

FCC TEST REPORT

(Part 15, Subpart E)

	<u> </u>	<u> </u>				
Applicant:	HMD Global Oy					
Address:	Bertel Jungin aukio 9 Espoo 02600 Finland					
Manufacturer or Supplier:	HMD Global Oy	HMD Global Oy				
Address:	Bertel Jungin aukio 9 Espoo 0260	0 Finland				
Product:	Smartphone					
Brand Name:	HMD					
Model Name:	N159V					
FCC ID:	2AJOTTA-1590					
Date of tests:	Jan. 02, 2024 ~ Jan. 30, 2024					
The tests have bee	en carried out according to the requi	rements of the following standard:				
⊠ FCC Part 15, S	Subpart E, Section 15.407					
CONCLUSION: Th	CONCLUSION: The submitted sample was found to COMPLY with the test requirement					
Prep	Prepared by Hanwen Xu Approved by Peibo Sun					
Engineer / Mobile Department Manager / Mobile Department						
X	Lu Wanner	Simple: bo				
Date: Jan. 30, 2024 Date: Jan. 30, 2024						
triis report is governed by, and inc	his report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at					

It is report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/, and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our infindings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

TABLE OF CONTENTS

RE	LEA	SE C	CONTROL RECORD	5
	1	SUN	IMARY OF TEST RESULTS	6
	1.1	MEA	ASUREMENT UNCERTAINTY	7
	2	GEN	IERAL INFORMATION	8
	2.1	GEN	IERAL DESCRIPTION OF EUT	8
	2.2	DES	CRIPTION OF TEST MODES	11
	2.	.2.1	TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	14
	2.3	DUT	Y CYCLE OF TEST SIGNAL	19
	2.4	DES	CRIPTION OF SUPPORT UNITS	20
	2.	.4.1	CONFIGURATION OF SYSTEM UNDER TEST	21
	2.5	GEN	IERAL DESCRIPTION OF APPLIED STANDARDS	22
3	Т	EST	TYPES AND RESULTS	23
	3.1	RAD	DIATED EMISSION AND BANDEDGE MEASUREMENT	23
	3.	.1.1	LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT	23
	3.	1.2	LIMITS OF UNWANTED EMISSION	23
	3.	1.3	TEST INSTRUMENTS	24
	3.	1.4	TEST PROCEDURES	26
	3.	1.5	DEVIATION FROM TEST STANDARD	26
	3.	1.6	TEST SETUP	27
	3.	.1.7	EUT OPERATING CONDITION	28
	3.	1.8	TEST RESULTS	29
	3.2	CON	NDUCTED EMISSION MEASUREMENT	247
	3.	.2.1	LIMITS OF CONDUCTED EMISSION MEASUREMENT	247
	3.	2.2	TEST INSTRUMENTS	247
	3.	.2.3	TEST PROCEDURES	247
	3.	2.4	DEVIATION FROM TEST STANDARD	248
	3.	.2.5	TEST SETUP	248
	3.	.2.6	EUT OPERATING CONDITIONS	248
	3.	.2.7	TEST RESULTS	249
	3.3	MΑ	(IMUM CONDUCTED OUTPUT POWER MEASUREMENT	251
	3.	.3.1	LIMITS OF MAXIMUM CONDUCTED OUTPUT POWER MEASUREMENT	251
	3.	.3.2	TEST SETUP	252
	3.	.3.3	TEST INSTRUMENTS	253
	3.	.3.4	TEST PROCEDURE	254

3.3.5	DEVIATION FROM TEST STANDARD	255
3.3.6	EUT OPERATING CONDITIONS	255
3.3.7	TEST RESULTS	255
.4 MAX	IMUM POWER SPECTRAL DENSITY MEASUREMENT	256
3.4.1	LIMITS OF MAXIMUM POWER SPECTRAL DENSITY MEASUREMENT	256
3.4.2	TEST SETUP	256
3.4.3	TEST INSTRUMENTS	256
3.4.4	TEST PROCEDURES	257
3.4.5	DEVIATION FROM TEST STANDARD	257
3.4.6	EUT OPERATING CONDITIONS	257
3.4.7	TEST RESULTS	258
.5 AUT	OMATICALLY DISCONTINUE TRANSMISSION	259
3.5.1	LIMIT OF AUTOMATICALLY DISCONTINUE TRANSMISSION	259
3.5.2	TEST INSTRUMENTS	259
3.5.3	TEST RESULT	259
.6 ANT		
3.6.1	STANDARD APPLICABLE	260
3.6.2	ANTENNA CONNECTED CONSTRUCTION	
3.6.3	ANTENNA GAIN	260
	ANTENNA GAIN DGRAPHS OF THE TEST CONFIGURATION	
РНОТО	OGRAPHS OF THE TEST CONFIGURATION	261
PHOTO	OGRAPHS OF THE TEST CONFIGURATION	261 LAB262
PHOTO	OGRAPHS OF THE TEST CONFIGURATION	261 LAB262
PHOTO MODIF	OGRAPHS OF THE TEST CONFIGURATION	261 LAB262 263
PHOTO MODIF APPEN MISSIOI	OGRAPHS OF THE TEST CONFIGURATIONICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE	261 LAB262 263 263
PHOTO MODIF APPEN MISSION TEST F	OGRAPHS OF THE TEST CONFIGURATION	261 LAB262 263 263 263
MODIF APPEN MISSION TEST F	OGRAPHS OF THE TEST CONFIGURATION	261 LAB262 263 263 263 265
PHOTO MODIF APPEN MISSION TEST F TEST COCCUPIE	OGRAPHS OF THE TEST CONFIGURATION	261 LAB262 263 263 263 265 286
MODIF APPEN MISSION TEST F TEST COCCUPIE	DGRAPHS OF THE TEST CONFIGURATION ICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE IDIX: RLAN N BANDWIDTH RESULT GRAPHS ID CHANNEL BANDWIDTH	261 LAB262 263 263 265 286 286
MODIF APPEN MISSION TEST F TEST COCCUPIE TEST F TEST COCCUPIE TEST F	DGRAPHS OF THE TEST CONFIGURATION ICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE IDIX: RLAN N BANDWIDTH RESULT SRAPHS CD CHANNEL BANDWIDTH RESULT	261 LAB262 263 263 265 286 286 288
MODIF APPEN MISSION TEST F TEST C CCUPIE TEST F TEST C	DGRAPHS OF THE TEST CONFIGURATION ICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE IDIX: RLAN N BANDWIDTH RESULT GRAPHS ED CHANNEL BANDWIDTH RESULT GRAPHS	261 LAB262 263 263 265 286 286 288 309
PHOTO MODIF APPEN MISSION TEST F TEST OF TEST	DGRAPHS OF THE TEST CONFIGURATION ICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE IDIX: RLAN N BANDWIDTH RESULT CO CHANNEL BANDWIDTH RESULT GRAPHS SION BANDWIDTH	261 LAB262 263 263 265 286 286 288 309 309
PHOTO MODIF APPEN MISSION TEST F TEST O TEST F TEST O TEST F TEST O	DGRAPHS OF THE TEST CONFIGURATION ICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE IDIX: RLAN N BANDWIDTH RESULT GRAPHS ED CHANNEL BANDWIDTH RESULT GRAPHS SION BANDWIDTH	261 LAB262 263 263 265 286 286 288 309 309 310
PHOTO MODIF APPEN MISSION TEST F TEST O TEST F TEST O TEST F TEST O TEST F TEST O TEST F	DGRAPHS OF THE TEST CONFIGURATION ICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE IDIX: RLAN N BANDWIDTH RESULT GRAPHS SID CHANNEL BANDWIDTH RESULT GRAPHS SION BANDWIDTH RESULT B4 GRAPHS B4	261 LAB262 263 263 265 286 286 288 309 310 315
PHOTO MODIF APPEN MISSION TEST F TEST O TEST F TEST O TEST F TEST O TEST F TEST O TEST F	DGRAPHS OF THE TEST CONFIGURATION ICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE IDIX: RLAN N BANDWIDTH RESULT GRAPHS SID CHANNEL BANDWIDTH RESULT GRAPHS SION BANDWIDTH RESULT B4 GRAPHS B4 CLE	261 LAB262 263 263 265 286 286 288 309 309 315 315
PHOTO MODIF APPEN MISSION TEST F TEST O TEST F TEST O TEST F TEST O TEST F TEST O	DGRAPHS OF THE TEST CONFIGURATION ICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE IDIX: RLAN N BANDWIDTH RESULT GRAPHS SID CHANNEL BANDWIDTH GRAPHS SION BANDWIDTH RESULT GRAPHS SION BANDWIDTH RESULT B4 GRAPHS B4 CLE RESULT	261 LAB262 263 263 265 286 286 288 309 310 315 315
	3.3.6 3.3.7 .4 MAX 3.4.1 3.4.2 3.4.3 3.4.4 3.4.5 3.4.6 3.4.7 .5 AUT 3.5.1 3.5.2 3.5.3 .6 ANT 3.6.1	3.3.6 EUT OPERATING CONDITIONS 3.3.7 TEST RESULTS 4 MAXIMUM POWER SPECTRAL DENSITY MEASUREMENT 3.4.1 LIMITS OF MAXIMUM POWER SPECTRAL DENSITY MEASUREMENT 3.4.2 TEST SETUP 3.4.3 TEST INSTRUMENTS 3.4.4 TEST PROCEDURES 3.4.5 DEVIATION FROM TEST STANDARD 3.4.6 EUT OPERATING CONDITIONS 3.4.7 TEST RESULTS 5 AUTOMATICALLY DISCONTINUE TRANSMISSION 3.5.1 LIMIT OF AUTOMATICALLY DISCONTINUE TRANSMISSION 3.5.2 TEST INSTRUMENTS 3.5.3 TEST RESULT 6 ANTENNA REQUIREMENTS 3.6.1 STANDARD APPLICABLE

MAXIMUM POWER SPECTRAL DENSITY	325
TEST RESULT	
TEST GRAPHS	

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
PSU-NQN2311090109RF07	Original release	Jan. 30, 2024

1 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC PART 15, SUBPART E					
STANDARD SECTION TEST TYPE AND LIMIT RESULT					
15.407(b)(9)	AC Power Conducted Emission	Compliance			
15.407(b) (1/2/3/4/5)	Radiated Emission & Band Edge Measurement	Compliance			
15.407(a/1/2/3)	Maximum conducted output Power	Compliance			
15.407(a/1/2/3)	Peak Power Spectral Density	Compliance			
15.407(a)(2)(12)	26 dB Bandwidth	Compliance			
15.407(e)	6 dB Bandwidth	Compliance			
15.203	Antenna Requirement	Compliance			

NOTE:

1. Except the data of RSE and Band Edge Measurement, other data please refer to the appendix.

*Test Lab Information Reference

Lab A:

Huarui 7Layers High Technology (Suzhou) Co., Ltd.

Lab Address:

Tower N, Innovation Center, 88 Zhuyi Road, High-tech District, Suzhou City, Anhui Province

Accredited Test Lab Cert 6613.01

The FCC Site Registration No. is 434559; The Designation No. is CN1325.

