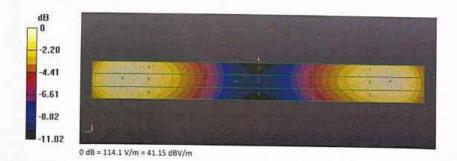
DASY5 E-field Result

Date: 18.05.2021

Test Laboratory: SPEAG Lab2

DUT: HAC-Dipole 835 MHz; Type: CD835V3; Serial: CD835V3 - SN: 1165

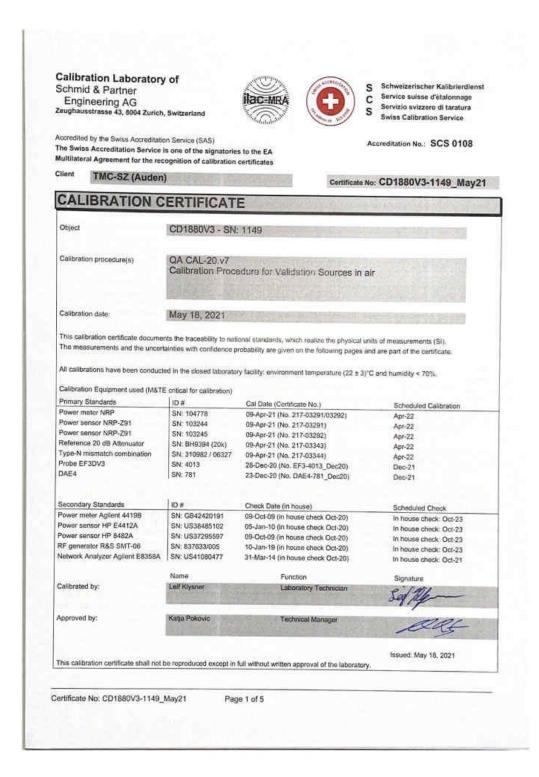
Communication System: UID 0 - CW ; Frequency: 835 MHz Medium parameters used: $\alpha = 0$ S/m, $\epsilon_r = 1$; $\rho = 0$ kg/m³ Phantom section: RF Section


Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EF3DV3 SN4013; ConvF(1, 1, 1) @ 835 MHz; Calibrated: 28.12.2020
- Sensor-Surface: (Fix Surface) Electronics: DAE4 Sn781; Calibrated: 23.12.2020
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- DASY52 52:10.4(1527); SEMCAD X 14.6.14(7483)

Dipole E-Field measurement @ 835MHz/E-Scan - 835MHz d=15mm/Hearing Aid Compatibility Test (41x361x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm
Device Reference Point: 0, 0, -6.3 mm
Reference Value = 135.0 V/m; Power Drift = 0.01 dB
Applied MIF = 0.00 dB
RF audio interference level = 41.15 dBV/m
Emission category: M3


Grid 1 M3 40.65 dBV/m		Grid 3 M3 40.35 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
35.83 dBV/m	35.86 dBV/m	35.57 dBV/m
Grid 7 M3	Grid 8 M3	Grid 9 M3
41.07 dBV/m	41.15 dBV/m	40.84 dBV/m

Certificate No: CD835V3-1165_May21

Page 5 of 5

CD1880V3

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

References

 ANSI-C63.19-2011
 American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms, z-axis is from the basis of the antenna
 (mounted on the table) towards its feed point between the two dipole arms, x-axis is normal to the other axes.
 In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a
 distance of 15 mm above the top metal edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All
 figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector
 is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a
 directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check Job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the
- Feed Point Impedance and Return Loss: These parameters are measured using a Vector Network Analyzer.
 The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- E-field distribution: E field is measured in the x-y-plane with an isotropic E-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: CD1880V3-1149_May21

Page 2 of 5

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Phantom	HAC Test Arch	7/2/3/3/2/2/
Distance Dipole Top - Probe Center	15 mm	
Scan resolution	dx, dy = 5 mm	
Frequency	1880 MHz ± 1 MHz	
Input power drift	< 0.05 dB	

Maximum Field values at 1880 MHz

E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	88.4 V/m = 38.93 dBV/m
Maximum measured above low end	100 mW input power	86.7 V/m = 38.76 dBV/m
Averaged maximum above arm	100 mW input power	87.5 V/m ± 12.8 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

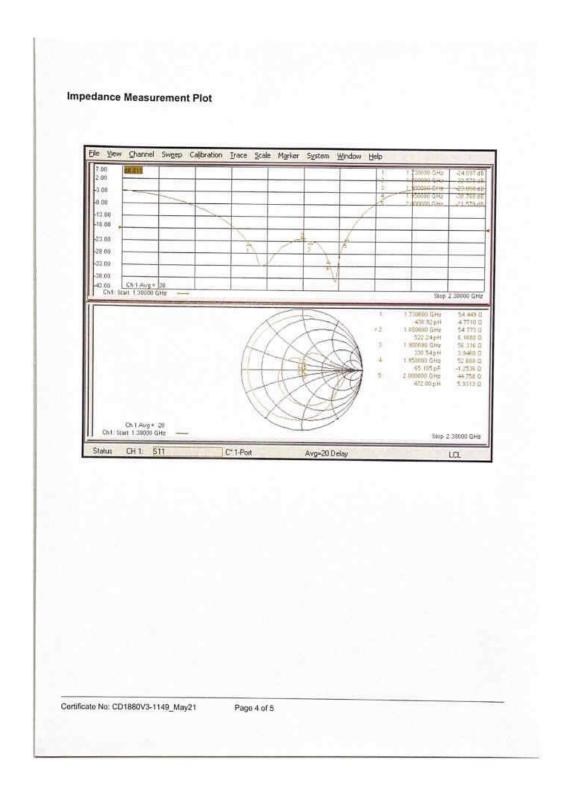
Antenna Parameters

Frequency	Return Loss	Impedance
1730 MHz	24.1 dB	54.4 Ω + 4.8 įΩ
1880 MHz	22.6 dB	54.8 Ω + 6.2 μΩ
1900 MHz	23.1 dB	56.3 Ω + 3.9 μΩ
1950 MHz	30.8 dB	52.7 Ω - 1.3 iΩ
2000 MHz	21.6 dB	44.8 Ω + 5.9 ίΩ

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the

enhanced bandwidth.


The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Certificate No: CD1880V3-1149_May21

Page 3 of 5

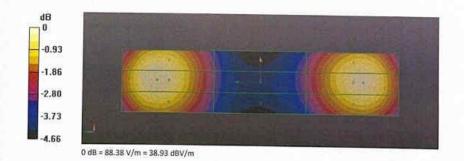
DASY5 E-field Result

Date: 18.05.2021

Test Laboratory: SPEAG Lab2

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: CD1880V3 - SN: 1149

Communication System: UID 0 - CW; Frequency: 1880 MHz Medium parameters used: $\sigma=0$ S/m, $\epsilon_r=1$; $\rho=0$ kg/m¹ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

