

VARIANT FCC TEST REPORT

(Part 15, Subpart C)

Applicant:	HMD Global Oy
Address:	Bertel Jungin aukio 9 Espoo 02600 Finland

Manufacturer or Supplier:	HMD Global Oy
Address:	Bertel Jungin aukio 9 Espoo 02600 Finland
Product:	Smartphone
Brand Name:	НМД
Model Name:	TA-1590
FCC ID:	2AJOTTA-1590
Date of tests:	Jan. 02, 2024 ~ Feb. 19, 2024
The tests have be	en carried out according to the requirements of the following standard:

FCC Part 15, Subpart C, Section 15.247

ANSI C63.10-2013

CONCLUSION: The submitted sample was found to <u>COMPLY</u> with the test requirement

Prepared by Hanwen Xu Engineer / Mobile Department

Approved by Peibo Sun Manager / Mobile Department

Vanuer

simpe: bo Date: Feb. 19, 2024

Date: Feb. 19, 2024

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions' and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of the report contents.

TABLE OF CONTENTS

R	ELEASE C	CONTROL RECORD	5
1	SUMM	MARY OF TEST RESULTS	6
	1.1 MEA	ASUREMENT UNCERTAINTY	7
2	GENE	RAL INFORMATION	8
	2.1 GEN	NERAL DESCRIPTION OF EUT	8
	2.2 DES	SCRIPTION OF TEST MODES	10
	2.2.1	TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	11
	2.3 GEN	NERAL DESCRIPTION OF APPLIED STANDARDS	13
	2.2.2	CONFIGURATION OF SYSTEM UNDER TEST	
	2.4 DES	SCRIPTION OF SUPPORT UNITS	13
3	TEST	TYPES AND RESULTS	14
	3.1 CON	NDUCTED EMISSION MEASUREMENT	14
	3.1.1	LIMITS OF CONDUCTED EMISSION MEASUREMENT	
	3.1.2	TEST INSTRUMENTS	14
	3.1.3	TEST PROCEDURES	14
	3.1.4	DEVIATION FROM TEST STANDARD	15
	3.1.5	TEST SETUP	
	3.1.6	EUT OPERATING CONDITIONS	15
	3.1.7	TEST RESULTS	16
	3.2 RAD	DIATED EMISSION AND BANDEDGE MEASUREMENT	
	3.2.1	LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT	18
	3.2.2	TEST INSTRUMENTS	19
	3.2.3	TEST PROCEDURES	20
	3.2.4	DEVIATION FROM TEST STANDARD	20
	3.2.5	TEST SETUP	21
	3.2.6	EUT OPERATING CONDITIONS	
	3.2.7	TEST RESULTS	23
	3.3 NUN	MBER OF HOPPING FREQUENCY USED	55
	3.3.1	LIMIT OF HOPPING FREQUENCY USED	55
	3.3.2	TEST SETUP	55
	3.3.3	TEST INSTRUMENTS	55
	3.3.4	TEST PROCEDURES	56
	3.3.5	DEVIATION FROM TEST STANDARD	56
	3.3.6	TEST RESULTS	56
Hι	arui 7layers	High Technology Tower N, Innovation Center, 88 Zhuyi Road, High-tech	

3.4 DW	ELL TIME ON EACH CHANNEL	57
3.4.1	LIMIT OF DWELL TIME USED	57
3.4.2	TEST SETUP	57
3.4.3	TEST INSTRUMENTS	57
3.4.4	TEST PROCEDURES	57
3.4.5	DEVIATION FROM TEST STANDARD	58
3.4.6	TEST RESULTS	58
3.5 CH/	ANNEL BANDWIDTH	59
3.5.1	LIMITS OF CHANNEL BANDWIDTH	59
3.5.2	TEST SETUP	59
3.5.3	TEST INSTRUMENTS	59
3.5.4	TEST PROCEDURE	59
3.5.5	DEVIATION FROM TEST STANDARD	59
3.5.6	EUT OPERATING CONDITION	60
3.5.7	TEST RESULTS	60
3.6 HO	PPING CHANNEL SEPARATION	61
3.6.1	LIMIT OF HOPPING CHANNEL SEPARATION	61
3.6.2	TEST SETUP	61
3.6.3	TEST INSTRUMENTS	61
3.6.4	TEST PROCEDURES	61
3.6.5	DEVIATION FROM TEST STANDARD	61
3.6.6	TEST RESULTS	62
3.7 MA	XIMUM OUTPUT POWER	63
3.7.1	LIMITS OF MAXIMUM OUTPUT POWER MEASUREMENT	63
3.7.2	TEST SETUP	63
3.7.3	TEST INSTRUMENTS	63
3.7.4	TEST PROCEDURES	63
3.7.5	DEVIATION FROM TEST STANDARD	64
3.7.6	EUT OPERATING CONDITION	64
3.7.7	TEST RESULTS	65
3.7.7.1	I MAXIMUM PEAK OUTPUT POWER	65
3.7.7.2	2 AVERAGE OUTPUT POWER (FOR REFERENCE)	65
3.8 OU	T OF BAND MEASUREMENT	66
3.8.1	LIMITS OF OUT OF BAND MEASUREMENT	66
3.8.2	TEST INSTRUMENTS	66
3.8.3	TEST PROCEDURE	
3.8.4	DEVIATION FROM TEST STANDARD	66

3.8.5 EUT OPERATING CONDITION	66
3.8.6 TEST RESULTS	66
4 PHOTOGRAPHS OF THE TEST CONFIGURATION	67
5 MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE	E LAB68
6 APPENDIX	69
20DB EMISSION BANDWIDTH	69
TEST RESULT	69
TEST GRAPHS	70
OCCUPIED CHANNEL BANDWIDTH	75
TEST RESULT	75
TEST GRAPHS	76
MAXIMUM CONDUCTED OUTPUT POWER	81
TEST RESULT PEAK	81
TEST RESULT AVERAGE	81
CARRIER FREQUENCY SEPARATION	
TEST RESULT	82
TEST GRAPHS	
TIME OF OCCUPANCY	85
TEST RESULT	85
TEST GRAPHS	
NUMBER OF HOPPING CHANNELS	96
TEST RESULT	
TEST GRAPHS	
BAND EDGE MEASUREMENTS	
TEST RESULT	
TEST GRAPHS	
CONDUCTED SPURIOUS EMISSION	
TEST RESULT	107
TEST GRAPHS	108
DUTY CYCLE	
TEST RESULT	117
TEST GRAPHS	118

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
PSU-NQN2311090109RF05	Original release	Jan. 30, 2024
PSU-NQN2402040109RF05	For FCC ID 2AJOTTA-1590 that it is involved in two product models N159V and TA-1590, the difference of N159V and TA-1590 is only model name, memory and software customization applications. For HW, the TA-1590 product has only 6+128 memory, the memory of the N159V product is 3+64, hardware is the same except the memory, and there is no change of the hardware version number. For SW, on the basis of N159V, some customized applications of TA-1590 on the software are removed, and the software version number is changed. So this report data is copied from the report PSU-NQN2311090109RF05(model:N159V, FCC ID: 2AJOTTA-1590).	Feb. 19, 2024

1 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part 15, Subpart C						
STANDARD	RESULT	TEST LAB*				
15.207	AC Power Conducted Emission	Compliance	A			
15.247(a)(1) (iii)	Number of Hopping Frequency Used	Compliance	А			
15.247(a)(1) (iii)	Dwell Time on Each Channel	Compliance	А			
15.247(a)(1)	 Hopping Channel Separation Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System 	Compliance	А			
15.247(b)	Maximum Peak Output Power	Compliance	А			
15.247(d)& 15.209	Transmitter Radiated Emissions	Compliance	А			
15.247(d)	Out of band Measurement	Compliance	A			
15.203	Antenna Requirement	Compliance	А			

NOTE:

- 1. If the Frequency Hopping System operating in 2400-2483.5MHz band and the output power less than 125mW. The hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of hopping channel whichever is greater.
- 2. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.
- 3. For FCC ID 2AJOTTA-1590 that it is involved in two product models N159V and TA-1590, the difference of N159V and TA-1590 is only model name, memory and software customization applications. For HW, the TA-1590 product has only 6+128 memory, the memory of the N159V product is 3+64, hardware is the same except the memory, and there is no change of the hardware version number. For SW, on the basis of N159V, some customized applications of TA-1590 on the software are removed, and the software version number is changed. So this report data is copied from the report PSU-NQN2311090109RF05(model:N159V, FCC ID: 2AJOTTA-1590).

*Test Lab Information Reference

Lab A:

Huarui 7Layers High Technology (Suzhou) Co., Ltd.

Lab Address:

Tower N, Innovation Center, 88 Zhuyi Road, High-tech District, Suzhou City, Anhui Province

Accredited Test Lab Cert 6613.01

The FCC Site Registration No. is 434559; The Designation No. is CN1325.

1.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	UNCERTAINTY	
AC Power Conducted emissions	±2.70dB	
Radiated emissions (30MHz~1GMHz)	±4.98dB	
Radiated emissions (1GMHz ~6GMHz)	±4.70dB	
Radiated emissions (6GMHz ~18GMHz)	±4.60dB	
Radiated emissions (18GMHz ~40GMHz)	±4.12dB	
Conducted emissions	±4.01dB	
Occupied Channel Bandwidth	±43.58KHz	
Conducted Output power	±2.06dB	
Power Spectral Density	±0.85 dB	

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2 GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

PRODUCT*	Smartphone	
BRAND NAME*	HMD	
MODEL NAME*	TA-1590	
NOMINAL VOLTAGE*	5.0Vdc (adapter)	
	3.87Vdc (battery)	
MODULATION	FHSS	
TECHNOLOGY*		
MODULATION TYPE*	GFSK, 8DPSK, π/4 DQPSK	
OPERATING	2402MHz~2480MHz	
FREQUENCY		
NUMBER OF CHANNEL	79	
MAX. OUTPUT POWER	23.01 mW (Max. Measured)	
ANTENNA TYPE*	PIFA Antenna with -0.08dBi gain	
HW VERSION*	V 1.0	
SW VERSION*	00US_0_100	
I/O PORTS*	Refer to user's manual	
CABLE SUPPLIED*	N/A	

NOTE:

- 1. *Since the above data and/or information is provided by the client relevant results or conclusions of this report are only made for these data and/or information, Test Lab is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.
- 2. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.
- 3. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report.
- 4. For the product of TA-1590(FCC ID 2AJOTTA-1590), the following components are different between the first and second supply, other parameters are the same.

component		First supply		Second supply		
		Supplier	olier Spec Su		Spec	
PCBA	Charger IC	SGMICRO	3.78A Single Cell Switching Battery Charger IC	Unisemi	3.78A Single Cell Switching Battery Charger IC	
LCM	LCD	TCL	LCD a-Si TFT;720*1612	lcetron	LCD a-Si TFT;720*1612	
Front camera	Camera	Union Image	5M;FF	Imaging	5M;FF	
САМ	Camera	Union Image	13 AF	Sunwin	13 AF	
CAIVI	Camera	SEGA	2M	Imaging	2M	
Acoustic	Vibrator	KunWang	0830	HONGZHIFA	0830	
Acoustic	FPC	XINYE	Speaker FPC: 32.1*11.46*0.15Lat		Speaker FPC: 32.1*11.46*0.15	
LED		Runlite	White LED;500mA;1500mA	latticepower	White LED;500mA;1500mA	
Battery		gaoyuan	4000mAh;3.87V;4.45V	highpower	4000mAh;3.87V;4.45V	
antenna Haitong		Haitong	Omni- directional,Linear,antenna shrapnel	Kexinhuache ng	Omni-directional,Linear,antenna shrapnel	
MIC Gettop L2.75xW1.85xH0.9 mm goertek		goertek	L2.75xW1.85xH0.9 mm			
Data cable Saibao		5V2A	TorchWay	5V2A		

List of Accessory:

ACCESSORIES	BRAND	MANUFACTURER	MODEL	SPECIFICATION
Rattory 1	0	N/A	CH426385	Power Rating:
Battery 1	Gaoyuan		CH420305	15.48Wh
Pottony 2	Highpower	NI/A	CH426385	Power Rating:
Battery 2	Highpower	N/A	СП420303	15.48Wh
	BaiJunDa	BaiJunDa	HAD-010U	I/P: 100-240Vac,
AC Adapter				O/P: 4.8~5.4Vdc,
				2.0A
USB Cable 1	Saibao			Signal Line, 1.0meter
	Salbao	N/A	SZN-A036A	5V 2A
	T	N/A	JWUB1651-ZN01H	Signal Line, 1.0meter
USB Cable 2	TorchWay			5V 2A

2.2 DESCRIPTION OF TEST MODES

79 channels are provided to this EUT:

CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

2.2.1 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports.