1.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	UNCERTAINTY		
AC Power Conducted emissions	±2.70dB		
Radiated emissions (9KHz~30MHz)	±2.68dB		
Radiated emissions (30MHz~1GHz)	±4.98dB		
Radiated emissions (1GHz ~6GHz)	±4.70dB		
Radiated emissions (6GHz ~18GHz)	±4.60dB		
Radiated emissions (18GHz ~40GHz)	±4.12dB		
Conducted emissions	±4.01dB		
Occupied Channel Bandwidth	±43.58KHz		
Conducted Output power	±2.06dB		
Power Spectral Density	±0.85 dB		

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

2 GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

PRODUCT*	Smartphone		
BRAND NAME*			
MODEL NAME*	N159V		
NOMINAL VOLTAGE*	5.0Vdc (adapter) 3.87Vdc (battery)		
MODULATION	OFDM		
TRANSFER RATE	802.11a: 54.0/ 48.0/ 36.0/ 24.0/ 18.0/ 12.0/ 9.0/ 6.0Mbps 802.11n: up to 150.0Mbps 802.11ac: up to 433.3Mbps		
OPERATING FREQUENCY	5180 ~ 5240MHz, 5260 ~ 5320MHz, 5500 ~ 5700MHz, 5745 ~ 5825MHz		
NUMBER OF CHANNEL	5180 ~ 5240MHz: 4 for 802.11a, 802.11n, 802.11ac (20MHz) 2 for 802.11n, 802.11ac (40MHz) 1 for 802.11ac (80MHz) 5260 ~ 5320MHz: 4 for 802.11a, 802.11n, 802.11ac (20MHz) 2 for 802.11n, 802.11ac (40MHz) 1 for 802.11ac (80MHz) 5500 ~ 5700MHz: 11 for 802.11a, 802.11n, 802.11ac(20MHz) 5 for 802.11n, 802.11ac (40MHz) 2 for 802.11ac (80MHz) 5745 ~ 5825MHz: 5 for 802.11a, 802.11n, 802.11ac (20MHz) 3 for 802.11n, 802.11ac (40MHz) 1 for 802.11ac (80MHz)		
AVERAGE POWER	45.39 mW for 5180 ~ 5240MHz 45.08 mW for 5260 ~ 5320MHz 50.23 mW for 5500 ~ 5700MHz 49.66 mW for 5745 ~ 5825MHz		
ANTENNA TYPE*	PIFA Antenna		
ANTENNA GAIN*	-0.35dBi for 5180 ~ 5240MHz -0.35dBi for 5260 ~ 5320MHz -0.35dBi for 5500 ~ 5700MHz -0.35dBi for 5745 ~ 5825MHz		
HW VERSION*	V 1.0		
SW VERSION*	02US_0_101		
I/O PORTS*	Refer to user's manual		
CABLE SUPPLIED*	N/A		

NOTE:

- 1. *Since the above data and/or information is provided by the client relevant results or conclusions of this report are only made for these data and/or information, Test Lab is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.
- 2. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.
- 3. The EUT incorporates a SISO function. Physically, the EUT provides one completed transmitter and one receiver.

MODULATION MODE	TX FUNCTION
802.11a	1TX/1RX
802.11n/802.11ac (20MHz)	1TX/1RX
802.11n/802.11ac (40MHz)	1TX/1RX
802.11ac (80MHz)	1TX/1RX

- 4. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in the test report.
- 5. For the product of N159V(FCC ID 2AJOTTA-1590), the following components are different between the first and second supply, other parameters are the same.

Component		First supply		Second supply	
		Supplier	specificatons	Supplier	specificatons
	3GB LPDDR	Longsys	3GB	biwin	3GB
PCBA	64GB EMMC	Longsys	64GB	biwin	64GB
	Charger IC	SGMICRO	3.78A Single Cell Switching Battery Charger IC	Unisemi	3.78A Single Cell Switching Battery Charger IC
LCM	LCD	TCL	LCD a-Si TFT;720*1612	Icetron	LCD a-Si TFT;720*1612
Front camera	Camera	Union Image	5M;FF	Imaging	5M;FF
CAM	Camera	Union Image	13 AF	Sunwin	13 AF
	Camera	SEGA	2M	Imaging	2M
	Vibrator	KunWang	0830	HONGZHIFA	0830
Acoustic	FPC	XINYE	Speaker FPC: 32.1*11.46*0.15	Lat	Speaker FPC: 32.1*11.46*0.15

LED	Runlite	White	latticonower	White
LED	Ruffille	LED;500mA;1500mA	latticepower	LED;500mA;1500mA
Battery	daoyuan	4000mAh;3.87V;4.45	highpower	4000mAh;3.87V;4.45V
Dattery	gaoyuan	V	riigripowei	4000111A11,5.87 V,4.43V
		Omni-directional,Lin	Kexinhuachen	Omni-directional,
antenna	Haitong	ear,antenna		·
		shrapnel	g	Linear,antenna shrapnel
MIC	Cotton	L2.75xW1.85xH0.9	goortok	L2.75xW1.85xH0.9 mm
IVIIC	Gettop	mm	goertek	L2.7 3XVV 1.03XHU.9 IIIIII
Data cable	Saibao	5V2A	TorchWay	5V2A

List of Accessory:

ACCESSORIES	BRAND	MANUFACTURER	MODEL	SPECIFICATION
Battery 1	Gaoyuan	N/A	CH426385	Power Rating: 15.48Wh
Battery 2	Highpower	N/A	CH426385	Power Rating: 15.48Wh
AC Adapter	BaiJunDa	BaiJunDa	HAD-010U	I/P: 100-240Vac, O/P: 4.8~5.4Vdc, 2.0A
USB Cable 1	Saibao	N/A	SZN-A036A	Signal Line, 1.0meter 5V 2A
USB Cable 2	TorchWay	N/A	JWUB1651-ZN01H	Signal Line, 1.0meter 5V 2A

2.2 DESCRIPTION OF TEST MODES

FOR 5180 ~ 5240MHz

4 channels are provided for 802.11a, 802.11n, 802.11ac (20MHz):

CHANNEL	FREQUENCY	CHANNEL	FREQUENCY
36	5180 MHz	44	5220 MHz
40	5200 MHz	48	5240 MHz

2 channels are provided for 802.11n, 802.11ac (40MHz):

CHANNEL	FREQUENCY	CHANNEL	FREQUENCY
38	5190 MHz	46	5230 MHz

1 channel is provided for 802.11ac (80MHz):

CHANNEL	FREQUENCY	CHANNEL	FREQUENCY
42	5210 MHz		

FOR 5260 ~ 5320MHz

4 channels are provided for 802.11a, 802.11n, 802.11ac (20MHz):

CHANNEL	FREQUENCY	CHANNEL	FREQUENCY
52	5260 MHz	60	5300 MHz
56	5280 MHz	64	5320 MHz

2 channels are provided for 802.11n, 802.11ac (40MHz):

CHANNEL	FREQUENCY	CHANNEL	FREQUENCY
54	5270 MHz	62	5310 MHz

1 channel is provided for 802.11ac (80MHz):

CHANNEL	FREQUENCY	CHANNEL	FREQUENCY
58	5290 MHz		

FOR 5500 ~ 5700MHz

11 channels are provided for 802.11a, 802.11n, 802.11ac (20MHz):

CHANNEL	FREQUENCY	CHANNEL	FREQUENCY
100	5500 MHz	124	5620MHz
104	5520 MHz	128	5640MHz
108	5540 MHz	132	5660 MHz
112	5560 MHz	136	5680 MHz
116	5580 MHz	140	5700 MHz
120	5600 MHz		

5 channels are provided for 802.11n, 802.11ac (40MHz):

CHANNEL	FREQUENCY	CHANNEL	FREQUENCY
102	5510 MHz	126	5630MHz
110	5550 MHz	134	5670 MHz
118	5590 MHz		

2 channel is provided for 802.11ac (80MHz):

CHANNEL	FREQUENCY	CHANNEL	FREQUENCY
106	5530 MHz	122	5610 MHz

FOR 5745 ~ 5825MHz

5 channels are provided for 802.11a, 802.11n, 802.11ac (20MHz):

CHANNEL	FREQUENCY	CHANNEL	FREQUENCY
149	5745 MHz	161	5805 MHz
153	5765 MHz	165	5825 MHz
157	5785 MHz		

2 channels are provided for 802.11n, 802.11ac (40MHz):

CHANNEL	FREQUENCY	CHANNEL	FREQUENCY
142	5710 MHz	159	5795 MHz
151	5755 MHz		

1 channel is provided for 802.11ac (80MHz):

CHANNEL	FREQUENCY
155	5775 MHz

2.2.1 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

EUT CONFIGURE		APPLICA	ABLE TO	DESCRIPTION		
MODE	RE≥1G	RE<1G	PLC	APCM	DESCRIPTION	
Α	$\sqrt{}$	\checkmark	\checkmark	-	Powered by Adapter with wifi(5G) link	
В	-	-	-	\checkmark	Powered by Battery with wifi(5G) link	
С	-	-	-	-	Powered by USB with wifi(5G) link	

Where

RE≥1G: Radiated Emission above 1GHz **PLC:** Power Line Conducted Emission

RE<1G: Radiated Emission below 1GHz

APCM: Antenna Port Conducted Measurement

NOTE

The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on **X-plane**.

NOTE: "-"means no effect

RADIATED EMISSION TEST (BELOW 1GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- ☐ The following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	MODE	FREQ. BAND (MHz)	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION	DATA RATE (Mbps)
А	802.11ac (80MHz)	5500-5700	106	106	OFDM	MCS0

RADIATED EMISSION TEST (ABOVE 1GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- The following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	MODE	FREQ. BAND (MHz)	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION	DATA RATE (Mbps)
А	802.11a		36 to 48	36, 40, 48	OFDM	6.0
А	802.11n/ac (20MHz)	5400 5040	36 to 48	36, 40, 48	OFDM	MCS0
А	802.11n/ac (40MHz)	5180-5240	38 to 46	38, 46	OFDM	MCS0
А	802.11ac (80MHz)		42	42	OFDM	MCS0
А	802.11a		52 to 64	52, 60, 64	OFDM	6.0
А	802.11n/ac (20MHz)	5260-5320	52 to 64	52, 60, 64	OFDM	MCS0
А	802.11n/ac (40MHz)		54 to 62	54, 62	OFDM	MCS0
А	802.11ac (80MHz)		58	58	OFDM	MCS0
А	802.11a		100 to 140	100, 116, 140	OFDM	6.0
А	802.11n/ac (20MHz)	5500 5700	100 to 140	100, 116, 140	OFDM	MCS0
А	802.11n/ac (40MHz)	5500-5700	102 to 134	102, 110, 134	OFDM	MCS0
А	802.11ac (80MHz)		106 to 122	106, 122	OFDM	MCS0
А	802.11a		149 to 165	149, 157,165	OFDM	6.0
А	802.11n/ac (20MHz)	E74E 5005	149 to 165	149, 157,165	OFDM	MCS0
А	802.11n/ac (40MHz)	5745-5825	151 to 159	151, 159	OFDM	MCS0
А	802.11ac (80MHz)		155	155	OFDM	MCS0

POWER LINE CONDUCTED EMISSION TEST:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- ☐ The following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	MODE	FREQ. BAND (MHz)	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION	DATA RATE (Mbps)
А	802.11ac (80MHz)	5500-5700	106	106	OFDM	MCS0

BANDEDGE MEASUREMENT:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

☐ The following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	MODE	FREQ. BAND (MHz)			MODULATIO N	DATA RATE (Mbps)
А	802.11a		36 to 48	36, 40, 48	OFDM	6.0
А	802.11n/ac (20MHz)	5180-5240	36 to 48	36, 40, 48	OFDM	MCS0
А	802.11n/ac (40MHz)	5160-5240	38 to 46	38, 46	OFDM	MCS0
А	802.11ac (80MHz)		42	42	OFDM	MCS0
А	802.11a		52 to 64	52, 60, 64	OFDM	6.0
А	802.11n/ac (20MHz)	5260-5320	52 to 64	52, 60, 64	OFDM	MCS0
А	802.11n/ac (40MHz)	5260-5320	54 to 62	54, 62	OFDM	MCS0
Α	802.11ac (80MHz)		58	58	OFDM	MCS0
А	802.11a		100 to 140	100, 116, 140	OFDM	6.0
Α	802.11n/ac (20MHz)	5500 5700	100 to 140	100, 116, 140	OFDM	MCS0
А	802.11n/ac (40MHz)	5500-5700	102 to 134	102, 110, 134	OFDM	MCS0
Α	802.11ac (80MHz)		106 to 122	106, 122	OFDM	MCS0
А	802.11a		149 to 165	149, 157,165	OFDM	6.0
А	802.11n/ac (20MHz)	E74E E90E	149 to 165	149, 157,165	OFDM	MCS0
А	802.11n/ac (40MHz)	5745-5825	151 to 159	151, 159	OFDM	MCS0
А	802.11ac (80MHz)		155	155	OFDM	MCS0

ANTENNA PORT CONDUCTED MEASUREMENT:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- ☐ The following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	MODE	FREQ. BAND	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATIO N	DATA RATE (Mbps)
В	802.11a		36 to 48	36, 40, 48	OFDM	6.0
В	802.11n/ac (20MHz)	5180-5240	36 to 48	36, 40, 48	OFDM	MCS0
В	802.11n/ac (40MHz)	5160-5240	38 to 46	38, 46	OFDM	MCS0
В	802.11ac (80MHz)		42	42	OFDM	MCS0
В	802.11a		52 to 64	52, 60, 64	OFDM	6.0
В	802.11n/ac (20MHz)		52 to 64	52, 60, 64	OFDM	MCS0
В	802.11n/ac (40MHz)	5260-5320	54 to 62	54, 62	OFDM	MCS0
В	802.11ac (80MHz)		58	58	OFDM	MCS0
В	802.11a		100 to 140	100, 116, 140	OFDM	6.0
В	802.11n/ac (20MHz)	5500-5700	100 to 140	100, 116, 140	OFDM	MCS0
В	802.11n/ac (40MHz)	5500-5700	102 to 134	102, 110, 134	OFDM	MCS0
В	802.11ac (80MHz)		106 to 122	106, 122	OFDM	MCS0
В	802.11a		149 to 165	149, 157,165	OFDM	6.0
В	802.11n/ac (20MHz)	5745-5825	149 to 165	149, 157,165	OFDM	MCS0
В	802.11n/ac (40MHz)	3140-0020	151 to 159	151, 159	OFDM	MCS0
В	802.11ac (80MHz)		155	155	OFDM	MCS0

TEST CONDITION:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY
RE<1G	23deg. C, 70%RH	DC 5V By Adapter	Hanwen Xu
RE≥1G	23deg. C, 70%RH	DC 5V By Adapter	Hanwen Xu
PLC	25deg. C, 52%RH	DC 5V By Adapter	Hanwen Xu
АРСМ	25deg. C, 60%RH	DC 3.85V By Battery	Hanwen Xu

2.3 DUTY CYCLE OF TEST SIGNAL

Please Refer to Appendix A Of this test report.