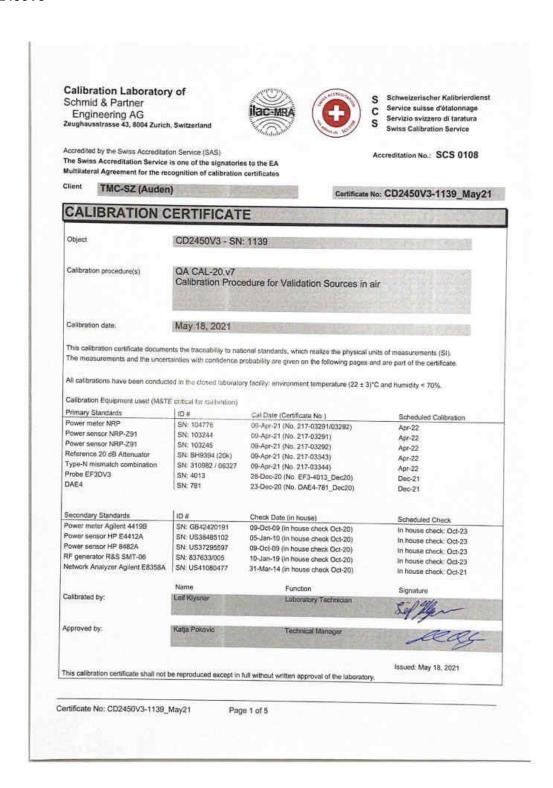

DASY52 Configuration:

- Probe: EF3DV3 SN4013; ConvF(1, 1, 1) @ 1880 MHz; Calibrated: 28.12.2020
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 23.12.2020
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole E-Field measurement @ 1880MHz/E-Scan - 1880MHz d=15mm/Hearing Aid Compatibility Test (41x181x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm
Device Reference Point: 0, 0, -6.3 mm
Reference Value = 161.6 V/m; Power Drift = -0.01 dB
Applied MIF = 0.00 dB
RF audio interference level = 38.93 dBV/m
Emission category: M2

MIF scaled E-field

	Grid 2 M2 38.76 dBV/m	Grid 3 M2 38.5 dBV/m
Charles Control of the Control	Grid 5 M2 36.12 dBV/m	Grid 6 M2 35.97 dBV/m
Grid 7 M2 38.83 dBV/m	Grid 8 M2 38.93 dBV/m	Grid 9 M2 38.63 dBV/m



Certificate No: CD1880V3-1149_May21

Page 5 of 5

CD2450V3

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

References

ANSI-C63.19-2011
American National Standard, Methods of Measurement of Compatibility between Wireless Communications
Devices and Hearing Alds.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna
 (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes.
 In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a
 distance of 15 mm above the top metal edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All
 figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector
 is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a
 directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job, Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Field Point Impodance and Return Loss: These parameters are measured using a Vector Network Analyzer.
 The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- E-field distribution: E field is measured in the x-y-plane with an isotropic E-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: CD2450V3-1139_May21

Page 2 of 5

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Phantom	HAC Test Arch	1000000
Distance Dipole Top - Probe Center	15 mm	
Scan resolution	dx, dy = 5 mm	
Frequency	2450 MHz ± 1 MHz	
Input power drift	< 0.05 dB	

Maximum Field values at 2450 MHz

E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	86.7 V/m = 38.76 dBV/m
Maximum measured above low end	100 mW input power	83.9 V/m = 38.47 dBV/m
Averaged maximum above arm	100 mW input power	85.3 V/m ± 12.8 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

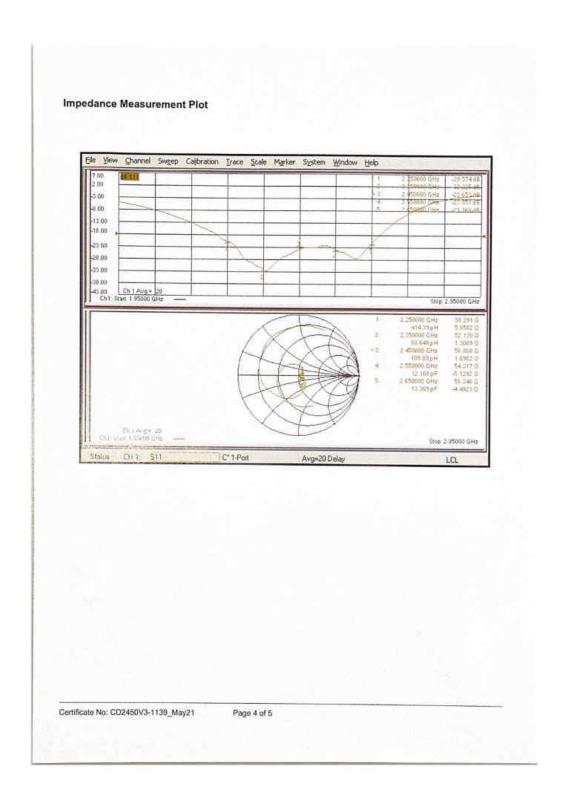
Antenna Parameters

Frequency	Return Loss	Impedance
2250 MHz	20.6 dB	58.3 Ω + 5.9 iΩ
2350 MHz	32.2 dB	52.1 Ω + 1.3 μΩ
2450 MHz	23.7 dB	56.8 Ω + 1.7 Ω
2550 MHz	23.9 dB	54.3 Ω - 5.1 jΩ
2650 MHz	21.2 dB	58.3 Ω - 4.5 μΩ

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the

enhanced bandwidth.


The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals. Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Certificate No: CD2450V3-1139_May21

Page 3 of 5

DASY5 E-field Result

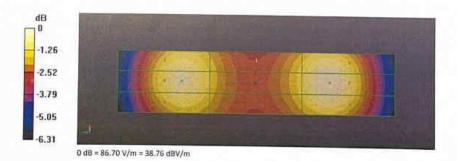
Date: 18.05.2021

Test Laboratory: SPEAG Lab2

DUT: HAC Dipole 2450 MHz; Type: CD2450V3; Serial: CD2450V3 - SN: 1139

Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: $\sigma=0$ S/m, $\epsilon_{\rm e}=1$; $\rho=0$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

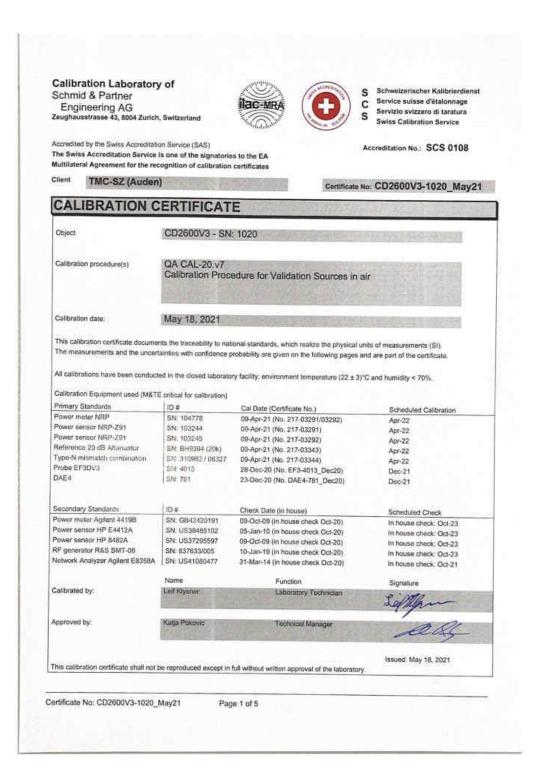
DASY52 Configuration:


- Probe: EF3DV3 SN4013; ConvF(1, 1, 1) @ 2450 MHz; Calibrated: 28.12.2020
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 23.12.2020
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- DASYS2 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole E-Field measurement @ 2450MHz/E-Scan - 2450MHz d=15mm/Hearing Aid Compatibility Test (41x181x1):

Device Reference Point: 0, 0, -6.3 mm
Device Reference Point: 0, 0, -6.3 mm
Reference Value = 77.98 V/m; Power Drift = -0.03 dB
Applied MIF = 0.00 dB
RF audio interference level = 38.76 dBV/m
Emission category: M2

MIF scaled E-field


	Grid 2 M2 38.76 dBV/m	Grid 3 M2 38.5 d8V/m
Grid 4 M2 37.76 d8V/m		Grid 6 M2 37.66 dBV/m
The same of the sa	Grid 8 M2 38.47 dBV/m	Grid 9 M2 38.21 d8V/m