The worst case was found when positioned on X axis for radiated emission. Following channel(s) was (were) selected for the final test as listed below:

EUT CONFIGURE	APPLICABLE TO				DESCRIPTION
MODE	RE<1G	RE≥1G	PLC	APCM	DESCRIPTION
-	\checkmark	\checkmark	\checkmark	\checkmark	-

Where **RE<1G:** Radiated Emission below 1GHz **PLC:** Power Line Conducted Emission **RE≥1G:** Radiated Emission above 1GHz **APCM:** Antenna Port Conducted Measurement

RADIATED EMISSION TEST (BELOW 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, XYZ axis, antenna ports (if EUT with antenna diversity architecture) and packet type.
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE	AVAILABLE	TESTED	MODULATION	MODULATION	PACKET
MODE	CHANNEL	CHANNEL	TECHNOLOGY	TYPE	TYPE
-	0 to 78	39	FHSS	π/4 DQPSK	

RADIATED EMISSION TEST (ABOVE 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, XYZ axis, antenna ports (if EUT with antenna diversity architecture) and packet type.
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	PACKET TYPE
-	0 to 78	0, 39, 78	FHSS	GFSK	1DH5
-	0 to 78	0, 39, 78	FHSS	π/4 DQPSK	2DH5
-	0 to 78	0, 39, 78	FHSS	8DPSK	3DH5

POWER LINE CONDUCTED EMISSION TEST:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, antenna ports (if EUT with antenna diversity architecture) and packet type.
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE	AVAILABLE	TESTED	MODULATION	MODULATION	PACKET
MODE	CHANNEL	CHANNEL	TECHNOLOGY	TYPE	TYPE
-	0 to 78	39	FHSS	GFSK	DH5

ANTENNA PORT CONDUCTED MEASUREMENT:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, antenna ports (if EUT with antenna diversity architecture), and packet types.
- Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL MODULATION TECHNOLOGY		MODULATION TYPE	PACKET TYPE	
0 to 78	0, 39, 78	FHSS	GFSK	DH1/DH3/DH5	
0 to 78	0, 39, 78	FHSS	π/4 DQPSK	2DH1/2DH3/2DH5	
0 to 78	0, 39, 78	FHSS	8DPSK	3DH1/3DH3/3DH5	

TEST CONDITION:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	TEST VOLTAGE (SYSTEM)	TESTED BY	
RE<1G	23deg. C, 70%RH	DC 5V By Adapter	Hanwen Xu	
RE≥1G	23deg. C, 70%RH	DC 5V By Adapter	Hanwen Xu	
PLC	25deg. C, 52%RH	DC 5V By Adapter	Hanwen Xu	
APCM	25deg. C, 60%RH	DC 3.85V By Battery	Hanwen Xu	

2.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C. Section 15.247

ANSI C63.10-2013

NOTE: 1. All test items have been performed and recorded as per the above standards.

2. The EUT is also considered as a kind of computer peripheral, because the connection to computer is necessary for typical use. It has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (Certification). The test report has been issued separately.

2.2.2 CONFIGURATION OF SYSTEM UNDER TEST

Please see section 5 photograph of the test configuration for reference.

2.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	Laptop	Lenovo	ThinkPad E14	HRSW00024	N/A
2	Adapter	N/A	N/A	N/A	N/A

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	N/A

3 TEST TYPES AND RESULTS

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dBµV)			
0.15 ~ 0.5	Quasi-peak	Average		
0.5 ~ 5 5 ~ 30	66 to 56 56	56 to 46 46		
	60	40 50		

NOTE: 1.The lower limit shall apply at the transition frequencies.

- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.
 - 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
EMI Test Receiver	Rohde&Schwarz	ESR3	102749	Feb.25,22	Feb.24,24
ELEKTRA test software	Rohde&Schwarz	ELEKTRA	NA	N/A	N/A
LISN network	Rohde&Schwarz	ENV216	102640	Feb.17,22	Feb.16,24
LISN network	Rohde&Schwarz	ENV216	102640	Feb.16,24	Feb.15,26
CABLE	Rohde&Schwarz	W61.01	N/A	Apr.28,23	Apr.27,24
CABLE	Rohde&Schwarz	W601	N/A	Apr.28,23	Apr.27,24

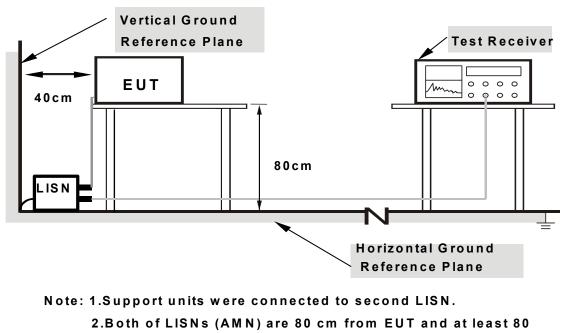
3.1.2 TEST INSTRUMENTS

NOTE: 1. The test was performed in CE shielded room.

2. The calibration interval of the above test instruments is 12 months or 24 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.

3.1.3 TEST PROCEDURES

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.


NOTE: All modes of operation were investigated and the worst-case emissions are reported.

3.1.4 DEVIATION FROM TEST STANDARD

No deviation.

3.1.5 TEST SETUP

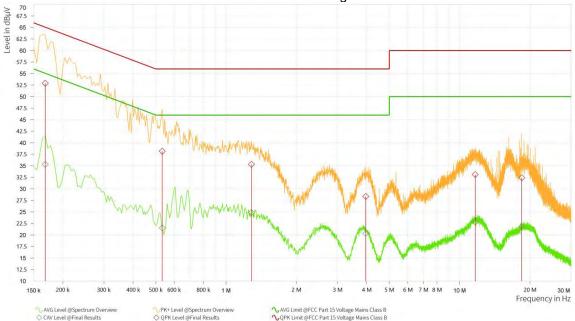
from other units and other metal planes

For the actual test configuration, please refer to the attached file (Test Setup Photo).

3.1.6 EUT OPERATING CONDITIONS

- a. Turned on the power and connected of all equipment.
- b. EUT was operated according to the type used was description in manufacturer's specifications or the User's Manual.

3.1.7 TEST RESULTS

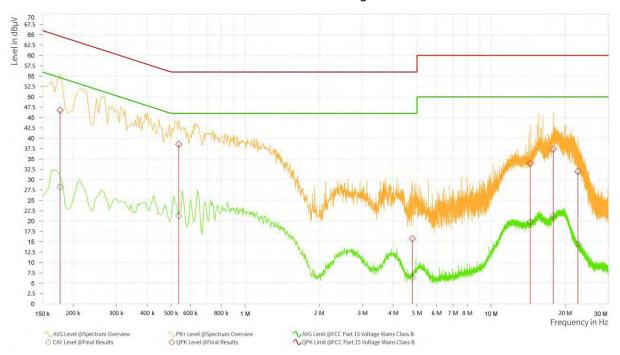

CONDUCTED WORST-CASE DATA:

Frequency Range		Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9 kHz
Input Power	120Vac, 60Hz	Environmental Conditions	26deg. C, 51%RH
Tested By	Hanwen Xu		

Rg	Frequency [MHz]	QPK Level [dBµV]	QPK Limit [dBµV]	QPK Margin [dB]	CAV Level [dBµV]	CAV: AVG Limit [dBµV]	CAV Margin [dB]	Correction [dB]	Line	Meas. BW [kHz]
1	0.168	52.90	65.06	12.15	35.30	55.06	19.76	12.36	L1	9.000
1	0.533	38.16	56.00	17.84	21.55	46.00	24.45	11.75	L1	9.000
1	1.284	35.31	56.00	20.69	24.87	46.00	21.13	11.75	L1	9.000
1	3.966	28.33	56.00	27.67	<mark>20.3</mark> 5	46.00	25.65	11.78	L1	9.000
1	11.670	33.11	60.00	26.89	22.83	50.00	27.17	11.83	L1	9.000
1	18.461	32.42	60.00	27.58	21.81	50.00	28.19	11.86	L1	9.000

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and
- measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Limit value Emission level
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.



Frequency Range		Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9 kHz
Input Power	120Vac, 60Hz	Environmental Conditions	26deg. C, 51%RH
Tested By	Hanwen Xu		

Rg	Frequency [MHz]	QPK Level [dBµV]	QPK Limit [dBµV]	QPK Margin [dB]	CAV Level [dBµV]	CAV: AVG Limit [dBµV]	CAV Margin [dB]	Correction [dB]	Line	Meas. BW [kHz]
1	0.177	46.76	64.63	17.87	28.22	54.63	26.41	12.22	Ν	9.000
1	0.537	38.55	56.00	17.45	21.27	46.00	24.74	12.77	Ν	9.000
1	4.790	15.73	56.00	40.27	6.34	46.00	39.66	12.76	Ν	9.000
1	14.442	33.93	60.00	26.07	19.71	50.00	30.29	12.82	Ν	9.000
1	17.889	37.31	60.00	22.69	21.27	50.00	28.73	12.84	Ν	9.000
1	22.538	31.99	60.00	28.01	14.42	50.00	35.58	12.86	N	9.000

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and
- measurement with the average detector is unnecessary. 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Limit value Emission level
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.

Huarui 7layers High Technology (Suzhou) Co., Ltd.

3.2 RADIATED EMISSION AND BANDEDGE MEASUREMENT

3.2.1 LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a). Other emissions shall be at least 20dB below the highest level of the desired power.

FREQUENCIES (MHz)	FIELD STRENGTH (microvolts/meter)	MEASUREMENT DISTANCE (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

3.2.2 TEST INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
Pre-Amplifier	R&S	SCU18F1	100815	Aug.30,22	Aug.29,24
Pre-Amplifier	R&S	SCU08F1	101028	Sep.16,22	Sep.15,24
Signal Generator	R&S	SMB100A	182185	Feb.16,22	Feb.15,24
Signal Generator	R&S	SMB100A	182185	Feb.15,24	Feb.14,26
3m Fully-anechoic Chamber	ТDК	9m*6m*6m	HRSW-SZ-E MC-01Cham ber	Nov.25,22	Nov.24,25
3m Semi-anechoic Chamber	TDK	9m*6m*6m	HRSW-SZ-E MC-02Cham ber	Nov.25,22	Nov.24,25
EMI TEST Receiver	R&S	ESW44	101973	Feb.25,22	Feb.24,24
Bilog Antenna	SCHWARZBEC K	VULB 9163	1264	Feb.28,22	Feb.27,24
Horn Antenna	ETS-LINDGRE N	3117	227836	Aug.22,22	Aug.21,24
Horn Antenna (18GHz-40GHz)	Steatite Q-par Antennas	QMS 00880	23486	Feb.23,22	Feb.22,24
Horn Antenna	Steatite Q-par Antennas	QMS 00208	23485	Aug.22,22	Aug.21,24
Loop Antenna	SCHWARZ	HFH2-Z2/Z2E	100976	Feb.23,22	Feb.22,24
WIDEBANDRADIO COMMUNICATION TESTER	R&S	CMW500	169399	Jun.27,22	Jun.26,24
Test Software	ELEKTRA	ELEKTRA4.32	N/A	N/A	N/A
Open Switch and Control Unit	R&S	OSP220	101964	N/A	N/A
DC Source	HYELEC	HY3010B	551016	Aug.31,22	Aug.30,24
Hygrothermograph	DELI	20210528	SZ014	Sep.06,22	Sep.05,24
PC	LENOVO	E14	HRSW0024	N/A	N/A
TMC-AMI18843A(CA BLE)	R&S	HF290-NMNM-7 .00M	N/A	N/A	N/A
TMC-AMI18843A(CA BLE)	R&S	HF290-NMNM-4 .00M	N/A	N/A	N/A
CABLE	R&S	W13.02	N/A	Apr.28,23	Apr.27,24
CABLE	R&S	W12.14	N/A	Apr.28,23	Apr.27,24

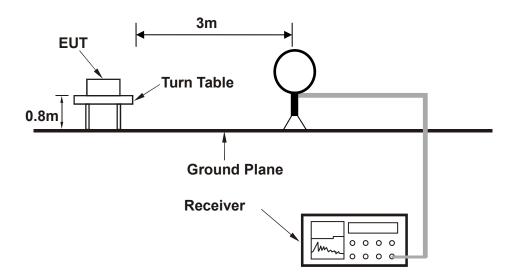
- **NOTE:** 1. The calibration interval of the above test instruments is 12 months or 24 months or 36 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.
 - 2. The test was performed in 3m Chamber.

3.2.3 TEST PROCEDURES

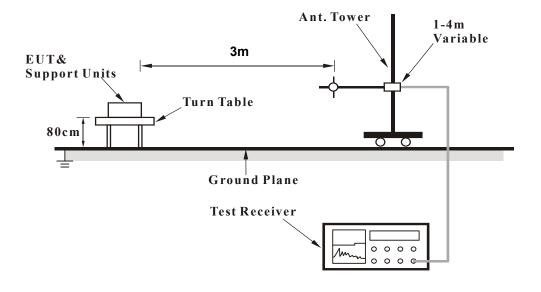
- a. The EUT was placed on the top of a rotating table 0.8 meters (for below 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, For battery operated equipment, the equipment tests shall be perform using fresh batteries. The turntable was rotated to maximize the emission level.

NOTE:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz for Average detection (AV) at frequency above 1GHz.
- 4. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit.
- 5. All modes of operation were investigated and the worst-case emissions are reported.

