | ±9.6 | | 10443 | AAD | LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) | LTE-FDD | 7.48 | ±9.6 | | 10451 | AAB | W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) | WCDMA | 7.59 | ±9.6 | | 10453 | AAE | Validation (Square, 10 ms, 1 ms) | Test | 10.00 | ±9.6 | | 10456 | AAD | IEEE 802.11ac WiFi (160 MHz, 64-QAM, 99pc duty cycle) | WLAN | 8.63 | ±9.6 | | 10457 | AAB | UMTS-FDD (DC-HSDPA) | WCDMA | 6.62 | ±9.6 | | 10458 | AAA | CDMA2000 (1xEV-DO, Rev. B, 2 carriers) | CDMA2000 | 6.55 | ±9.6 | | 10459 | AAA | CDMA2000 (1xEV-DO, Rev. B, 2 carriers) | CDMA2000 | 8.25 | ±9.6 | | 10459 | AAB | UMTS-FDD (WCDMA, AMR) | WCDMA | 2.39 | ±9.6 | | 10461 | AAC | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 7.82 | ±9.6 | | 10462 | AAC | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.30 | ±9.6 | | 10463 | AAC | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.56 | ±9.6 | | 10464 | AAD | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 7.82 | ±9.6 | | 10465 | AAD | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.32 | ±9.6 | | 10466 | AAD | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) |
LTE-TDD | 8.57 | ±9.6 | | 10467 | AAG | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 7.82 | ±9.6 | | 1040/ | AAG | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.32 | ±9.6 | | 10.469 | | | | | | | 10468 | | LTE-TDD (SC-FDMA 1 RR 5 MHz 64-OAM LIL Subframe=2.3.4.7.8.9) | I LTE-TDD | 8.56 | +9.5 | | 10468
10469
10470 | AAG | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.56
7.82 | ±9.6 | Certificate No: EX-7307_May24 Page 15 of 23