Certificate No: CD2450V3-1139_May21

Page 5 of 5

CD2600V3

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

References

 ANSI-C63.19-2011
 American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All
 figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector
 is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a
 directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenne Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASYS Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a Vector Network Analyzer.
 The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- E-field distribution: E field is measured in the x-y-plane with an isotropic E-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: CD2600V3-1020_May21

Page 2 of 5

Measurement Conditions

DASY system configuration, as far as not given on pa

DASY Version	DASY5	V52.10.4
Phantom	HAC Test Arch	***************************************
Distance Dipole Top - Probe Center	15 mm	
Scan resolution	dx, dy = 5 mm	
Frequency	2600 MHz ± 1 MHz	
Input power drift	< 0.05 dB	

Maximum Field values at 2600 MHz

E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	85.3 V/m = 38.62 dBV/m
Maximum measured above low end	100 mW input power	83.2 V/m = 38.40 dBV/m
Averaged maximum above arm	100 mW input power	84.3 V/m ± 12.8 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

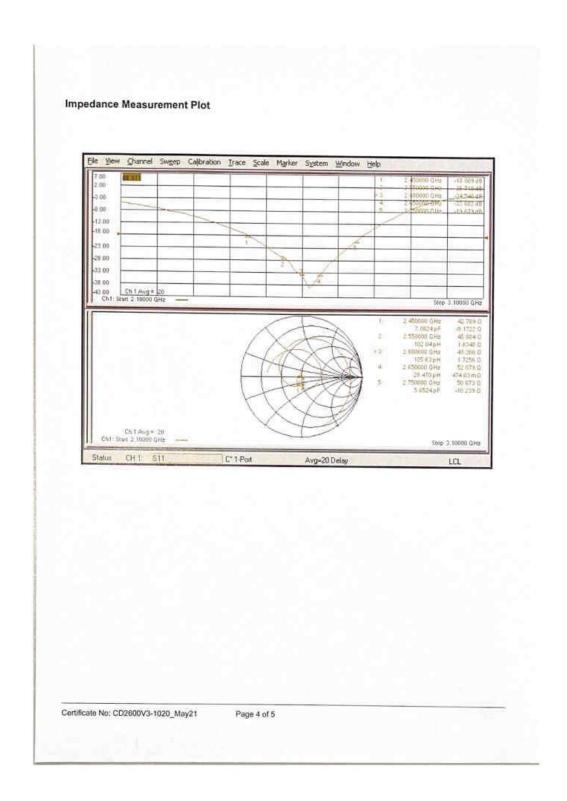
Antenna Parameters

Frequency	Return Loss	Impedance
2450 MHz	18.0 dB	42.7 Ω - 9.2 jΩ
2550 MHz	26.7 dB	45.9 Ω + 1.6 μΩ
2600 MHz	34.5 dB	49.3 Ω + 1.7 jΩ
2650 MHz	33.6 dB	52.1 Ω + 0.5 μΩ
2750 MHz	19.9 dB	50.7 Ω - 10.2 μΩ

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is


therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Certificate No: CD2600V3-1020_May21

Page 3 of 5

DASY5 E-field Result

Date: 18.05.2021

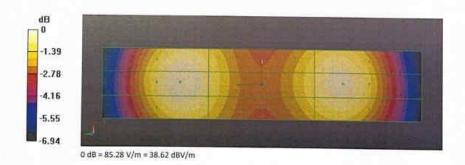
Test Laboratory: SPEAG Lab2

DUT: HAC Dipole 2600 MHz; Type: CD2600V3; Serial: CD2600V3 - SN: 1020

Communication System: UID 0 - CW; Frequency; 2600 MHz Medium parameters used: σ = 0 S/m, ϵ_e = 1; ρ = 0 kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EF3DV3 SN4013; ConvF(1, 1, 1) @ 2600 MHz; Calibrated: 28.12.2020
- Sensor-Surface: (Fix Surface)
 Electronics: DAE4 Sn781; Calibrated: 23.12.2020
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)


Dipole E-Field measurement @ 2600MHz/E-Scan - 2600MHz d=15mm/Hearing Aid Compatibility Test (41x181x1):

Interpolated grid: dx=0.5000 mm, dy=0.5000 mm
Device Reference Point: 0, 0, -6.3 mm
Reference Value = 67.80 V/m; Power Drift = 0.00 dB
Applied MIF = 0.00 dB
RF audio interference level = 38.62 dBV/m

Emission category: M2

MIF scaled E-field

Grid 1 M2 38.28 d8V/m		Grid 3 M2 38.16 dBV/m
Grid 4 M2	Grid 5 M2	Grid 6 M2
37.79 dBV/m	37.85 dBV/m	37.68 dBV/m
Grid 7 M2	Grid 8 M2	Grid 9 M2
38.51 dBV/m	38.62 dBV/m	38.37 dBV/m

Certificate No: CD2600V3-1020_May21

Page 5 of 5

ANNEX D: Probe Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client

TMC-SZ (Auden)

Certificate No: ER3-2424 Mar21

CALIBRATION CERTIFICATE

Object ER3DV6- SN:2424

Calibration procedure(s) QA CAL-02.v9, QA CAL-25.v7

Calibration procedure for E-field probes optimized for close near field

evaluations in air

Calibration date: March 4, 2021

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (St). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	01-Apr-20 (No. 217-03100/03101)	Apr-21
Power sensor NRP-Z91	SN: 103244	01-Apr-20 (No. 217-03100)	Apr-21
Power sensor NRP-291	SN: 103245	01-Apr-20 (No. 217-03101)	Apr-21
Reference 20 dB Attenuator	SN: CC2552 (20x)	31-Mar-20 (No. 217-03106)	Apr-21
DAE4	SN 789	23-Dec-20 (No. DAE4-789 Dec20)	Dec-21
Reference Probe ER3DV6	SN: 2328	05-Oct-20 (No. ER3-2328_Oct20)	Oct-21
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	66-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-20)	In house check: Jun-22
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-21

Calibrated by:

Name
Function
Signature
Laboratory Technician

Approved by:

Katja Pokovic
Technical Manager
Issued: March 4, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ER3-2424_Mar21

Page 1 of 9

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

NORMx,y,z sensitivity in free space DCP diode compression point CF

orest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters A, B, C, D incident E-field orientation normal to probe axis Ep incident E-field orientation parallel to probe axis

Polarization o o rotation around probe axis

Polarization 9 a rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system.