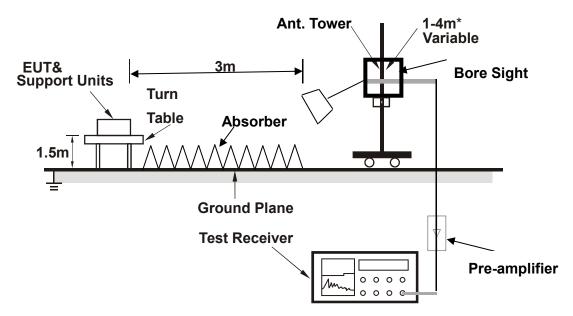

3.2.4 DEVIATION FROM TEST STANDARD

No deviation.



3.2.5 TEST SETUP

<Frequency Range 9KHz~30MHz >



< Frequency Range 30MHz~1GHz >

<Frequency Range above 1GHz>

Note: Above 1G is a directional antenna

Depends on the EUT height and the antenna 3dB beamwidth both, refer to section 7.3 of CISPR 16-2-3.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

3.2.6 EUT OPERATING CONDITIONS

- a. Set the EUT under full load condition and placed them on a testing table.
- b. Set the transmitter part of EUT under transmission condition continuously at specific channel frequency.
- c. The necessary accessories enable the EUT in full functions.

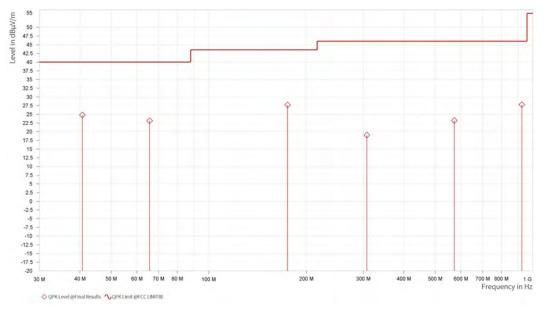
3.2.7 TEST RESULTS

NOTE : The 9K~30MHz amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required in the report.

BELOW 1GHz WORST-CASE DATA:

30 MHz – 1GHz data:

BT_π/4-DQPSK


CHANNEL	Channel 39	DETECTOR FUNCTION	Quesi Bask (QD)
FREQUENCY RANGE		DETECTOR FUNCTION	Quasi-Peak (QP)

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M

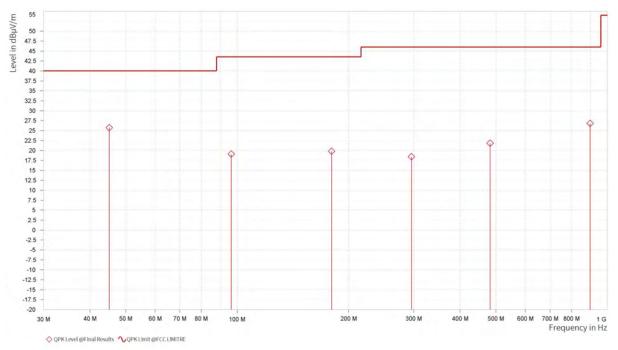
Rg	Frequency [MHz]	QPK Level [dBµV/m]	QPK Limit [dBµV/m]	QPK Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	Meas. BW [kHz]
1	40.719	24.80	40.00	15.20	-10.48	H	0.9	2.00	120.000
1	65.696	23.12	40.00	16.88	-12.64	Н	143.9	1.00	120.000
1	175.161	27.67	43.50	15.83	-13.74	Н	71.4	2.00	120.000
1	307.517	19.01	46.00	26.99	-6.81	Η	143.9	1.00	120.000
1	572.764	23.18	46.00	22.82	-3.34	Н	0.9	2.00	120.000
1	924.874	27.76	46.00	18.24	2.40	Н	217.3	2.00	120.000

REMARKS:

- 1. Emission Level(dBuV/m) = Read Level(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Limit value Emission level.

Huarui 7layers High Technology (Suzhou) Co., Ltd. Tower N, Innovation Center, 88 Zhuyi Road, High-tech District, Suzhou City, Anhui Province

Tel: +86 (0557) 368 1008


CHANNEL	Channel 39		
FREQUENCY RANGE		DETECTOR FUNCTION	Quasi-reak (QP)

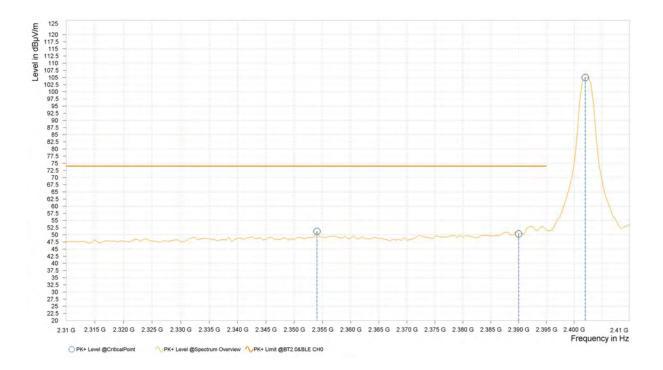
ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M

Rg	Frequency [MHz]	QPK Level [dBµV/m]	QPK Limit [dBµV/m]	QPK Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	Meas. BW [kHz]
1	45.132	25.71	40.00	14.29	-10.75	V	359.1	1.00	120.000
1	96.397	19.07	43.50	24.43	-12.52	V	0.9	2.00	120.000
1	179.817	19.79	43.50	23.71	-12.94	V	0.9	2.00	120.000
1	295.683	18.41	46.00	27.59	-6.88	V	355.7	2.00	120.000
1	482.214	21.82	46.00	24.18	-3.10	V	5	1.00	120.000
1	897.762	26.80	46.00	19.20	1.65	V	65.4	2.00	120.000

REMARKS:

- 1. Emission Level(dBuV/m) = Read Level(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Limit value Emission level.

ABOVE 1GHz WORST-CASE DATA:

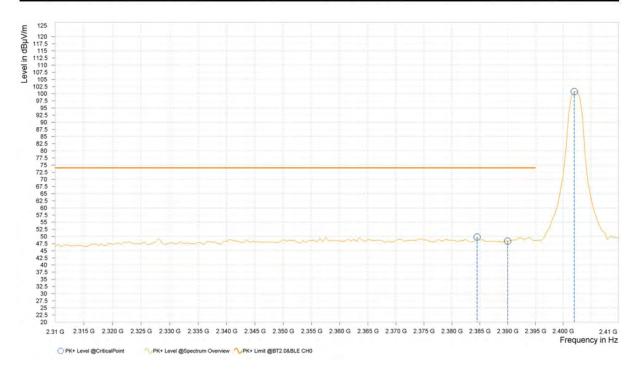

Note: All other emissions that greater than 20dB below the limit were not recorded.

BT_GFSK

CHANNEL	TX Channel 0		Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M

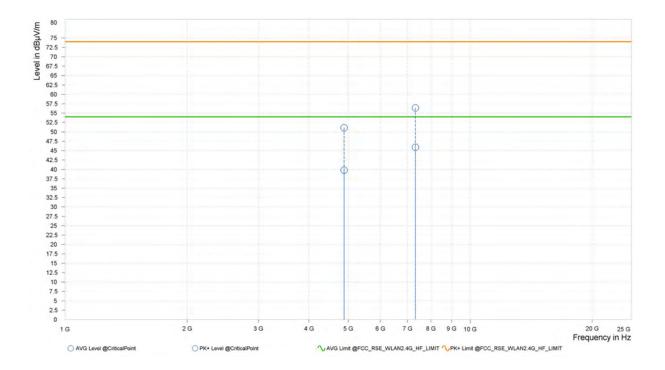
Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBμV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,354.000	51.18	74.00	22.82	7.11	Н	211.2	2.00
5	2,390.000	50.30	74.00	23.70	7.08	Н	147.5	1.00
5	2,402.000	104.99			7.08	Н	57	2.00


Rg	Frequency [MHz]		AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,389.500	37.10	54.00	16.90	7.08	Н	210.1	2.00
5	2,390.000	36.86	54.00	17.14	7.08	H	210.1	2.00
5	2,402.000	99.30			7.08	H	55.9	2.00

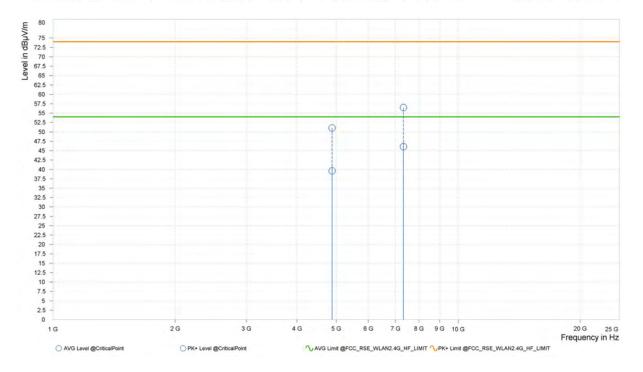
Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,384.500	49.75	74.00	24.25	7.08	V	148.7	1.00
5	2,390.000	48.34	74.00	25.66	7.08	V	148.7	1.00
5	2,402.000	100.73			7.08	V	4.9	1.00

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,379.000	35.75	54.00	18.25	7.09	V	147.5	1.00
5	2,390.000	35.16	54.00	18.84	7.08	V	147.5	1.00
5	2,402.000	95.24			7.08	V	5	1.00

REMARKS:


- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value – Emission level.
- 2. 2402MHz: Fundamental frequency.

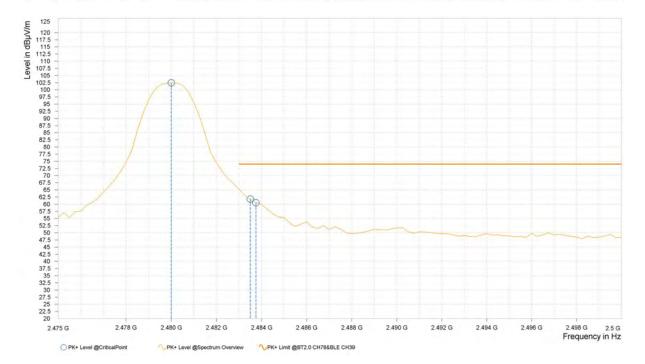
CHANNEL	TX Channel 39	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)


ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	4,882.000	51.12	74.00	22.88	39.80	54.00	14.20	15.32	H	359	1.00
2	7,323.000	56.39	74.00	17.61	45.90	54.00	8.10	21.10	Н	271	2.00

Rg	Frequency [MHz]	PK+ Level [dBμV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	4,882.000	51.06	74.00	22.94	39.64	54.00	14.36	15.32	V	359	2.00
2	7,323.000	56.47	74.00	17.53	46.06	54.00	7.94	21.10	V	359	2.00

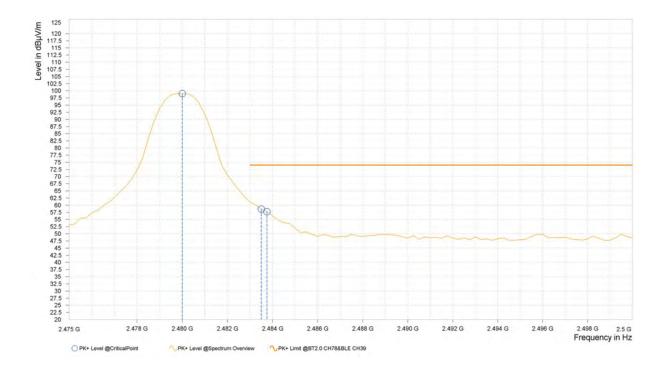
REMARKS:

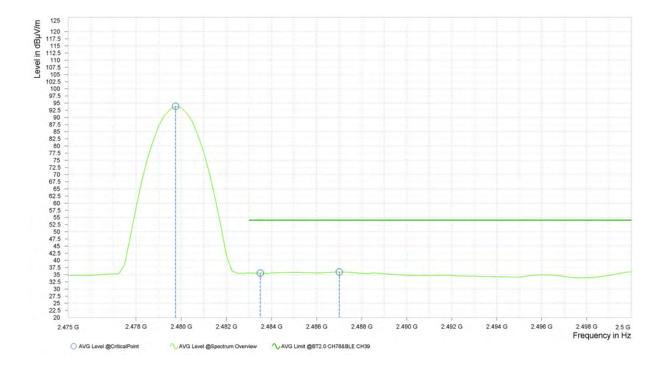

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value – Emission level.
- 2. 2402MHz: Fundamental frequency.

CHANNEL	TX Channel 78	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
6	2,480.000	102.39			7.36	Н	4.2	1.00
6	2,483.500	61.77	74.00	12.23	7.36	Н	146.3	1.00
6	2,483.750	60.52	74.00	13.48	7.36	Н	146.3	1.00


Rg	Frequency [MHz]		AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
6	2,479.750	97.20			7.36	Н	155.8	1.00
6	2,483.500	37.12	54.00	16.88	7.36	Н	212.5	2.00
6	2,484.750	37.29	54.00	16.71	7.36	Н	212.5	2.00

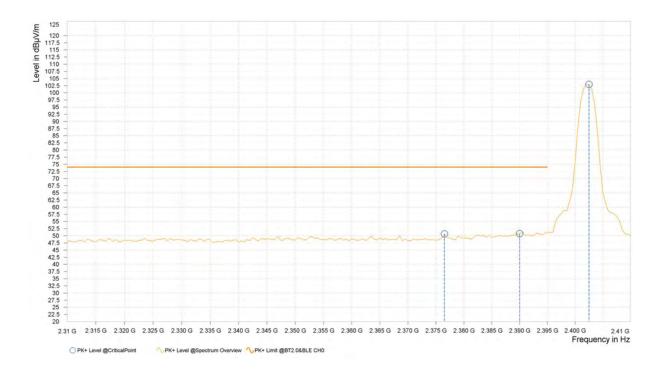

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
6	2,480.000	99.02			7.36	V	2.7	2.00
6	2,483.500	58.64	74.00	15.36	7.36	V	0.9	2.00
6	2,483.750	57.72	74.00	16.28	7.36	V	0.9	2.00

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
6	2,479.750	93.92			7.36	V	3	2.00
6	2,483.500	35.58	54.00	18.42	7.36	V	146.4	1.00
6	2,487.000	35.93	54.00	18.07	7.36	V	146.4	1.00

REMARKS:

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value – Emission level.
- 2. 2480MHz: Fundamental frequency.

