Head TSL parameters at 5500 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.6 | 4.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.4 ± 6 % | 4.80 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5500 MHz | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.60 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 85.3 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.44 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.1 W/kg ± 19.5 % (k=2) | #### Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.3 ± 6 % | 4.90 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.39 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 83.2 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.40 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.7 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1060_Jul22 Page 5 of 13 # Head TSL parameters at 5750 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.4 | 5.22 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.1 ± 6 % | 5.05 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5750 MHz | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.12 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.4 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.31 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.8 W/kg ± 19.5 % (k=2) | #### Head TSL parameters at 5800 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.3 | 5.27 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.0 ± 6 % | 5.10 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5800 MHz | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.27 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 82.0 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.34 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.1 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1060_Jul22 # Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL at 5200 MHz | Impedance, transformed to feed point | 49.4 Ω - 6.5 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 23.7 dB | | #### Antenna Parameters with Head TSL at 5250 MHz | Impedance, transformed to feed point | 47.7 Ω - 5.5 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 24.3 dB | | #### Antenna Parameters with Head TSL at 5300 MHz | Impedance, transformed to feed point | 46.2 Ω - 3.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 25.8 dB | #### Antenna Parameters with Head TSL at 5500 MHz | Impedance, transformed to feed point | 50.0 Ω - 3.1 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 30.1 dB | | #### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | $53.6 \Omega + 0.5 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 29.2 dB | | Certificate No: D5GHzV2-1060_Jul22 #### Antenna Parameters with Head TSL at 5750 MHz | Impedance, transformed to feed point | 51.9 Ω - 1.7 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 32.1 dB | | # Antenna Parameters with Head TSL at 5800 MHz | Impedance, transformed to feed point | 51.2 Ω - 3.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 29.5 dB | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.202 ns | | |----------------------------------|----------|--| |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| Certificate No: D5GHzV2-1060_Jul22 Page 8 of 13 #### **DASY5 Validation Report for Head TSL** Date: 05.07.2022 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1060 Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5250 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.50 \text{ S/m}$; $\varepsilon_r = 34.9$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: f = 5250 MHz; $\sigma = 4.55 \text{ S/m}$; $\varepsilon_r = 34.8$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: f = 5300 MHz; $\sigma = 4.60 \text{ S/m}$; $\epsilon_r = 34.7$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: f = 5500 MHz; $\sigma = 4.80 \text{ S/m}$; $\varepsilon_r = 34.4$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: f = 5600 MHz; $\sigma = 4.90$ S/m; $\varepsilon_r = 34.3$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 5.05$ S/m; $\epsilon_r = 34.1$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; σ = 5.10 S/m; ϵ_r = 34.0; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.8, 5.8, 5.8) @ 5200 MHz, ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.49, 5.49, 5.49) @ 5300 MHz, ConvF(5.25, 5.25, 5.25) @ 5500 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.08, 5.08, 5.08) @ 5750 MHz, ConvF(5.01, 5.01, 5.01) @ 5800 MHz; Calibrated: 08.03.2022 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601: Calibrated: 02.05.2022. - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.40 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 27.9 W/kg SAR(1 g) = 7.84 W/kg; SAR(10 g) = 2.26 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 69.1% Maximum value of SAR (measured) = 17.6 W/kg # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.86 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 27.1 W/kg SAR(1 g) = 7.87 W/kg; SAR(10 g) = 2.25 W/kg Smallest distance from peaks to all points 3 dB below = 6.8 mm Ratio of SAR at M2 to SAR at M1 = 69.8% Maximum value of SAR (measured) = 17.4 W/kg Certificate No: D5GHzV2-1060_Jul22 Page 9 of 13 #### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 77.09 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 28.9 W/kg #### SAR(1 g) = 8.17 W/kg; SAR(10 g) = 2.33 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 68.9% Maximum value of SAR (measured) = 18.3 W/kg # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 76.69 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 32.9 W/kg #### SAR(1 g) = 8.60 W/kg; SAR(10 g) = 2.44 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 66.4% Maximum value of SAR (measured) = 19.8 W/kg #### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 76.44 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 31.2 W/kg #### SAR(1 g) = 8.39 W/kg; SAR(10 g) = 2.40 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 67.3% Maximum value of SAR (measured) = 19.3 W/kg #### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 73.53 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 31.8 W/kg #### SAR(1 g) = 8.12 W/kg; SAR(10 g) = 2.31 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 65.4% Maximum value of SAR (measured) = 19.0 W/kg # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.35 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 32.9 W/kg #### SAR(1 g) = 8.27 W/kg; SAR(10 g) = 2.34 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 65.2% Maximum value of SAR (measured) = 19.4 W/kg Certificate No: D5GHzV2-1060_Jul22 Page 10 of 13 0 dB = 19.8 W/kg = 12.96 dBW/kg #### Impedance Measurement Plot for Head TSL (5200, 5250, 5300, 5500, 5600 MHz) # Impedance Measurement Plot for Head TSL (5300, 5500, 5600, 5750, 5800 MHz) Certificate No: D5GHzV2-1060_Jul22 # ANNEXI SPOT CHECK # I.1 Tissue and Verification Table I.1-1: Dielectric Performance of Head Tissue Simulating Liquid | Measurement Date (yyyy-mm-dd) | Type Frequency | | Permittivity ε | Drift (%) | Conductivity
σ (S/m) | Drift (%) | |-------------------------------|----------------|---------|----------------|-----------|-------------------------|-----------| | 2022-12-5 | Head | 1900MHz | 41.17 | 2.93 | 1.437 | 2.64 | | 2022-12-8 | Head | 5750MHz | 35.38 | 0.06 | 5.134 | -1.65 | # Table I.1-2: System Validation of Head | Measurement | surement | | ue (W/kg) | Measured | value(W/kg) | Deviation | | | |--------------|-----------|----------|-----------|----------|-------------|-----------|---------|--| | Date | Frequency | 10 g 1 g | | 10 g | 1 g | 10 g | 1 g | | | (yyyy-mm-dd) | | Average | Average | Average | Average | Average | Average | | | 2022-12-5 | 1900MHz | 20.7 | 39.7 | 20.9 | 39.9 | 1.06% | 0.55% | | | 2022-12-8 | 5750MHz | 22.8 | 80.4 | 23.4 | 84.5 | 2.63% | 5.10% | | # I.2 Measurement results | RF Exposure