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1309-2005, * IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz". December 2005
b) CTIA Test Plan for Hearing Aid Compatibility, Rev 3.1.1, May 2017

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 for XY sensors and 9 = 90 for Z sensor (f \leq 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart).
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide setup
- Sensor Offset. The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no

Certificate No: ER3-2424_Mar21

Page 2 of 9

ER3DV6 - SN:2424

March 4, 2021

DASY/EASY - Parameters of Probe: ER3DV6 - SN:2424

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)$	1.53	1.55	1.83	± 10.1 %
DCP (mV) ^E	99.3	99.8	101.3	132,1337,78

Calibration results for Frequency Response (30 MHz - 3 GHz)

Frequency MHz	Target E-Field V/m	Measured E-field (En) V/m	Deviation E-normal in %	Measured E-field (Ep) V/m	Deviation E-normal in %	Unc (k=2) %
30	77.1	76.6	-0.7%	77.4	0.4%	± 5.1%
100	77.2	78.5	1.8%	77.9	0.9%	± 5.1%
450	77.2	78.6	1.9%	77.8	0.8%	± 5.1 %
600	77.0	78.2	1.5%	77.5	0.6%	± 5.1 %
750	77.0	78.1	1.5%	77.5	0.7%	± 5.1 %
1800	143.0	141.7	-0.9%	141.1	-1.3%	± 5.1 %
2000	135.1	134.4	-0.5%	133.5	-1.2%	± 5.1 %
2200	127.7	126.2	-1.2%	127.5	-0.1%	± 5.1 %
2500	125.5	126.0	0.4%	126,8	1.1%	± 5.1 %
3000	79.4	78.2	-1.6%	81.3	2.4%	± 5.1 %

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ER3-2424_Mar21

Numerical linearization parameter: uncertainty not required.
Lincertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

ER3DV6 - SN:2424

March 4, 2021

DASY/EASY - Parameters of Probe: ER3DV6 - SN:2424

Calibration Results for Modulation D

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Max dev.	Unc ^b (k=2)
0	:CW	X	0.0	0.0	1.0	0.00	207.1	±3.5 %	± 4.7 %
		Y	0.0	0.0	1.0		194.8		
		2	0.0	0.0	1.0		208.5		
10021- DAC	GSM-FDD (TDMA, GMSK)	×	13.38	91.7	25.7	9.39	127.8	±3.0 %	±4.7 %
		Y	20.31	99.9	28.1		115.1		
		Z	25.39	99.9	28.1		145.9		
10061- CAB	IEEE 802.11b WiFi 2,4 GHz (DSSS, 11 Mbps)	×	4.95	75.3	21.8	3.60	114.8	±2.2 %	± 4.7 %
		Y	4.11	72.3	20:5		106.0		
		Z	5.66	76.6	21.8		117.0		
10077- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	X	12.21	74.8	27.6	11.00	104.9	±2.2 %	± 4.7 %
		Y	13,33	78.3	29.7		144.6		
		Z	12.02	73.8	26.5		107.7		
10172- CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz. QPSK)	X	10.38	84.9	32.0	9.21	140,1	±2.5 %	± 4.7 %
		Y	8.50	78.8	28.9		126.9		
		Z	11.14	85.0	31.1		148.0		
10173- CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	X	10.60	84.6	31.9	9.48	139.5	±2.5 %	±4.7 %
		Y	9.11	80.2	29.6		127.0		
		Z	12.00	86.6	31.9		148.3		
10295- AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	Х	16,51	99.7	40.5	12.49	113.2	±3.5 %	± 4.7 %
		Y	15.91	100.0	40.9		101.3		
		Z	18.42	100.0	39.2		126.2		

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ER3-2424_Mar21

Mumerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

ER3DV6 - SN:2424

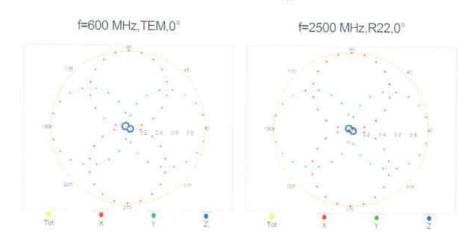
March 4, 2021

DASY/EASY - Parameters of Probe: ER3DV6 - SN:2424

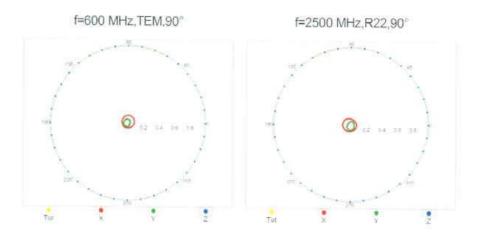
Sensor Frequency Model Parameters

	Sensor X	Sensor Y	Sensor Z
Frequency Corr. (LF)	-1.78	-1.32	0.22
Frequency Corr. (HF)	0.00	0.00	0.00

Other Probe Parameters


Sensor Arrangement	Rectangular
Connector Angle (*)	165.5
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	8 mm
Probe Tip to Sensor X Calibration Point	2.5 mm
Probe Tip to Sensor Y Calibration Point	2.5 mm
Probe Tip to Sensor Z Calibration Point	2.5 mm

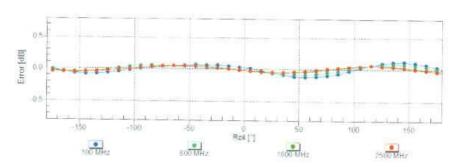
Certificate No: ER3-2424_Mar21


Page 5 of 9

ER3DV6 – SN:2424 March 4, 2021

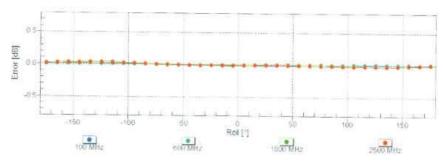
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Receiving Pattern (ϕ), $\vartheta = 90^{\circ}$



Certificate No: ER3-2424_Mar21

Page 6 of 9

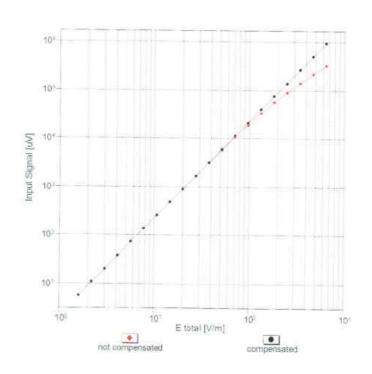

ER3DV6 - SN:2424 March 4, 2021

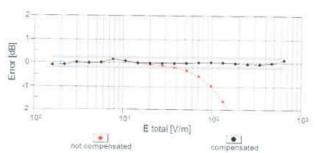
Receiving Pattern (\$\phi\$), \$\theta = 0^\circ\$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Receiving Pattern (\$\phi\$), \$\text{9} = 90°

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Certificate No: ER3-2424_Mar21

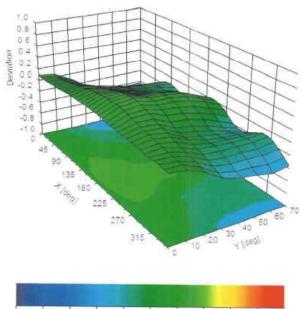

Page 7 of 9

ER3DV6 - SN:2424

March 4, 2021

Dynamic Range f(E-field) (TEM cell, f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Certificate No: ER3-2424_Mar21

Page 8 of 9

ER3DV6 - SN:2424

March 4, 2021

Deviation from Isotropy in Air Error (ϕ, ϑ) , f = 900 MHz

-06 -04 -02 0.0 0.2 0.4

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ER3-2424_Mar21

Page 9 of 9

ANNEX E: DAE Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

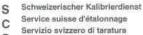
Saict-SZ (Auden) Client

Accreditation No.: SCS 0108

Certificate No: DAE4-1527_Jun22 CALIBRATION CERTIFICATE DAE4 - SD 000 D04 BM - SN: 1527 Object QA CAL-06.V30 Calibration procedure(s) Calibration procedure for the data acquisition electronics (DAE) Calibration date: June 21, 2022 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (St). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature {22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) ID# Cal Date (Certificate No.) Scheduled Calibration Primary Standards Keithley Multimeter Type 2001 SN: 0810278 31-Aug-21 (No:31368) Aug-22 Check Date (in house) Scheduled Check Secondary Standards Auto DAE Calibration Unit SE UWS 053 AA 1001 24-Jan-22 (in house check) In house check: Jan-23 Calibrator Box V2.1 SE UMS 006 AA 1002 24-Jan-22 (in house check) In house check: Jan-23 Name Laboratory Technician Adrian Gehring Calibrated by: Technical Manager Sven Kühn Approved by: Issued: June 21; 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Page 1 of 5