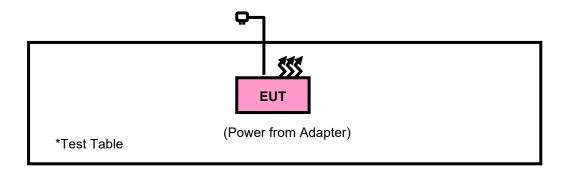
WORST-CASE DATA:

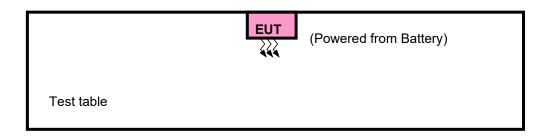
Measured Duty Cycle				
	Mada	Duty Cycle [%]		
Mode		ANT1		
	11a	98.28		
	11n20	98.15		
5GHZ	11n40	96.33		
SGHZ	11ac20	97.76		
	11ac40	96.34		
	11ac80	92.74		

Note:

Duty cycle of test signal is < 98%, duty factor shall be considered.

2.4 DESCRIPTION OF SUPPORT UNITS


The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.


NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	Laptop	Lenovo	ThinkPad E14	HRSW00024	N/A
2	Adapter	N/A	N/A	N/A	N/A

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	N/A

2.4.1 CONFIGURATION OF SYSTEM UNDER TEST

*Kept in a remote area

2.5 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is an RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart E (15.407)

KDB 789033 D02 General U-NII Test Procedures New Rules v02r01

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

NOTE: The EUT is also considered as a kind of computer peripheral, because the connection to computer is necessary for typical use. It has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (Certification). The test report has been issued separately.

3 TEST TYPES AND RESULTS

3.1 RADIATED EMISSION AND BANDEDGE MEASUREMENT

3.1.1 LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table:

FREQUENCIES (MHz)	FIELD STRENGTH (microvolts/meter)	MEASUREMENT DISTANCE (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

3.1.2 LIMITS OF UNWANTED EMISSION

	APPLICABLE TO		LIMIT			
RESTRICTED BANDS	789033 D02 General	FIELD STRENGTH AT 3m (dBµV/m)				
BANDO	UNII Test Procedures New Rules v02r01	PK : 74	AV : 54			
	APPLICABLE TO	EIRP LIMIT (dBm/MHz)	EQUIVALENT FIELD STRENGTH AT 3m (dBµV/m)			
OUT OF THE	15.407(b)(1)					
RESTRICTED BANDS	15.407(b)(2)	PK : -27	PK : 68.2			
BANDO	15.407(b)(3)					
	15.407(b)(4)	See note	2 (FCC 16-24)			

NOTE: The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

E =
$$\frac{1000000\sqrt{30P}}{3}$$
 µV/m, where P is the eirp (Watts).

2. All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

3.1.3 TEST INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
Pre-Amplifier	R&S	SCU18F1	100815	Aug.30,22	Aug.29,24
Pre-Amplifier	R&S	SCU08F1	101028	Sep.16,22	Sep.15,24
Signal Generator	R&S	SMB100A	182185	Feb.16,22	Feb.15,24
3m Fully-anechoic Chamber	TDK	9m*6m*6m	HRSW-SZ-EMC- 01Chamber	Nov.25,22	Nov.24,25
3m Semi-anechoic Chamber	TDK	9m*6m*6m	HRSW-SZ-EMC- 02Chamber	Nov.25,22	Nov.24,25
EMI TEST Receiver	R&S	ESW44	101973	Feb.25,22	Feb.24,24
Bilog Antenna	SCHWARZBEC K	VULB 9163	1264	Feb.28,22	Feb.27,24
Horn Antenna	ETS-LINDGREN	3117	227836	Aug.22,22	Aug.21,24
Horn Antenna (18GHz-40GHz)	Steatite Q-par Antennas	QMS 00880	23486	Feb.23,22	Feb.22,24
Horn Antenna	Steatite Q-par Antennas	QMS 00208	23485	Aug.22,22	Aug.21,24
Loop Antenna	SCHWARZ	HFH2-Z2/Z2E	100976	Feb.23,22	Feb.22,24
WIDEBANDRADIO COMMUNICATION TESTER	R&S	CMW500	169399	Jun.27,22	Jun.26,24
Test Software	ELEKTRA	ELEKTRA4.32	N/A	N/A	N/A
Open Switch and	R&S	OSP220	101964	N/A	N/A
Control Unit	Ras	USP220	101964		
DC Source	HYELEC	HY3010B	551016	Aug.31,22	Aug.30,24
Hygrothermograph	DELI	20210528	SZ014	Sep.06,22	Sep.05,24
PC	LENOVO	E14	HRSW0024	N/A	N/A
TMC-AMI18843A(CA BLE)	R&S	HF290-NMNM- 7.00M	N/A	N/A	N/A
TMC-AMI18843A(CA	R&S	HF290-NMNM-	N/A	N/A	N/A

BLE)		4.00M			
CABLE	R&S	W13.02	N/A	Apr.28,23	Apr.27,24
CABLE	R&S	W12.14	N/A	Apr.28,23	Apr.27,24

- NOTE: 1. The calibration interval of the above test instruments is 12 months or 24 months or 36 months, and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.
 - 2. The test was performed in the 3m Chamber.
 - 3. The FCC Site Registration No. is 434559; The Designation No. is CN1325.

3.1.4 TEST PROCEDURES

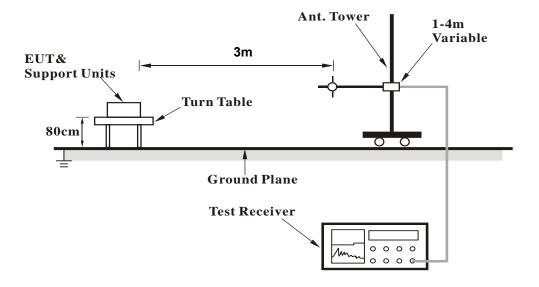
- a. The EUT was placed on the top of a rotating table 0.8 meters (for below 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3-meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height varies from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise, the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

NOTE:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for RMS Average (Duty cycle < 98%) for Average detection (AV) at frequency above 1GHz, then the measurement results was added to a correction factor (10 log(1/duty cycle)).
- 4. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
 - 5. All modes of operation were investigated, and the worst-case emissions are reported.

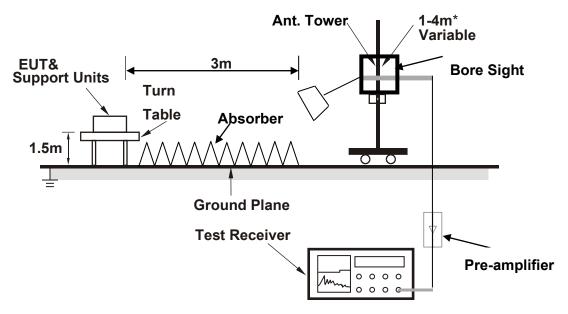
3.1.5 DEVIATION FROM TEST STANDARD

No deviation.



3.1.6 TEST SETUP

<Frequency Range 9KHz~30MHz >



< Frequency Range 30MHz~1GHz >

<Frequency Range above 1GHz>

Note: Above 1G is a directional antenna

Depends on the EUT height and the antenna 3dB beamwidth both, refer to section 7.3 of CISPR 16-2-3.

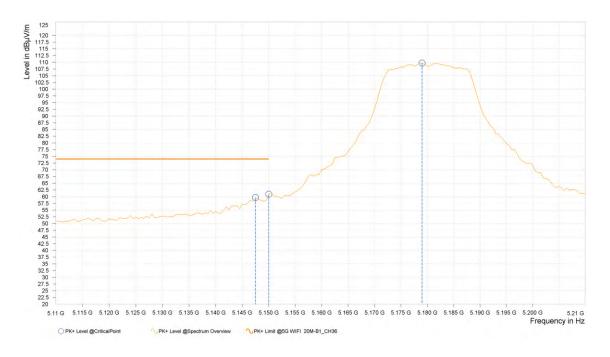
For the actual test configuration, please refer to the attached file (Test Setup Photo).

3.1.7 EUT OPERATING CONDITION

- a. Set the EUT under full load condition and placed it on a testing table.
- b. Set the transmitter part of EUT under transmission condition continuously at specific channel frequency.
- c. The necessary accessories enable the EUT in full functions.

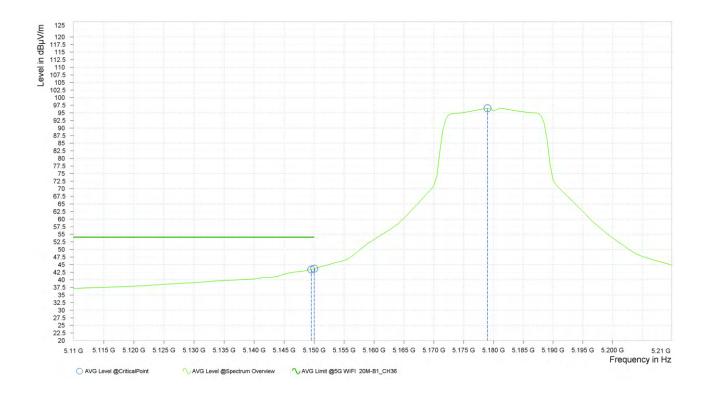
3.1.8 TEST RESULTS

NOTE: The 9K~30MHz amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required in the report.