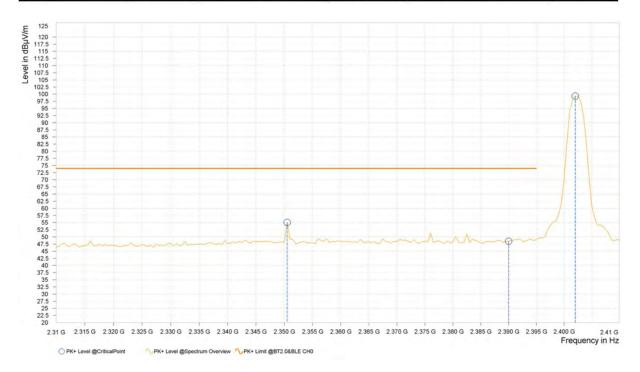


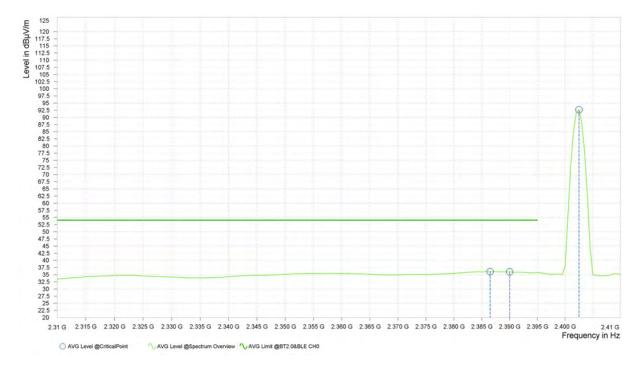
$BT_\pi/4\text{-}DQPSK$

CHANNEL	TX Channel 0	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M

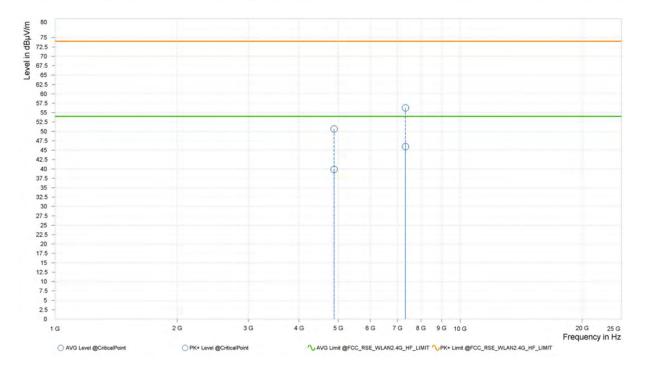
Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,376.500	50.65	74.00	23.35	7.09	Н	207.7	2.00
5	2,390.000	50.74	74.00	23.27	7.08	H	207.7	2.00
5	2,402.500	102.93			7.09	Н	51.1	2.00


Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,379.500	36.90	54.00	17.10	7.09	н	207.7	2.00
5	2,390.000	36.98	54.00	17.02	7.08	Н	207.7	2.00
5	2,402.500	95.68			7.09	Н	53.4	2.00


Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBμV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,350.500	55.07	74.00	18.93	7.10	V	355	2.00
5	2,390.000	48. <mark>4</mark> 7	74.00	25.53	7.08	V	149.9	1.00
5	2,402.000	99.33			7.08	V	5	1.00

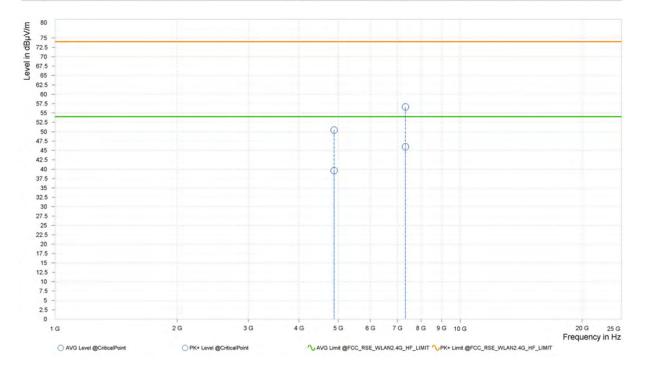
Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,386.500	36.08	54.00	17.92	7.08	V	150	1.00
5	2,390.000	35.99	54.00	18.01	7.08	V	150	1.00
5	2,402.500	92.67			7.09	V	4.3	1.00

REMARKS:


- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value – Emission level.
- 2. 2402MHz: Fundamental frequency.

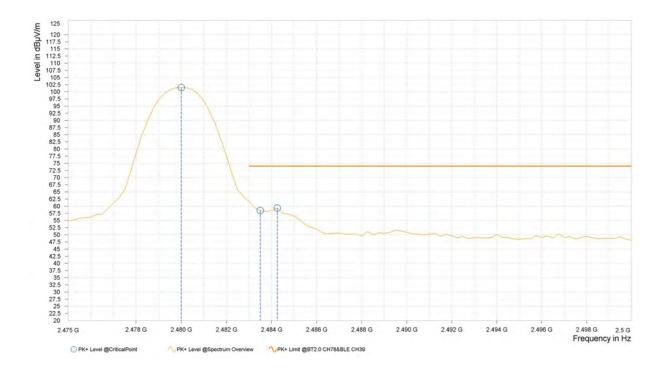
CHANNEL	TX Channel 39	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M

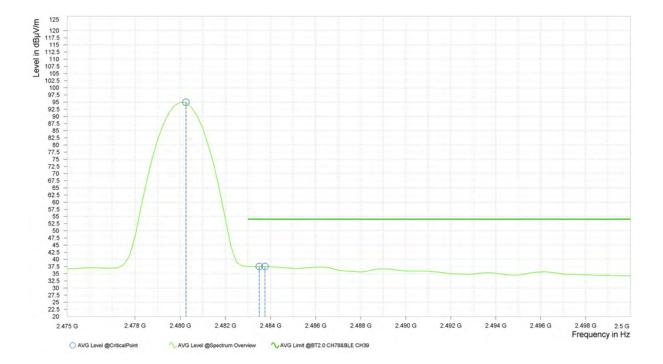

Rg	Frequency [MHz]		PK+ Limit [dBμV/m]	PK+ Margin [dB]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	4,882.000	50.65	74.00	23.35	39.88	54.00	14.12	15.32	Н	350.7	1.00
2	7,323.000	56.26	74.00	17.74	45.96	54.00	8.04	21.10	Н	1	2.00

Rg	Frequency [MHz]		PK+ Limit [dBµV/m]	PK+ Margin [dB]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	4,882.000	50.45	74.00	23.55	39.64	54.00	14.36	15.32	V	1	1.00
2	7,323.000	56.61	74.00	17.39	45.98	54.00	8.02	21.10	V	1	1.00

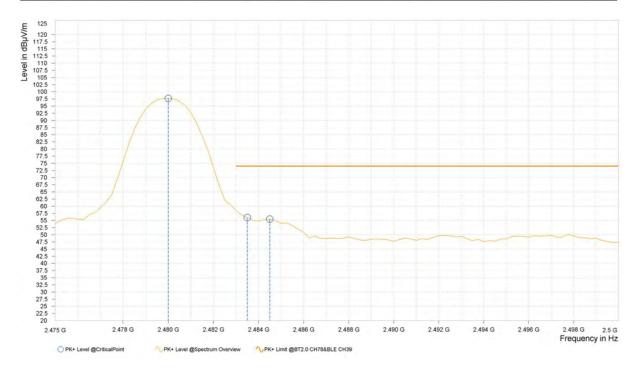
REMARKS:

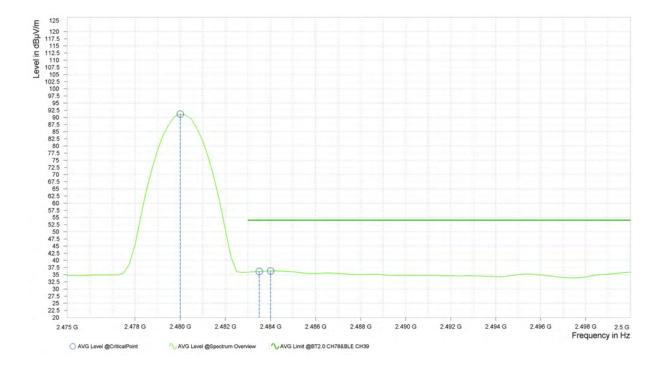

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- Margin value = Limit value Emission level.
- 2. 2441MHz: Fundamental frequency.

CHANNEL	TX Channel 78	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)


ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
6	2,480.000	101.47			7.36	Н	5	1.00
6	2,483.500	58.48	74.00	15.52	7.36	Н	148.8	1.00
6	2,484.250	59.35	74.00	14.65	7.36	н	148.8	1.00


Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
6	2,480.250	94.94	1		7.36	н	4.9	1.00
6	2,483.500	37.53	54.00	16.47	7.36	Н	73.4	1.00
6	2,483.750	37.52	54.00	16.48	7.36	Н	73.4	1.00

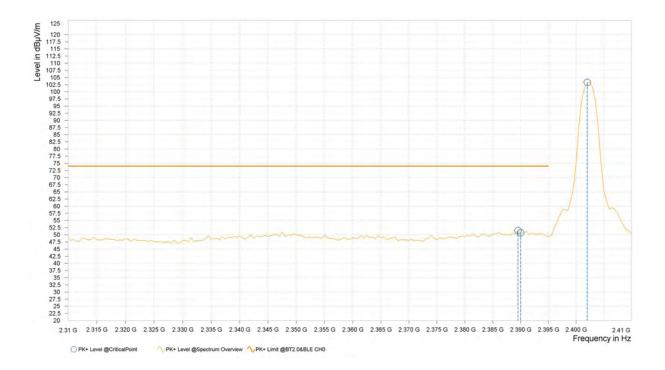

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M

Rg	Frequency [MHz]	PK+ Level [dBµV/m]		PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
6	2,480.000	97.70			7.36	V	1	2.00
6	2,483.500	56.03	74.00	17.97	7.36	۷	2	2.00
6	2,484.500	55.48	74.00	18.52	7.36	V	2	2.00

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
6	2,480.000	91.14			7.36	V	2.7	2.00
6	2,483.500	36. <mark>1</mark> 3	54.00	17.87	7.36	V	148.8	1.00
6	2,484.000	36.30	54.00	17.70	7.36	V	148.8	1.00

REMARKS:

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value – Emission level.
 - 2. 2480MHz: Fundamental frequency.

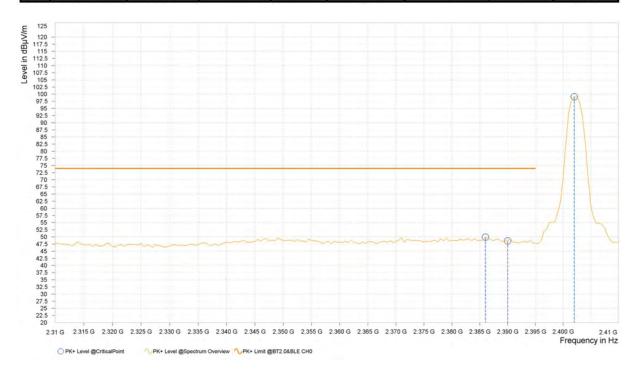


BT_8DPSK

CHANNEL	TX Channel 0	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M

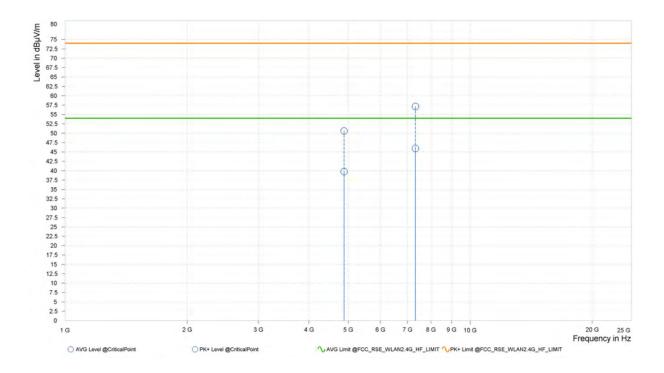
Rg	Frequency [MHz]	PK+ Level [dBμV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,389.500	51.48	74.00	22.52	7.08	Н	207.8	2.00
5	2,390.000	50.70	74.00	23.30	7.08	Н	207.8	2.00
5	2,402.000	103.27			7.08	Н	48.7	2.00


Rg	Frequency [MHz]	AVG Level [dBµV/m]		AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,389.000	36.09	54.00	17.91	7.08	Н	4.9	1.00
5	2,390.000	36.17	54.00	17.83	7.08	Н	4.9	1.00
5	2,402.000	95.89		1	7.08	Н	31.9	2.00

Rg	Frequency [MHz]	PK+ Level [dBμV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,386.000	49.94	74.00	24.06	7.08	V	152.3	1.00
5	2,390.000	48.62	74.00	25.38	7.08	V	152.3	1.00
5	2,402.000	99.11			7.08	V	5	1.00

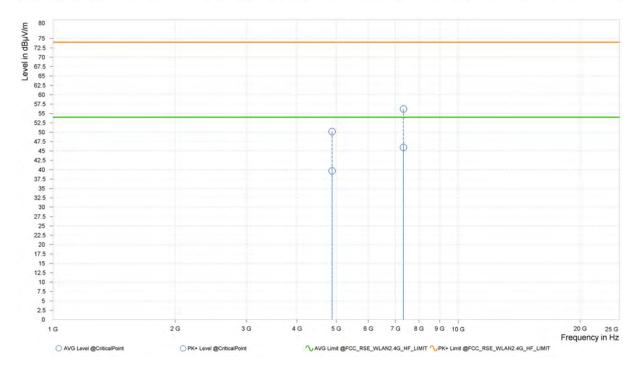
Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,364.000	34.62	54.00	19.38	7.10	V	163	1.00
5	2,390.000	34.58	54.00	19.42	7.08	V	120.4	2.00
5	2,402.000	91.68	11	11.000	7.08	V	5	1.00

REMARKS:


- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value – Emission level.
- 2. 2402MHz: Fundamental frequency.