Certificate No: DAE4-1527_Jun22



Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accreditation No.: SCS 0108

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA

Glossary

DAE data acquisition electronics

Multilateral Agreement for the recognition of calibration certificates

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-1527 Jun22

Page 2 of 5

DC Voltage Measurement
A/D - Converter Resolution nominal
High Range: 1LSB =

High Range: $1LSB = 6.1 \mu V$, full range = -100...+300 mVLow Range: 1LSB = 61 nV, full range = -1.....+3 mVDASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	×	Y	Z
High Range	403.865 ± 0.02% (k=2)	403.595 ± 0.02% (k=2)	403,805 ± 0.02% (k=2)
Low Range	3.95898 ± 1.50% (k=2)	3.98939 ± 1.50% (k=2)	3.96763 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	61.0 ° ± 1 °
IN SECULO MANAGEMENT I DESIGNATION OF THE SECULO MANAGEMENT OF SECULO MA	11005776 50000

Certificate No: DAE4-1527_Jun22

Page 3 of 5

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range	Reading (μV)	Difference (µV)	Error (%)
Channel X + Input	200037.59	1.98	0.00
Channel X + Input	20007.61	1.34	0.01
Channel X - Input	-20004.09	1.79	-0.01
Channel Y + Input	200037.45	1.53	0.00
Channel Y + Input	20002.68	-3.42	-0.02
Channel Y - Input	-20007.17	-1.14	0.01
Channel Z + Input	200037,73	2.17	0.00
Channel Z + Input	20005.72	-0.34	-0.00
Channel Z - Input	-20006.63	-0.49	0.00

Low Range	Reading (µV)	Difference (μV)	Error (%)
Channel X + Input	2001.36	-0,15	-0.01
Channel X + Input	201.70	0.16	0.08
Channel X - Input	-198.10	0.49	-0.24
Channel Y + Input	2001.44	0.07	0.00
Channel Y + Input	201.07	-0.21	-0.11
Channel Y - Input	-199.66	-0.98	0.50
Channel Z + Input	2001.52	0.21	0.01
Channel Z + Input	200.81	-0.41	-0,20
Channel Z - Input	-199.00	-0.15	0.07

Common mode sensitivity
 DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-3.95	-5.31
	- 200	5.96	4.97
Channel Y	200	-16.18	-16.25
	- 200	14,41	14.34
Channel Z	200	3.01	2.86
	- 200	-3.93	-4.13

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	(2)	-0.68	-2.76
Channel Y	200	5.43	-	-0.31
Channel Z	200	10.73	3.29	à à

Certificate No: DAE4-1527_Jun22

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16059	17078
Channel Y	15965	16219
Channel Z	15888	13556

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MΩ

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	1.40	0.30	2.25	0.35
Channel Y	-0.62	-1.30	0.47	0.33
Channel Z	-0.18	-0.90	0.60	0.31

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE4-1527_Jun22

Page 5 of 5

ANNEX F: UID Specification

Calibration Laboratory of Schmid & Partner **Engineering AG**

Zeughausstrasse 43, 8004 Zurich, Switzerland

GSM-FDD (TDMA, GMSK)

GSM 10021-DAC

9.39 dB 3.63 dB

ETSI TS 100 909 V8.9.0 (2005-01) FCC OET KDB 941225, D03 and D04 Periodic pulsed modulation GMSK Standard Reference:

Category: Modulation:

Frequency Band:

GMSK GSM 450 (450.4 - 457.6 MHz) GSM 480 (478.8 - 486.0 MHz) GSM 710 (698.0 - 716.0 MHz) GSM 750 (747.0 - 763.0 MHz) GSM 850 (824.0 - 849.0 MHz) GSM 850 (824.0 - 849.0 MHz) P-GSM 900 (890.0 - 915.0 MHz) E-GSM 900 (880.0 - 915.0 MHz) R-GSM 900 (876.0 - 915.0 MHz) DCS 1800 (1710.0 - 1785.0 MHz) DCS 1900 (1850.0 - 1910.0 MHz) ER-GSM 900 (873.0 - 915.0 MHz) Validation band (0.0 - 6000.0 MHz)

Detailed Specification: Active Slot: TN0

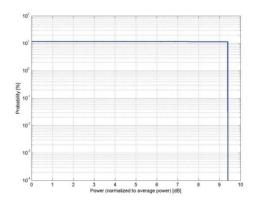
Data: PN9 continuous Frame: composed out of 8 Slots

Multiframe: 26th (IDLE) Frame set blank Slottype & -timing: Normal burst for GMSK 0.2 MHz

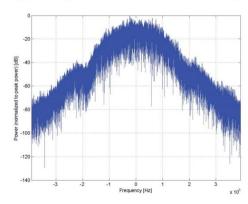
Integration Time: 120.0 ms

UID Specification Sheet

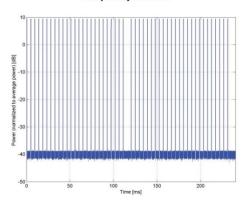
UID 10021-DAC page 1/2


PAR (0.1%) in accordance with FCC KDB 971168, Section 6.0 "Measurement of the Peak-to-Average Power Ratio (PAPR)"

Modulation Interference Factor (MIF) value valid only in conjunction with advanced probe response linearization calibration for the same communication system (same UID and version).



Calibration Laboratory of


Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Complementary Cumulative Distribution Function (CCDF)

Frequency Domain

Time Domain

UID Specification Sheet

UID 10021-DAC page 2/2

Calibration Laboratory of

Schmid & Partner

Name:

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

EDGE-FDD (TDMA, 8PSK, TN 0)

Group: UID: GSM 10025-DAC

PAR: 1 MIF: 2 12.62 dB 3.75 dB

Standard Reference:

Category: Modulation: Frequency Band:

ETSI TS 100 909 V8.9.0 (2005-01)
ETSI TS 100 909 V8.9.0 (2005-01)
FCC OET KDB 941225, D03 and D04
Periodic pulsed modulation
8PSK
GSM 450 (450.4 - 457.6 MHz)
GSM 470 (498.0 - 716.0 MHz)
GSM 710 (698.0 - 716.0 MHz)
GSM 750 (747.0 - 763.0 MHz)
GSM 750 (747.0 - 763.0 MHz)
P-GSM 900 (890.0 - 915.0 MHz)
P-GSM 900 (890.0 - 915.0 MHz)
R-GSM 900 (870.0 - 915.0 MHz)
DCS 1800 (1710.0 - 1785.0 MHz)
PCS 1900 (1850.0 - 1910.0 MHz)
ER-GSM 900 (873.0 - 915.0 MHz) ER-GSM 900 (873.0 - 915.0 MHz) Validation band (0.0 - 6000.0 MHz)

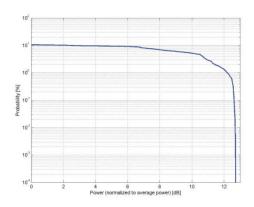
Detailed Specification: Active Slot: TN0

Data: PN9 continuous
Frame: composed out of 8 Slots
Multiframe: 13th (PTCCH) and 26th (IDLE) Frame set blank
Slottype & -timing: Normal burst for 8PSK
0.2 MHz
60.0 ms

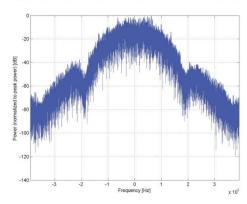
Bandwidth: Integration Time:

UID Specification Sheet

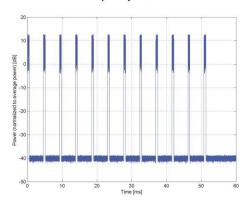
UID 10025-DAC page 1/2


PAR (0.1%) in accordance with FCC KDB 971168, Section 6.0 "Measurement of the Peak-to-Average Power Ratio (PAPR)"

Modulation Interference Factor (MIF) value valid only in conjunction with advanced probe response linearization calibration for the same communication system (same UID and version).