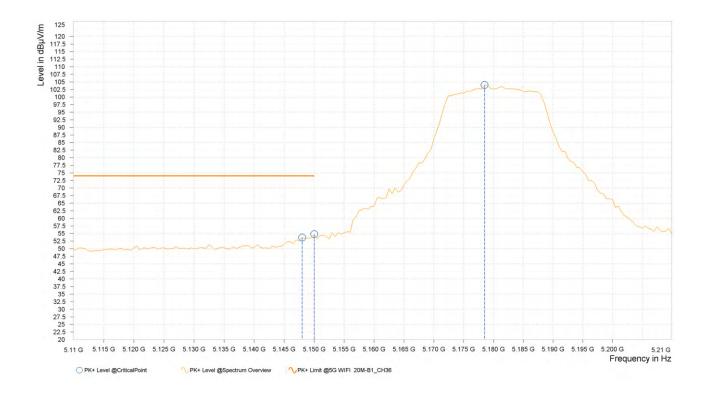

BAND EDGE MEASUREMENT

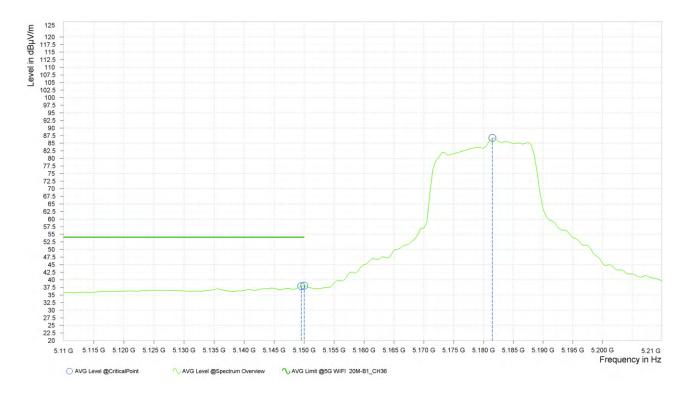
Band 1 802.11a

CHANNEL	TX Channel 36	DETECTOR FUNCTION	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz		Average (AV)


ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M

Rg	Frequency [MHz]	PK+ Level [dBμV/m]	PK+ Limit [dBμV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,147.500	59.68	74.00	14.32	12.74	Н	320.9	1.00
1	5,150.000	60.92	74.00	13.08	12.75	Н	320.9	1.00
1	5,179.000	109.71			12.87	Н	320.9	1.00

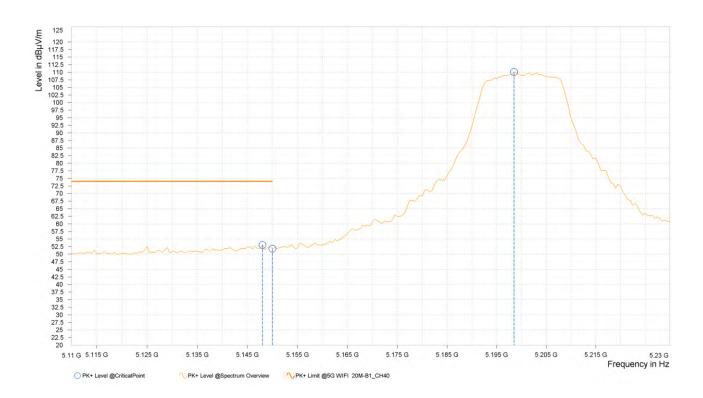

Rg	Frequency [MHz]	AVG Level [dBμV/m]		AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,149.500	43.42	54.00	10.58	12.75	Н	253.9	1.00
1	5,150.000	43.69	54.00	10.31	12.75	Н	253.9	1.00
1	5,179.000	96.54			12.87	Н	359	1.00


ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M

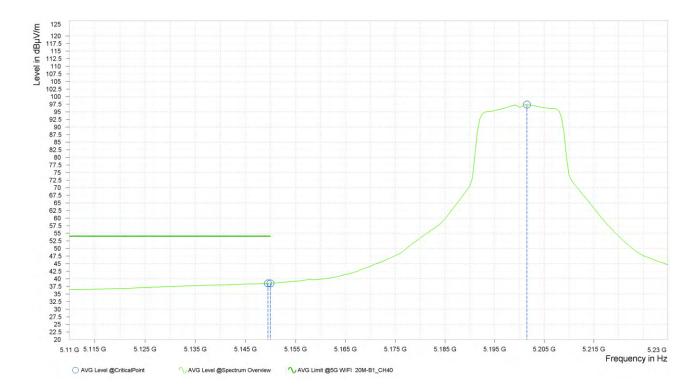
Rg	Frequency [MHz]	PK+ Level [dBμV/m]		PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,148.000	53.68	74.00	20.32	12.74	V	228.8	1.00
1	5,150.000	54.77	74.00	19.23	12.75	V	228.8	1.00
1	5,178.500	104.00			12.87	V	228.8	1.00

Rg	Frequency [MHz]	AVG Level [dBμV/m]	AVG Limit [dΒμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,149.500	37.94	54.00	16.06	12.75	V	4.3	1.00
1	5,150.000	38.12	54.00	15.88	12.75	V	4.3	1.00
1	5,181.500	86.76			12.88	V	355.7	2.00

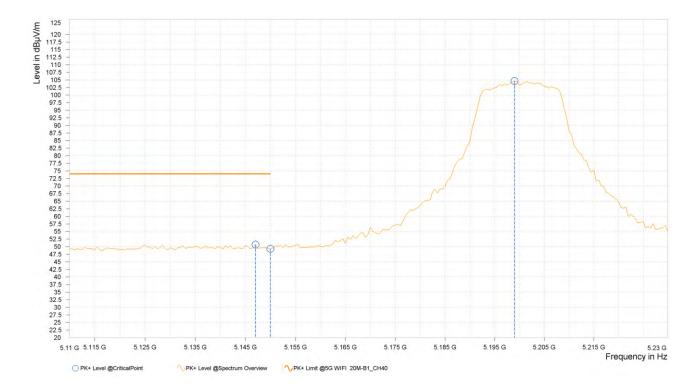
REMARKS:

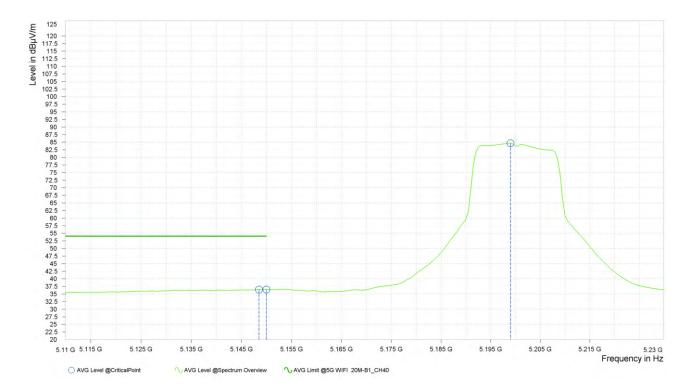

- Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value- Emission level.
- 2. 5180MHz: Fundamental frequency.

CHANNEL	TX Channel 40	DETECTOR FUNCTION	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz		Average (AV)


ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M

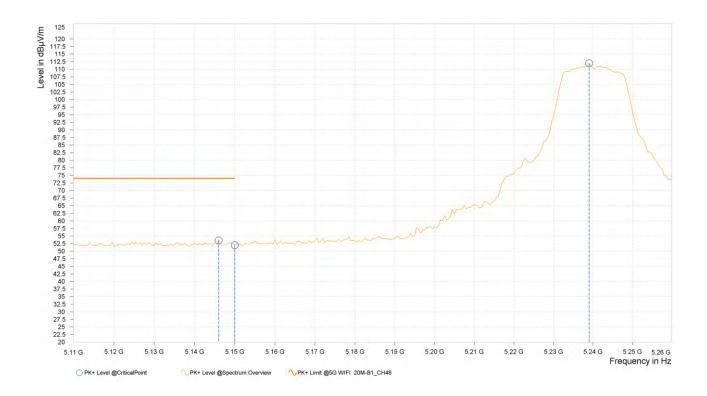
Rg	Frequency [MHz]		PK+ Limit [dBμV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	5,148.000	53.04	74.00	20.96	12.74	Н	355.7	2.00
2	5,150.000	51.82	74.00	22.18	12.75	Н	324.4	1.00
2	5,198.500	110.11			12.94	Н	359.1	1.00


Rg	Frequency [MHz]	AVG Level [dBμV/m]	AVG Limit [dΒμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	5,149.500	38.49	54.00	15.51	12.75	Н	359	1.00
2	5,150.000	38.53	54.00	15.47	12.75	Н	359	1.00
2	5,201.500	97.41			12.95	Н	5	1.00


ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M

Rg	Frequency [MHz]		PK+ Limit [dBμV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	5,147.000	50.70	74.00	23.30	12.74	V	42.3	1.00
2	5,150.000	49.30	74.00	24.70	12.75	V	4.3	1.00
2	5,199.000	104.63			12.94	V	237.2	1.00

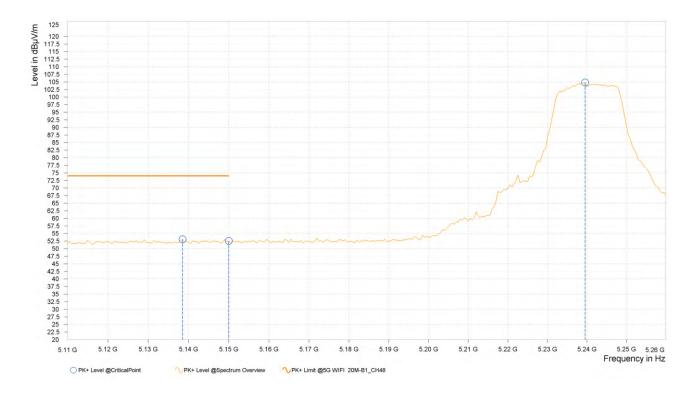
Rg	Frequency [MHz]	AVG Level [dBμV/m]	AVG Limit [dΒμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	5,148.500	36.47	54.00	17.53	12.74	V	4.3	1.00
2	5,150.000	36.48	54.00	17.52	12.75	V	4.3	1.00
2	5,199.000	84.68			12.94	V	4.3	1.00


REMARKS:

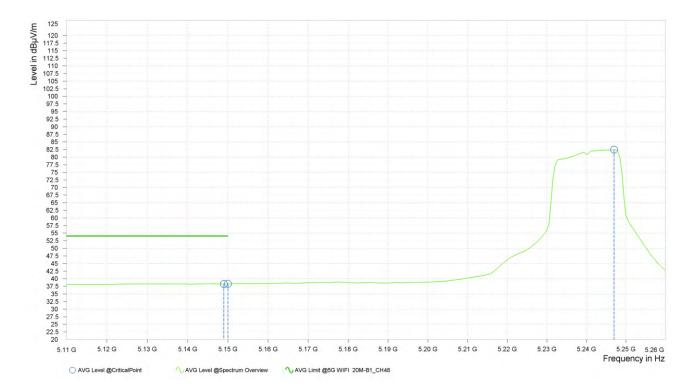
- Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value- Emission level.
- 2. 5200MHz: Fundamental frequency.


CHANNEL	TX Channel 48		Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	DETECTOR FUNCTION	Average (AV)

Rg	Frequency [MHz]	PK+ Level [dBμV/m]		PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
3	5,146.000	53.57	74.00	20.43	12.73	Н	0.9	2.00
3	5,150.000	52.00	74.00	22.00	12.75	Н	90.1	1.00
3	5,239.000	112.01			12.94	Н	359	1.00

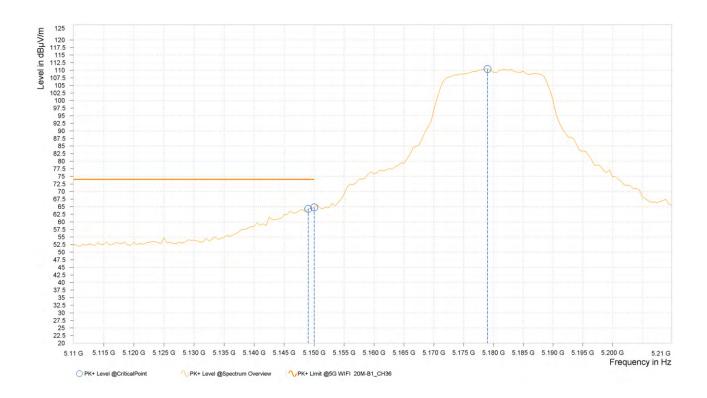


Rg	Frequency [MHz]	AVG Level [dBμV/m]	AVG Limit [dΒμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
3	5,148.000	38.69	54.00	15.31	12.74	Н	1	1.00
3	5,150.000	38.70	54.00	15.30	12.75	Н	1	1.00
3	5,239.000	98.87			12.94	Н	359.1	1.00