CHANNEL	TX Channel 39	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

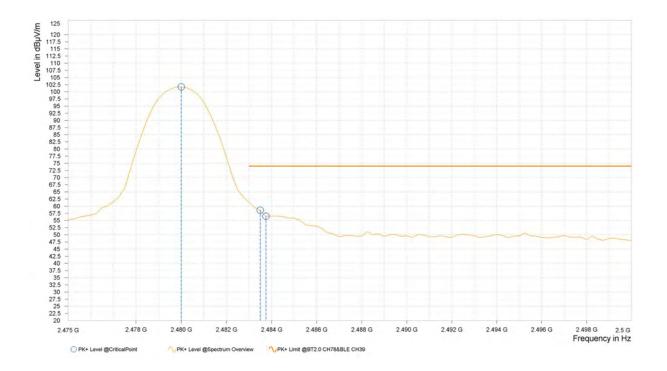
ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M


Rg	Frequency [MHz]	PK+ Level [dBμV/m]		PK+ Margin [dB]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	4,882.000	50.61	74.00	23.39	39.78	54.00	14.22	15.32	Н	1	2.00
2	7,323.000	57.14	74.00	16.86	45.93	54.00	8.07	21.10	Н	91.4	1.00

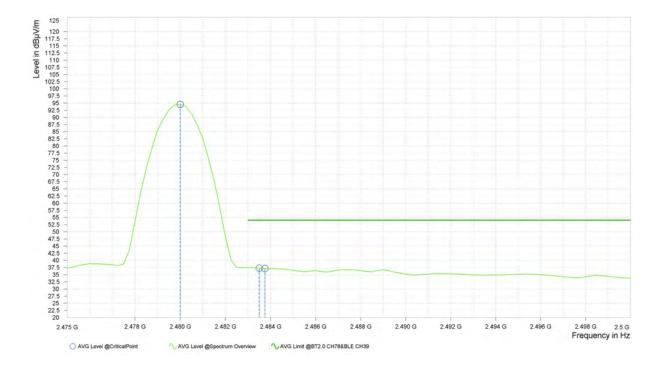
ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M

Rg	Frequency [MHz]	PK+ Level [dBµV/m]		PK+ Margin [dB]	AVG Level [dBµV/m]		AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	4,882.000	50.18	74.00	23.82	39.67	54.00	14.33	15.32	V	23.6	2.00
2	7,323.000	56.23	74.00	17.77	45.93	54.00	8.07	21.10	V	23.6	2.00

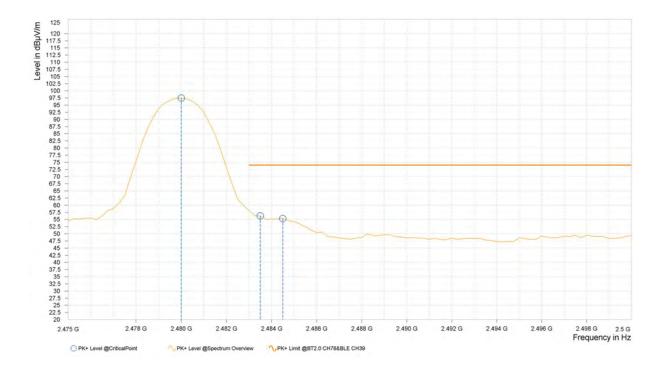
REMARKS:

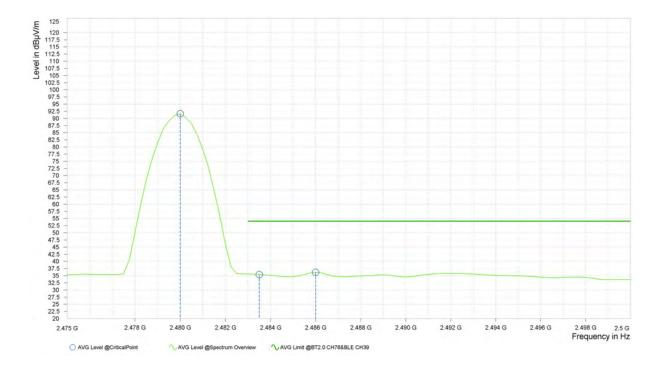

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value – Emission level.
- 2. 2441MHz: Fundamental frequency.

CHANNEL	TX Channel 78	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)


ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M

Rg	Frequency [MHz]	PK+ Level [dBμV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
6	2,480.000	101.70			7.36	Н	6.3	1.00
6	2,483.500	58.59	74.00	15.41	7.36	H	359	1.00
6	2,483.750	56.48	74.00	17.52	7.36	Н	53.4	2.00


Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
6	2,480.000	94.52		1	7.36	Н	157.1	1.00
6	2,483.500	37.29	54.00	16.71	7.36	Н	206.5	2.00
6	2,483.750	37.16	54.00	16.84	7.36	Н	206.5	2.00

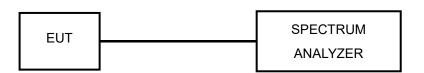

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
6	2,480.000	97.46			7.36	V	1	2.00
6	2,483.500	56.23	74.00	17.77	7.36	V	2	2.00
6	2,484.500	55.32	74.00	18.68	7.36	V	1	2.00

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
6	2,480.000	91.59			7.36	V	4.2	2.00
6	2,483.500	35.37	54.00	18.63	7.36	V	163	1.00
6	2,486.000	36.19	54.00	17.81	7.36	V	4.2	2.00

REMARKS:

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value – Emission level.
 - 2. 2480MHz: Fundamental frequency.



3.3 NUMBER OF HOPPING FREQUENCY USED

3.3.1 LIMIT OF HOPPING FREQUENCY USED

At least 15 channels frequencies, and should be equally spaced.

3.3.2 TEST SETUP

3.3.3 TEST INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
EMI Test	D ² O		101070	F. I. 05.00	E. L. 04.04
Receiver	R&S	ESW 44	101973	Feb.25,22	Feb.24,24
Open Switch and	D*C		100020	N1/A	
Control Unit	R&S	OSP-B157W8	100836	N/A	N/A
Vector Signal	R&S	SMBV100B	102176	Cab 16 00	Cab 15 04
Generator	Rao	SIVIDVIUUD	102176	Feb.16,22	Feb.15,24
Vector Signal	R&S	SMBV100B	102176	Cab 15 04	Eab 14.06
Generator	Rao	SIVIDVIUUD	102176	Feb.15,24	Feb.14,26
Signal Generator	R&S	SMB100A03	182185	Feb.16,22	Feb.15,24
Signal Generator	R&S	SMB100A03	182185	Feb.15,24	Feb.14,26
Wideband Radio	D ⁰ C	CN 11 1/ 500	100000	lum 06 00	hum 05 04
Communication	R&S	CMW500	169399	Jun.26,22	Jun.25,24
Hygrothermograph	DELI	20210528	SZ015	Sep.06,22	Sep.05,24
PC	LENOVO	E14	HRSW0024	N/A	N/A
CABLE	R&S	J12J103539-00-1	SEP-03-20-069	Apr.28,23	Apr.27,24
CABLE	R&S	J12J103539-00-1	SEP-03-20-070	Apr.28,23	Apr.27,24
Test Software	EMC32	EMC32	N/A	N/A	N/A
Temperature Chamber	votsch	VT4002	58566078100050	May.31,22	May.30,24

NOTE:

1. The calibration interval of the above test instruments is 12 months or 24 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.

2. The test was performed in RF Oven room.

3.3.4 TEST PROCEDURES

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- d. Set the SA on View mode and then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were completed.

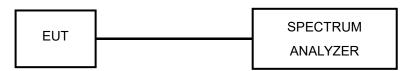
3.3.5 DEVIATION FROM TEST STANDARD

No deviation.

3.3.6 TEST RESULTS

There are 79 hopping frequencies in the hopping mode. Please refer to next two pages for the test result. On the plots, it shows that the hopping frequencies are equally spaced.

Please Refer to Appendix Of this test report.



3.4 DWELL TIME ON EACH CHANNEL

3.4.1 LIMIT OF DWELL TIME USED

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

3.4.2 TEST SETUP

3.4.3 TEST INSTRUMENTS

Refer to section 3.3.3 to get information of above instrument.

3.4.4 TEST PROCEDURES

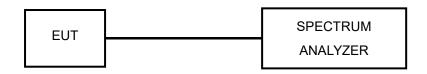
- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- d. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- e. Repeat above procedures until all different time-slot modes have been completed.

3.4.5 DEVIATION FROM TEST STANDARD

No deviation.

3.4.6 TEST RESULTS

Please Refer to Appendix Of this test report.



3.5 CHANNEL BANDWIDTH

3.5.1 LIMITS OF CHANNEL BANDWIDTH

For frequency hopping system operating in the 2400-2483.5MHz, If the 20dB bandwidth of hopping channel is greater than 25kHz, two-thirds 20dBbandwidth of hopping channel shell be a minimum limit for the hopping channel separation.

3.5.2 TEST SETUP

3.5.3 TEST INSTRUMENTS

Refer to section 3.3.3 to get information of above instrument.

3.5.4 TEST PROCEDURE

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.

3.5.5 DEVIATION FROM TEST STANDARD

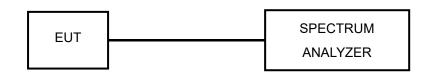
No deviation.

3.5.6 EUT OPERATING CONDITION

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

3.5.7 TEST RESULTS

Please Refer to Appendix Of this test report.



3.6 HOPPING CHANNEL SEPARATION

3.6.1 LIMIT OF HOPPING CHANNEL SEPARATION

At least 25kHz or two-third of 20dB hopping channel bandwidth (whichever is greater).

3.6.2 TEST SETUP

3.6.3 TEST INSTRUMENTS

Refer to section 3.3.3 to get information of above instrument.

3.6.4 TEST PROCEDURES

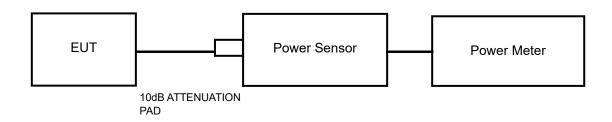
- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- 3. By using the MaxHold function record the separation of two adjacent channels.
- 4. Measure the frequency difference of these two adjacent channels by SA MARK function. And then plot the result on SA screen.
- 5. Repeat above procedures until all frequencies measured were complete.

3.6.5 DEVIATION FROM TEST STANDARD

No deviation.

3.6.6 TEST RESULTS

Please Refer to Appendix Of this test report.



3.7 MAXIMUM OUTPUT POWER

3.7.1 LIMITS OF MAXIMUM OUTPUT POWER MEASUREMENT

The Maximum Output Power Measurement is 125mW.

3.7.2 TEST SETUP

3.7.3 TEST INSTRUMENTS

Refer to section 3.3.3 to get information of above instrument.

3.7.4 TEST PROCEDURES

A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

3.7.5 DEVIATION FROM TEST STANDARD No deviation.

3.7.6 EUT OPERATING CONDITION

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

3.7.7 TEST RESULTS

3.7.7.1 MAXIMUM PEAK OUTPUT POWER

Please Refer to Appendix Of this test report.

3.7.7.2 Average Output Power (FOR REFERENCE)

The average power sensor was used on the output port of the EUT. A power meter was used to read the response of the power sensor. Record the power level.

Please Refer to Appendix Of this test report.