Conditions | Frequency Band | Channel
Number | Frequency (MHz) | Mode/RB | Test Position | Distance | EUT
Measured
Power
(dBm) | Tune up
(dBm) | Measured
SAR 1g
(W/kg) | Reported
SAR 1g
(W/kg) | Measured
SAR 10g
(W/kg) | Reported
SAR 10g
(W/kg) | Power Drift | Duty Cycle | |---------------------------|----------------|-------------------|-----------------|---------|---------------|----------|-----------------------------------|------------------|------------------------------|------------------------------|-------------------------------|-------------------------------|-------------|------------| | Hotspot | LTE Band2 | 18900 | 1880 | 1RB-Mid | Bottom | 10mm | 22.22 | 23 | 1.07 | 1.28 | 0.565 | 0.68 | 0.15 | / | | Head | WLAN 5G | 165 | 5825 | 11a | Tilt Left | 0mm | 17.02 | 17.5 | 0.852 | 0.97 | 0.235 | 0.26 | 0.15 | 98.00% | # I.3 Reported SAR Comparison Table: Highest Reported SAR (1g) | | | Highest Reported SAR (1g) | | |------|-----------------|----------------------------------|--| | Mode | | Highest Reported
SAR 1g(W/kg) | Reported SAR
spot check
SAR 1g(W/kg) | | | GSM850 | 0.31 | 1 | | | GSM1900 | 0.14 | 1 | | | UMTS FDD 5 | 0.28 | 1 | | | UMTS FDD 4 | 0.26 | 1 | | | UMTS FDD 2 | 0.45 | 1 | | Head | LTE Band 2 | 0.37 | 1 | | | LTE Band 5 | 0.33 | 1 | | | LTE Band 12 | 0.24 | 1 | | | LTE Band 13 | 0.30 | 1 | | | LTE Band 41-PC2 | <0.01 | 1 | | | LTE Band 41-PC3 | 0.04 | 1 | | | LTE Band 66 | 0.24 | 1 | | | LTE Band 71 | 0.26 | 1 | | | WLAN 2.4GHz | 0.97 | 1 | | | WLAN 5GHz | 1.12 | 0.97 | | | BT | 0.11 | 1 | | | GSM850 | 0.39 | 1 | |-----------|-----------------|-------|------| | 1 | | 1.00 | | | | GSM1900 | | | | | UMTS FDD 4 | 0.38 | | | | UMTS FDD 4 | 1.06 | | | | UMTS FDD 2 | 0.96 | 1 00 | | | LTE Band 2 | 1.31 | 1.28 | | | LTE Band 5 | 0.49 | / | | | LTE Band 12 | 0.46 | | | | LTE Band 13 | 0.54 | | | Hotspot | LTE Band 41-PC2 | 1.22 | | | riotopot | LTE Band 41-PC3 | 0.99 | | | | LTE Band 66 | 0.91 | | | | LTE Band 71 | 0.46 | | | | WLAN 2.4GHz | 0.54 | | | | WLAN 5GHz | 0.84 | | | | ВТ | <0.01 | | | | GSM850 | 0.34 | 1 | | | GSM1900 | 0.49 | 1 | | | UMTS FDD 5 | 0.33 | 1 | | | UMTS FDD 4 | 0.98 | 1 | | | UMTS FDD 2 | 0.78 | 1 | | | LTE Band 2 | 0.76 | 1 | | | LTE Band 5 | 0.44 | 1 | | Pody worn | LTE Band 12 | 0.45 | 1 | | Body-worn | LTE Band 13 | 0.49 | 1 | | | LTE Band 41-PC2 | 0.91 | 1 | | | LTE Band 41-PC3 | 1.05 | / | | | LTE Band 66 | 0.88 | 1 | | | LTE Band 71 | 0.40 | 1 | | | WLAN 2.4GHz | 0.28 | 1 | | | WLAN 5GHz | 0.81 | 1 | | | ВТ | <0.01 | 1 | | | GSM850 | 1 | 1 | | | GSM1900 | 2.88 | 1 | | | UMTS FDD 5 | 1 | 1 | | | UMTS FDD 4 | 2.79 | 1 | | | UMTS FDD 2 | 3.02 | 1 | | | LTE Band 2 | 2.38 | | | | LTE Band 5 | 1 | | | | LTE Band 12 | 1 | 1 | | Phablet | LTE Band 13 | , | 1 | | | LTE Band 41-PC2 | 1.72 | 1 | | | LTE Band 41-PC3 | 1.75 | 1 | | | LTE Band 66 | 2.69 | | | | LTE Band 71 | 2.00 | | | | WLAN 2.4GHz | 1.09 | | | | | 1.18 | | | | WLAN 5GHz | | | | | BT | 0.16 | | Note: The spot check results marked blue are larger than the original result. # I.4 List of Main Instruments **Table I.4-1: List of Main Instruments** | No. | Name | Туре | Serial