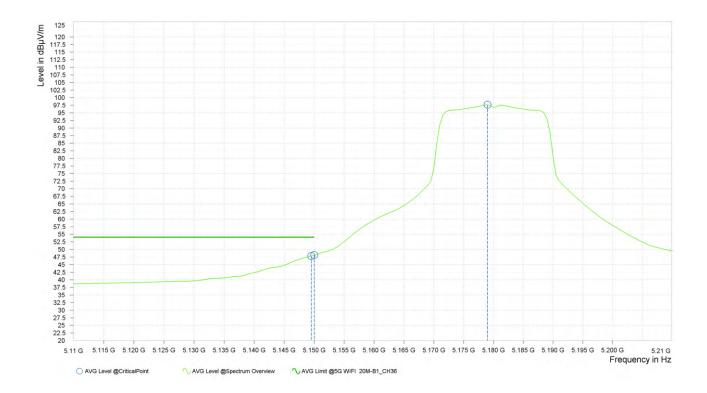


Rg	Frequency [MHz]		PK+ Limit [dBμV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
3	5,138.500	53.10	74.00	20.90	12.71	V	88.9	1.00
3	5,150.000	52.56	74.00	21.44	12.75	V	85.8	2.00
3	5,239.500	104.81			12.94	V	183.4	1.00

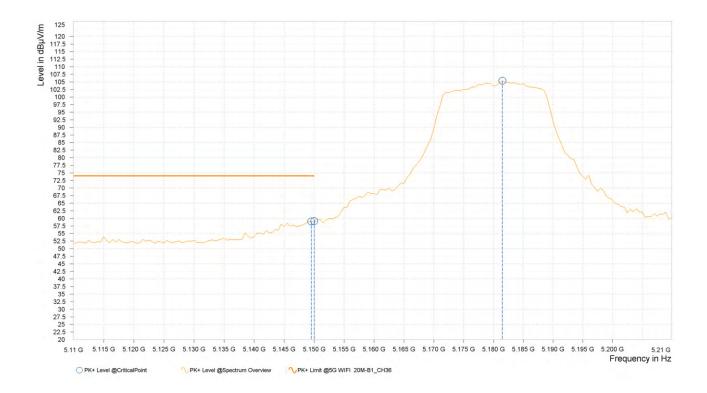
Rg	Frequency [MHz]	AVG Level [dBμV/m]	AVG Limit [dΒμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
3	5,149.000	38.28	54.00	15.72	12.74	V	4.9	1.00
3	5,150.000	38.30	54.00	15.70	12.75	V	4.9	1.00
3	5,247.000	82.43			12.94	V	359	2.00


- Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value- Emission level.
- 2. 5240MHz: Fundamental frequency.

802.11n (20MHz)


CHANNEL	TX Channel 36	DETECTOR FUNCTION	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz		Average (AV)

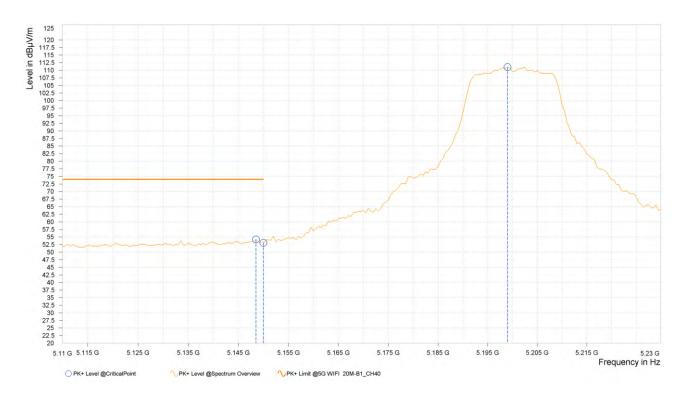
Rg	Frequency [MHz]		PK+ Limit [dBμV/m]		Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,149.000	64.31	74.00	9.69	12.74	Н	359.1	1.00
1	5,150.000	64.75	74.00	9.25	12.75	Н	1	1.00
1	5,179.000	110.44			12.87	Н	337.4	1.00



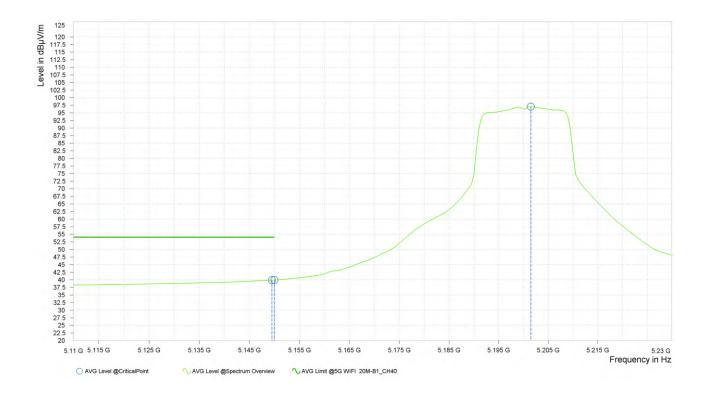
Rg	Frequency [MHz]		AVG Limit [dΒμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,149.500	47.86	54.00	6.14	12.75	Н	1	1.00
1	5,150.000	48.18	54.00	5.82	12.75	Н	359	1.00
1	5,179.000	97.66			12.87	Н	359	1.00

Rg	Frequency [MHz]	PK+ Level [dBμV/m]		PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,149.500	59.00	74.00	15.00	12.75	V	262.3	1.00
1	5,150.000	59.08	74.00	14.92	12.75	V	262.3	1.00
1	5,181.500	105.38			12.88	V	195.4	1.00

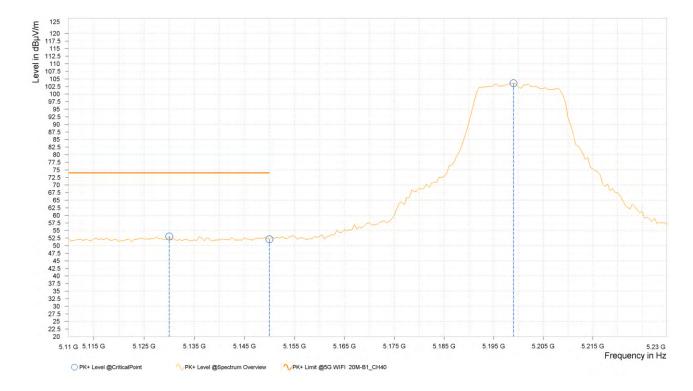
Rg	Frequency [MHz]	AVG Level [dBμV/m]	AVG Limit [dΒμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,148.500	41.38	54.00	12.62	12.74	V	355	2.00
1	5,150.000	41.48	54.00	12.52	12.75	V	5	1.00
1	5,184.500	88.59			12.89	V	355	2.00



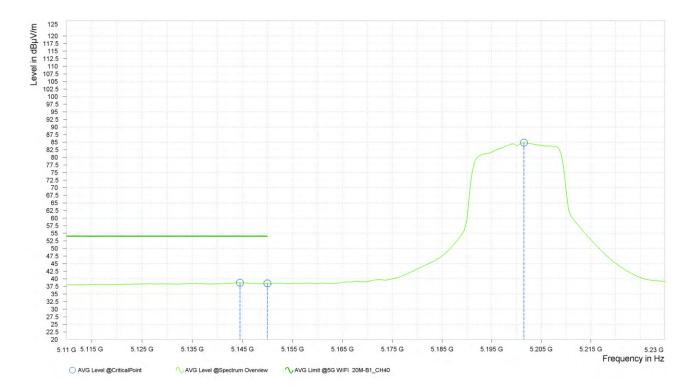
- Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value- Emission level.
- 2. 5180MHz: Fundamental frequency.


CHANNEL	TX Channel 40		Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	DETECTOR FUNCTION	Average (AV)

Rg	Frequency [MHz]	PK+ Level [dBμV/m]	PK+ Limit [dBμV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	5,148.500	54.18	74.00	19.82	12.74	Н	359	1.00
2	5,150.000	53.08	74.00	20.92	12.75	Н	2.3	2.00
2	5,199.000	111.06			12.94	Н	286.2	1.00

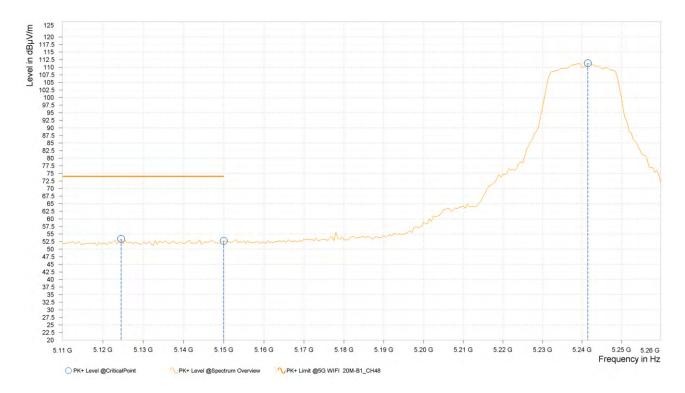


Rg	Frequency [MHz]		AVG Limit [dΒμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	5,149.500	39.92	54.00	14.08	12.75	Н	1	1.00
2	5,150.000	39.98	54.00	14.02	12.75	Н	1	1.00
2	5,201.500	97.07			12.95	Н	359.1	1.00

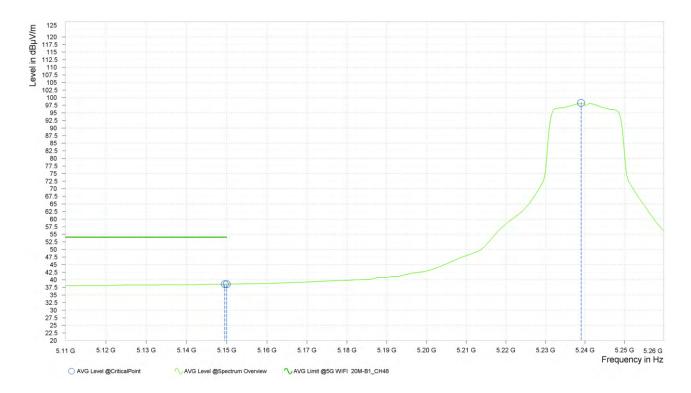


Rg	Frequency [MHz]	PK+ Level [dBμV/m]	PK+ Limit [dBμV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	5,130.000	53.06	74.00	20.94	12.69	V	357.7	1.00
2	5,150.000	52.08	74.00	21.92	12.75	V	219.6	2.00
2	5,199.000	103.59			12.94	V	238.4	1.00

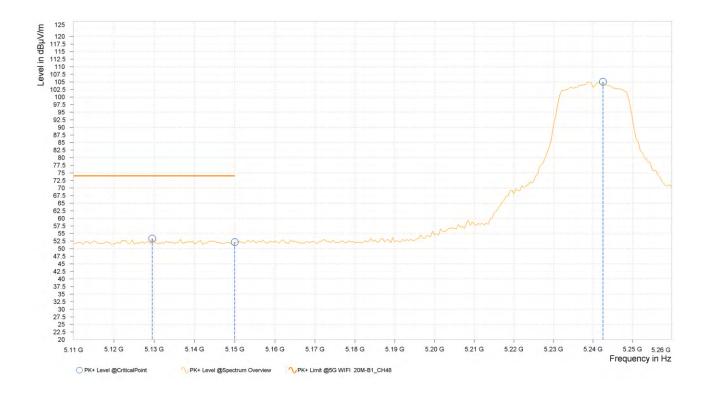
Rg	Frequency [MHz]		AVG Limit [dΒμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	5,144.500	38.76	54.00	15.24	12.73	V	4.9	1.00
2	5,150.000	38.48	54.00	15.52	12.75	V	4.9	1.00
2	5,201.500	84.84			12.95	V	355	2.00



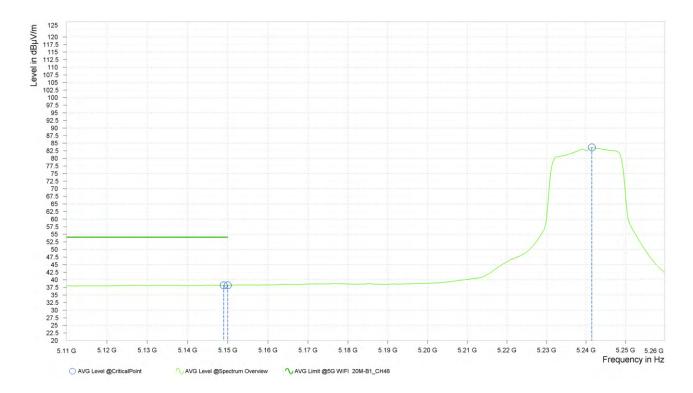
- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value- Emission level.
- 2. 5200MHz: Fundamental frequency.