Calibration Laboratory of


Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Complementary Cumulative Distribution Function (CCDF)

Frequency Domain

Time Domain

UID Specification Sheet

UID 10025-DAC page 2/2

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Name: UMTS-FDD (WCDMA, AMR)

Group: WCDMA UID: 10460-AAA

PAR: ¹ **2.39 dB** MIF: ² **-25.43 dB**

Standard Reference: FCC OET KDB 941225 D01 SAR test for 3G devices v03

Category: Random amplitude modulation

Modulation: QPSK

Frequency Band: Band 1, UTRA/FDD (1920.0-1980.0 MHz, 20000)

Band 2, UTRA/FDD (1850.0-1910.0 MHz, 20001)
Band 3, UTRA/FDD (1710.0-1785.0 MHz, 20002)
Band 4, UTRA/FDD (1710.0-1755.0 MHz, 20003)
Band 5, UTRA/FDD (824.0-849.0 MHz, 20004)
Band 6, UTRA/FDD (830.0-840.0 MHz, 20005)
Band 7, UTRA/FDD (2500.0-2570.0 MHz, 20006)
Band 8, UTRA/FDD (880.0-915.0 MHz, 20007)
Band 9, UTRA/FDD (1749.9-1784.9 MHz, 20008)
Band 10, UTRA/FDD (1710.0-1770.0 MHz, 20009)
Band 11, UTRA/FDD (1427.9-1452.9 MHz, 20010)
Band 12, UTRA/FDD (698.0-716.0 MHz, 20011)
Band 13, UTRA/FDD (777.0-787.0 MHz, 20012)
Band 14, UTRA/FDD (788.0-798.0 MHz, 20013)
Band 19, UTRA/FDD (830.0-845.0 MHz, 20131)
Band 20, UTRA/FDD (832.0-862.0 MHz, 20131)

Band 21, UTRA/FDD (1447.9-1462.9 MHz, 20132) Band 22, UTRA/FDD (3410.0-3490.0 MHz, 20217) Band 25, UTRA/FDD (1850.0-1915.0 MHz, 20218)

Band 26, UTRA/FDD (814.0-849.0 MHz, 20219)
Detailed Specification: Dedicated Channel Type: 12.2 kbps AMR

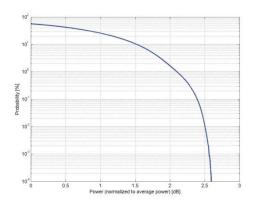
Dedicated Channel Type: 12.2 kbps AMR 3.4 kbps SRB

Bandwidth: 5.0 MHz
Integration Time: 100.0 ms

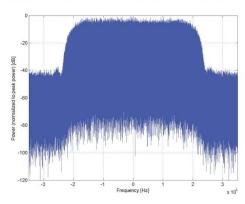
UID Specification Sheet

UID 10460-AAA page 1/2

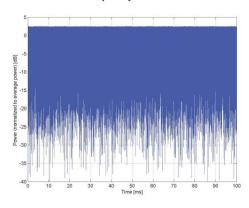
14.10.2015


PAR (0.1%) in accordance with FCC KDB 971168, Section 6.0 "Measurement of the Peak-to-Average Power Ratio (PAPR)"

Modulation Interference Factor (MIF) value valid only in conjunction with advanced probe response linearization calibration for the same communication system (same UID and version).



Calibration Laboratory of


Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Complementary Cumulative Distribution Function (CCDF)

Frequency Domain

Time Domain

UID Specification Sheet

UID 10460-AAA page 2/2

14.10.2015

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Name: UMTS-FDD (HSDPA)

Group: WCDMA UID: 10097-CAB

PAR: ¹ **3.98 dB** MIF: ² **-20.75 dB**

Standard Reference: ETSI-3GPP TS 134.121 Rel. 5

FCC OET KDB 941225 D01 SAR test for 3G devices v02

Category: Random amplitude modulation

Modulation: QPSK

Frequency Band: Band 1, UTRA/FDD (1920.0-1980.0 MHz, 20000)

Band 2, UTRA/FDD (1850.0-1910.0 MHz, 20001)
Band 3, UTRA/FDD (1710.0-1785.0 MHz, 20002)
Band 4, UTRA/FDD (1710.0-1755.0 MHz, 20003)
Band 5, UTRA/FDD (824.0-849.0 MHz, 20004)
Band 6, UTRA/FDD (830.0-840.0 MHz, 20005)
Band 7, UTRA/FDD (2500.0-2570.0 MHz, 20006)
Band 8, UTRA/FDD (880.0-915.0 MHz, 20007)
Band 9, UTRA/FDD (1749.9-1784.9 MHz, 20008)
Band 10, UTRA/FDD (1710.0-1770.0 MHz, 20009)
Band 11, UTRA/FDD (1427.9-1452.9 MHz, 20010)
Band 12, UTRA/FDD (698.0-716.0 MHz, 20011)
Band 13, UTRA/FDD (777.0-787.0 MHz, 20012)
Band 14, UTRA/FDD (788.0-798.0 MHz, 20013)
Band 19, UTRA/FDD (830.0-845.0 MHz, 20130)

Band 20, UTRA/FDD (832.0-862.0 MHz, 20131) Band 21, UTRA/FDD (1447.9-1462.9 MHz, 20132) Band 22, UTRA/FDD (3410.0-3490.0 MHz, 20217) Band 25, UTRA/FDD (1850.0-1915.0 MHz, 20218) Band 26, UTRA/FDD (814.0-849.0 MHz, 20219)

Detailed Specification: CQI value: 2

Sub-test 2 Conditions:

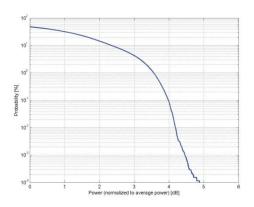
DPCCH gain factor (Beta_c) = 12/15

DPDCH gain factor (Beta_d): 15/15

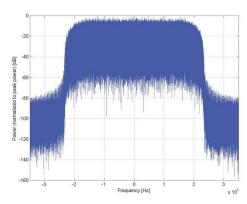
Bandwidth: 5.0 MHz Integration Time: 100.0 ms

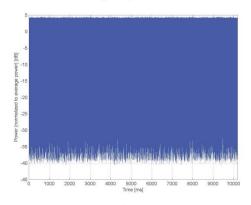
UID Specification Sheet

UID 10097-CAB page 1/2


16.01.2014

PAR (0.1%) in accordance with FCC KDB 971168, Section 6.0 "Measurement of the Peak-to-Average Power Ratio (PAPR)"


Modulation Interference Factor (MIF) value valid only in conjunction with advanced probe response linearization calibration for the same communication system (same UID and version).


Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Complementary Cumulative Distribution Function (CCDF)

Frequency Domain

Time Domain

UID Specification Sheet

UID 10097-CAB page 2/2

16.01.2014

Calibration Laboratory of

Schmid & Partner **Engineering AG**

Name:

Zeughausstrasse 43, 8004 Zurich, Switzerland

LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)

Group: UID: LTE-FDD 10170-CAE PAR: 1 MIF: 2 6.52 dB -9.76 dB

Standard Reference: 3GPP / ETSI TS 136.101 V8.4.0

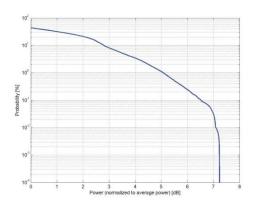
3GPP / ETSI TS 136.213 V8.4.0 FCC OET KDB 941225 D05 SAR for LTE Devices v01 Random amplitude modulation 16-QAM Category: Modulation:

Frequency Band:

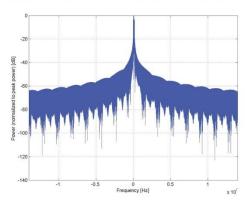
16-QAM
Band 1, E-UTRA/FDD (1920.0 - 1980.0 MHz)
Band 2, E-UTRA/FDD (1850.0 - 1910.0 MHz)
Band 3, E-UTRA/FDD (1710.0 - 1785.0 MHz)
Band 4, E-UTRA/FDD (1710.0 - 1785.0 MHz)
Band 4, E-UTRA/FDD (1710.0 - 1755.0 MHz)
Band 7, E-UTRA/FDD (1740.9 - 1784.9 MHz)
Band 9, E-UTRA/FDD (1749.9 - 1784.9 MHz)
Band 20, E-UTRA/FDD (382.0 - 862.0 MHz)
Band 22, E-UTRA/FDD (382.0 - 862.0 MHz)
Band 22, E-UTRA/FDD (3410.0 - 3490.0 MHz)
Band 25, E-UTRA/FDD (2000.0 - 2020.0 MHz)
Band 26, E-UTRA/FDD (1850.0 - 1915.0 MHz)
Band 28 E-UTRA/FDD (703.0 - 748.0 MHz)
Band 26, E-UTRA/FDD (1920.0 - 2010.0 MHz) Band 28 E-UTRA/FDD (703.0 - 748.0 MHz) Band 65, E-UTRA/FDD (1920.0 - 2010.0 MHz) Band 66, E-UTRA/FDD (1710.0 - 1780.0 MHz) Band 70, E-UTRA/FDD (1695.0 - 1710.0 MHz) Band 71, E-UTRA/FDD (663.0 - 688.0 MHz) Band 74, E-UTRA/FDD (1427.0 - 1470.0 MHz) Validation band (0.0 - 6000.0 MHz)

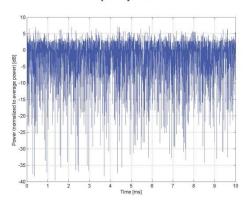
Detailed Specification:

Modulation Scheme: SC-FDMA Number of PUSCHs: 1 Settings for Subframe #0 to #9: Modulation Scheme: 16QAM Data Type: UL-SCH Number RB: 1 Transport Block Size: 256 TBS Index: 14 MCS Index: 15


Data Type: PN9 20.0 MHz 10.0 ms Bandwidth: Integration Time:

PAR (0.1%) in accordance with FCC KDB 971168, Section 6.0 "Measurement of the Peak-to-Average Power Ratio (PAPR)"


Modulation Interference Factor (MIF) value valid only in conjunction with advanced probe response linearization calibration for the same communication system (same UID and version).


Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Complementary Cumulative Distribution Function (CCDF)

Frequency Domain

Time Domain

UID Specification Sheet

UID 10170-CAE page 2/2

27.06.2018

Calibration Laboratory of

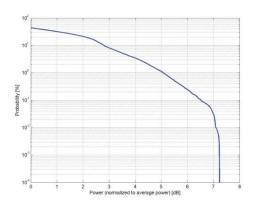
Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

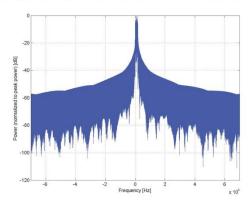
Name: LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) Group: UID: LTE-FDD 10176-CAG PAR: 1 MIF: 2 6.52dB -9.76 dB Standard Reference: 3GPP / ETSI TS 136.101 V8.4.0 3GPP / ETSI TS 136.213 V8.4.0 FCC OET KDB 941225 D05 SAR for LTE Devices v01 Random amplitude modulation 16-QAM Category: Modulation: 16-QAM Band 1, E-UTRA/FDD (1920.0 - 1980.0 MHz) Band 2, E-UTRA/FDD (1850.0 - 1910.0 MHz) Band 3, E-UTRA/FDD (1710.0 - 1755.0 MHz) Band 4, E-UTRA/FDD (1710.0 - 1755.0 MHz) Band 5, E-UTRA/FDD (824.0 - 849.0 MHz) Frequency Band: Band 6, E-UTRA/FDD (830.0 - 840.0 MHz) Band 7, E-UTRA/FDD (2500.0 - 2570.0 MHz) Barld 7, E-UTRA/FDD (2800.0 - 915.0 MHz)
Barld 8, E-UTRA/FDD (880.0 - 915.0 MHz)
Barld 9, E-UTRA/FDD (1749.9 - 1784.9 MHz)
Barld 10, E-UTRA/FDD (1710.0 - 1770.0 MHz)
Barld 11, E-UTRA/FDD (1427.9 - 1447.9 MHz)
Barld 12, E-Band 13, E-UTRA/FDD (699.0 - 7.16.0 MHz) Band 13, E-UTRA/FDD (777.0 - 787.0 MHz) Band 14, E-UTRA/FDD (788.0 - 798.0 MHz) Band 17, E-UTRA/FDD (704.0 - 716.0 MHz) Band 18, E-UTRA/FDD (815.0 - 830.0 MHz) Band 19, E-UTRA/FDD (830.0 - 845.0 MHz) Band 20, E-UTRA/FDD (832.0 - 862.0 MHz) Band 21, E-UTRA/FDD (1447.9 - 1462.9 MHz) Band 21, E-UTRA/FDD (1447.9 - 1462.9 MHz) Band 22, E-UTRA/FDD (3410.0 - 3490.0 MHz) Band 23, E-UTRA/FDD (2000.0 - 2020.0 MHz) Band 24, E-UTRA/FDD (1626.5 - 1660.5 MHz) Band 25, E-UTRA/FDD (1850.0 - 1915.0 MHz) Band 26 E-UTRA/FDD (814.0 - 849.0 MHz) Band 27 E-UTRA/FDD (807.0 - 824.0 MHz) Band 30, E-UTRA/FDD (2305,0 - 2315,0 MHz)
Band 65, E-UTRA/FDD (1920,0 - 2010,0 MHz)
Band 66, E-UTRA/FDD (1710,0 - 1780,0 MHz)
Band 68, E-UTRA/FDD (698,0 - 788,0 MHz)
Band 70, E-UTRA/FDD (1695,0 - 1710,0 MHz) Band 71, E-UTRA/FDD (663.0 - 698.0 MHz) Band 74, E-UTRA/FDD (1427.0 - 1470.0 MHz) Band 85, E-UTRA/FDD (698.0 - 716.0 MHz) Validation band (0.0 - 6000.0 MHz) Modulation Scheme: SC-FDMA Number of PUSCHs: 1 Settings for Subframe #0 to #9: Modulation Scheme: QPSK Detailed Specification: Data Type: UL-SCH Number RB: 1 Transport Block Size: 256 TBS Index: 14 MCS Index: 15 Data Type: PN9 10.0 MHz Bandwidth: Integration Time: 10.0 ms

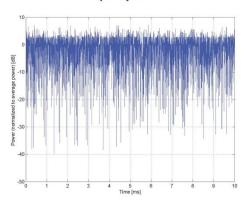
UID Specification Sheet

UID 10176-CAG page 1/2


04.09.2018

PAR (0.1%) in accordance with FCC KDB 971168, Section 6.0 "Measurement of the Peak-to-Average Power Ratio (PAPR)"


Modulation Interference Factor (MIF) value valid only in conjunction with advanced probe response linearization calibration for the same communication system (same UID and version).


Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Complementary Cumulative Distribution Function (CCDF)

Frequency Domain

Time Domain

UID Specification Sheet

UID 10176-CAG page 2/2

04.09.2018

Calibration Laboratory of

Schmid & Partner **Engineering AG**

Name:

Bandwidth: Integration Time:

Zeughausstrasse 43, 8004 Zurich, Switzerland

LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)

Group: UID: LTE-TDD 10173-CAD

PAR: 1 MIF: 2 9.48 dB -1.44 dB

Standard Reference: 3GPP / ETSI TS 136.101 V8.4.0

3GPP / ETSI TS 136.213 V8.4.0 FCC OET KDB 941225 D05 SAR for LTE Devices v02 Random amplitude modulation Category: Modulation:

16-QAM Frequency Band:

Handom ampirtude modulation

16-QAM

Band 33, E-UTRA/TDD (1980.0 - 1920.0 MHz)

Band 35, E-UTRA/TDD (1980.0 - 1990.0 MHz)

Band 36, E-UTRA/TDD (1930.0 - 1990.0 MHz)

Band 37, E-UTRA/TDD (1930.0 - 1990.0 MHz)

Band 38, E-UTRA/TDD (2570.0 - 2620.0 MHz)

Band 38, E-UTRA/TDD (2500.0 - 2620.0 MHz)

Band 40, E-UTRA/TDD (2800.0 - 2400.0 MHz)

Band 40, E-UTRA/TDD (2496.0 - 2690.0 MHz)

Band 41, E-UTRA/TDD (2496.0 - 2690.0 MHz)

Band 43, E-UTRA/TDD (703.0 - 803.0 MHz)

Band 44, E-UTRA/TDD (703.0 - 803.0 MHz)

Band 45, E-UTRA/TDD (5150.0 - 5925.0 MHz)

Band 47, E-UTRA/TDD (5855.0 - 5925.0 MHz)

Band 48, E-UTRA/TDD (3550.0 - 3700.0 MHz)

Validation band (0.0 - 6000.0 MHz)

Validation band (0.0 - 6000.0 MHz) Detailed Specification: Modulation Scheme: SC-FDMA

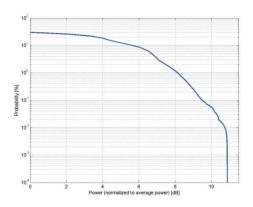
6.0 ms

Uplink-downlink configuration: 1
Special Subtrame configuration: 4
Number of Frames: 1
Settings for UL Subframe 2,3,7,8:
Number of PUSCHs: 1

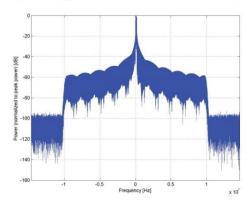
Modulation Scheme: 16QAM Allocated RB: 1 Start Number of RB: 50 Data Type: PN9fix 20.0 MHz

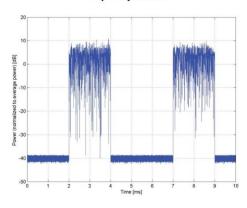
UID Specification Sheet

UID 10173-CAD page 1/2


27.07.2017

PAR (0.1%) in accordance with FCC KDB 971168, Section 6.0 "Measurement of the Peak-to-Average Power Ratio (PAPR)"


Modulation Interference Factor (MIF) value valid only in conjunction with advanced probe response linearization calibration for the same communication system (same UID and version).


Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Complementary Cumulative Distribution Function (CCDF)

Frequency Domain

Time Domain

UID Specification Sheet

UID 10173-CAD page 2/2

27.07.2017

Calibration Laboratory of

Schmid & Partner Engineering AG

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Name: IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)

Group: WLAN UID: 10061-CAB

PAR: 1 **3.60 dB** MIF: 2 **-2.02 dB**

Standard Reference: IEEE 802.11b-1999 , Part 11, FCC SAR meas for 802 11 a b g

v01r02 (248227 D01)

Category: Random amplitude modulation

Modulation: DQPSK

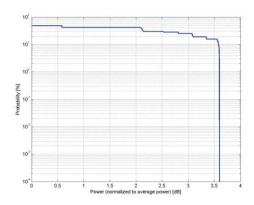
Frequency Band: WLAN 2.4GHz (2412.0-2484.0 MHz, 20230)

Detailed Specification: Data Rate: 11 Mbps

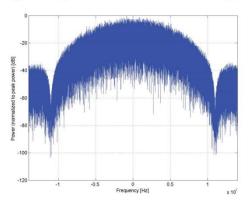
Spreading, Coding: CCK

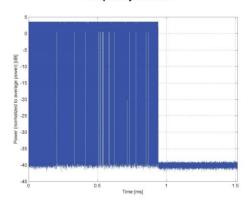
PPDU format: Long Preamble & Heading

PSDU Length: 1024 PSDU Data: PN9 20.0 MHz


Bandwidth: 20.0 MHz Integration Time: 1.5 ms

PAR (0.1%) in accordance with FCC KDB 971168, Section 6.0 "Measurement of the Peak-to-Average Power Ratio (PAPR)"


Modulation Interference Factor (MIF) value valid only in conjunction with advanced probe response linearization calibration for the same communication system (same UID and version).


Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Complementary Cumulative Distribution Function (CCDF)

Frequency Domain

Time Domain

UID Specification Sheet

UID 10061-CAB page 2/2

26.11.2014

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

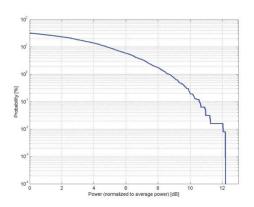
Name: IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps) Group: UID: WLAN 10069-CAD PAR: 1 MIF: 2 10.56 dB -3.15 dB Standard Reference: IEEE 802.11a-1999 (R2003), Part 11 IEEE 802.11h-2003 , Part 11 FCC SAR meas for 802 11 a b g v01r02 (248227 D01) Category: Modulation: Frequency Band: Random amplitude modulation 64-QAM WLAN 5GHz (4915.0 - 5825.0 MHz) WLAN 5GHz (4915.0 - 5825.0 MHz)
U-NII-1, U-NII-2A (5170 - 5330 MHz)
U-NII-2C Standalone (5490 - 5710 MHz)
U-NII-2C <5.65 GHz (5490 - 5650 MHz)
U-NII-3 Standalone (5735 - 5835 MHz)
U-NII-2C, U-NII-3 (5650 - 5835 MHz)
U-NI Detailed Specification: Data Rate: 54 Mbps Data Rate: 54 Mbps
Coding Rate: 3/4
Coded bits per subcarrier: 6
Coded bits per OFDM symbol: 288
Data bits per OFDM symbol: 216
PSDU Length: 1000 Bytes
PSDU Data: PN9
20.0 MHz
0.3 ms

0.3 ms

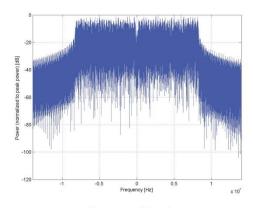
UID Specification Sheet

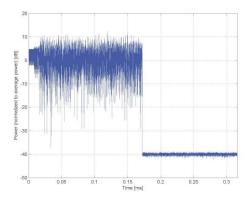
Bandwidth: Integration Time:

UID 10069-CAD page 1/2


04.09.2020

PAR (0.1%) in accordance with FCC KDB 971168, Section 6.0 "Measurement of the Peak-to-Average Power Ratio (PAPR)"


Modulation Interference Factor (MIF) value valid only in conjunction with advanced probe response linearization calibration for the same communication system (same UID and version).


Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Complementary Cumulative Distribution Function (CCDF)

Frequency Domain

END OF REPORT

Time Domain