Number | Calibration Date | Valid Period | |-----|-----------------------|---------------|------------------|--------------------------|--------------| | | | | | | | | 01 | Network analyzer | E5071C | MY46110673 | January 4, 2022 | One year | | 02 | Power sensor | NRP110T | 101139 | January 12, 2022 | One year | | 03 | Power sensor | NRP110T | 101159 | January 13, 2022 | | | 04 | Signal Generator | E4438C | MY49071430 | January 13, 2022 | One Year | | 05 | Amplifier | 60S1G4 | 0331848 | No Calibration Requested | | | 06 | BTS | CMW500 | 159890 | January 24, 2022 | One year | | 07 | DAE | SPEAG DAE4 | 777 | January 07, 2022 | One year | | 08 | E-field Probe | SPEAG EX3DV4 | 7673 | July 08,2022 | One year | | 09 | Dipole Validation Kit | SPEAG D1900V2 | 5d101 | July 26,2022 | One year | | 10 | Dipole Validation Kit | SPEAG D5GHzV2 | 1060 | July 5,2022 | One year | # I.5 Graph Results WIFI5G Head Date/Time: 12/8/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 5825 MHz; $\sigma = 5.214$ S/m; $\epsilon r = 35.295$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3oC Liquid Temperature: 22.5oC Communication System: UID 0, WLan 11a (0) Frequency: 5825 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7673 ConvF(4.7, 4.7, 4.7) Area Scan (81x141x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 3.51 W/kg Zoom Scan (8x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 1.651 V/m; Power Drift = 0.15 dB Peak SAR (extrapolated) = 3.80 W/kg SAR(1 g) = 0.852 W/kg; SAR(10 g) = 0.235 W/kg Maximum value of SAR (measured) = 2.19 W/kg # **LTE Band2 Body** Date/Time: 12/5/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 1880 MHz; $\sigma = 1.423 \text{ S/m}$; $\epsilon r = 41.225$; $\rho = 1000 \text{ kg/m}3$ Ambient Temperature: 23.3oC Liquid Temperature: 22.5oC Communication System: UID 0, LTE Band2(20MB) (0) Frequency: 1880 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7673 ConvF(8.07, 8.07, 8.07) Area Scan (81x141x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.65 W/kg Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 24.43 V/m; Power Drift = 0.15 dB Peak SAR (extrapolated) = 1.93 W/kg SAR(1 g) = 1.07 W/kg; SAR(10 g) = 0.565 W/kg Maximum value of SAR (measured) = 1.61 W/kg # I.6 System Verification Results 1900MHz Date/Time: 12/5/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 1900 MHz; $\sigma = 1.437 \text{ S/m}$; $\epsilon r = 41.17$; $\rho = 1000 \text{ kg/m}3$ Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: UID 0, CW (0) Frequency: 1900 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7673 ConvF(8.07, 8.07, 8.07) Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 15.6 W/kg Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 102.3 V/m; Power Drift = 0.14 dB Peak SAR (extrapolated) = 18.6 W/kg SAR(1 g) = 9.98 W/kg; SAR(10 g) = 5.23 W/kgMaximum value of SAR (measured) = 15.6 W/kg 0 dB = 15.6 W/kg = 11.93 dBW/kg #### 5750MHz Date/Time: 12/8/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 5750 MHz; $\sigma = 5.134 \text{ S/m}$; $\epsilon r = 35.38$; $\rho = 1000 \text{ kg/m}3$ Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: UID 0, CW (0) Frequency: 5750 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7673 ConvF(4.7, 4.7, 4.7) System Performance Check/d=10mm, Pin=100mW, f=5750 MHz/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 22.2 W/kg System Performance Check/d=10mm, Pin=100mW, f=5750 MHz/Zoom Scan 2 (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 41.82 V/m; Power Drift = 0.14 dB Peak SAR (extrapolated) = 37.4 W/kg SAR(1 g) = 8.45 W/kg; SAR(10 g) = 2.34 W/kg Maximum value of SAR (measured) = 22.1 W/kg 0 dB = 22.1 W/kg = 13.44 dBW/kg # ANNEX J Accreditation Certificate United States Department of Commerce National Institute of Standards and Technology # Certificate of Accreditation to ISO/IEC 17025:2017 **NVLAP LAB CODE: 600118-0** # **Telecommunication Technology Labs, CAICT** Beijing China is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for: #### **Electromagnetic Compatibility & Telecommunications** This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated January 2009). 2022-10-01 through 2023-09-30 Effective Dates For the National Voluntary Laboratory Accreditation Program