CHANNEL	TX Channel 48	DETECTOR FUNCTION	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz		Average (AV)

Rg	Frequency [MHz]	PK+ Level [dBμV/m]	PK+ Limit [dBμV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
3	5,124.500	53.39	74.00	20.61	12.67	Н	335.1	1.00
3	5,150.000	52.73	74.00	21.27	12.75	Н	218.4	2.00
3	5,241.500	111.35			12.94	Н	335.1	1.00

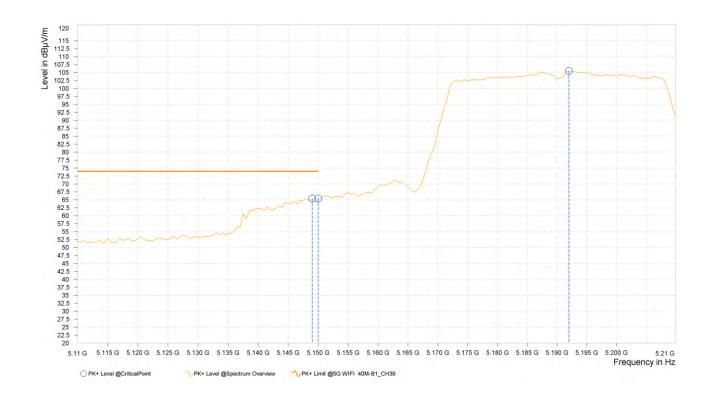


Rg	Frequency [MHz]		AVG Limit [dΒμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
3	5,149.500	38.55	54.00	15.45	12.75	Н	1	1.00
3	5,150.000	38.54	54.00	15.46	12.75	Н	1	1.00
3	5,239.000	98.28			12.94	Н	359.2	1.00



Rg	Frequency [MHz]	PK+ Level [dBμV/m]	PK+ Limit [dBμV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
3	5,129.500	53.34	74.00	20.66	12.69	V	337.4	1.00
3	5,150.000	52.14	74.00	21.86	12.75	V	44.7	1.00
3	5,242.500	105.03			12.94	V	239.5	1.00

Rg	Frequency [MHz]	AVG Level [dBμV/m]	AVG Limit [dΒμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
3	5,149.000	38.24	54.00	15.76	12.74	V	4.9	1.00
3	5,150.000	38.21	54.00	15.79	12.75	V	4.9	1.00
3	5,241.500	83.62			12.94	V	0.9	2.00

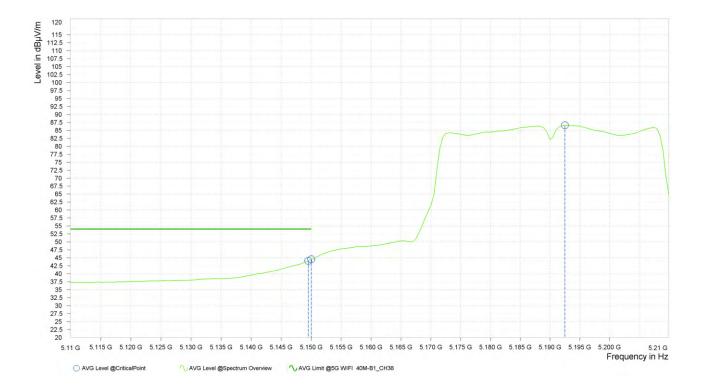

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value- Emission level.
- 2. 5240MHz: Fundamental frequency.

802.11n (40MHz)


CHANNEL	TX Channel 38	DETECTOR FUNCTION	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz		Average (AV)

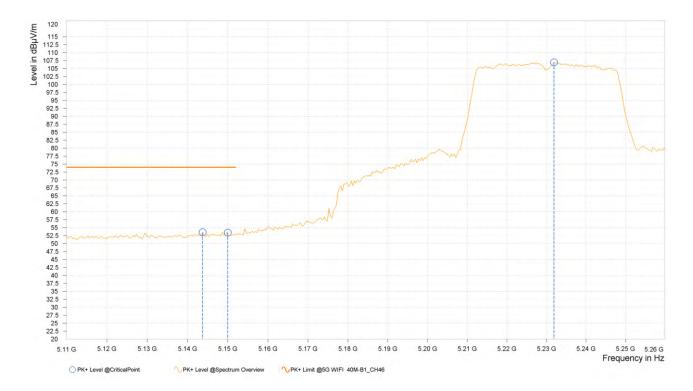
Rg	Frequency [MHz]	PK+ Level [dBμV/m]		PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,149.000	65.40	74.00	8.60	12.74	Н	357.8	1.00
1	5,150.000	65.41	74.00	8.59	12.75	Н	359	1.00
1	5,192.000	105.48			12.92	Н	279	1.00

Rg	Frequency [MHz]		AVG Limit [dΒμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,149.500	48.70	54.00	5.30	12.75	Н	324.4	1.00
1	5,150.000	49.08	54.00	4.92	12.75	Н	324.4	1.00
1	5,192.500	91.40			12.92	Н	277.8	1.00

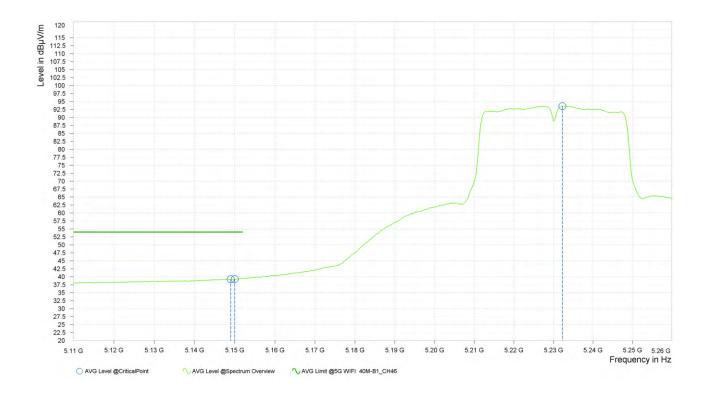


Rg	Frequency [MHz]	PK+ Level [dBμV/m]	PK+ Limit [dBμV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,149.000	61.09	74.00	12.91	12.74	V	239.5	1.00
1	5,150.000	59.44	74.00	14.56	12.75	V	239.5	1.00
1	5,192.500	99.43			12.92	V	239.5	1.00

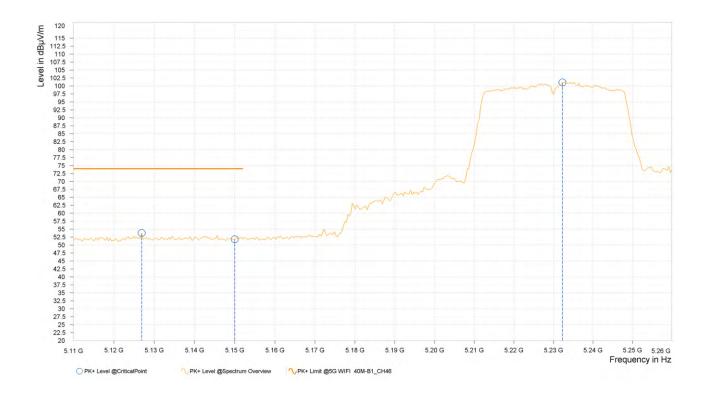
Rg	Frequency [MHz]	AVG Level [dBμV/m]	AVG Limit [dΒμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,149.500	44.08	54.00	9.92	12.75	V	228.8	1.00
1	5,150.000	44.59	54.00	9.41	12.75	V	228.8	1.00
1	5,192.500	86.61			12.92	V	228.8	1.00



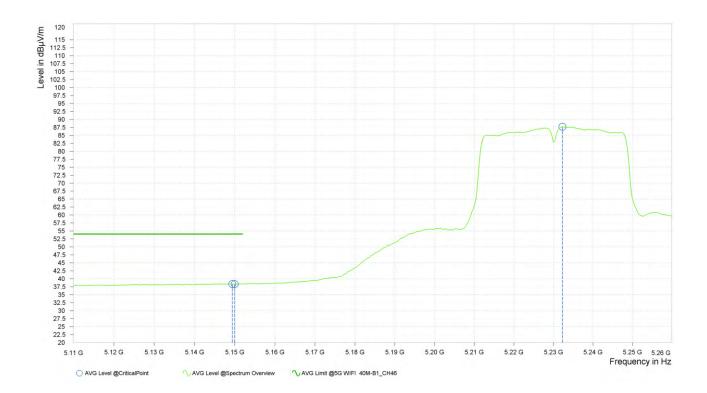
- Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value- Emission level.
- 2. 5190MHz: Fundamental frequency.


CHANNEL	TX Channel 46	DETECTOR FUNCTION	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz		Average (AV)

Rg	Frequency [MHz]	PK+ Level [dBμV/m]	PK+ Limit [dBμV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	5,143.750	53.55	74.00	20.45	12.73	Н	359.1	1.00
2	5,150.000	53.47	74.00	20.53	12.75	Н	4.9	1.00
2	5,231.880	106.95			12.94	Н	359.1	1.00

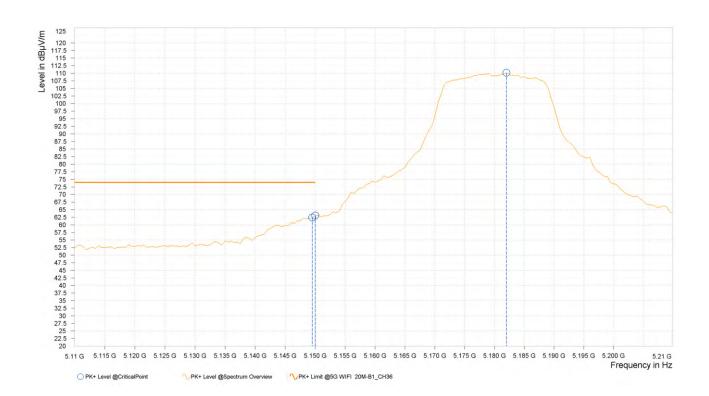


Rg	Frequency [MHz]	AVG Level [dBμV/m]	AVG Limit [dΒμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	5,149.000	39.21	54.00	14.79	12.74	Н	359	1.00
2	5,150.000	39.29	54.00	14.71	12.75	Н	357	1.00
2	5,232.250	93.55			12.94	Н	359	1.00

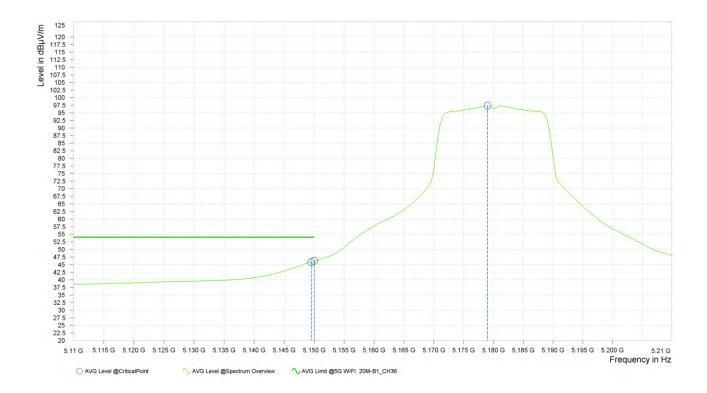


Rg	Frequency [MHz]	PK+ Level [dBμV/m]		PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	5,126.875	53.80	74.00	20.20	12.68	V	2.5	2.00
2	5,150.000	51.84	74.00	22.16	12.75	V	253	2.00
2	5,232.250	101.08			12.94	V	215.7	1.00

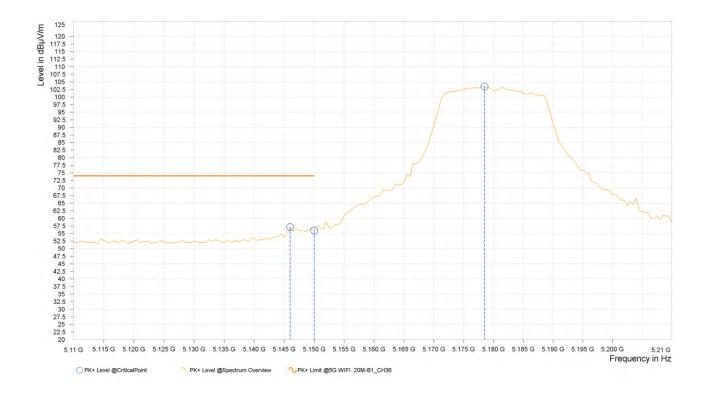
Rg	Frequency [MHz]		AVG Limit [dΒμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	5,149.375	38.35	54.00	15.65	12.74	V	244.3	1.00
2	5,150.000	38.36	54.00	15.64	12.75	V	244.3	1.00
2	5,232.250	87.69		·	12.94	V	244.3	1.00


- Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value- Emission level.
- 2. 5230MHz: Fundamental frequency.