3.8 OUT OF BAND MEASUREMENT

3.8.1 LIMITS OF OUT OF BAND MEASUREMENT

Below –20dB of the highest emission level of operating band (in 100KHz RBW).

3.8.2 TEST INSTRUMENTS

Refer to section 3.3.3 to get information of above instrument.

3.8.3 TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer via a low loss cable. Spectrum Analyzer was set RBW to 100 kHz and VBW to 300 kHz with suitable frequency span including 100 MHz bandwidth from band edge. Detector = PEAK and Trace mode = Max Hold. The band edges was measured and recorded.

3.8.4 DEVIATION FROM TEST STANDARD

No deviation.

3.8.5 EUT OPERATING CONDITION

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

3.8.6 TEST RESULTS

The spectrum plots are attached on the following images. D1 line indicates the highest level. D2 line indicates the 20dB offset below D1. It shows compliance to the requirement.

Please Refer to Appendix Of this test report.

4 PHOTOGRAPHS OF THE TEST CONFIGURATION

Please refer to the attached file (Test Setup Photo).

5 MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.


6 APPENDIX 20DB EMISSION BANDWIDTH

TEST RESULT

TestMode	Antenna	Channel	20db EBW[MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
DH5	Ant1	2402	0.9550	2401.5365	2402.4915		PASS
		2441	0.9550	2440.5365	2441.4915		PASS
		2480	0.9550	2479.5365	2480.4915		PASS
2DH5	Ant1	2402	1.3200	2401.3427	2402.6653		PASS
		2441	1.3100	2440.3487	2441.6613		PASS
		2480	1.3100	2479.3487	2480.6613		PASS
3DH5	Ant1	2402	1.3000	2401.3566	2402.6573		PASS
		2441	1.3000	2440.3566	2441.6553		PASS
		2480	1.3000	2479.3566	2480.6573		PASS

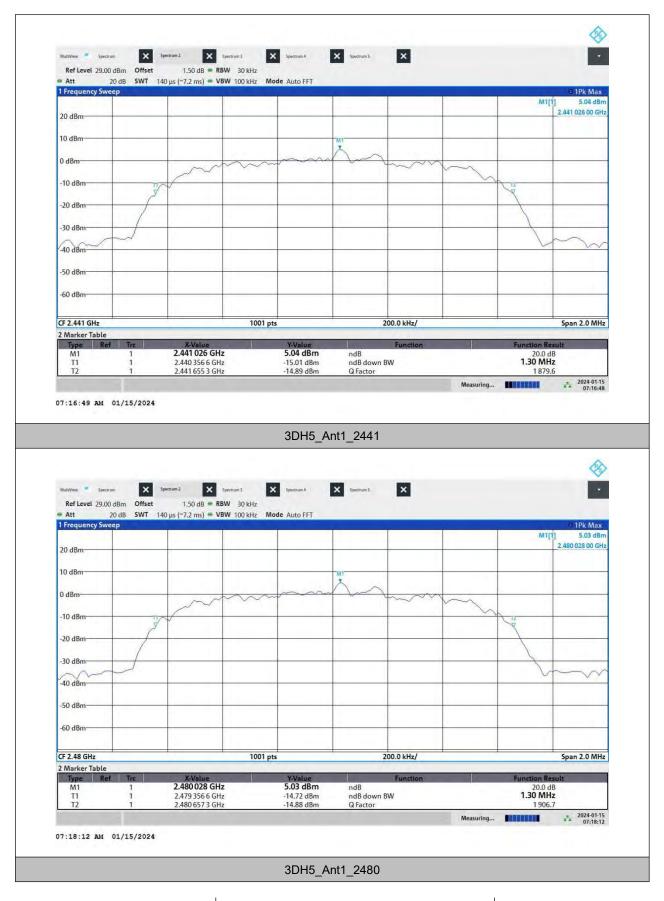
TEST GRAPHS

Huarui 7layers High Technology (Suzhou) Co., Ltd. Tower N, Innovation Center, 88 Zhuyi Road, High-tech District, Suzhou City, Anhui Province

Tel: +86 (0557) 368 1008



Huarui 7layers High Technology (Suzhou) Co., Ltd. Tower N, Innovation Center, 88 Zhuyi Road, High-tech District, Suzhou City, Anhui Province


Tel: +86 (0557) 368 1008

Huarui 7layers High Technology (Suzhou) Co., Ltd. Tower N, Innovation Center, 88 Zhuyi Road, High-tech District, Suzhou City, Anhui Province

Huarui 7layers High Technology (Suzhou) Co., Ltd. Tower N, Innovation Center, 88 Zhuyi Road, High-tech District, Suzhou City, Anhui Province

OCCUPIED CHANNEL BANDWIDTH

TEST RESULT

TestMode	Antenna	Channel	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	0.8739	2401.5694	2402.4433		PASS
DH5	Ant1	2441	0.8739	2440.5693	2441.4432		PASS
		2480	0.8739	2479.5693	2480.4432		PASS
		2402	1.8167	2401.4137	2403.2304		PASS
2DH5	Ant1	2441	1.1809	2440.4140	2441.5949		PASS
		2480	1.1795	2479.4136	2480.5931		PASS
		2402	1.1849	2401.4139	2402.5988		PASS
3DH5	Ant1	2441	1.1838	2440.4140	2441.5978		PASS
		2480	1.1868	2479.4122	2480.5990		PASS

TEST GRAPHS

Huarui 7layers High Technology (Suzhou) Co., Ltd. Tower N, Innovation Center, 88 Zhuyi Road, High-tech District, Suzhou City, Anhui Province

Huarui 7layers High Technology (Suzhou) Co., Ltd. Tower N, Innovation Center, 88 Zhuyi Road, High-tech District, Suzhou City, Anhui Province

Huarui 7layers High Technology (Suzhou) Co., Ltd. Tower N, Innovation Center, 88 Zhuyi Road, High-tech District, Suzhou City, Anhui Province

Huarui 7layers High Technology (Suzhou) Co., Ltd. Tower N, Innovation Center, 88 Zhuyi Road, High-tech District, Suzhou City, Anhui Province

MAXIMUM CONDUCTED OUTPUT POWER

TEST RESULT PEAK

TestMod	Antonno	Channel	Peak	Peak	Conducted	Verdict	Power
е	Antenna	Channel	Powert[dBm]	Powert[mw]	Limit[mw]	verdict	setting
		2402	13.62	23.01	≤125	PASS	4
DH5	Ant1	2441	13.62	23.01	≤125	PASS	4
		2480	13.38	21.78	≤125	PASS	4
		2402	12.73	18.75	≤125	PASS	4
2DH5	Ant1	2441	12.63	18.32	≤125	PASS	4
		2480	12.60	18.20	≤125	PASS	4
		2402	12.77	18.92	≤125	PASS	4
3DH5	Ant1	2441	12.62	18.28	≤125	PASS	4
		2480	12.61	18.24	≤125	PASS	4

TEST RESULT AVERAGE

TestMode	Antenna	Channel	Average Power	Conducted Limit[dBm]	Verdict	Power setting
		2402	12.83	1	PASS	4
DH5	Ant1	2441	12.78	1	PASS	4
		2480	12.56	1	PASS	4
		2402	10.13	1	PASS	4
2DH5	Ant1	2441	9.91	1	PASS	4
		2480	10.09	1	PASS	4
		2402	10.08	1	PASS	4
3DH5	Ant1	2441	9.89	1	PASS	4
		2480	10.06	1	PASS	4

CARRIER FREQUENCY SEPARATION

TEST RESULT

TestMode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
DH5	Ant1	Нор	0.9920	≥0.6321	PASS
2DH5	Ant1	Нор	1.0040	≥0.8743	PASS
3DH5	Ant1	Нор	1.0070	≥0.8636	PASS

TEST GRAPHS

Att Frequency Swe		.01 ms VBW 30	0 kHz Mode Aut	o Sweep					O 1Pk Max
	eb.							D2[1	
20 dBm		1	MI			DZ		MI	11.66 dBr 2.402 011 50 GF
10 dBm		/			/	4	1		
0 dBm	/		-					1	
-10 dBm									
-20 dBm									-
-30 dBm						-			
-40 dBm		-	_						
-50 dBm									
-60 dBm									
CF 2.402 5 GHz			1001 pt	ts		300.0 kHz/			Span 3.0 MH

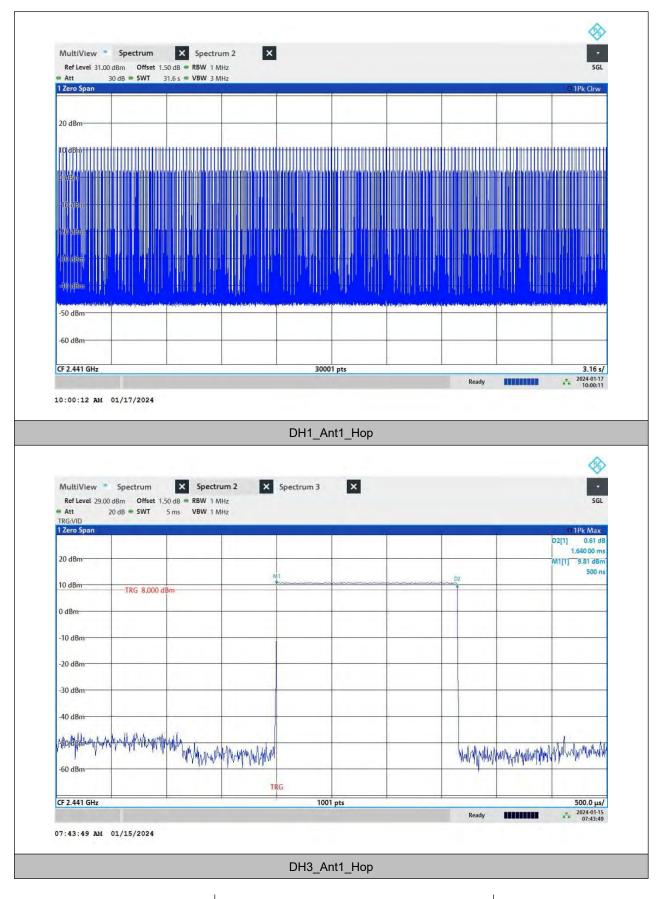
Att 20	ID SIAT 1 04	VIDIAL DOOLULE	Ande Auto Course					
1 Frequency Swee	AB SWI 1.01 ms	VBW 300 kHz N	lode Auto Sweep					O 1Pk Max
							D2[*	0.07 dl 1.004 00 MH
20 dBm							MI	9.25 dBn
10 dBm		MI	C		DZ			2.402 005 50 GH
TO ODIT							-	
0 dBm							1	1
/								1 h
-10 dBm	-							1
-20 dBm								1
-30 dBm								
-40 dBm							_	
TO UDITI								
-50 dBm								
-60 dBm								
CF 2.402 5 GHz			1001 pts	30	00.0 kHz/	Measuring		Span 3.0 MH: 2024-01-18 03:13:20
03:13:21 AM 0			_	_Ant1_Hop			_	\$
MultiView • Ref Level 29.00 d	Spectrum 8m Offset 1.50 dB		× Spectrum					(
MultiView • Ref Level 29.00 d	Spectrum Bm Offset 1.50 dB dB SWT 1.01 ms		× Spectrum					• 1Pk Max
MultiView Ref Level 29.00 d Att 20	Spectrum Bm Offset 1.50 dB dB SWT 1.01 ms	• RBW 300 kHz	× Spectrum				pst	0.05 di
MultiView Ref Level 29.00 d Att 20	Spectrum Bm Offset 1.50 dB dB SWT 1.01 ms	• RBW 300 kHz	× Spectrum				D2[M1]	0.05 dl 1.007 00 MH 1 9.24 dBn
MultiView Ref Level 29.00 d Att 20 1 Frequency Swee 20 dBm	Spectrum Bm Offset 1.50 dB dB SWT 1.01 ms	• RBW 300 kHz	Spectrum		22			0.05 d 1.007 00 MH
MultiView Ref Level 29.00 d Att 20 1 Frequency Swee	Spectrum Bm Offset 1.50 dB dB SWT 1.01 ms	RBW 300 kHz VBW 300 kHz N	Spectrum		D2			0.05 dl 1.007 00 MH 1 9.24 dBn
MultiView Ref Level 29.00 d Att 20 1 Frequency Swee 20 dBm	Spectrum Bm Offset 1.50 dB dB SWT 1.01 ms	RBW 300 kHz VBW 300 kHz N	Spectrum		D2			0.05 dl 1.007 00 MH 1 9.24 dBn
MultiView Ref Level 29.00 d Att 20 1 Frequency Sweet 20 dBm 10 dBm 0 dBm	Spectrum Bm Offset 1.50 dB dB SWT 1.01 ms	RBW 300 kHz VBW 300 kHz N	Spectrum		D2			0.05 dl 1.007 00 MH 1 9.24 dBn
MultiView Ref Level 29.00 d Att 20 1 Frequency Swee 20 dBm 10 dBm	Spectrum Bm Offset 1.50 dB dB SWT 1.01 ms	RBW 300 kHz VBW 300 kHz N	Spectrum		12			0.05 dl 1.007 00 MH 1 9.24 dBn
MultiView Ref Level 29.00 d Att 20 1 Frequency Sweet 20 dBm 10 dBm 0 dBm	Spectrum Bm Offset 1.50 dB	RBW 300 kHz VBW 300 kHz N	Spectrum		D2			0.05 dl 1.007 00 MH 1 9.24 dBn
MultiView Ref Level 29.00 d Att 20 1 Frequency Sweet 20 dBm 10 dBm -10 dBm	Spectrum Bm Offset 1.50 dB	RBW 300 kHz VBW 300 kHz N	Spectrum		02			0.05 dl 1.007 00 MH 1 9.24 dBn
MultiView Ref Level 29.00 d Att 20 1 Frequency Sweet 20 dBm 10 dBm -10 dBm	Spectrum Bm Offset 1.50 dB	RBW 300 kHz VBW 300 kHz N	Spectrum		D2			0.05 dl 1.007 00 MH 1 9.24 dBn
MultiView Ref Level 29.00 d Att 20 1 Frequency Sweet 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Spectrum Bm Offset 1.50 dB	RBW 300 kHz VBW 300 kHz N	Spectrum		D2			0.05 dl 1.007 00 MH 1 9.24 dBn
MultiView Ref Level 29.00 d Att 20 1 Frequency Sweet 20 dBm 10 dBm -10 dBm -20 dBm	Spectrum Bm Offset 1.50 dB	RBW 300 kHz VBW 300 kHz N	Spectrum		52 102			0.05 dl 1.007 00 MH 1 9.24 dBn
MultiView Ref Level 29.00 d Att 20 1 Frequency Sweet 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Spectrum Bm Offset 1.50 dB	RBW 300 kHz VBW 300 kHz N	Spectrum		D2			0.05 dl 1.007 00 MH 1 9.24 dBn
MultiView Ref Level 29.00 d Att 20 1 Frequency Swee 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Spectrum Bm Offset 1.50 dB	RBW 300 kHz VBW 300 kHz N	Spectrum		D2			0.05 dl 1.007 00 MH 1 9.24 dBn
MultiView Ref Level 29.00 d Att 20 1 Frequency Swee 20 dBm 10 dBm 0 dBm -10 dBm -30 dBm -40 dBm	Spectrum Bm Offset 1.50 dB	RBW 300 kHz VBW 300 kHz N	Spectrum					0.05 dl 1.007 00 MH 1 9.24 dBn
MultiView Ref Level 29.00 d Att 200 1 Frequency Sweet 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	Spectrum Bm Offset 1.50 dB	RBW 300 kHz VBW 300 kHz N	Spectrum	3] 0.05 d 1.007 00 MH 1 9.24 dBr 2.402 005 50 GH
MultiView Ref Level 29.00 d Att 20 1 Frequency Swee 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Spectrum Bm Offset 1.50 dB	RBW 300 kHz VBW 300 kHz N	Spectrum	3	D2	Measuring		0.05 dl 1.007 00 MH 1 9.24 dBn