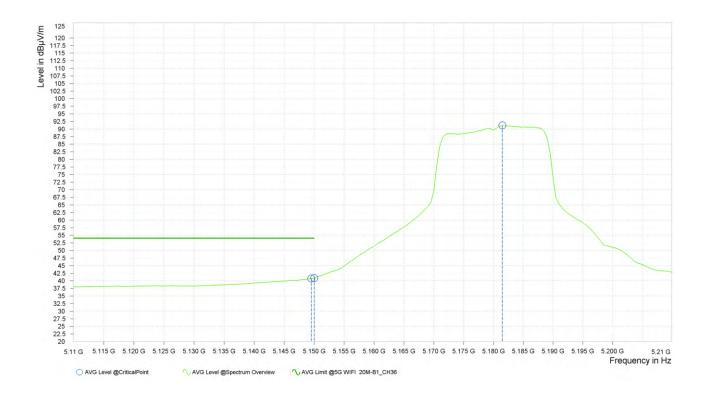
802.11ac (20MHz)


CHANNEL	TX Channel 36	DETECTOR FUNCTION	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz		Average (AV)

Rg	Frequency [MHz]		PK+ Limit [dBμV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,149.500	62.42	74.00	11.58	12.75	Н	1	2.00
1	5,150.000	63.07	74.00	10.93	12.75	Н	359.1	1.00
1	5,182.000	110.15			12.88	Н	345.8	1.00

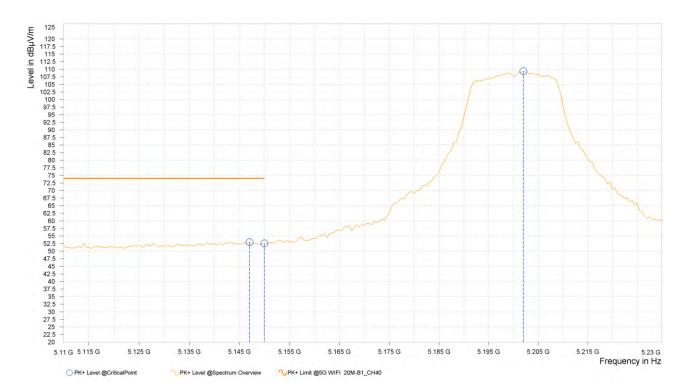


Rg	Frequency [MHz]	AVG Level [dBμV/m]	AVG Limit [dΒμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,149.500	45.86	54.00	8.14	12.75	Н	359.1	1.00
1	5,150.000	46.27	54.00	7.73	12.75	Н	22.6	2.00
1	5,179.000	97.39			12.87	Н	329.3	1.00



Rg	Frequency [MHz]		PK+ Limit [dBμV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,146.000	57.09	74.00	16.91	12.73	V	222.8	1.00
1	5,150.000	55.97	74.00	18.03	12.75	V	222.8	1.00
1	5,178.500	103.48			12.87	V	222.8	1.00

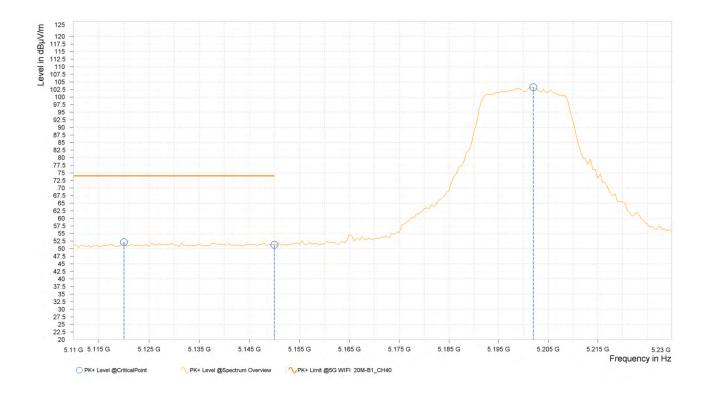
Rg	Frequency [MHz]		AVG Limit [dΒμV/m]		Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,149.500	40.79	54.00	13.21	12.75	V	234.7	1.00
1	5,150.000	40.93	54.00	13.07	12.75	V	72.2	1.00
1	5,181.500	91.19			12.88	V	234.7	1.00



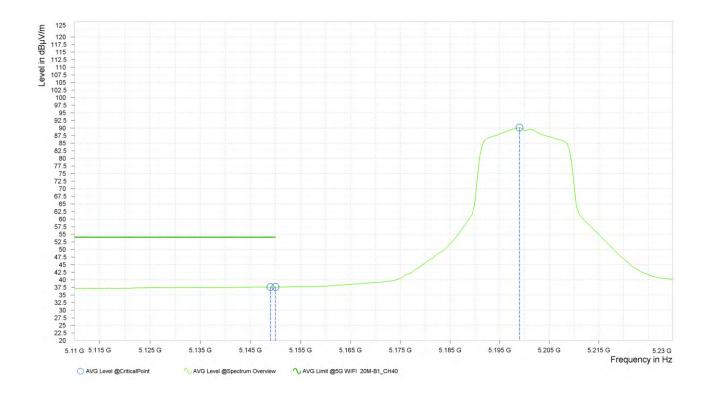
- Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value- Emission level.
- 2. 5180MHz: Fundamental frequency.


CHANNEL	TX Channel 40	DETECTOR FUNCTION	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz		Average (AV)

Rg	Frequency [MHz]	PK+ Level [dBμV/m]	PK+ Limit [dBμV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	5,147.000	53.00	74.00	21.00	12.74	Н	359	1.00
2	5,150.000	52.55	74.00	21.45	12.75	Н	291	1.00
2	5,202.000	109.37			12.95	Н	339.5	1.00

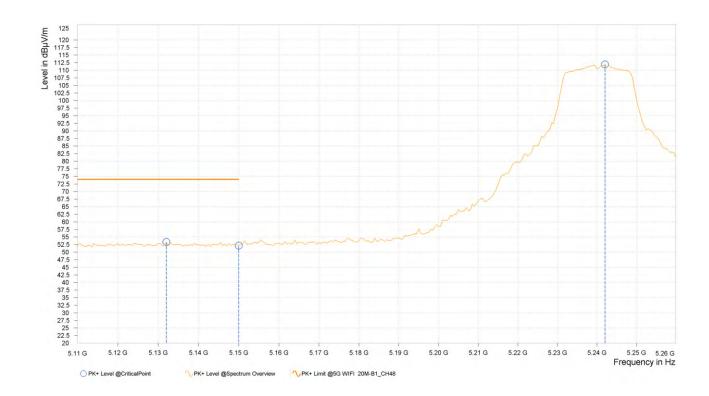


Rg	Frequency [MHz]		AVG Limit [dBμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	5,149.000	39.39	54.00	14.61	12.74	Н	299.4	1.00
2	5,150.000	39.35	54.00	14.65	12.75	Н	299.4	1.00
2	5,201.500	96.70			12.95	Н	299.4	1.00

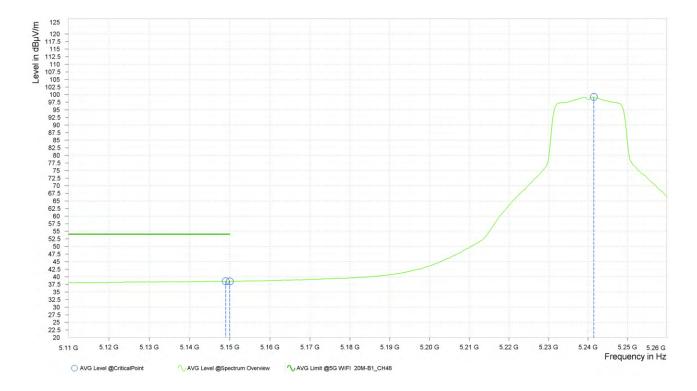


Rg	Frequency [MHz]	PK+ Level [dBμV/m]	PK+ Limit [dBμV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	5,120.000	52.14	74.00	21.86	12.66	V	43.6	1.00
2	5,150.000	51.30	74.00	22.70	12.75	V	0.9	2.00
2	5,202.000	103.24			12.95	V	210.9	1.00

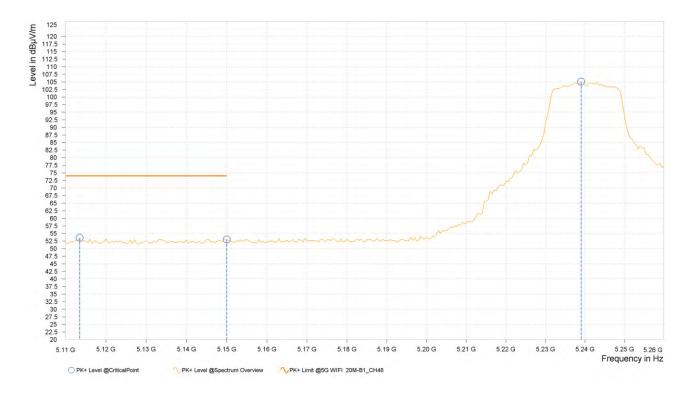
Rg	Frequency [MHz]	AVG Level [dBμV/m]	AVG Limit [dΒμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	5,149.000	37.65	54.00	16.35	12.74	V	252.7	1.00
2	5,150.000	37.66	54.00	16.34	12.75	V	214.8	2.00
2	5,199.000	90.14			12.94	V	290.2	2.00



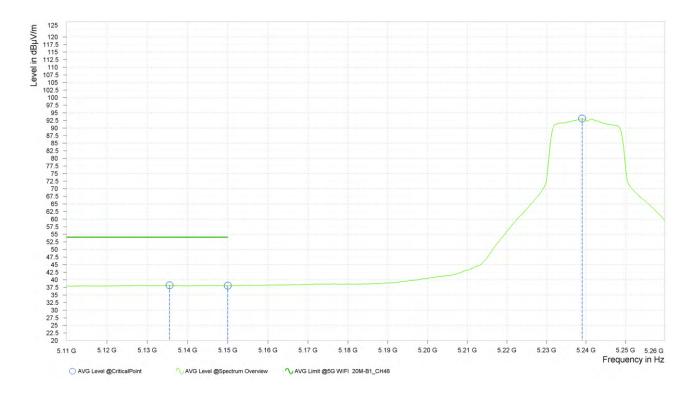
- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value- Emission level.
- 2. 5200MHz: Fundamental frequency.


CHANNEL	TX Channel 48	DETECTOR FUNCTION	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz		Average (AV)

Rg	Frequency [MHz]	PK+ Level [dBμV/m]	PK+ Limit [dBμV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
3	5,132.000	53.37	74.00	20.63	12.69	Н	48.3	1.00
3	5,150.000	52.15	74.00	21.85	12.75	Н	359.1	1.00
3	5,242.000	111.92			12.94	Н	292.2	1.00

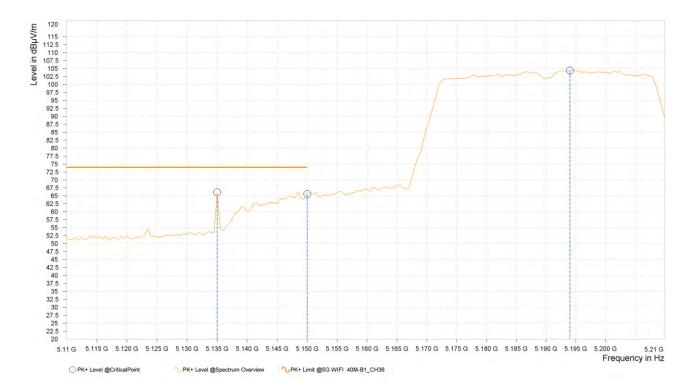


Rg	Frequency [MHz]	AVG Level [dBμV/m]	AVG Limit [dΒμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
3	5,149.000	38.53	54.00	15.47	12.74	Н	304.1	1.00
3	5,150.000	38.48	54.00	15.52	12.75	Н	359.1	1.00
3	5,241.500	99.24			12.94	Н	304.1	1.00

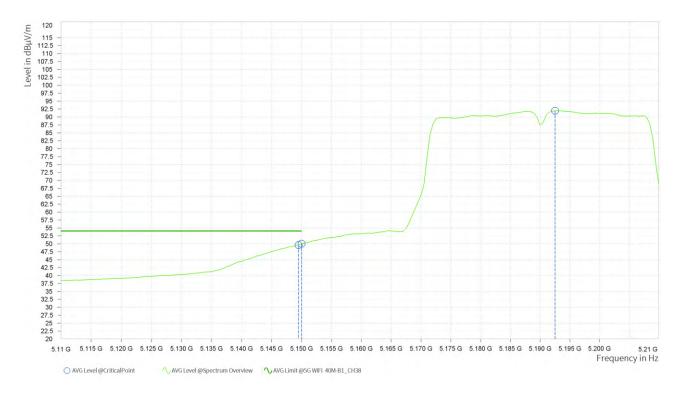


Rg	Frequency [MHz]		PK+ Limit [dBμV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
3	5,113.500	53.60	74.00	20.40	12.64	V	256.3	1.00
3	5,150.000	53.01	74.00	20.99	12.75	V	5.6	1.00
3	5,239.000	105.12			12.94	V	205	1.00

Rg	Frequency [MHz]		AVG Limit [dΒμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
3	5,135.500	38.21	54.00	15.79	12.70	V	149.9	1.00
3	5,150.000	38.10	54.00	15.90	12.75	V	0.9	2.00
3	5,239.000	93.14			12.94	V	252.7	1.00

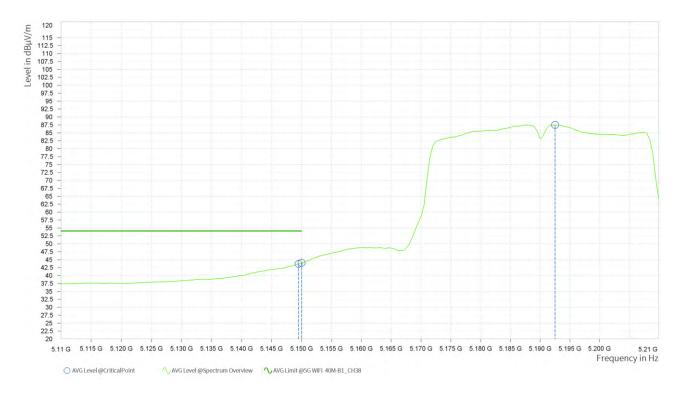

- Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value- Emission level.
- 2. 5240MHz: Fundamental frequency.

802.11ac (40MHz)


CHANNEL	TX Channel 38	DETECTOR FUNCTION	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz		Average (AV)

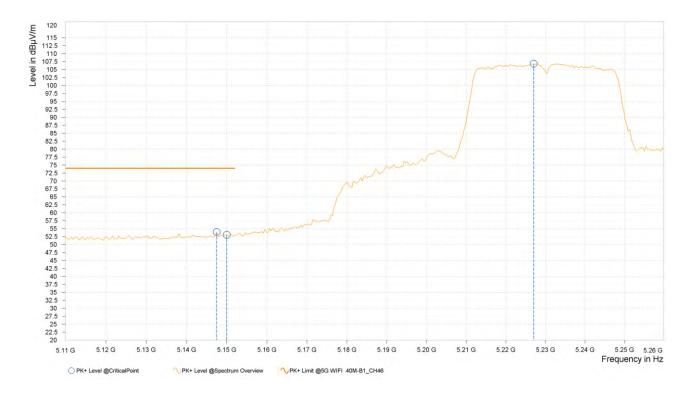
Rg	Frequency [MHz]		PK+ Limit [dBμV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,135.000	66.15	74.00	7.85	12.70	Н	43.8	2.00
1	5,150.000	65.60	74.00	8.40	12.75	Н	319.7	1.00
1	5,194.000	104.39			12.92	Н	273	1.00

Rg	Frequency [MHz]		AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,149.500	49.60	54.00	4.40	12.75	_ H	353	1.00
1	5,150.000	50.06	54.00	3.94	12.75	Н	353	1.00
1	5,192.500	91.97			12.92	Н	353	1.00

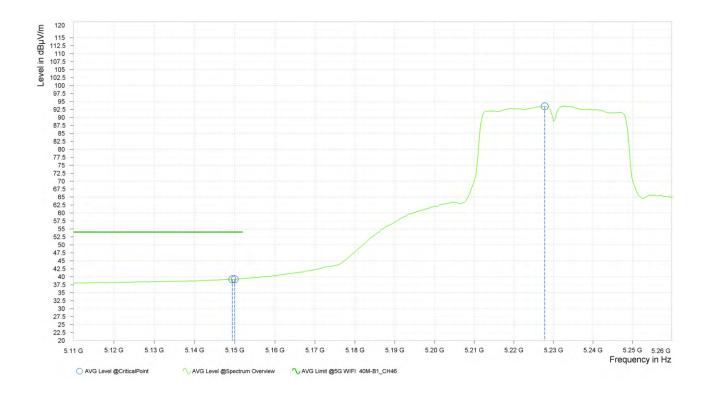


Rg	Frequency [MHz]	PK+ Level [dBμV/m]		PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,148.000	59.35	74.00	14.65	12.74	V	225.2	1.00
1	5,150.000	59.98	74.00	14.02	12.75	V	225.2	1.00
1	5,192.500	100.74			12.92	V	225.2	1.00

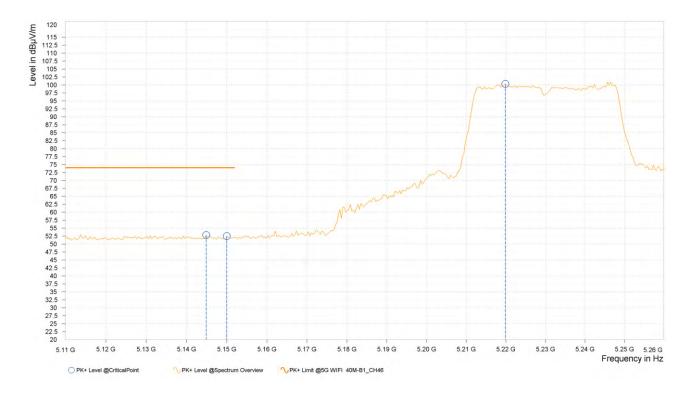
Rg	Frequency [MHz]		AVG Limit [dBμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,149.500	43.68	54.00	10.32	12.75	V	226.4	1.00
1	5,150.000	44.00	54.00	10.00	12.75	V	226.4	1.00
1	5,192.500	87.48			12.92	V	226.4	1.00



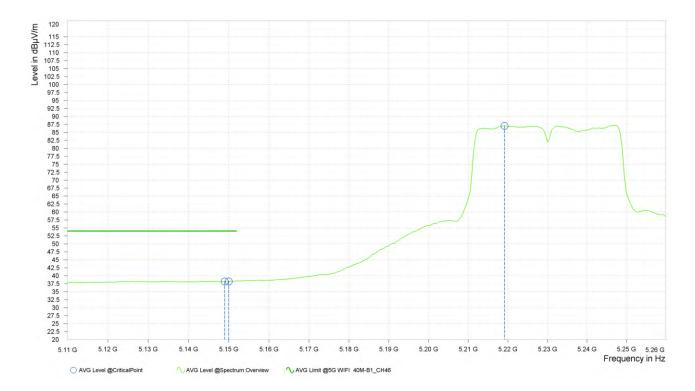
- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value- Emission level.
- 2. 5190MHz: Fundamental frequency.


CHANNEL	TX Channel 46	DETECTOR FUNCTION	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz		Average (AV)

Rg	Frequency [MHz]		PK+ Limit [dBμV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	5,147.500	53.95	74.00	20.05	12.74	Н	1	1.00
2	5,150.000	53.05	74.00	20.95	12.75	Н	1	2.00
2	5,227.000	106.81			12.94	Н	357.9	1.00

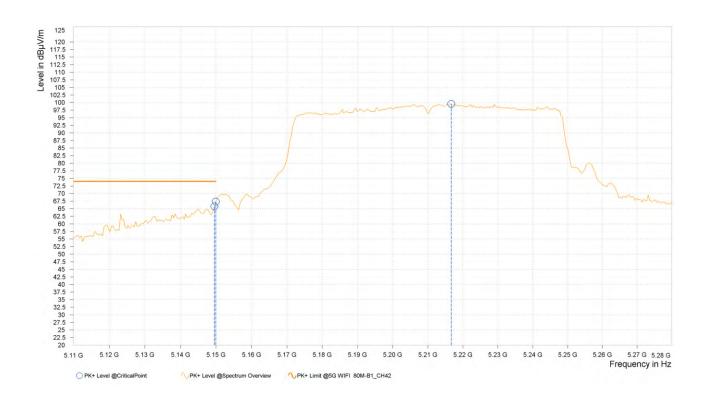


Rg	Frequency [MHz]		AVG Limit [dΒμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	5,149.375	39.21	54.00	14.79	12.74	Н	359	1.00
2	5,150.000	39.24	54.00	14.76	12.75	Н	359	1.00
2	5,227.750	93.50			12.94	Н	359	1.00

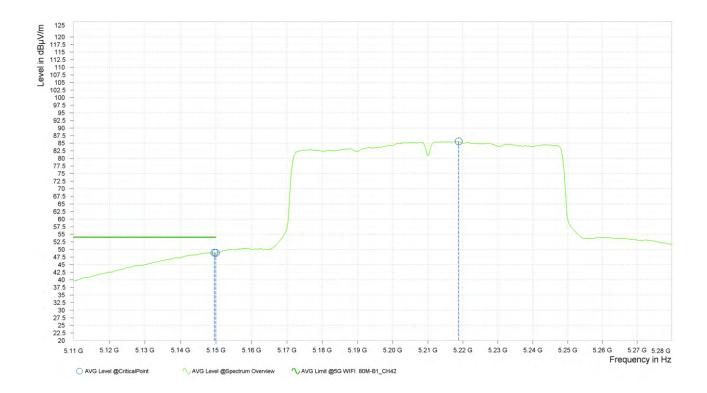


Rg	Frequency [MHz]		PK+ Limit [dBμV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	5,144.875	52.84	74.00	21.16	12.73	V	194.5	2.00
2	5,150.000	52.52	74.00	21.48	12.75	V	332.9	1.00
2	5,219.880	100.32			12.94	V	220.5	1.00

Rg	Frequency [MHz]		AVG Limit [dΒμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	5,149.000	38.23	54.00	15.77	12.74	V	220.5	1.00
2	5,150.000	38.26	54.00	15.74	12.75	V	53.1	1.00
2	5,219.125	87.06			12.94	V	220.5	1.00


- Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value- Emission level.
- 2. 5230MHz: Fundamental frequency.

802.11ac (80MHz)


CHANNEL	TX Channel 42	DETECTOR FUNCTION	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz		Average (AV)

Rg	Frequency [MHz]	PK+ Level [dBμV/m]	PK+ Limit [dBμV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,149.525	65.77	74.00	8.23	12.75	Н	1	1.00
1	5,149.950	67.35	74.00	6.65	12.75	Н	1	1.00
1	5,216.675	99.55			12.94	Н	1	1.00

Rg	Frequency [MHz]		AVG Limit [dΒμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,149.525	48.96	54.00	5.04	12.75	Н	330.4	1.00
1	5,149.950	48.88	54.00	5.12	12.75	Н	330.4	1.00
1	5,218.800	85.60			12.94	Н	1	1.00