Huarui 7layers High Technology (Suzhou) Co., Ltd.

Tower N, Innovation Center, 88 Zhuyi Road, High-tech District, Suzhou City, Anhui Province

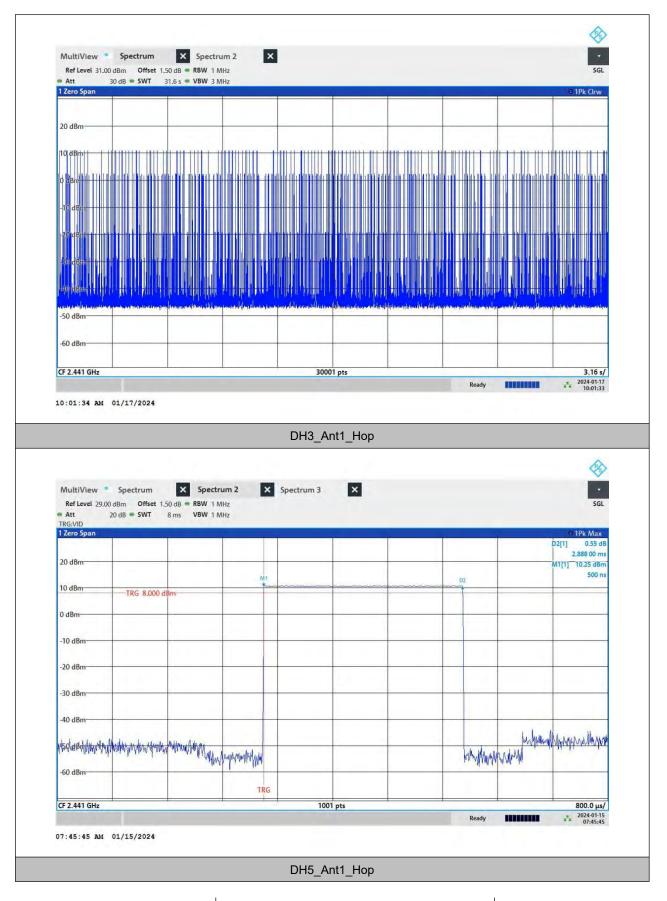
TIME OF OCCUPANCY

TEST RESULT

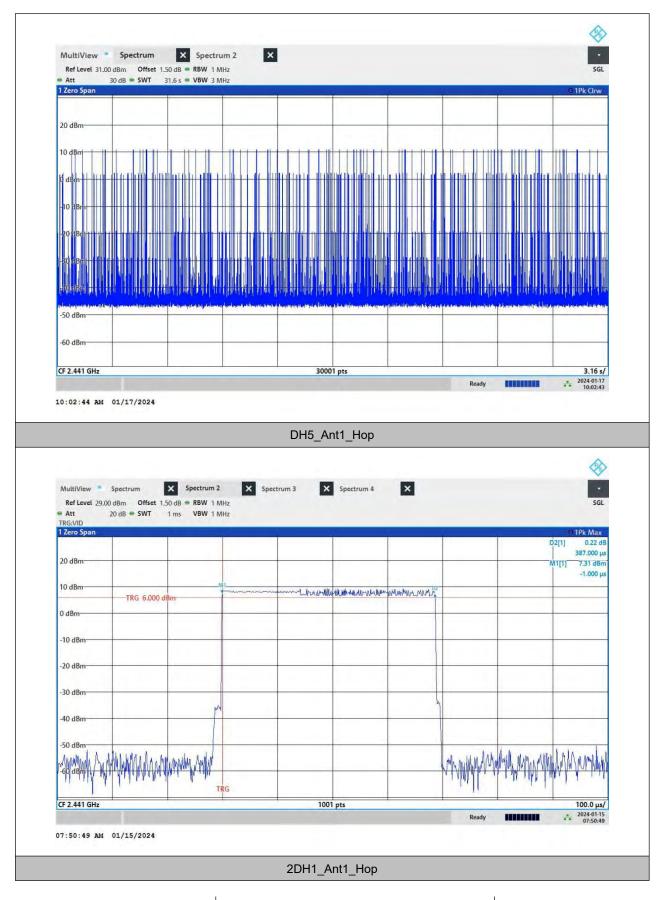

TestMode	Antenna	Channel	BurstWidth [ms]	TotalHops [Num]	Result[s]	Limit[s]	Verdict
DH1	Ant1	Нор	0.380	331	0.117	≤0.4	PASS
DH3	Ant1	Нор	1.640	164	0.276	≤0.4	PASS
DH5	Ant1	Нор	2.888	113	0.338	≤0.4	PASS
2DH1	Ant1	Нор	0.387	309	0.123	≤0.4	PASS
2DH3	Ant1	Нор	1.642	197	0.293	≤0.4	PASS
2DH5	Ant1	Нор	2.890	108	0.332	≤0.4	PASS
3DH1	Ant1	Нор	0.386	309	0.119	≤0.4	PASS
3DH3	Ant1	Нор	1.635	152	0.262	≤0.4	PASS
3DH5	Ant1	Нор	2.899	106	0.341	≤0.4	PASS

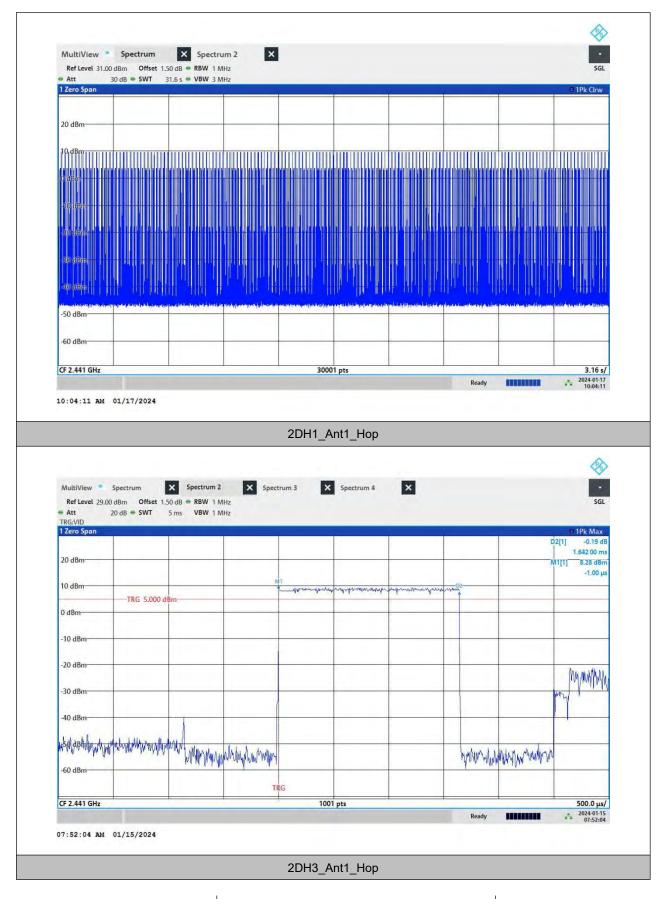
TEST GRAPHS

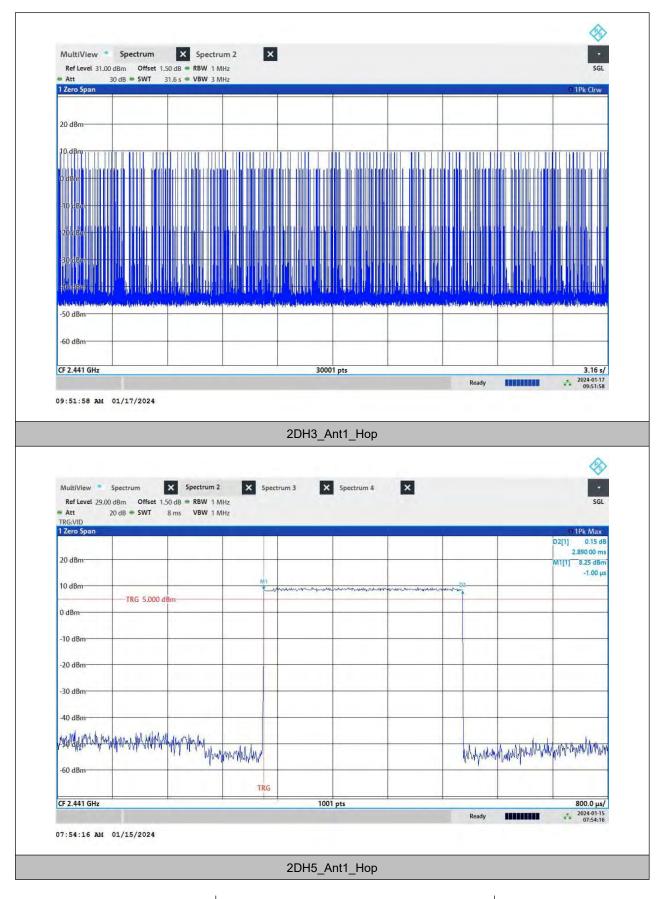
TRG:VID 1 Zero Span					-				O 1Pk Ma
									D2[1] 0.04 (380.000
20 dBm									M1[1] 10.61 dB
10.10			MI				92		500
10 dBm		Im							
0 dBm			_						-
-10 dBm						-		-	
-20 dBm			-						
	1 D. (10								
-30 dBm			N			-	4		-
-40 dBm									
-to dom									
-50 dBm						-			1
Mall Br. MAM	Mundall	Mahlan WALL					WWWWW	I WAN A MAN	Marthala
-eolanu 1.	1 Lab all lad	u than bud					4 Min day	Malli Hassarin	b durth Ala
			TRG			1			
CF 2.441 GHz			_	100	1 pts		Ready		100.0 µ = 2024-01-1 07:42:4

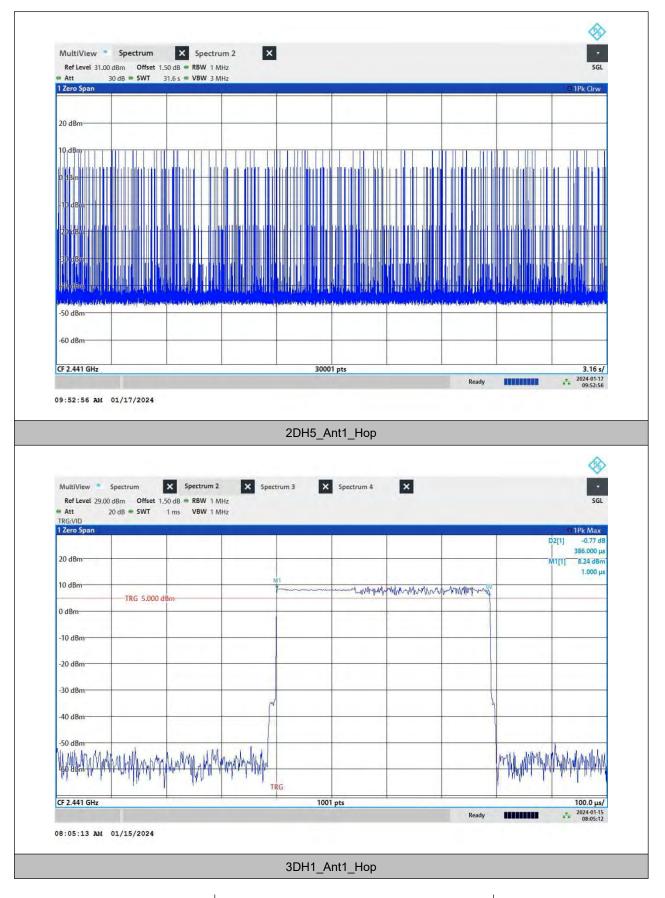


Huarui 7layers High Technology (Suzhou) Co., Ltd.


Tower N, Innovation Center, 88 Zhuyi Road, High-tech District, Suzhou City, Anhui Province

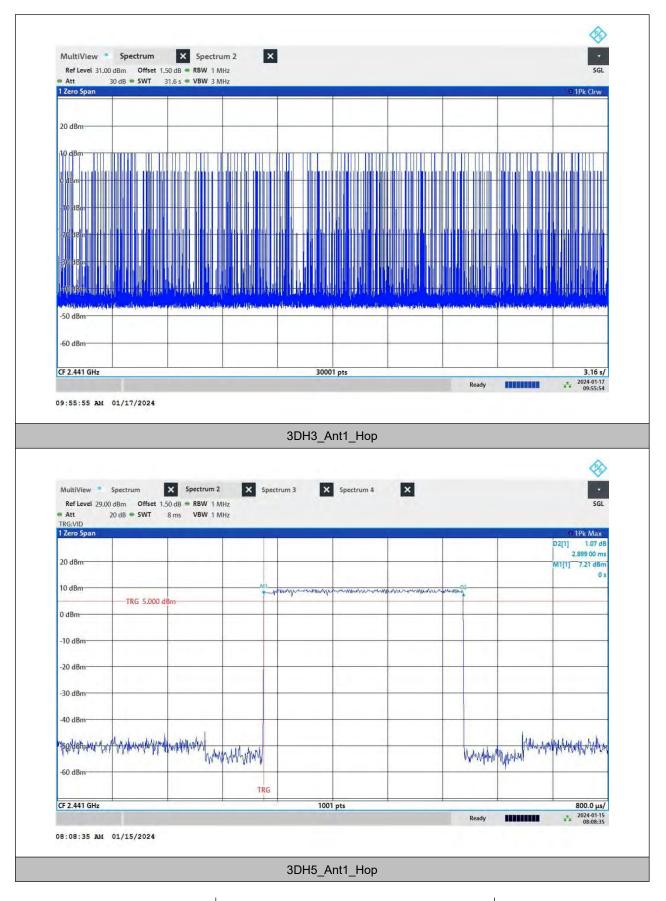

Huarui 7layers High Technology (Suzhou) Co., Ltd. Tower N, Innovation Center, 88 Zhuyi Road, High-tech District, Suzhou City, Anhui Province

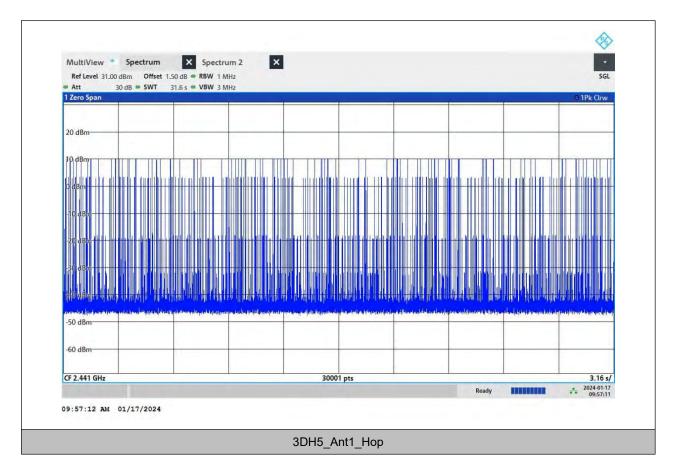

Huarui 7layers High Technology (Suzhou) Co., Ltd. Tower N, Innovation Center, 88 Zhuyi Road, High-tech District, Suzhou City, Anhui Province


Huarui 7layers High Technology (Suzhou) Co., Ltd. Tower N, Innovation Center, 88 Zhuyi Road, High-tech District, Suzhou City, Anhui Province

Huarui 7layers High Technology (Suzhou) Co., Ltd. Tower N, Innovation Center, 88 Zhuyi Road, High-tech District, Suzhou City, Anhui Province

Huarui 7layers High Technology (Suzhou) Co., Ltd.


Tower N, Innovation Center, 88 Zhuyi Road, High-tech District, Suzhou City, Anhui Province


Huarui 7layers High Technology (Suzhou) Co., Ltd. Tower N, Innovation Center, 88 Zhuyi Road, High-tech District, Suzhou City, Anhui Province

Huarui 7layers High Technology (Suzhou) Co., Ltd. Tower N, Innovation Center, 88 Zhuyi Road, High-tech District, Suzhou City, Anhui Province

NUMBER OF HOPPING CHANNELS

TEST RESULT

TestMode	Antenna	Channel	Result[Num]	Limit[Num]	Verdict
DH5	Ant1	Нор	79	≥15	PASS
2DH5	Ant1	Нор	79	≥15	PASS
3DH5	Ant1	Нор	79	≥15	PASS

TEST GRAPHS

1 Frequency Swe	ep							O 1Pk I	Max
20 dBm								MMM	
-10 dBm									-
-20 dBm								 	-
-30 dBm		1			1				+
-40 dBm									1
-50 dBm						-		 -	1
-60 dBm									
2.4 GHz			1001 pts	6	8	.35 MHz/	Measuring	2.483 5	

Att 1 Frequency Swe		1 ms VBW 300	kHz Mode Auto	Sweep					O 1Pk Max
		1							
20 dBm									
10 dBm	mm	mmm	MAMMAN	50000-0-	www	- 22.0.0		MAMAAAAA	100000
0 dBm				1111111111	wwww	171777777	*****		V · · · · ·
Uddin									
-10 dBm									
-20 dBm					-	-	-		
-30 dBm									h
Soubin									
-40 dBm									
-50 dBm									4
-60 dBm									
2.4 GHz			1001 pts	i	8	8.35 MHz/			2.483 5 GH
							Measuring		** 00.12.2
9:12:30 AM	01/15/2024			2DH5_A	nt1_Hop				** 2024-01-1: 09:12:2!
09:12:30 AM	01/15/2024			2DH5_A	.nt1_Hop				05.12.2
09:12:30 AM			-	2DH5_A	nt1_Hop				09.1212
MultiView Ref Level 29.00	Spectrum dBm Offset 1.5				nt1_Hop				07124 0
MultiView Ref Level 29.00	Spectrum dBm Offset 1.5 20 dB SWT 1.0		kHz kHz Mode Auto		nt1_Hop				• 1Pk Max
MultiView Ref Level 29.00 Att 1 Frequency Swe	Spectrum dBm Offset 1.5 20 dB SWT 1.0				ant1_Hop				8
MultiView Ref Level 29.00 Att	Spectrum dBm Offset 1.5 20 dB SWT 1.0				vnt1_Hop				8
MultiView Ref Level 29.00 Att 1 Frequency Swe 20 dBm	Spectrum dBm Offset 1.5 20 dB SWT 1.0 ep	1 ms VBW 300	kHz Mode Auto	Sweep					• 1Pk Max
MultiView Ref Level 29.00 Att 1 Frequency Swe 20 dBm	Spectrum dBm Offset 1.5 20 dB SWT 1.0 ep	1 ms VBW 300	kHz Mode Auto	Sweep	vnt1_Hop	~~~~~~			• 1Pk Max
MultiView Ref Level 29.00 Att 1 Frequency Swo 20 dBm 10 dBm	Spectrum dBm Offset 1.5 20 dB SWT 1.0 ep	1 ms VBW 300	kHz Mode Auto	Sweep		~~~~~~			• 1Pk Max
MultiView Ref Level 29.00 Att 1 Frequency Swo 20 dBm 10 dBm	Spectrum dBm Offset 1.5 20 dB SWT 1.0 ep	1 ms VBW 300	kHz Mode Auto	Sweep		~~~~~~		~~~~~~	• 1Pk Max
MultiView Ref Level 29.00 Att 1 Frequency Swo 20 dBm 10 dBm	Spectrum dBm Offset 1.5 20 dB SWT 1.0 ep	1 ms VBW 300	kHz Mode Auto	Sweep		·····	······································	·····	• 1Pk Max
MultiView Ref Level 29.00 Att 1 Frequency Swe 20 dBm 10 dBm -10 dBm	Spectrum dBm Offset 1.5 20 dB SWT 1.0 ep	1 ms VBW 300	kHz Mode Auto	Sweep		vvvvvvv	·····	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	• 1Pk Max
MultiView Ref Level 29.00 Att 1 Frequency Swe 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm	Spectrum dBm Offset 1.5 20 dB SWT 1.0 ep	1 ms VBW 300	kHz Mode Auto	Sweep		~~~~~~			• 1Pk Max
MultiView Ref Level 29.00 Att 1 Frequency Swe 20 dBm 10 dBm -10 dBm -20 dBm	Spectrum dBm Offset 1.5 20 dB SWT 1.0 ep	1 ms VBW 300	kHz Mode Auto	Sweep					• 1Pk Max
MultiView Ref Level 29.00 Att 1 Frequency Swe 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm	Spectrum dBm Offset 1.5 20 dB SWT 1.0 ep	1 ms VBW 300	kHz Mode Auto	Sweep		vvvvvvvv			• 1Pk Max
MultiView Ref Level 29.00 Att Frequency Swe O dBm O dBm O dBm O dBm O dBm O dBm -10 dBm -20 dBm -30 dBm -50 dBm	Spectrum dBm Offset 1.5 20 dB SWT 1.0 ep	1 ms VBW 300	kHz Mode Auto	Sweep					• 1Pk Max
MultiView Ref Level 29.00 Att 1 Frequency Swe 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -40 dBm	Spectrum dBm Offset 1.5 20 dB SWT 1.0 ep	1 ms VBW 300	kHz Mode Auto	Sweep					• 1Pk Max
MultiView Ref Level 29.00 Att Frequency Swe O dBm O dBm O dBm O dBm O dBm O dBm -20 dBm -30 dBm -40 dBm -50 dBm	Spectrum dBm Offset 1.5 20 dB SWT 1.0 ep	1 ms VBW 300	kHz Mode Auto	Sweep		vvvvvvvv			• 1Pk Max

Huarui 7layers High Technology (Suzhou) Co., Ltd.

Tower N, Innovation Center, 88 Zhuyi Road, High-tech District, Suzhou City, Anhui Province

BAND EDGE MEASUREMENTS

TEST RESULT

TestMode	Antenna	ChName	Channel	RefLevel	Result	Limit	Verdict
	7			[dBm]	[dBm]	[dBm]	
		Low	2402	11.63	-48.13	≤-8.37	PASS
DH5	Ant1	High	2480	10.77	-48.62	≤-9.23	PASS
	Anti	Low	Hop_2402	11.62	-42.47	≤-8.38	PASS
		High	Hop_2480	10.57	-51.52	≤-9.43	PASS
		Low	2402	9.19	-43.81	≤-10.81	PASS
2DH5	Ant1	High	2480	8.44	-52.50	≤-11.56	PASS
2003	Anti	Low	Hop_2402	9.12	-45.58	≤-10.88	PASS
		High	Hop_2480	8.59	-52.75	≤-11.41	PASS
		Low	2402	9.17	-44.28	≤-10.83	PASS
3DH5	Ant1	High	2480	8.43	-52.39	≤-11.57	PASS
5005	AILI	Low	Hop_2402	9.15	-45.88	≤-10.85	PASS
		High	Hop_2480	8.45	-52.54	≤-11.55	PASS

TEST GRAPHS

1 Frequency Sweep	s VBW 300 kHz Mode Auto Sweep		4 4 4	O 1Pk Max
			M	2[1] -48.13 dB 2.399 880 00 G
20 dBm			M	2.399 880 00 Gi
			MI	2.403 007 00 G
10 dBm			m	
0 dBm				-
H1 -8,370 dBm		I		
-10 dBm				
-20 dBm				
				4
-30 dBm		/		1
-40 dBm				
-40 dbm	M	and the		
-50 dBm	man	mmm		-
montherman	mannam			
-60 dBm				
		141		_
2.395 GHz	1001	1.0 MHz/		2 405 CI
2.395 GHz	1001 pts	1.0 MHz/	Measuring	2.405 GH